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Abstract

Modeling Irregularly-sampled and Multivariate Time Series (IMTS) is crucial across a variety
of applications where different sets of variates may be missing at different time-steps due
to sensor malfunctions or high data acquisition costs. Existing approaches for IMTS either
consider a two-stage impute-then-model framework or involve specialized architectures specific
to a particular model and task. We perform a series of experiments to derive insights about
the performance of IMTS methods on a variety of semi-synthetic and real-world datasets for
both classification and forecasting. We also introduce Missing Feature-aware Time Series
Modeling (MissTSM) or MissTSM, a simple model-agnostic and imputation-free approach
for IMTS modeling. We show that MissTSM shows competitive performance compared to
other IMTS approaches, especially when the amount of missing values is large and the data
lacks simplistic periodic structures—conditions common to real-world IMTS applications.

1 Introduction

Deep Learning for modeling multivariate Time-Series (MTS) is a rapidly growing field, with two major
downstream tasks: forecasting and classification. Research (Dong et al., 2024; Nie et al., 2022a; Liu et al.,
2023) in this field has been fueled by the availability of benchmark MTS datasets spanning diverse applications
such as electric load forecasting and health monitoring containing fixed sets of variates regularly sampled
over time. However, real-world MTS applications are plagued by missing values occurring over arbitrary sets
of variates at every time-step (e.g. due to sensor malfunctions), resulting in Irregularly-sampled MTS (IMTS)
datasets. IMTS modeling is particularly challenging because the misalignment of variates across time impairs
transformer models that assume a fixed set of variates to be observed at every time-step

A common approach for IMTS modeling is to use a two-step framework where we first use imputation methods
(Ahn et al., 2022; Batista et al., 2002) to fill in missing values based on observed data, followed by feeding
the imputed time-series to an MTS model (see Figure 1). Note that the choice of imputation method is
agnostic to the MTS model, making it “model-agnostic.” However, the effectiveness of this framework relies
on the quality of performed imputation, which can degrade if the time-series lacks periodic structure or if the
imputation method is overly simplistic. Imputation can also introduce artificial patterns or artifacts into the
data, which MTS models may interpret as genuine trends or observations. Moreover, deep learning-based
imputation methods require training, which adds to the overall computational cost of IMTS modeling.

Imputation-free approaches for IMTS have also been developed in recent literature (Che et al., 2018; Rubanova
et al., 2019), that involve specialized architectures to handle missing values in time-series for specific
downstream tasks such as classification (see Figure 1) However, these approaches have been empirically shown
to struggle with capturing long-term temporal dependencies that are central to the problem of forecasting,
are difficult to parallelize, and incur high computational costs. Furthermore, existing imputation-free IMTS
approaches are not model-agnostic, i.e., they have been developed as specialized model architectures that
cannot be used as a generic wrapper with latest advances in MTS models, restricting their adaptability and
performance.
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Figure 1: We investigate the relative importance of
three categories of approaches for modeling irregular
and multivariate time-series: (1) imputation-based ap-
proaches, (2) model-agnostic and imputation-free ap-
proaches (proposed MissTSM layer), and (3) imputation-
free approaches involving specialized architectures.

Given the complementary strengths and weaknesses
of existing approaches in IMTS modeling, we ask the
following question - can we develop a model-agnostic
and imputation-free approach for IMTS modeling that
can be used in a variety of downstream tasks (e.g., fore-
casting and classification)? To address this question,
we analyze the prevailing strategies for converting time-
series into tokens in existing transformer-based MTS
models. There are two primary ways for converting
time series into tokens: (a) treating each time step (all
variates) as a token, or (b) considering each variate (all
time steps) as a token (Liu et al., 2023). While these
strategies work well for regular MTS data, they are
not suited to handle IMTS data because we may be
missing some variates at a time step or some time-steps
for a variate, making the computation of tokens infea-
sible. In contrast, we explore a different perspective
for creating time-series tokens: independently embed-
ding each combination of time-step and variate as a
token. Time-variate combinations with missing values can then be handled using masked cross-attention
without performing any explicit imputation. Building on this intuition, we introduce MissTSM, a simple
model-agnostic and imputation-free approach for IMTS modeling, designed as a “plug-and-play” layer that
can be integrated into any backbone MTS model to handle IMTS data. The advantage of such an approach is
that it (a) does not introduce any imputation artifacts, and (b) can act as a wrapper around any MTS model.

