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Abstract

Recently neural network based approaches to001
knowledge-intensive NLP tasks, such as ques-002
tion answering, started to rely heavily on the003
combination of neural retrievers and readers.004
Retrieval is typically performed over a large005
textual knowledge base which requires signifi-006
cant memory and compute resources, especially007
when scaled up. On HotpotQA we systemat-008
ically investigate reducing the size of the KB009
index by means of dimensionality (sparse ran-010
dom projections, PCA, autoencoders) and nu-011
merical precision reduction. Our results show012
that PCA is an easy solution that requires very013
little data and is only slightly worse than au-014
toencoders, which are less stable. All methods015
are sensitive to pre- and post-processing and016
data should always be centered and normalized017
both before and after dimension reduction. Fi-018
nally, we show that it is possible to combine019
PCA with using 1bit per dimension. Overall020
we achieve (1) 100× compression with 75%,021
and (2) 24× compression with 92% original022
retrieval performance.023

1 Introduction024

Recent approaches to knowledge-intensive NLP025

tasks combine neural network based models with a026

retrieval component that leverages dense vector rep-027

resentations (Guu et al., 2020; Lewis et al., 2020;028

Petroni et al., 2021). The most straightforward ex-029

ample is question answering, where the retriever030

receives as input a question and returns relevant031

documents to be used by the reader (both encoder032

and decoder), which outputs the answer (Chen,033

2020). The same approach can also be applied in034

other contexts, such as fact-checking (Tchechmed-035

jiev et al., 2019) or knowledgable dialogue (Dinan036

et al., 2018). Moreover, this paradigm can also037

be applied to systems that utilize e.g. caching of038

contexts from the training corpus to provide better039

output, such as the k-nearest neighbours language040

model proposed by Khandelwal et al. (2019) or041

the dynamic gating language model mechanism by 042

Yogatama et al. (2021). All these pipelines are gen- 043

eralized as retrieving an artefact from a knowledge 044

base (Zouhar et al., 2021) on which the reader is 045

conditioned together with the query. 046

Crucially, all of the previous examples rely on 047

the quality of the retrieval component and the 048

knowledge base. The knowledge base is usually 049

indexed by dense vector representations1 and the 050

retrieval component performs maximum similar- 051

ity search, commonly using the inner product or 052

the L2 distance, to retrieve documents2 from the 053

knowledge base. Only the index alone takes up a 054

large amount of size of the knowledge base, mak- 055

ing deployment and experimentation very difficult. 056

The retrieval speed is also dependent on the di- 057

mensionality of the index vector. An example of a 058

large knowledge base is the work of Borgeaud et al. 059

(2021) which performs retrieval over a database of 060

1.8 billion documents. 061

This paper focuses on the issue of compressing 062

the index through dimensionality and precision re- 063

duction and makes the following contributions: 064

• Comparison of various unsupervised index 065

compression methods in retrieval experiments, 066

including random projections, PCA, autoen- 067

coder, precision reduction and their combina- 068

tion. 069

• Examination of effective pre- and post- 070

processing transformations, showing that cen- 071

tering and normalization are necessary for 072

boosting the performance. 073

• Analysis on the impact of adding irrelevant 074

documents and retrieval errors. Recommenda- 075

tions for use by practicioners. 076

1Sparse representations via BM25 (Robertson et al., 1995)
are also commonly used but not the focus of this work.

2We refer to the retrieved objects as documents though
they commonly range from spans of text (e.g. 100 tokens) to
the full documents.
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In Section 3, we describe the problem scenario077

