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You are a cleaning robot that is 1 
meter wide, now you are 
standing in a living room and see 
the image, you want to move 
from here to the door that leads 
to the backyard, do you think I 
can go through the path between 
the sofa and the table and 
chairs.

User As an AI, I'm unable to physically interact with environments, but I can provide some 
insights based on the image provided. … From the image, we can make some visual 
estimations. Judging from the image, it appears that the sofa and the table are quite 
close to each other, and there may not be enough space to accommodate a 1-meter 
wide robot….

[VLM Reasoning] How wide is the path between the sofa and the table and chairs? 
[VLM Answer] 1.56m [Answer] Yes, the robot can go through the path between the 
sofa and the table and chairs since it is wider than the robot's width.

GPT-4V*

Spatial-VLM

Which can is the closest to the 
yellow finger that is on the right 
most side of the picture, the 
blue, orange or the silver one?

User After estimating the distances by measuring the Euclidean distances between the 
yellow finger and each of the cans, it is clear that the silver can is the closest to the 
yellow finger with an approximate distance of 110 units. In comparison, the blue can 
is about 262 units away, and the orange can is approximately 233 units away from the 
yellow finger.  

[VLM Reasoning] How far is the yellow finger from the blue can? [VLM Answer] 
0.5m [VLM Reasoning] How far is the yellow finger from the orange can? [VLM 
Anser] 0.59m [VLM Reasoning] How far is the yellow finger from the silver can? 
[VLM Answer] 0.21m [Answer] The silver can is the closest to the yellow finger that 
is on the right most side of the picture.

GPT-4V

Spatial-VLM

Figure 1 | We present SpatialVLM, a data synthesis and pre-training mechanism to enhance VLMs’
spatial reasoning capabilities. We demonstrate that VLMs trained on our synthetic data exhibit strong
spatial reasoning capabilities, and can generate metric distance estimation from 2D input images,
addressing blind spots of current state-of-the-art VLMs like GPT-4V. (∗ GPT-4V accessed Nov. 2023).

Understanding and reasoning about spatial relationships is a fundamental capability for Visual Question
Answering (VQA) and robotics. While Vision Language Models (VLM) have demonstrated remarkable
performance in certain VQA benchmarks, they still lack capabilities in 3D spatial reasoning, such as
recognizing quantitative relationships of physical objects like distances or size difference. We hypothesize
that VLMs’ limited spatial reasoning capability is due to the lack of 3D spatial knowledge in training data
and aim to solve this problem by training VLMs with Internet-scale spatial reasoning data. To this end, we
present a system to facilitate this approach. We first develop an automatic 3D spatial VQA data generation
framework that scales up to 2 billion VQA examples on 10 million real-world images. We then investigate
various factors in training recipe including data quality, training pipeline and VLM architecture. Our
work features the first Internet-scale 3D spatial reasoning dataset in metric space. By training a VLM on
such data, we significantly enhance its ability on both qualitative and quantitative spatial VQA. Finally, we
demonstrate that this VLM unlocks novel downstream applications in chain-of-thought spatial reasoning
and robotics due to its quantitative estimation capability.

© 2024 Google DeepMind. All rights reserved
∗ Equal contribution and alphabetically listed. † Work done while being a student researcher at Google DeepMind.

ar
X

iv
:2

40
1.

12
16

8v
1 

 [
cs

.C
V

] 
 2

2 
Ja

n 
20

24

https://spatial-vlm.github.io/


SpatialVLM: Endowing Vision-Language Models with Spatial Reasoning Capabilities

1. Introduction

Vision language models (VLMs) have made significant progress in recent years across a variety of tasks
including image captioning, visual question answering (VQA), embodied planning, action recognition,
and more [2, 18, 25, 33]. While VLMs are powerful general-purpose models for a wide range of tasks,
most state-of-the-art VLMs still struggle with spatial reasoning, i.e. tasks that require understanding the
position of objects in 3D space, or spatial relationships between them. Spatial reasoning capabilities are
useful in their own right, but also for downstream applications such as in robotics or AR. For example,
a spatial reasoning-imbued VLM can be used as a better general-purpose reward annotator [54] and
success detector [19].

The exploration of foundation models like VLMs is often inspired by human capabilities. Humans,
through embodied experiences and evolutionary development, possess innate spatial reasoning skills.
We effortlessly determine spatial relationships, such as the positioning of objects relative to each other
or estimating distances and sizes, without complex chain-of-thoughts or mental computations. This
natural proficiency in direct spatial reasoning tasks contrasts with the current limitations of VLMs and
thus prevents them from accomplishing real-world tasks that requiresmultiple steps of spatial reasoning.
This gap leads us to a compelling research question: can we imbue VLMs with spatial reasoning abilities
akin to those of humans?