In this work, we make the following contributions: (1) We introduce MissTSM, a model-agnostic and
imputation-free approach; (2) We conduct a comprehensive experimental study on a variety of datasets for
both classification and forecasting tasks, using synthetic masking techniques as well as real-world occurrence
of missing values. This study investigates (a) sensitivity of imputation-based frameworks on the choice of
imputation technique and the nature of missing values, and (b) the performance of IMTS approaches as the
fraction of missing values varies; (3) We demonstrate that MissTSM achieves competitive performance
compared to other IMTS approaches, especially when the amount of missing values is large and the data
lacks simplistic periodic structures - conditions common to real-world IMTS applications.

2 Related Works

Time-series Forecasting. With the introduction of attention mechanisms via transformer models (Vaswani
et al., 2017), a number of transformer-based time-series models have been developed in the last few years
(Wu et al., 2021; Nie et al., 2022b; Dong et al., 2024; Liu et al., 2023). While Transformer-based models have
shown great promise, recently there has been a strong interest in exploring the use of simple linear models
for time-series forecasting as well (Zeng et al., 2023; Ekambaram et al., 2023). In addition, with the rise of
self-supervised learning-based models such as masked auto-encoders (MAEs) (He et al., 2022), a new category
of MAE-style time-series models have emerged (Dong et al., 2024) that have received a lot of recent interest
owing to their ability of learning both low-level and high-level representations for varied downstream tasks
such as forecasting and classification. However, while these methods can deal with missing values in the
temporal domain, they are unable to handle missing values across both variates and time.

Imputation Methods. Traditionally, most imputation techniques for handling missing values in time-series
have been based on statistical approaches (Fung, 2006; Batista et al., 2002; Dempster et al., 1977; Mnih &
Salakhutdinov, 2007). In recent years, there is a growing trend to use deep learning methods for time-series
imputation, such as SAITS (Du et al., 2023), CSDI (Tashiro et al., 2021a), GAIN (Yoon et al., 2018a),
and BRITS (Cao et al., 2018). Imputation techniques can be broadly classified into two classes: those that
leverage cross-channel correlations (Batista et al., 2002; Acuna & Rodriguez, 2004) and those that exploit
temporal dynamics (Box et al., 2015). Recently, deep learning-based approaches for imputation have been
developed (Tashiro et al., 2021b; Cini et al., 2021; Liu et al., 2019; Cao et al., 2018; Du et al., 2023), which
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can jointly learn the temporal dynamics with cross-channel correlations. These methods, however, rely on a
single entangled representation (or hidden state) to model nonlinear dynamics (Woo et al., 2022) which can
be a limitation in capturing the multifaceted nature of time-series. Matrix factorization based techniques
(Liu et al., 2022) have also been proposed that offer disentangled temporal representations, enhancing the
ability to differentiate and model distinct temporal features. While these deep learning-based models are
highly efficient during inference, they require additional training time, which add to the already large time
complexity of MTS models.

Imputation-free IMTS Models. In the last decade, there has been a significant growth of models
and architectures for learning from IMTS data. Some of the simpler approaches to deal with IMTS data
involve working with fixed temporal discretization (Marlin et al., 2012; Lipton et al., 2016). The primary
drawback with these approaches is that they make ad-hoc choices in terms of discretization window width and
aggregation functions within the windows (Shukla & Marlin, 2020). A popular set of approaches for handling
IMTS data are recurrence-based approaches, which includes RNN-based methods such as GRU-D (Che et al.,
2018). However, GRU-D has limited scalability to long sequences. Other recurrence-based approaches based
on Ordinary Differential Equations (ODE) (Chen et al., 2018; Rubanova et al., 2019) provide an effective
solution in modeling the continuous time semantics. These methods are however significantly slow and
memory-intensive, as they constantly need to apply the ODE solver and solving ODEs require numerical
integration, thus making it impractical for long-term forecasting and large datasets.