and the experimental setup. We discuss the results078

of different compression methods in Section 4. We079

provide further analysis in Section 5 and conclude080

with usage recommendations in Section 6. The081

repository for this project is available open-source.3082

2 Related Work083

Reducing index size. A thorough overview of084

the issue of dimensionality reduction in informa-085

tion retrieval in the context of dual encoders has086

been done by Luan et al. (2021). Though in-depth087

and grounded in formal arguments, their study is088

focused on the limits and properties of dimension089

reduction in general (even with sparse representa-090

tions) and the effect of document length on perfor-091

mance. In contrast to their work, this paper aims to092

compare more methods and give practical advice093

with experimental evidence.094

A baseline for dimensionality reduction has been095

recently proposed by Izacard et al. (2020) in which096

they perform the reduction while training the docu-097

ment (and query) encoder by adding a low dimen-098

sional linear projection layer as the final output099

layer. Compared to our work, their approach is100

supervised.101

In the concurrent work of Ma et al. (2021), PCA102

is also used to reduce the size of the document103

index. Compared to our work, they perform PCA104

using the combination of all question and document105

vectors. We show in Figures 4 and 5 that this is not106

needed and the PCA transformation matrix can be107

estimated much more efficiently. Moreover, we use108

different unsupervised compression approaches for109

comparison and perform additional analysis of our110

findings.111

An orthogonal approach to the issue of memory112

cost has been proposed by Yamada et al. (2021).113

Instead of moving to another continuous vector114

representation, their proposed method maps orig-115

inal vectors to vectors of binary values which are116

trained using the signal from the downstream task.117

The pipeline, however, still relies on re-ranking118

using the uncompressed vectors. This method is119

different from ours and in Section 4.4 we show that120

they can be combined.121

Finally, He et al. (2021) investigate filtering and122

k-means pruning for the task of kNN language123

modelling. This work also circumvents the issue124

of having to always perform an expensive retrieval125

3Link will be available in the camera-ready version.

of a large data store by determining whether the 126

retrieval is actually needed for a given input. 127

Effect of normalization. Timkey and van Schijn- 128

del (2021) examine how dominating embedding di- 129

mensions can worsen retrieval performance. They 130

study the contribution of individual dimensions find 131

that normalization is key for document retrieval 132

based on dense vector representation when BERT- 133

based embeddings are used. Compared to our work, 134

they study pre-trained BERT directly, while we fo- 135

cus on DPR. 136

3 Setup 137

3.1 Problem Statement and Evaluation 138

Given a query q, the following set of equations sum- 139

marizes the conceptual progression from retrieving 140

top k relevant documents Z = {d1, d2, . . . , dk} 141

from a large collection of documents D so that 142

the relevance of d with q is maximized. For this, 143

the query and the document embedding functions 144

fQ : Q → Rd and fD : D → Rd are used to map 145

the query and all documents to a shared embedding 146

space and a similarity function sim : Rd×Rd → R 147

approximates the relevance between query and doc- 148

uments. Here, we consider either the inner product 149

or the L2 distance as sim.4 Finally, to speed up 150

the similarity computation over a large set of doc- 151

uments and to decrease memory usage (fD is usu- 152

ally precomputed), we apply dimension reduction 153

functions rQ : Rd → Rd′ and rD : Rd → Rd′ for 154

the query and document embeddings respectively. 155

Formally, we are solving the following problem: 156

Z = arg top-k
d∈D

rel.(q, d) ,with (1) 157

rel.(q, d) ≈ sim(fQ(q), fD(d)) (2) 158

≈ sim(rQ(fQ(q)), rD(fD(d))) (3) 159

The approximation in (2) was shown to work 160

well in practice for inner product and L2 distance 161

(Lin, 2021). In this case, fQ is commonly fine- 162

tuned for a specific downstream task. For this rea- 163

son, it is desirable in (3) for the functions rQ and 164

rD to be differentiable so that they can propagate 165

the signal. These dimension-reducing functions 166

need not be the same because even though they 167

project to a shared vector space, the input distribu- 168

tion may still be different. Similarly to the query 169

4Cosine similarity could also be used but for computation
reasons we skip it. Results are the same as for inner product
and L2 distance when the vectors are normalized.
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and document embedding functions, they can be170

fine-tuned.171

Task Agnostic Representation. When dealing172

with multiple downstream tasks that share a single173

(large) knowledge base, typically only fQ is fine-174

tuned for a specific task while fD remains fixed175

(Lewis et al., 2020; Petroni et al., 2021). This as-176

sumes that the organization of the document vector177

space is sufficient across tasks and that only the178

mapping of the queries to this space needs to be179

trained.5 Hence, this work is motivated primarily180

by finding a good rD (because of the dominant size181

of the document index), though we note that rQ is182

equally important and necessary because even with-183

out any vector semantics, the key and the document184

embeddings must have the same dimensionality.185

R-Precision. To evaluate retrieval performance186

we compute R-Precision averaged over queries:187

(relevant documents among top k passages in Z)/r,188

k = number of passages in relevant documents, in189

the same way as Petroni et al. (2021). Following190

previous work, we consider the inner product (IP)191

and the L2 distance as the similarity function.192

3.2 Data193

As knowledge base we use documents from En-194

glish Wikipedia and follow the setup described by195

Petroni et al. (2021). We mark spans (original arti-196

cles split into 100 token pieces, 50 million in total)197

as relevant for a query if they come from the same198

Wikipedia article as one of the provenances.6 In199

order to make our experiments computationally fea-200

sible and easy to reproduce we experiment with a201

modified version of this knowledge base where we202

keep only spans of documents that are relevant to203

at least one query from the training or validation204

set of our downstream tasks. As downstream tasks,205

we use HotpotQA (Yang et al., 2018) for all main206

experiments and Natural Questions (Kwiatkowski207

et al., 2019) to verify that the results transfer to208

other datasets as well. This leads to over 2 mil-209

lion encoded spans for HotpotQA (see Table 5 for210

dataset sizes). The 768-dimensional embeddings211

(32-bit floats) of this dataset (both queries and doc-212

uments) add up to 7GB (146GB for the whole un-213

pruned dataset).214

5Guu et al. (2020) provide evidence that this assumption
can lead to worse results in some cases.