Therefore, we hypothesize that the limited the spatial reasoning abilities of current VLMs is not
due to a fundamental limitation of their architecture, but rather is a limitation in common datasets
available at scale on which such models are trained. For example, many VLMs [12, 18, 44] are trained
on internet-scale datasets characterized by image-caption pairs [13], which contain limited spatial
information. This is partially due to the difficulties of obtaining spatial-information-rich embodied data
or high-quality human annotations for 3D-aware queries.

Automatic data generation and augmentation techniques are one approach to deal with the data
limitation problem [38, 53, 56, 66]. However, most previous data generation efforts focus on rendering
photorealistic images with ground truth semantic annotation but overlook the richness of objects and
3D relationships. In contrast, we focus on extracting spatial information directly from real world data
in order to capture the diversity and complexity of the true 3D world.

Our key insight is that recent advancement in off-the-shelf visionmodels can automatically generate
rich 3D spatial annotations from 2D images. To this end, we propose a system called SpatialVLM that
enables data generation and training of VLMs to enhance their spatial reasoning capabilities. Concretely,
by combining 1) open-vocabulary detection, 2) metric depth estimation, 3) semantic segmentation
and 4) object-centric captioning models, we can densely annotates real world data at scale. SpatialVLM
converts the data generated by vision models into a format can be used to train VLMs on a mixture
of captioning, VQA and spatial reasoning data.

Through experiments, we find our trained VLM exhibit many desirable capabilities. First, its ability
to answer qualitative spatial questions is greatly enhanced. Secondly, it can perform quantitative esti-
mation reliably despite noisy training data. Such capability not only gives it common sense knowledge
about object sizes but also makes it useful as a open-vocabulary reward annotator for rearrangement
tasks. Thirdly, we find this spatial Vision LanguageModel, benefiting from its natural language interface,
can perform spatial chain-of-thought to solve complex spatial reasoning tasks when combined with
a powerful Large Language Model.

Our main contributions are:

• We endow VLMs quantitative spatial reasoning capability, which is a fundamental capability of
humans.
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• We design a framework to automatically label 3D spatial reasoning VQA data based on real world
images at the Internet scale.

• We study various training recipes: data quality, training pipeline, freeze/unfreeze visual encoder,
etc, and investigate how they affect the learning quality.

• We demonstrate new capabilities of SpatialVLM in complex reasoning and robotics unlocked by
the introduced task and method.

2. Related Work

Learning Spatial Reasoning. Spatial distance estimation has been traditionally addressed as a part
of broader tasks, such as SLAM [8, 21] or depth estimation [24]. When applying these spatial concepts
to reasoning, prior works often focus on explicit spatial scene memories [27, 28] or spatial scene graphs
[31, 32, 62, 63]. Scene graphs allow interpretable, structured, statistical relation learning based on
the spatial structures they encode. To answer spatial problems in VQA formats, they must handle it
explicitly as a pathfinding problem on said scene graph. VLMs, on the other hand, are pretrained on
large amounts of loosely structured information from vision-language datasets. Unlike scene graphs,
the spatial understanding is encoded implicitly. We can infuse the depth and 3D structure into the
weights with an auxiliary task [36, 47], capturing the relational information. In our work, we address
the spatial relationship problem directly in the VLM, without an explicit underlying scene graph. In
addition to understanding relative relationships in qualitative terms, we also explore estimating explicit
metric distance relationships between objects in a scene.

Grounding Vision-Language Models. Large language models (LLMs) are trained on internet-scale
data, making them effective commonsense reasoners. However, LLMs (and by extension VLMs) may
lack the necessary grounding to perform well at social reasoning [42], physical reasoning [26], physics
reasoning [46], embodied tasks [1, 34, 58], and spatial reasoning tasks [44, 55]. Though language
model with interactive world experience show grounding improvements [67, 70], the introduction of
large visionmodels, such as Flamingo [2], PaLI [12], or PaLM-E [18], has enabled a leap in performance.
These visually-groundedmodels have been used for several downstream tasks, such as in robotic success
detection [18, 20, 57, 68], action prediction [7, 59], and reward prediction [16, 23, 48, 50]. In this
work we approach the problem of spatial reasoning through finetuning a VLM on a generated VQA
dataset. By directly finetuning a VLM on this task, we inherit the generality and reasoning capabilities
of the underlying VLM as well as show how this approach is capable of tasks like reward generation.