Transformer-based methods such as ContiFormer (Chen et al., 2023) and mTAN (Shukla & Marlin, 2021)
addresses these limitations by explicitly integrating the modeling abilities of Neural ODEs into the attention
mechanism and introducing continuous time attention mechanism that learns time embeddings dynamically,
respectively. However, despite ContiFormer being a principled and effective approach, solving an ODE for
each key and value incurs a high computational cost. Also, while the runtime speed of mTAN is relatively
faster, it is however, inherently optimized toward interpolating missing values by learning representations at
fixed set of reference points, thus limiting it’s extrapolation or forecasting ability.

This is another limitation of IMTS approaches—their evaluation is mostly limited to a single task, most
often to time series classification, thus limiting their applicability. ContiFormer performs evaluation on
forecasting tasks, however, they consider regular and clean benchmark time-series datasets in their evaluation.
Another limitation in terms of evaluation is that the prior works primarily focus on other IMTS models for
comparison, completely ignoring the two-stage imputation approach, which is a more common and practical
way of dealing with missing-value data. Our work aims to solve these issues by providing a comprehensive
comparison against both existing imputation-free and two-stage imputation-based approaches, and proposing
a model-agnostic transformation-allowing any task-specific SOTA model to be applied on any irregularly
sampled time-series data with minimal data transformations.

3 Proposed Missing Feature Time-Series Modeling (MissTSM) Framework

3.1 Notations and Problem Formulations

Let us represent a multivariate time-series as X ∈ RT ×N , where T is the number of time-steps, and N is
the dimensionality (number of variates) of the time-series. We assume a subset of variates (or features) to
be missing at some time-steps of X, represented in the form of a missing-value mask M ∈ [0, 1]T ×N , where
M(t,d) represents the value of the mask at t-th time-step and d-th dimension. M(t,d) = 1 denotes that the
corresponding value in X(t,d) is missing, while M(t,d) = 0 denotes that X(t,d) is observed. Furthermore, let us
denote X(t,:) ∈ RN as the multiple variates of the time-series at a particular time-step t, and X(:,d) ∈ RT as
the uni-variate time-series for the variate d. In this paper, we consider two downstream tasks for time-series
modeling: forecasting and classification. For forecasting, the goal is to predict the future S time-steps of X
represented as Y ∈ RS×N . Alternatively, for time-series classification, the goal is to predict output labels
Y ∈ {1, 2, ..., C} given X, where C is the number of classes.
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3.2 Learning Embeddings for Time-Series with Missing Features

Limitations of Existing Transformer Methods: The first step in time-series modeling using
transformer-based architectures is to learn an embedding of the time-series X that can be sent to the
transformer encoder. Traditionally, this is done using an Embedding layer (typically implemented us-
ing a multi-layered perceptron) as Embedding : RN 7→ RD that maps X ∈ RT ×N to the embedding
H ∈ RT ×D, where D is the embedding dimension. The Embedding layer operates on every time-step
independently such that the set of variates observed at time-step t, X(t,:), is considered as a single
token and mapped to the embedding vector ht ∈ RD as ht = Embedding(X(t,:)) (see Figure 2(a)).

Figure 2: Schematic of the Time-Feature Independent (TFI)
Embedding of MissTSM that learns a different embedding for
every combination of time-step and variate, in contrast to the
time-only embeddings of Transformer (Vaswani et al., 2017)
and the variate-only embeddings of iTransformers (Liu et al.,
2023).

An alternate embedding scheme was recently in-
troduced in the framework of inverted Trans-
former (iTransformer) (Liu et al., 2023), where the
uni-variate time-series for the d-th variate, X(:,d),
is considered as a single token and mapped to the
embedding vector: hd = Embedding(X(:,d)) (see
Figure 2(b)).

While both these embedding schemes have their
unique advantages, they are unfit to handle time-
series with arbitrary sets of missing values at every
time-step. In particular, the input tokens to the
Embedding layer of Transformer or iTransformer
requires all components of X(t,:) or X(:,d) to be
observed, respectively. If any of the components
in these tokens are missing, we will not be able to
compute their embeddings and thus will have to
discard either the time-step or the variate, leading
to loss of information.