6Spans of the original text which help in answering the
query.
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Figure 1: Comparison of different BERT-based embed-
ding models and versions when using faster but slightly
inaccurate nearest neighbour search. [CLS] is the spe-
cific token embedding from the last layer while (Avg) is
all token average.

3.3 Uncompressed Retrieval Peformance 215

To establish baselines for uncompressed perfor- 216

mance we use models based on BERT (Devlin et al., 217

2019). We consider (1) vanilla BERT, (2) Sentence- 218

BERT (Reimers and Gurevych, 2019) and (3) DPR 219

(Karpukhin et al., 2020), which was specifically 220

trained for document retrieval. To obtain document 221

embeddings, we use either the last hidden state rep- 222

resentation at [CLS] or the average across tokens 223

of the last layer. 224

Our first experiment compares the retrieval per- 225

formance of the different models on HotpotQA. 226

The result is shown in Figure 1. In alignment with 227

previous works (Reimers and Gurevych, 2019) an 228

immediately noticeable conclusion is that vanilla 229

BERT has a poor performance, especially when tak- 230

ing the hidden state representation for the [CLS] 231

token. Next, to make computation tractable, we 232

repeat the experiment using FAISS (Johnson et al., 233

2019).7 We find that the performance loss across 234

models is systematic, which warrants the use of 235

this approximate nearest neighbour search for com- 236

parisons and all our following experiments will use 237

FAISS on the DPR-CLS model. 238

Pre-processing Transformations. Figure 1 also 239

shows that model performance, especially for DPR, 240

depends heavily on what similarity metric is used 241

for retrieval. This is because none of the models 242

produces normalized vectors by default. 243

Figure 2 shows that performing only normaliza- 244

7IndexIVFFlat, nlist=200, nprobe=100.
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Figure 2: Effect of data centering and normalization on
performance (evaluated with FAISS).

tion ( x
||x|| ) sometimes hurts the performance but245

when joined with centering beforehand ( x−x̄
||x−x̄|| ),246

it improves the results (compared to no pre-247

processing) in all cases. The normalization and248

centering is done for queries and documents sep-249

aratedly. Moreover, if the vectors are normalized,250

then the retrieved documents are the same for L2251

and inner product. 8252

Nevertheless, we argue it still makes sense to253

study the compression capabilities of L2 and the254

inner product separately, since the output of the255

compression of normalized vectors need not be256

normalized.257

4 Compression Methods258

Having established the retrieval performance of the259

uncompressed baseline, we now turn to methods260

for compressing the dense document index and the261

queries.262

4.1 Random Projection263

The simplest way to perform dimension reduction264

for a given index x ∈ Rd is to randomly preserve265

only certain d′ dimensions and drop all other di-266

mensions:267

fdrop.(x) = (xm1 , xm2 , . . . , xmd′ )268

Another approach is to greedily search which di-269

mensions to drop (those that, when omitted, either270

8argmaxk −||a−b||2 = argmaxk −⟨a,a⟩2−⟨b, b⟩2+
2 · ⟨a, b⟩ = argmaxk 2 · ⟨a, b⟩ − 2 = argmaxk ⟨a, b⟩

improve the performance or lessen it the least): 271

pi(x) = (x0, x1, . . ., xi−1, xi+1, . . ., x768) 272

Li = R-Prec(pi(Q), pi(D)) 273

m = sortdesc.
L ([1 . . . 768]) 274

fgreedy drop.(x) = (xm1 , xm2 , . . . , xmd′ ) 275

The advantage of these two approaches is that 276

they can be represented easily by a single R768×d 277

matrix. We consider two other standard random 278

projection methods: Gaussian random projection 279

and Sparse random projection (Fodor, 2002). Such 280

random projections are suitable mostly for inner 281

product (Kaski, 1998) though the differences are 282

removed by normalizing the vectors (which also 283

improves the performance). 284
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Figure 3: Dimension reduction using different random
projections methods. Presented values are the max of
3 runs (except for greedy dimension dropping, which
is deterministic), semi-transparent lines correspond to
the minimum. Embeddings are provided by centered
and normalized DPR-CLS. Final vectors are also post-
encoded by centering and normalization.