Spatial Information in Vision-LanguageDatasets. Many priorworks have focused on benchmarking
VLMs [61, 69], considering tasks like VQA (e.g. VQAv2 [29], OK-VQA [49], COCO [43], or Visual
Genome [39]). Others have focused on fine-grained scene understanding, such as semantic segmen-
tation [5, 37], object detection [11], or object identification [15, 60]. Others have focused specifically
on spatial reasoning as a task, answering questions about object spatial relations (e.g., above, below,
left, right) in real [44, 55] or simulated [35] scenes. Real data in this domain can be limited by the
amount generated by human labelers, while synthetic data has inherently bounded expressivity. In this
work we consider how to automatically generate real data, and focus on the problem of not just spatial
relations, but metric spatial distances, which can be directly applied to many downstream tasks.
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Region 
Captioning

Metric Depth 
Estimation

Coordinate 
Canonicalization

Segmentation

-0.5

0.5
0

cake shaped like a house
cake on a plate
girl wearing a purple shirt
blue stuffed animal

Clustering  

(b) 2D Context Extraction

Q:   How far is [A] from [B]?
A:         It’s [Distance].(e) Q&A Synthesis

Distance / Predicate 
Extraction

Human Alignment

(c) 2D Context to 3D Context(a) Semantic Filtering

Semantic Filtering

(d) Ambiguity Resolution

Figure 2 | An overview of our data synthesis pipeline. (a) We use CLIP to filter noisy internet images
and only keep scene-level photos. (b) We apply pre-trained expert models on internet-scale images
so that we get object-centric segmentation, depth and caption. (c) We lift the 2D image into 3D point
clouds, which can be parsed by shape analysis rules to extract useful properties like 3D bounding box.
(d) We avoid asking ambiguous questions by clustering object captions using CLIP similarity score (e)
We synthesize millions of spatial question and answers from object captions and extracted properties.

3. SpatialVLM

To equip VLMs with both qualitatively and quantitatively spatial reasoning capabilities, we propose
to generate a large-scale spatial VQA dataset, which is used to train VLMs. Concretely, we design a
comprehensive data generation framework which first leverages off-the-shelf computer vision models
including open-vocabulary detection, metric depth estimation, semantic segmentation and object-
centric captioning models to extract object-centric contexts, and then adopts template-based approach
to generatemassive spatial VQAdata of reasonable quality. We train our SpatialVLMusing the generated
dataset to learn direct spatial reasoning capabilities, which we can then combine with the high-level
commonsense reasoning embedded in LLMs to unlock chain-of-thoughts spatial reasoning.

3.1. Spatial Grounding from 2D Images

We hypothesize that the reason for the lack of spatial reasoning capabilities of today’s VLMs is not their
architecture, but the lack of spatial reasoning training data. Following this insight, we design a pipeline
that generates VQA data containing spatial reasoning questions. The pipeline is summarized in in
Figure 2 and described in detail as follows.

Semantic Filtering While internet-scale image-captioning datasets have been widely used in VLM
training [12], many images in these datasets are not suitable for synthesizing spatial reasoning QA,
due to the fact that they either consist of a single object or don’t have a scene background (e.g. product
pictures on shopping websites or screenshots of computer screen). Therefore, as the first step in our
data synthesis pipeline, we adopt a CLIP-based open-vocabulary classification model to classify all
images and rule out those that are not suitable.
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Object-centric Contexts Extraction from 2D Images In order to extract object-centric spatial con-
texts from 2D images, we leverage a series of off-the-shelf expert models, including region proposal,
region captioning [4], and semantic segmentation [41] modules to extract object-centric information.
With this step, we obtain object-centric entities consisting of pixel clusters as well as open-vocabulary
caption descriptions.

Lifting 2D Contexts to 3D Contexts Traditional spatial VQA datasets generated using object detec-
tion and bounding box positioning [40] are limited to the 2D image plane (lack of depth or altitude
contexts) and pixel-level reasoning (lack of metric-scale size and distance contexts). We perform depth
estimation [6] to lift monocular 2D pixels to metric-scale 3D point clouds. We further canonicalize
the camera coordinate system of the point cloud into a geodetic coordinate system, which is done by
horizontal surface (e.g. “floor”, “table top”) segmentation [9] and frame transfer. To the best of our
knowledge, we are the first to lift internet-scale images to object-centric 3D point clouds and use it to
synthesize VQA data embedded with 3D spatial reasoning supervision.