Time-Feature Independent (TFI) Embed-
ding: To address this challenge as well as to
utilize inter-variate interactions similar to Wei
et al. (2023), we consider a Time-Feature Independent (TFI) Embedding scheme for time-series with missing
features, where the value at each combination of time-step t and variate d is considered as a single token
X(t,d), and is independently mapped to an embedding using TFIEmbedding : R 7→ RD as follows:

h(t,d) = TFIEmbedding(X(t,d)) (1)

In other words, the TFIEmbedding Layer (which is a simple MLP layer) maps X ∈ RT ×N into the TFI
embedding HTFI ∈ RT ×N×D (see Figure 2(c)). The TFIEmbedding is applied only on tokens X(t,d) that are
observed (for missing tokens, i.e., M(t,d) = 1, we generate a dummy embedding that gets masked out in
the MFAA layer). The advantage of such an approach is that even if a particular value in the time-series is
missing, other observed values in the time-series can be embedded “independently” without being affected
by the missing values. Moreover, it allows the MFAA layer to leverage the high-dimensional embeddings to
store richer representations bringing in the context of time and variate by computing masked cross-attention
among the observed features at a time-step to account for the missing features.

2D Positional Encodings: We add Positional Encoding vectors PE to the TFI embedding HTFI to
obtain positionally-encoded embeddings, Z = PE + HTFI. Since TFI embeddings treat every time-feature
combination as a token, we use a 2D-positional encoding scheme defined as follows:

PE(t, d, 2i) = sin
(

t

10000(4i/D)

)
,

PE(t, d, 2i + 1) = cos
(

t

10000(4i/D)

) (2)
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Figure 3: Overview of the MissTSM layer integrated within the Masked Auto-Encoder framework (Li et al.,
2023). A zoomed-in view of the MFAA is shown on the left.

PE(t, d, 2j + D/2) = sin
(

d

10000(4j/D)

)
,

PE(t, d, 2j + 1 + D/2) = cos
(

d

10000(4j/D)

) (3)

where t is the time-step, d is the feature, and i, j ∈ [0, D/4) are integers.

3.3 Missing Feature-Aware Attention (MFAA)

The MFAA Layer illustrated in Figure 3 leverage the power of “masked-attention” for learning latent
representations at every time-step using partially observed features. MFAA works by computing attention
scores based on the partially observed features at a time-step t, which are then used to perform a weighted sum
of observed features to obtain the latent representation Lt. As shown in Figure 3, these latent representations
are projected back using a linear layer, to the original input shape before being fed into the downstream
model (here, the encoder-decoder based self-supervised learning framework). MFAA performs a masked
cross-attention using a learnable query vector and observed data as keys and values. This separation of roles
is inspired by similar architectures in multi-modal grounding, for example, in Carion et al. (2020), where
learnable object queries serve as abstract object representations to focus on distinct objects in an image
without requiring predefined region proposals, enabling set-based prediction. Similarly, in our setting, the
learnable queries capture the interactions among variates independent of time, enabling the model to attend
to the most informative aspects of observed variates at any time-step fed through keys and values. This
intuition aligns with the query-based mechanism in mTAN (Shukla & Marlin, 2021), which introduces a
structured way to aggregate information over observed time-series data. However, while mTAN uses discrete
reference points on a fixed temporal grid to achieve this, our single learnable query generalizes across variates
at every time step, allowing for a more flexible representation of feature interactions

Mathematical Formulation: To obtain attention scores from partially observed features at a time-step,
we apply a masked scaled-dot product operation followed by a softmax operation described as follows. We
first define a learnable query vector Q ∈ R1×D which is independent of the variates and time-steps. The
positionally-encoded embeddings at time-step t, Z(t,:), are used as key and value inputs in the MFAA
Layer. Specifically, The query, key, and value vectors are defined using linear projections as follows:
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Q̂ = QWQ, K̂t = Z(t,:)WK, V̂t = Z(t,:)WV. Here, Q̂ ∈ R1×dk and K̂t, V̂t ∈ RN×dk , where dk is the
dimension of the vectors after linear projection. The linear projection matrices for the query, key, and values
are defined as: WQ, WK, WV ∈ RD×dk respectively. Note that the key K̂t and value V̂t vectors depend on
the time-step t, while the query vector doesn’t change with time. We then define the Missing Feature-Aware
Attention Score at a given time-step t as a masked scalar dot-product of the query and key vector followed
by normalization of the scores using a Softmax operation, formally defined as follows:

At = MFAAScore(Q̂, K̂t, M(t,:))