Results. The results of all random projection 285

methods are shown in Figure 3. Gaussian ran- 286

dom projection seems to perform equally to sparse 287

random projection. The performance is not fully 288

recovered for the two methods. Interestingly, sim- 289

ply dropping random dimensions led to better per- 290

formance than that of sparse or Gaussian random 291

projection. The greedy dimension dropping even 292

improves the performance slightly over random 293

dimension dropping in some cases before saturat- 294

ing and is deterministic. As shown in Table 2, the 295

greedy dimension dropping with post-processing 296

achieves the best performance among all random 297

projection methods. Without post-processing, L2 298

distance works better compared to inner product. 299
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Figure 4: Dimension reduction using PCA (top) and Autoencoder (bottom) trained either on document index,
query embeddings or both. Each figure corresponds to one of the four possible combinations of centering and
normalizing the input data. The output vectors are not post-processed. Reconstruction loss (MSE, average for both
documents and queries) is shown in transparent colour and computed in original data space. Horizontal lines show
uncompressed performance. Embeddings are provided by DPR-CLS.

4.2 Principal Component Analysis300

Another natural candidate for dimensionality reduc-301

tion is principal component analysis (PCA) (F.R.S.,302

1901). PCA considers the dimensions with the303

highest variance and omits the rest. This leads304

to a projection matrix that projects the original305

data onto the principal components using an or-306

thonormal basis T . The following loss is mini-307

mized L = MSE(T′Tx,x). Note that we fit PCA308

on the covariance matrix of either the document309

index, query embeddings or both and the trained310

dimension-reducing projection is then applied to311

both the document and query embeddings.312

Results. The results of performing PCA are313

shown in Figure 4. First, we find that the un-314

compressed performance, as well as the effect315

of compression, is highly dependent on the data316

pre-processing. This should not be surprising317

as the PCA algorithm assumes centered and pre-318

processed data. Nevertheless, we stress and demon-319

strate the importance of this step. This is given by320

the normalization of the input vectors and also that321

the column vectors of PCA are orthonormal.322

Second, when the data is not centered, the PCA323

is sensitive to what it is trained on. Figure 4 show324

systematically that training on the set of available325

queries provides better performance than training326

on the documents or a combination of both. Subse-327

quently, after centering the data, it does not matter 328

anymore what is used for fitting: both the queries 329

and the documents provide good estimates of the 330

data variance and the dependency on training data 331

size for PCA is explored explicitly in Section 5.1. 332

The reason why queries provide better results with- 333

out centering is that they are more centered in the 334

first place, as shown in Table 1. 335

Avg. L1 (std) Avg. L2 (std)

Documents 243.0 (20.1) 12.3 (0.6)
Queries 137.0 (7.5) 9.3 (0.2)

Table 1: Average L1 and L2 norms of document
and query embeddings from DPR-CLS without pre-
processing.

In all cases, the PCA performance starts to 336

plateau around 128 dimensions and is within 95% 337

of the uncompressed performance. Finally, we note 338

that while PCA is concerned with minimizing re- 339

construction loss, Figure 4 shows that even after 340

vastly decreasing the reconstruction loss, no sig- 341

nificant improvements in retrieval performance are 342

achieved. We further discuss this finding in Ap- 343

pendix C. 344

Component Scaling. One potential issue of PCA 345

is that there may be dimensions that dominate the 346

vector space. Mu et al. (2017) suggest to simply 347
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remove the dimension corresponding to the high-348