Ambiguity Resolution Sometimes there are multiple objects of similar categories in one image,
leading to ambiguities of their caption labels. For example, one same caption label “cake” can refer
to multiple different cakes in a same image. Therefore, before we can ask questions about these objects,
we need to make sure the reference expressions are not ambiguous. We made two key design choices
that have been validated empirically to be effective in tackling this challenge:

• We deliberately choose to avoid common object detectors, which tend to produce fixed and coarse
categories such as “cake”, and adopt FlexCap [4], a user-configurable object-centric captioning
approach. In practice, for each object we can sample a random caption of a variable length
between 1−6words. As a result, our object annotations are fine-grained, such as “cake shaped
like a house” and “cup cake in plastic container”

• We design a semantic-oriented post-processing algorithm that further remove ambiguities by
augmenting or rejecting object captions. Details of this algorithm are shown in Appendix A.2 .

3.2. Large-Scale Spatial Reasoning VQA Dataset

Asmotivated in Section 3, we focus our study on infusing “straightforward” spatial reasoning capabilities
into VLMs by pretraining with synthetic data. Therefore, we synthesize spatial-reasoning QA pairs that
involve no more than two objects (denoted “A” and “B”) in the image and consider the two following
categories of questions.

Qualitative questions: those that ask for judgement of some spatial relations. Examples are “Given
two objects A and B, which is more towards the left?”, “Is object A more elevated than object B?” and
“Among A and B, which is bigger in width?”.

Quantitative questions: those that ask for more fine-grained answers that include numbers and
units. Examples include “howmuch to the left is object A compared to object B?”, “How far is object
A from the B?”, “Find out how far A is positioned behind B relative to the camera.”. Similar to the
aforementioned examples, such questions can be synthesized using a main question template, and one
can fill the object name entries using the object captions after disambiguation. This property allows
us to do template-based generation, an approach commonly adopted by instruction tuning works [64].
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Qualitative answer Quantitative question Quantitative answer

It's the woman wearing 
white shirt.

How wide is the girl 
wearing a purple shirt?

The girl wearing a purple 
shirt is 50 centimeters 
wide

No, the black wicker chair 
with red cushion is below 
the white ceiling fan.

How far is the black 
wicker chair with red 
cushion from the wicker 
chair with pillow 
horizontally?

Horizontally, they are 2 m 
apart.

Yes, the stool is in front 
of the microwave oven.

Can you provide the 
distance measurement 
between the microwave 
oven and the kitchen 
counter?

They are 1 meter apart.

Qualitative Q & A Quantitative Q & A

Find out if the girl 
wearing a purple shirt is 
situated behind or in 
front of the girl wearing a 
blue sweatshirt.

It's the woman 
wearing white shirt.

Measure the distance 
from the cake shaped like 
a house to the girl 
wearing a purple shirt?

Around half a meter

Does the stool lie in front 
of the microwave oven?

Yes, the stool is in front 
of the microwave oven.

Can you provide the 
distance measurement 
between the microwave 
oven and the kitchen 
counter?

They are 1 meter apart.

Is the plate positioned 
on the left or right side of 
the green and yellow 
napkin?

The plate is to the 
right.

How wide is the plate? 20 centimeters

Figure 3 | Example data entries from the synthetic dataset. Given the output of vision expert
models, we follow a set of question generation template to generate both quantitative and qualitative
question-answer pairs to highlight the diversity of the dataset. The spatial concepts are highlighted in
blue. Such visual question-answer pairs can be easily mixed together with other captioning or question
answering datasets and use the same training objectives.

The answers to the questions are obtained through appropriate functions that we develop, which take
as input the segmented point clouds and 3D bounding boxes of the relevant objects.

We designate 38 different types of qualitative and quantitative spatial reasoning questions, each
featuring around 20 question templates and 10 answer templates (we show examples in Appendix. A.3).
We also add bias the sampling to encourage concise answers. Finally we introduce a human-aligned
rounding mechanism in Appendix A.2 to make number roundings in a human-like way. Using such
an approach, we are able to generate ample question answering data pairs for the monocular camera
images in webli and vqa datasets. Fig 3 shows several example synthetic question answering pairs
we obtained. In total, we create a massive dataset with 10million images and 2 billion direct spatial
reasoning QA pairs, featuring 50% qualitative questions and 50% quantitative questions. Thanks to
the diversity of object captions and distance units, our synthetic dataset features significant diversity
in terms of object description, question type and phrasing.