= Softmax

(
Q̂K̂⊤

t√
dk

+ η M(t,:)

)
(4)

where At ∈ RN is the MFAA Score vector of size N corresponding to the N variates, and η → −∞ is a large
negative bias. The negative bias term η forces the masked-elements that correspond to the missing variates
in the time-series to have an attention score of zero. Thus, by definition, the i-th element of the MFAA Score
A(t,i) ≠ 0 =⇒ M(t,:) = 0. We compute the latent representation Lt as a weighted sum of the MFAA score
At and the Value vector V̂t as follows:

Lt = MFAA(At, V̂t) = AtV̂t ∈ Rdk (5)

Similar to multi-head attention used in traditional transformers, we extend MFAA to multiple heads as
follows:

MultiHeadMFAA(Q, Z(t,:), M(t,:))
= Concat(L0

t , L1
t , . . . , Lh−1

t ) · WO
(6)

where h is the number of heads, W0 ∈ Rhdk×Do , Li
t is the latent representation obtained from the i-th MHAA

Layer, and Do is the output-dimension of the MultiHeadMFAA Layer.

3.4 Putting Everything Together: Plugging MissTSM with any MTS Model

Figure 3 shows the overall framework of a Masked Auto-Encoder (MAE) (He et al., 2022) based time-series
model integrated with MissTSM. For an input time-series X, we apply the TFI embedding layer followed by
the MFAA layer to learn a latent representation for every time-step. The latent representations are then
projected back to the original input shape to be fed into the downstream model. In this work, we opted
for a MAE-based time-series model as the default downstream or base model, primarily due to its recent
success in time-series modeling and its ability to perform both time-series forecasting and classification tasks.
Furthermore, out of the several state-of-the-art masked time-series modeling techniques, we intentionally
chose the simplest variation of MAE, namely Ti-MAE (Li et al., 2023), to highlight the effectiveness of TFI
and MFAA layers in handling missing values.

4 Experimental Setup

Baselines: We benchmark against two categories of models. For MTS, we consider SimMTM (Dong et al.,
2024), PatchTST (Nie et al., 2022b), AutoFormer (Wu et al., 2021), DLinear (Zeng et al., 2023), and
iTransformer (Liu et al., 2023). Imputation strategies used are, 2nd-order spline interpolation (McKinley &
Levine, 1998), k-Nearest Neighbor (Tan et al., 2019), and SAITS (Du et al., 2023) and BRITS (Cao et al.,
2018). For IMTS, we evaluate GRU-D (Che et al., 2018), Latent ODE (Rubanova et al., 2019), SeFT (Horn
et al., 2020), mTAND (Shukla & Marlin, 2021), Raindrop (Zhang et al., 2021), and MTGNN (Wu et al.,
2020). Baseline choice is aligned with the task each model was originally designed for.

Datasets: We considered three popular time-series forecasting datasets: ETTh2, ETTm2 (Zhou et al.,
2021) and Weather (Weather, 2021). For classification, we considered three real-world datasets, namely,
Epilepsy (Andrzejak et al., 2001), EMG (Goldberger et al., 2000a), and Gesture (Liu et al., 2009). We follow
the same evaluation setups as proposed in TF-C (Zhang et al., 2022). To simulate varying scenarios of
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missing values appearing in real-world time-series datasets, we adopt two synthetic masking schemes that we
apply on these benchmark datasets, namely missing completely at random (MCAR) masking and periodic
masking. Furthermore, we compared our performance on five real-world datasets: PhysioNet-2012 (Silva
et al., 2012), P12 (Goldberger et al., 2000b) and P19 (Reyna et al., 2020) for health monitoring; Falling Creek
Reservoir (FCR) dataset for modeling lake water quality, and Lake Mendota from the North Temperate
Lakes Long-Term Ecological Research program (NTL-LTER; Magnuson et al., 2024) also for modeling lakes.
See Appendix for more details.

5 Results and Discussions

Here, we discuss our findings with respect to imputation-based vs. imputation free methods, and model-
agnostic vs. specialized methods across a variety of datasets, tasks, and missing value settings.

5.1 Imputation-based vs. Imputation-free

5.1.1 Impact of Missing Data Fractions.
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Figure 4: Performance comparison against different TS Baselines imputed with SAITS, across different
missing data fractions.