est eigenvalue though we find that simply scaling349

down the top k eigenvectors systematically outper-350

forms standard PCA. For simplicity, we focused351

on the top 5 eigenvectors and performed a small-352

scale grid-search of the scaling factors. The best353

performing one was (0.5, 0.8, 0.8, 0.9, 0.8) and Ta-354

ble 2 shows that it provides a small additional boost355

in retrieval performance.356

4.3 Autoencoder357

A straightforward extension of PCA for dimen-358

sionality reducing is to use autoencoders, which359

has been widely explored (Hu et al., 2014; Wang360

et al., 2016). Usually, the model is described by361

an encoder e : Rd → Rb, a function from a higher362

dimension to the target (bottleneck) dimension and363

a decoder r : Rb → Rd, which maps back from364

the target dimension to the original vector space.365

The final (reconstruction) loss is then commonly366

computed as L = MSE((r ◦ e)(x),x). To reduce367

the dimensionality of a dataset, only the function368

e is applied to both the query and the document369

embedding. We consider three models with the370

bottleneck:371

1. A linear projection similar to PCA but without372

the restriction of orthonormal columns:373

e1(x) = L768
128374

r1(x) = L128
768375

2. A multi-layer feed forward neural network376

with tanh activation:377

e2(x) = L768
512 ◦ tanh ◦L512

256 ◦ tanh ◦L256
128378

r2(x) = L128
256 ◦ tanh ◦L256

512 ◦ tanh ◦L512
768379

3. The same encoder as in the previous model380

but with a shallow decoder:381

e3(x) = L768
512 ◦ tanh ◦L512

256 ◦ tanh ◦L256
128382

r3(x) = L128
768383

Compared to PCA, it is able to model non-384

pairwise interaction between dimensions (in case385

of models 2 and 3 also non-linear interaction).386

Results. We explore the effects of training data387

and pre-processing with results for the first model388

shown in Figure 4. Surprisingly, the Autoencoder is389

even more sensitive to proper pre-processing than390

PCA, most importantly centering which makes the 391

results much more stable. 392

The rationale for the third model is that we 393

would like the hidden representation to require as 394

little post-processing as possible to become the 395

original vector again. The higher performance 396

of the model with shallow decoder, shown in Ta- 397

ble 2 supports this reasoning. An alternative way 398

to reduce the computation (modelling dimension 399

relationships) in the decoder is to regularize the 400

weights in the decoder. We make use of L1 reg- 401

ularization explicitly because L2 regularization is 402

conceptually already present in Adam’s weight de- 403

cay. This improves each of the three models. 404

Similarly to the other reconstruction loss-based 405

method (PCA), without post-processing, inner 406

product works yields better results. 407

4.4 Precision Reduction 408

Lastly, we also experiment with reducing index 409

size by lowering the float precision from 32 bits 410

to 16 and 8 bits. Note that despite their quite high 411

retrieval performance, they only reduce the size by 412

2 and 4 respectively (as opposed to 6 by dimension 413

reduction via PCA to 128 dimensions). Another 414

drawback is that retrieval time is not affected be- 415

cause the dimensionality remains the same. 416

Using only one bit per dimension is a special 417

case of precision reduction suggested by Yamada 418

et al. (2021). Because we use centered data, we can 419

define the element-wise transformation function as: 420

fα(xi) =

{
1− α xi ≥ 0

0− α xi < 0
421

Bit 1 would then correspond to 1 − α and 0 to 422

0−α. While Yamada et al. (2021) use values 1 and 423

0, we work with 0.5 and −0.5 in order to be able 424

to distinguish between certain cases when using 425

IP-based similarity.9 As shown in Table 2, this in- 426

deed yields a slight improvement. When applying 427

post-processing, however, the two approaches are 428

equivalent. While this method achieves extreme 429

32x compression on the disk and retains most of 430

the retrieval performance, the downside is that if 431

one wishes to use standard retrieval pipelines, these 432

variables would have to be converted to a supported, 433

larger, data type. 434

9When using 0 and 1, the IP similarity of 0 and 1 is the
same as 0 and 0 while for −0.5 and 0.5 they are −0.25 and
0.25 respectively.
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Method Compression Original Center + Norm.

IP L2 {IP, L2} (% original)

Original 1× 0.609 0.240 0.618 (100%)

Gaussian Projection (128) 6× 0.413 0.453 0.468 (76%)

Sparse Projection (128) 6× 0.398 0.448 0.457 (74%)

Dimension Dropping (128) 6× 0.426 0.466 0.478 (77%)

Greedy Dimension Dropping (128) 6× 0.447 0.478 0.504 (82%)

PCA (128) 6× 0.577 0.562 0.579 (94%)

PCA (128, scaled top 5) 6× 0.586 0.572 0.592 (96%)

Autoencoder (128, single layer) 6× 0.585 0.569 0.588 (95%)

Autoencoder (128, full) 6× 0.564 0.560 0.588 (95%)

Autoencoder (128, shallow decoder) 6× 0.599 0.582 0.599 (97%)

Autoencoder (128, single layer) + L1 6× 0.600 0.587 0.601 (97%)

Autoencoder (128, full) + L1 6× 0.573 0.569 0.589 (95%)

Autoencoder (128, shallow decoder) + L1 6× 0.601 0.591 0.601 (97%)

Precision 16-bit 2× 0.612 0.610 0.615 (100%)

Precision 8-bit 4× 0.613 0.610 0.614 (99%)

Precision 1-bit (offset 0.5) 32× 0.559 0.556 0.561 (91%)

Precision 1-bit (offset 0) 32× 0.530 0.556 0.561 (91%)

PCA (245) + Precision 1-bit (offset 0.5) 100× 0.459 0.458 0.461 (75%)

PCA (128) + Precision 8-bit 24× 0.558 0.553 0.567 (92%)

Table 2: Overview of compression method performance (from 768) using either L2 or inner product for retrieval.
Inputs are based on centered and normalized output of DPR-CLS and the outputs optionally post-processed again.
Performance is measured by R-Precision on HotpotQA.