3.3. Learning Spatial Reasoning

Direct Spatial Reasoning is defined as following, a Vision-Language Model takes as input an image
I and a query Q of a spatial task, and output an answerA, in the format of a text string, without using
external tools or interacting with other large models. We adopt the same architecture and training
procedure of PaLM-E [18] except replacing PaLM [14] backbone with PaLM 2-S [3], a smaller variant.
We then train our model using a mixture of the original PaLM-E dataset and our dataset, with 5% of
tokens dedicated to spatial reasoning tasks. Similar to PaLM-E, our method has the ability to perform
VQA as well as basic embodied planning when combined. The key difference is that it can answer spatial
reasoning questions about both binary predicates and quantitative estimations.

Chain-of-Thought Spatial Reasoning Many real-world tasks require multiple steps of spatial rea-
soning. For example, to determine if object A can fit into object B, one would need to reason about
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What is the distance between the blue coke can and the orange can? 
0.4m
What is the distance between the orange can and the silver seven up can?
0.48m
What is the distance between the blue coke can and the silver seven up can? 
0.41m
Since the difference between the longest and shortest triangle edges (0.48m - 
0.4m = 0.08m) is smaller than 0.1 m, the blue coke can, the orange can, and the 
silver seven up can roughly form an isosceles triangle.

LLM:
VLM:
LLM:
VLM:
LLM:
VLM:
LLM:

Does the blue coke can, the orange can, and the silver seven up can on the table roughly form an isosceles triangle? 
Roughly means the difference between the longest and shortest triangle edges is smaller than 0.1 m.

User:

Figure 4 | Chain-of-thought spatial reasoning. We illustrate that we can perform Chain-of-Thought
Spatial reasoning with SpatialVLM. In this example, with the help of an LLM orchestrating SpatialVLM,
the system is able to answer questions like “Does the blue coke can, the red coke can, and the green
sponge on the table roughly form an equilateral triangle".

sizes and constraints. Sometimes one would need to reason over grounded spatial concept (e.g. the
counter in the image is 1 meter high) and common sense knowledge (so that a toddler cannot reach it).
SpatialVLM provides a natural language interface to query with grounded concepts, when combined
with a powerful LLM, we can perform complex spatial reasoning.

We call this method “Chain-of-Thought Spatial Reasoning". While our synthesized data only
contains direct spatial reasoning questions, it’s easy for a VLM to compose them together to solve
complex questions that require multi-hop chain-of-thought reasoning. Similar to themethod in Socratic
Models [71] and LLM as coordinator [10], we utilize an LLM (text-davinci-003) to coordinate and
communicate with our SpatialVLM to solve complex problems with Chain-of-Thought prompting [65]
as shown in Fig. 4. The LLM can break down complex questions into simple questions, query the VLM,
and put the reasoning together to derive the result.

4. Experiments

We conduct experiments to answer the following questions:

Q1Does our spatial VQAdata generation and training pipeline improveVLM’s general spatial reasoning
capabilities? And how well does it perform?
Q2 How does the noisy synthetic spatial VQA data and different training strategies affect the learning
performance?
Q3 Does the VLM equipped with “direct” spatial reasoning capabilities unlock new capabilities such
as chain-of-thought reasoning and embodied planning?

We train our model using a mixture of PaLM-E training set and our spatial VQA dataset. To verify
whether VLM’s limitation in spatial reasoning is a data problem, we choose the following state-of-the-art
VLMs as baselines, all trained on mixtures in which semantic-captioning tasks occupy a heavy weight,
and without our spatial VQA dataset.
GPT-4V1 GPT-4V is a version of GPT-4 [51] that supports multimodal input, it achieves state-of-the-art
performance in many vision-language tasks.

1Accessed Nov 2023 via OpenAI API.
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Method GPT-4V LLaVA-1.5 InstructBLIP PaLI PaLM-E PaLM 2-E Ours
Accuracy 68.0% 71.3% 60.4% 60.7% 50.2% 50.4% 75.2%

Table 1 | Accuracy of different VLMs on binary predicate prediction tasks. Our proposed method
outperform baselines on binary predicate prediction tasks by a large margin owing to the addition
of synthetic data.