To understand the effect of varying masking fractions on the forecasting performance, we consider five
forecasting models trained on SAITS-imputed data as the set of imputation-based baselines. We compare
their results with MissTSM integrated within the MAE framework as an imputation-free approach. Figure
4 shows variations in the Mean Squared Error (MSE) as we increase the missing value fraction in MCAR
and periodic masking scheme from 0.6 to 0.9 for forecasting horizon T = 720 on two ETT datasets. We can
see that, on average, as we increase the amount of missing values in the data, imputation-based baselines
and MissTSM show an increasing trend in MSE. This is expected as larger missing value fractions starve
IMTS models with greater amount of information degrading their performance. However, the rise in MSE of
MissTSM with missing value fractions is much less pronounced than imputation-based baselines consistently
across the two datasets and synthetic masking schemes (MCAR and Periodic Masking). Further, note that
MissTSM shows smaller standard deviations compared to the large and varying standard deviations of the
imputation-based approaches (w.r.t the increasing missingness). These results suggest that imputation-based
frameworks struggle when the amount of missing values is high, possibly due to the poor performance of
imputation methods when the number of observations is small.

We conduct a similar study to understand the impact of missing data fractions on classification tasks with
MCAR masking scheme (see Figure 5). Similar to forecasting, we see, on average, a gradual decrease in
the F1 scores with increasing missing fractions of the imputation-based approaches. We also observe a high
range of variability in the Spline-imputed baselines, which suggests that the polynomial order of spline
imputation can be further fine-tuned specific to the data. On the other hand, MissTSM shows consistently
strong performance across all the three datasets.
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Figure 5: Classification F1 scores on three datasetsL EMG, Epilepsy, and Gesture. Masking fractions
considered: 0.2, 0.4, 0.6, 0.8.

Figure 6: Comparison of different masking methods (70% missing fraction): MCAR vs. Periodic Masking for
ETTh2, ETTm2, and Weather datasets. SA stands for SAITS and SP stands for Spline.

5.1.2 Impact of the Nature of Missing Values.

To understand the performance of imputation-based and imputation-free approaches under varying conditions
of missing data, we compared their results across the two synthetic masking patterns: MCAR and Periodic
Masking. From Fig. 6, we can observe that for the ETTh2 dataset, models perform consistently better under
random masking compared to periodic. We can also see that the performance difference between MCAR and
Periodic masking is, on an average, higher for SAITS-imputed models compared to Spline. This suggests
that the hyper-parameters of SAITS can be further fine-tuned on the Periodic dataset, which is relatively
easier for Spline to model. Additionally, the performance under MCAR and Periodic missingness on Weather
dataset is comparatively similar, which hint towards high seasonality within the weather dataset, thus helping
the imputation-based baselines on this dataset.

5.1.3 Impact of Imputation Methods.

The choice of imputation method dictates the overall performance of imputation-based frameworks. In Figure
7a, we compare four imputation techniques: Spline, kNN, BRITS, and SAITS, paired with two MTS models
(iTransformer and PatchTST) at a forecasting horizon of T = 720 and 70% missing data fraction. Model
performance on BRITS-imputed data is relatively poor, whereas models trained on SAITS-imputed data
performs relatively good. This difference in performance indicates the impact of imputation models on
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downstream tasks within imputation-based frameworks. Notably, MissTSM-based imputation-free model
achieves relatively low MSE scores compared to most imputation-based frameworks.

(a) Varying imputation models.
Performance on ETTh2.

(b) Classification results of im-
putation models on PhysioNet.

Figure 7: Comparison of MSE and F1-score across impu-
tation methods.

In Figure 7b, we compare MissTSM with six im-
putation baselines— M-RNN (Yoon et al., 2018b),
GP-VAE (Fortuin et al., 2020), BRITS (Cao et al.,
2018), Transformer (Vaswani et al., 2017), and
SAITS (Du et al., 2023) - on a popular real-world
classification dataset, PhysioNet (Silva et al.,
2012) following the same evaluation setup as pro-
posed in (Du et al., 2023). MissTSM achieves an
impressive F1-score of 57.84%, representing an
approximately 15% improvement over the best-
performing model (trained on SAITS imputed
data). This substantial performance gain on a
real-world dataset with missing values highlights
the potential of imputation-free or single-stage
approaches compared to imputation-based ap-
proaches.