Finally, reducing precision can be readily com-435

bined with dimension reduction methods (see Ap-436

pendix D), such as PCA (prior to changing the data437

type). As shown in the last row of Table 2, this can438

lead to the compressed size be 100x smaller while439

retaining 75% retrieval performance on HotpotQA440

and 89% for NaturalQuestions (see Table 6).441

5 Analysis442

5.1 Model Comparison443

The comparison of all discussed dimension reduc-444

tion methods is shown in Table 2. It also shows the445

role of centering and normalization post-encoding446

which systematically improves the performance.447

The best performing model for dimension reduction448

is the autoencoder with L1 regularization and either449

just a single projection layer for the encoder and de-450

coder or with the shallow decoder (6x compression451

with 97% retrieval performance). Additionally, Ap-452

pendix B compares training and evaluation speeds453

of common implementations.454

5.2 Data size455

A crucial aspect of the PCA and autoencoder meth-456

ods is how much data they need for training. In457

the following, we experimented with limiting the458

number of training samples for PCA and the linear459

autoencoder. Results are shown in Figure 5.460

While Ma et al. (2021) used a much larger train- 461

ing set to fit PCA, we find that PCA requires very 462

few samples (lower-bounded by 128 which is also 463

the number of dimensions used for this experiment). 464

This is because in the case of PCA training data is 465

used to estimate the data covariance matrix which 466

has been shown to work well when using a few 467

samples (Tadjudin and Landgrebe, 1999). Addi- 468

tionally, we find that overall the autoencoder needs 469

more data to outperform PCA. 470

Next, we experimented with adding more (poten- 471

tially irrelevant) documents to the knowledge base. 472

For this, we kept the training data for the autoen- 473

coder and PCA to the original size. The results are 474

shown as dashed lines in Figure 5. Retrieval perfor- 475

mance quickly deteriorates for both models (faster 476

than for the uncompressed case), highlighting the 477

importance of filtering irrelevant documents from 478

the knowledge base. 479

5.3 Retrieval errors 480

So far, our evaluation focused on quantitative com- 481

parisons. In the following, we compare the dis- 482

tribution of documents retrieved before and after 483

compression to investigate if there are systematic 484

differences. We carry out this analysis using Hot- 485

potQA which, by design, requires two documents 486

in order to answer a given query. We compare re- 487

7
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Figure 5: Dependency of PCA and autoencoder perfor-
mance (evaluated on HotpotQA dev data, trained on
document encodings) by modifying training data (solid
lines) and by adding irrelevant documents to the retrieval
pool (dashed lines). Black crosses indicate the original
training size. Note the log scale on the x-axis and the
truncation of the y-axis.

trieval with the original document embeddings to488

retrieval with PCA and 1-bit compression.489

We find that there are no systematic differences490

compared to the uncompressed retrieval. This is491

demonstrated by the small off-diagonal values in492

Figure 6. This result shows that if the retriever493

working with uncompressed embeddings returns494

two relevant documents in the top-k for a given495

query, also the retriever working with the com-496

pressed index is very likely to include the same two497

documents in the top-k. This suggests that the com-498

pressed index can be used on downstream tasks499

with predictable performance loss based on the500

slightly worsened retrieval performance. Further-501

more, there do not seem to be any systematic differ-502

ences even between the two vastly different com-503

pression methods used for this experiment (PCA504

and 1-bit precision). This indicates that, despite505

their methodological differences, the two compres-506

sion approaches seem to remove the same redun-507

dances in the uncompressed data. We leave a more508

detailed exploration of these findings for future509

work.510

6 Discussion511

In this section we briefly discuss the main con-512

clusions from our experiments and analysis in the513

form of recommendations for NLP practicioners.514

0 1 2

PCA retrieved

0

1

2

16.2

35.6

35.2

3.9

5.2

1.7

1.9

0.3

0.0

0 1 2

1bit retrieved

0

1

2

16.0

2.9

31.98.1

5.8 32.4

2.2

0.6

0.1

Figure 6: Distribution of the number of retrieved docu-
ments for HotpotQA queries before and after compres-
sion: PCA (128) and 1-bit precision with R-Precisions
(centered & normalized) of 0.579 and 0.561, respec-
tively.