PaLI [12]. An encoder-decoder VLM trained on multi-lingual corpora, it shows state-of-the-art per-
formance on captioning and visual-question answering tasks. We used PaLI-X 55B variant in our
experiments.
PaLM-E [18]. A VLM trained on internet-scale vision, language, and vision-language data, as well as
robotics data. It shows state-of-the-art performance in OKVQA benchmark, as well as being capable
of robot planning tasks. We used PaLM-E 12B across our experiments.
PaLM2-EThe vanilla PaLM2-E is an updated version of PaLM-E[18]with exact same training procedure
but a more recent LLM backbone. Due to the shared network architecture and training procedure with
SpatialVLM, vanilla PaLM 2-E naturally serves as the baseline to study the effect of generated data. In
the rest of the paper, unless specifically noted, PaLM 2-E corresponds to PaLM 2-S in terms of parameter
count following the naming convention in PaLM 2 technical report [3].
Finally, we consider open source models like LLaVA-1.5 [45] and InstructBLIP [17].

4.1. Spatial VQA performance

To stress-test the VLM’s spatial reasoning capabilities, a spatial reasoning VQA benchmark with guar-
anteed performance grounding is required. However, there is not such a proper benchmark available
in the literature. Therefore, we created a benchmark by having human annotators label a diverse set
of “direct” qualitative and quantitative VQAs on a subset of WebLI images [12], which are unseen to
all VLMs during the training phase. The benchmark questions and answers are diverse and freeform,
following the synthetic data generation pattern described in Section 3.2 (details in Appendix. A.1). We
annotated 331 qualitative spatial reasoning VQA pairs and 215 quantitative spatial reasoning VQA pairs.

Qualitative Spatial VQA For such questions, both the human annotated answers and VLM outputs
are freeform natural language. Therefore, to evaluate the performance of the VLMs, we use human
raters to determine if an answer is correct, and show the success rates of the VLMs in Table. 1. It is
shown that SpatialVLM is able to achieve significantly higher accuracy compared to all baselines that
are not trained using the synthetic spatial VQA data, surpassing other vision-languagemodels including
GPT-4V. Among the baselines, the second best model is LLaVA-1.5, which might be caused by their
use of bounding boxes and corresponding captions in visual instruction tuning. Anecdotally, we found
LLaVA-1.5 performs well in 2D spatial relationship inference, but inferior to our models in 3D spatial
reasoning. This experiment suggests that large and high-quality spatial reasoning data is key to spatial
reasoning capabilities, which are not present in pretraining datasets of state-of-the-art VLMs.

Quantitative Spatial VQA For these questions, both human annotator answers and the VLM outputs
are natural language descriptions of distance, height, elevation, etc, using their preferred units. We
design twometrics for evaluating the performance of theVLM. First, weuse the success rate of theVLM to
produce a number to reflect if the VLM is able to understand the quantitative spatial reasoning question.
Second, since the answer can range widely from centimeters to kilometers, we use percentages of the
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GPT-4V LLaVA-1.5 InstructBLIP PaLI PaLM-E PaLM 2-E Ours
Output numbers % 1.0% 20.9% 26.0% 52.0% 83.2% 88.8% 99.0%
In range [50, 200]% 0.0% 13.0% 7.9% 5.3% 23.7% 33.9% 37.2%

Table 2 | Accuracy of different VLMs on quantitative questions about spatial relationship. As
can be seen from this table, first, our method outputs valid format more often (99.0% of the time)
than baseline methods. Second, our method outputs quantitative distance estimation that is closer
to ground truth annotated by human more often than baseline methods.

0 1 2 3 4 5 6 7
Image Index

0.0

0.2

0.4

0.6

Va
lu

es
 (m

)

Distance from grasp
Predicted Gripper-Coke 
Distance (Mean ± Std)

Figure 5 | Given a sequence of images where the robot gripper is approaching the coke can, we ask
SpatialVLM “What is the distance between the yellow gripper and the coke can". We are able to get
accurate and monotonically decreasing distance estimations.

VLM answers that fall into half to twice of the ground truth value to represent how accurate the VLM’s
estimates are. The results are shown in Table. 2, and it is shown that our model performs better on both
metrics than baselineswith largemargins. We observed that baseline VLMs are reluctant to give answers
consisting of numbers. For example, replying “No." to questions like “Can you tell me the distance between
...". This is likely due the the distribution of the training data. Additionally, we find that state-of-the-art
VLMGPT-4V often refrain from generating answers about distance in SI units with a disclaimer text “I’m
sorry, but I cannot provide an exact distance as the image does not offer precise references formeasurement..".
Our approach SpatialVLM achieves significantly higher success rate than all baselines, achieving in-
range results on almost half of the questions. This performance is remarkable given that the human
annotations are noisy, and agreement among annotators are not often guaranteed (Appendix. A.1). To
better understand our model’s performance and limitations, we visualized the relative error against the
ground truth value in Fig. 11 in the Appendix. We found that SpatialVLM does well on medium range
scenes like those with objects 1−10meters from the camera. This coincides with the range where our
monocular depth estimator [6] reliably outputs metric accurate depth estimations, which indicates that
our method inherits the biases and limitations from expert vision models in the data synthesis pipeline.