5.2 Comparing Model-Agnostic vs. Specialized Models

5.2.1 Analyzing MissTSM on IMTS Classification and Forecasting

We evaluate MissTSM on both classification and forecasting tasks for irregular multivariate time series. To
illustrate the generality of our approach, we study two case models: (i) GRU-D, a specialized classifier for
irregularly sampled data, and (ii) Latent ODE, a continuous-time generative model not originally designed for
forecasting but adapted here to a long-term prediction setting. These case studies emphasize how specialized
methods struggle when moved beyond their intended use, underscoring the value of model-agnostic approaches.

IMTS Classification. We conduct experiments on the IMTS classification task using the P12 (Goldberger
et al., 2000b) and P19 (Reyna et al., 2020) datasets, following the same evaluation protocol as Luo et al.
(2025). We report the baseline results for the considered models directly from Luo et al. (2025). Table 1
highlights the strong potential of model-agnostic approaches; integrating the MissTSM layer, can achieve
performance on par with or exceeding that of several well-known IMTS models.

Table 1: Performance comparison on P19 and P12. Best in bold, second-best underlined.

Methods P19 P12
AUROC AUPRC AUROC AUPRC

GRU-D 88.7 1.2 56.2 2.3 79.6 0.6 41.7 1.8

ODE-RNN 87.1 1.0 52.6 3.2 78.8 0.6 37.4 2.6

SeFT 84.0 0.3 49.3 0.5 78.1 0.5 35.9 0.8

mTAND 82.9 0.9 32.2 1.5 85.3 0.3 49.3 1.0

Raindrop 87.6 2.7 61.1 1.4 82.0 0.6 42.7 1.7

MTGNN 88.5 1.0 55.8 1.5 82.1 1.5 41.8 2.1

MissTSM 88.8 1.3 56.5 1.2 82.2 0.5 43.8 1.1

Comparing MissTSM with GRU-D on Classification. To analyze the potential of model-agnostic
approaches we apply the same MissTSM-integrated MAE model on synthetically masked (80%) classification
datasets and compare against GRU-D. From Table 2, we observe that while GRU-D is a specialized model
for IMTS data, the proposed model-agnostic still outperforms it significantly. Please refer to the Appendix
for more implementation details.
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Table 2: Comparing (F1 scores) MissTSM approach
against GRU-D for classification datasets.

Dataset GRU-D MissTSM
Epilepsy 6.52% 64.9%
Gesture 3.16% 55.70%
EMG 2.78% 59.45%

Table 3: Comparing (MSE values) MissTSM with
Latent ODE adapted for forecasting

Fraction Latent ODE MissTSM
60% 4.25 0.243
70% 3.181 0.250
80% 2.543 0.264
90% 2.624 0.316

Comparing MissTSM with Latent ODE on ETTh2. As discussed above, specialized IMTS models
cannot be easily adapted to a different task. To analyze this further, we adapt the Latent ODE model (with
ODE-RNN encoder) for a long-term forecasting problem and compare it against our model-agnostic approach.
We consider a simple setup with 336 context length and 96 prediction length under MCAR masking with
varying fractions. From Table 3, we see that Latent ODE struggles to perform long-sequence modeling, with
significantly high MSE values. Moreover, ODE-based methods incur considerable computational costs, which
grow even more pronounced for long-term modeling.

5.2.2 Analyzing Model-Agnostic Nature of MissTSM.

To further analyze model-agnostic capability of the proposed approach we integrate MissTSM with other
MTS models like PatchTST and iTransformer. Tables 4 and 5 show competitive performance of MissTSM
integrated with PatchTST, revealing potential for plugging MissTSM with advanced MTS models for improved
performance on downstream tasks even in the presence of missing values with minimal change to the MTS
model architecture. Please refer to appendix for additional results.

Table 4: MSE (meanstd) for PatchTST with Mis-
sTSM under 60% masking.