Importance of Pre-/post-processing. As our re- 515

sults show, for all methods (and models), centering 516

and normalization should be done before and after 517

dimension reduction, as it boosts the performance 518

of every model. 519

Method recommendation. While most compres- 520

sion methods achieve similar retrieval performance 521

and compression ratios (cf. Table 2 and Table 6), 522

PCA stands out in the following regards: (1) It re- 523

quires only minimal implementation effort and no 524

tuning of hyper-parameters beyond selecting which 525

principal components to keep; (2) as our analysis 526

shows, the PCA matrix can be estimated well with 527

only 1000 document or query embeddings. It is not 528

necessary to learn a transformation matrix on the 529

full knowledge base; (3) PCA can easily be com- 530

bined with precision reduction based approaches. 531

7 Summary 532

In this work, we examined several simple unsu- 533

pervised methods for dimensionality reduction for 534

retrieval-based NLP tasks: random projections, 535

PCA, autoencoder and precision reduction and their 536

combination. We also documented the data require- 537

ments of each method and their reliance on pre- 538

and post-processing. 539

Future work. As shown in prior works, dimen- 540

sion reduction can take place also during training 541

where the loss is more in-line with the retrieval 542

goal. Methods for dimension reduction after train- 543

ing, however, rely mostly on reconstruction loss, 544

which is suboptimal. Therefore more research for 545

dimension reduction methods is needed, such as 546

fast manifold or distance-based learning. 547
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Hyperparameters

Batch size 128
Optimizer Adam
Learning rate 10−3

L1 regularization 10−5.9

Table 3: Hyperparameters of autoencoder architectures
described in Section 4.3. L1 regularization is used only
when explicitly mentioned.

A Pre-processing723

Another common approach before any feature se-724

lection is to use z-scores (x−x̄
σ ) instead of the orig-725

inal values. Its boost in performance is however726

similar to that of centering and normalization. The727

effects of each pre-processing step are in Table 4.728

The significant differences in performance show729

the importance of data pre-processing (agnostic to730

model selection).731

IP L2

DPR-CLS 0.609 0.240

Center 0.630 0.353
Z-Score 0.632 0.525
Norm. 0.463
Center + norm. 0.618
Z-Score + norm. 0.621

Table 4: Effect of pre-processing transformations on
embeddings produced by DPR-CLS. Means and stan-
dard deviations are computed separately for documents
and queries. Transformation into z-scores includes cen-
tering.

B Speed732

Despite the autoencoder providing slightly better733

retrieval performance and PCA being generally eas-734

ier to use (due to the lack of hyperparameters),735

there are several tradeoffs in model selection. Once736

the models are trained, the runtime performance737

(encoding) is comparable though for PCA it is a738

single matrix projection while for the autoencoder739

it may be several layers and activation functions.740

Depending on the specific library used for im-741

plementation, however, the results differ. Figure 7742

shows that the autoencoder (implemented in Py-743

Torch) is much slower than any other model when744

run on a CPU but the fastest when run on a GPU.745

Similarly, PCA works best if used from the Py-746

Torch library (whether on CPU or GPU) and from747

the standard Scikit package. Except for Scikit, 748

there seems to be little relation between the tar- 749

get dimensionality and computation time. 750
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Figure 7: Speed comparison of PCA and autoencoder
(model 3) implemented in PyTorch and Scikit10split into
training and encoding parts. Models were trained on
documents and queries jointly (normalized).

C Pitfalls of Reconstruction Loss 751

Despite PCA and autoencoder being the most suc- 752

cessful methods, low reconstruction loss provides 753

no theoretical guarantee to the retrieval perfor- 754

mance. Consider a simple linear projection that can 755

be represented as a diagonal matrix that projects to 756

a space of the same dimensionality. This function 757

has a trivial inverse and therefore no information 758

is lost when it is applied. The retrieval is however 759

disrupted, as it will mostly depend on the first di- 760

mension and nothing else. This is a major flaw of 761

approaches that minimize the vector reconstruction 762

loss because the optimized quantity is different to 763

the actual goal. 764

R =


1099 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 765

Distance Learning. The task of dimensionality 766

reduction has been explored by standard statistical 767

methods by the name manifold learning. The most 768

used method is t-distributed stochastic neighbor 769

10PyTorch 1.9.1, scikit-learn 0.23.2, RTX 2080 Ti (CUDA
11.4), 64×2.1GHz Intel Xeon E5-2683 v4, 1TB RAM.
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(t-SNE) embedding built on the work of Hinton770