4.2. Effect of Spatial VQA Data to General VQA

The second question we want to answer is: since we co-train with a considerable amount of spatial VQA
data, whether the performance of VLM in other tasks will degrade as a result. We compared our model
with the vanilla PaLM 2-E trained without the spatial VQA dataset on general VQA benchmarks, and
as summarized in Table. 3, our model achieves comparable performance as PaLM 2-E on the OKVQA
benchmark, in which limited spatial reasoning questions are included, and performs slightly better
on VQA-v2 test-dev benchmark, which includes spatial reasoning questions. This seem to suggest that
VLMs are generally underfitting in the distribution of tasks close to spatial reasoning, and can benefit
from spatial VQA supervisions without hurting their general VQA capabilities.
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General VQA benchmarks OKVQA VQA v2
PaLM 2-E w/o co-training 61.4% 76.6%

Ours 61.0(-0.4)% 79.0(+2.4)%

Table 3 | VQA performance. Co-training on SpatialVLM training mix and finetuning on VQA datasets
(VQA v2) improves VQA performance. A PaLM 2-E model trained with SpatialVLM data improves VQA
v2 performance by 2.4% compared to a model with the same number of parameters, but without the
data. However, we don’t find OKVQA task to benefit from SpatialVLM training.

4.3. Effect of Visual Transformer (ViT) Encoder in Spatial Reasoning

Does a frozen ViT (trained on contrastive objective) encode enough information to perform spatial
reasoning? To study this, we start at the 110k training step and branch into two training runs, one
with the ViT frozen, the other with ViT unfrozen. We train both models for 70k steps, and evaluate
percentages of answers frombothmodels that fall into various ranges of the ground truth value inTable 4.

[50, 200]% [66.7, 150]% [90, 110]%
Frozen ViT 34.9% 9.3% 5.6%

Unfrozen ViT 37.2(+2.3)% 10.7(+1.4)% 8.4(+2.8)%

Table 4 | Comparison on finetuning with frozen or unfrozen ViT. We find it is beneficial to unfreeze
the pretrained ViT for distance estimation tasks.

It is shown that for larger scale and less fine-grained distance estimation, such as making a rough
estimation with in the half-to-twice range of the ground truth, training without freezing ViT performs
slightlyworsebut comparablewithunfrozenViT.However, formorefine-graineddistance estimation like
estimating accurate quantitative values, themodelwith unfrozenViT performed considerably better. We
hypothesize that the pretrained ViT (with contrastive or classification loss) is lossy in its fine-grained spa-
tial information. Our model achieves 8.4% accuracy for predicting a value 0.9× to 1.1× range of human
annotation. This is remarkable since humans annotations are noisy. In fact, human sometimes tend to
give noisy estimations, as they prefer to round an estimation of 0.8meter to 1meter. It remains challeng-
ing to evaluate quantitative spatial reasoning capabilities of vision-language models in broad domains.

4.4. Effect of Noisy Quantitative Spatial Answers

Since the quantitative answers of the spatial VQA dataset are noisy, we study if VLMs can learn
generalizable quantitative estimations from a large amount of noisy training data. To do so, we first
come upwith a domainwherewe are able to generate high quality quantitative answers. As discussed in
Section 4.1 themonocular depth estimation is one of the steps in the data generation pipeline that induce
the most noises. Therefore, we leverage our robotic manipulation dataset, which provides near-ground-
truth depth information captured using a depth camera. As a result, the generated quantitative answers
are more accurate. We train VLM using this dataset, and find the model able to perform fine-grained
distance estimation in the manipulation domain (Fig. 5), which further demonstrates the data accuracy.

To study hownoisy data affects VLM training, we addGaussian noises upon the quantitative answers
of the accurate manipulation spatial VQA dataset, and obtain a series of noisy datasets of different noise
level. We train VLMs using the noisy datasets and evaluate them using a human annotated quantitative
spatial VQA benchmark for manipulation. Table. 5 compares how different Gaussian noise standard
deviations affect the overall VLM performance on quantitative spatial VQA. Since the objects in the
manipulation VQA datasets are within 1 meter range, we added the mean squared error (MSE) as a
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Gaussian std 0 0.1 0.2 0.3
MSE(m) 0.046 0.053 0.039 0.048