Dataset Horizon
Window

PatchTST
+ MissTSM

PatchTST
+ SAITS

PatchTST
+ Spline

ETTh2

96 0.3170.004 0.5030.013 0.3240.013
192 0.3770.009 0.5120.011 0.3990.017
336 0.3800.011 0.4100.012 0.4310.005
720 0.5140.033 0.4110.002 0.4360.017

ETTm2

96 0.2020.005 0.3220.045 0.1690.000
192 0.2610.002 0.3590.036 0.2270.000
336 0.3130.001 0.4080.043 0.2850.001
720 0.4200.027 0.4590.035 0.3760.001

Weather

96 0.2060.014 0.1690.001 0.2700.110
192 0.2760.027 0.2120.000 0.2870.080
336 0.3090.024 0.2630.001 0.3250.065
720 0.3400.003 0.3330.001 0.3910.060

Table 5: MSE (meanstd) for PatchTST with Mis-
sTSM under 70% masking.

Dataset Horizon
Window

PatchTST
+ MissTSM

PatchTST
+ SAITS

PatchTST
+ Spline

ETTh2

96 0.3220.004 0.5480.050 0.3170.009
192 0.3820.011 0.5610.056 0.3800.005
336 0.3840.008 0.4680.059 0.3720.007
720 0.6210.025 0.4970.085 0.4190.015

ETTm2

96 0.2130.006 0.4050.079 0.1770.009
192 0.2660.003 0.4470.086 0.2360.009
336 0.3150.004 0.4940.095 0.2930.007
720 0.4320.025 0.5290.092 0.3860.009

Weather

96 0.2040.014 0.1660.013 0.2620.122
192 0.2490.030 0.2070.009 0.2790.092
336 0.3040.026 0.2570.007 0.3170.075
720 0.3580.012 0.3290.008 0.3830.071

5.2.3 Impact on Real-world Datasets

We observed that existing benchmark datasets used for forecasting represent a certain level of seasonality
which makes it easier for imputation-based models to show adequate performance. However, in many
real-world datasets such as those encountered in ecology, there are complex forms of temporal structure in the
data beyond simple seasonality. We compare the performance of MissTSM integrated with two MTS models,
iTransformer and PatchTST, on two Lake Datasets: Falling Creeks Reservoir and Mendota. Figure 8 reports
masked MSE - MSE computed only on observed points - comparing MissTSM against imputation-based
baselines. Competitive performance shown by MissTSM on both the real-world missing datasets further
motivates the idea of imputation-free and model-agnostic approaches for IMTS modeling.

10



Under review as submission to TMLR

Figure 8: Forecasting performance comparison on Lake datasets across different prediction horizon windows.

5.3 Ablations
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Figure 9: Ablations of MissTSM with and without TFI+MFAA layer on Forecasting datasets.
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Figure 10: Ablations of MissTSM with and without the TFI+MFAA layer on the classification tasks.

In the ablation experiments, we evaluate the impact of integrating the MissTSM layer. We compare MAE
with MissTSM against standard MAE (without MissTSM), using spline and SAITS imputation as additional
baselines. The goal here is to understand the additional value of adding the MissTSM layer instead of
modeling on imputed data. For forecasting (Fig. 9) and classification (Fig. 10), MissTSM consistently
improves performance. In forecasting, MissTSM-MAE outperforms all MAE variants, while in classification,
it is consistently comparable or superior across all three datasets.
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6 Conclusion

We investigate the performance of existing IMTS models as well as our proposed MissTSM framework on
a variety of datasets and tasks with varying conditions of missing values. We show that imputation-based
frameworks built on simple imputations perform well when the amount of missingness is small or there is
periodic structure in the data (e.g., in Weather data) that is easy to approximate. However, imputation-based
approaches show poor performance at larger missing value fractions and when missing values have limited
periodic patterns (e.g., on the lake datasets). We also show that MissTSM, which is an imputation-free
and model-agnostic framework shows competitive performance across most datasets, tasks, and settings
compared to imputation-based and existing imputation-free specialized models. We hope our findings could
inspire further research into developing flexible, model-agnostic adapters for handling the challenges in
irregularly-sampled time-series data.

Limitations and Future Directions. (1) A limitation of the MFAA layer is that it doesn’t learn the
non-linear temporal dynamics and relies on the subsequent transformer encoder blocks to learn the dynamics.
Future work can explore modifications of the MFAA layer such that it can jointly learn the cross-channel
correlations with the non-linear temporal dynamics. (2) Independent embedding of each time-feature token
can become computationally expensive in high-dimensional multivariate systems.
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