and Roweis (2002) or multidimensional scaling771

(Kruskal, 1964; Borg and Groenen, 2005). They772

organize a new vector space (of lower dimension-773

ality) so that the L2 distances follow those of the774

original space (extensions to other metrics also ex-775

ist). Although the optimization goal is more in776

line with our task of vector space compression with777

the preservation of nearest neighbours, methods of778

manifold learning are limited by the large computa-779

tion costs11 and the fact that they do not construct780

a function but rather move the discrete points in781

the new space to lower the optimization loss. This782

makes it not applicable for online purposes (i.e.783

adding new samples that need to be compressed as784

well).785

The main disadvantage of the approaches based786

on reconstruction loss is that their optimization787

goal strays from what we are interested in, namely788

preserving distances between vectors. We tried to789

reformulate the problem in terms of deep learn-790

ing and gradient-based optimization to alleviate791

the issue of speed and extensibility of standard792

manifold learning approaches. We try to learn a793

function that maps the original vector space to a794

lower-dimensional one while preserving similari-795

ties. That can be either a simple linear projection A796

or generally a more complex differentiable function797

f :798

L = MSE(sim(f(ti), f(tj)), sim(ti, tj))799

After the function f is fitted, both the training800

and new data can be compressed by its application.801

As opposed to manifold learning which usually802

leverages specific properties of the metrics, here803

they can be any differentiable functions. The opti-804

mization was, however, too slow, underperforming805

(between sparse projection and PCA) and did not806

currently provide any benefits.807

We also tried to use unsupervised contrastive808

learning by considering close neighbours in the809

original space as positive samples and distant neigh-810

bours as negative samples but reached similar re-811

sults.812

D Combination of PCA and Precision813

Reduction814

It is possible to combine methods for dimension815

reduction with methods for reducing data type pre-816

11The common fast implementation for t-SNE, Barnes-Hut
(Barnes and Hut, 1986; Van Der Maaten, 2013) is based on
either quadtrees or octrees and is limited to 3 dimensions.

cision. The results in Figure 8 show that PCA can 817

be combined with e.g. 8-bit precision reduction 818

with negligible loss in performance. 819
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Figure 8: Combination of PCA and precision reduction.
Compression ratio is shown in text. 16-bit and 32-bit
values overlap with 8-bit and their compression ratios
are not shown. Measured on HotpotQA with DPR-CLS.

E Comparison on Natural Questions 820

We also show the major experiments in Ta- 821

ble 6 (table structure equivalent to that for the 822

pruned dataset in Table 2) on Natural Question 823

(Kwiatkowski et al., 2019) with identical dataset 824

pre-processing. The performance is overall larger 825

because the task is different and the set of docu- 826

ments is lower (1.5 million spans) but compara- 827

tively the trends are in line with the previous con- 828

clusions of the paper. 829
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Dataset Train queries Dev queries Documents

HotpotQA 69k 6k 49.7 Mio.
HotpotQA (pruned) 69k 6k 2.1 Mio.
Natural Questions (pruned) 78k 2k 1.6 Mio.

Table 5: Number of training and dev queries and documents for the different datasets used.

Method Compression Original Center + Norm.

IP L2 {IP, L2} (% original)

Original 1× 0.934 0.758 0.920 (100%)

Gaussian Projection 6× 0.825 0.848 0.855 (93%)

Sparse Projection 6× 0.826 0.848 0.856 (93%)

Dimension Dropping 6× 0.840 0.863 0.867 (94%)

Greedy Dimension Dropping 6× 0.845 0.873 0.873 (95%)

PCA 6× 0.908 0.907 0.910 (99%)

PCA (scaled top 5) 6× 0.916 0.910 0.920 (100%)

Autoencoder (single layer) 6× 0.915 0.910 0.914 (99%)

Autoencoder (full) 6× 0.903 0.907 0.910 (99%)

Autoencoder (shallow decoder) 6× 0.916 0.918 0.919 (100%)

Autoencoder + L1 (single layer) 6× 0.918 0.918 0.921 (100%)

Autoencoder + L1 (full) 6× 0.909 0.910 0.913 (99%)

Autoencoder + L1 (shallow decoder) 6× 0.918 0.917 0.919 (100%)

Precision 16-bit 2× 0.921 0.917 0.920 (100%)

Precision 8-bit 4× 0.920 0.921 0.922 (100%)

Precision 1-bit (offset 0.5) 32× 0.902 0.902 0.904 (98%)

Precision 1-bit (offset 0) 32× 0.892 0.902 0.904 (98%)

PCA (245) + Precision 1-bit (offset 0.5) 100× 0.854 0.862 0.858 (93%)

PCA (128) + Precision 8-bit 24× 0.906 0.904 0.909 (99%)

Table 6: Overview of compression method performance (from 768) using either L2 or inner product for retrieval.
Inputs are based on (1) original and (2) centered and normalized output of DPR-CLS. Performance is measured by
R-Precision on NaturalQuestions.
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