[50, 200]% 59.0% 55.8% 61.1% 61.1%

Table 5 | Comparison on different data noise levels, controlled using standard deviation (STD) of
Gaussian noise. We find that our model can learn despite moderate amount of random noise.

pick orange tea bottle put apple into the bowl pick up the apple

Figure 6 | SpatialVLM as reward generator for robotics tasks. SpatialVLM provides a “natural-language
queriable" distance estimation tool, and can be used for robotics tasks. For example, for the task “pick orange
tea bottle", the reward/cost function can be the a function of the response of “What is the distance between the
yellow gripper fingers and the orange tea bottle". And for the task “put the apple into the bowl", the reward/cost
function can be a function of the response of “what is the distance between the apple and bowl". We sample
different gripper positions and show the cost function in the above scatter plots.

metric to evaluate the VLM performance, as well as the half-to-twice percentage which is defined in
Section 4.1. It is shown that VLMs trained on datasets of different noise levels achieve similar spatial
reasoning accuracy. We speculate this is due to the noisy nature of the training data and the manually
annotated evaluation benchmark, and that VLM can learn a spatial reasoning common-sense despite
noisy data. We observed this interesting phenomenon in robotics experiments as well. In Fig. 6, the
distance estimation is exhibit a bias towards the mean since the model is heavily regularized.

4.5. Spatial Reasoning Unlocks Novel Applications

VLM as a Dense Reward Annotator One important application of VLM is robotics. Recently, works
have shown that VLMs and LLMs can serve as universal open-vocabulary reward annotators and success
detector [20] for robotics tasks, which can be used to derive useful control policies. However, the reward
annotationabilityofVLMsareoften limitedby lackof spatial awareness. SinceSpatialVLMisable toquan-
titatively estimatedistancesor sizes from image, it’s uniquely suitedas adense rewardannotator. Wecon-
duct a real robot experimentwherewe specify a task in nature language and ask SpatialVLM to annotate
a reward for each frame in a trajectory. In Figure 6, each dot illustrates an object location and their color
indicates the annotated reward. As the robot makes progress towards the specified goal, we can see the
reward increasemonotonically, indicating the ability of SpatialVLM to serve as a dense reward annotator.

Chain-of-Thought Spatial Reasoning In this section, we investigate whether SpatialVLM can be
used to do tasks requiring multi-step reasoning, given its enhanced ability to answer elemental spatial
questions. We demonstrate a few examples in Figure 1 and Figure 4. A large language model, in this
case GPT-4, when equipped with SpatialVLM as a spatial reasoning submodule, can perform complex
spatial reasoning tasks, such as answering if 3 objects in the environment can form a “isosceles triangle".
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5. Conclusion

In conclusion, our research addresses the challenge of infusing spatial reasoning to VLMs, and approach
it by constructing a framework for automatic generation of 3D spatial reasoning VQA data based
on Internet-scale real-world images. We ablate different design choices in the recipes for training
VLMs, such as training with large amount of noisy data and unfreezing ViT. While our direct spatial
queries are built on a finite set of templates, we show SpatialVLM can be extended to tackle more
complicated chain-of-thought reasoning that requires spatial reasoning components. SpatialVLM is
also demonstrated to be useful for robotics tasks, where we show that a 3D spatial-aware VLM could be
used as a reward annotator for robotics tasks. Additional study of more nuanced geometric primitives
can also help fully ground spatial reasoning in 3D geometry.
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A. Appendix

A.1. Additional Experiments and Details

Spatial VQA Human Annotated Benchmark Wemanually labelled 546 qualitative and quantitative
question pairs for WebLi and robotic manipulation VQA. In the human annotation pipeline, we use
the spatial VQA data generation pipeline described in Section 3 to provide a sample question for each
image, the human annotator would look at the image and the sample question, decide if he or she
would like to use the question or type a more proper question, or to skip the annotation for the image.
Then based on the sample question or the human input question, the human annotator would type
the answer he or she thinks as proper in the form of natural language. Fig. 7, Fig. 8, and Fig. 9 shows
examples of the human annotated spatial VQA pairs.

Q: Is the fireplace screen with red doors 
smaller than the dog standing on the floor 
in width?
A: no

Q: Compared to the little boy in a red 
shirt, which side is the man wearing a 
blue shirt on?
A: left

Q: Is the palm tree in distance taller than 
the parked white car?
A: yes

Q: Are the windows positioned to the left of 
the black television?
A: yes

Figure 7 | Example question-answer pairs of the Spatial VQA qualitative benchmark

Q: Determine the distance of the fence 
from the giraffes in a zoo relative to the 
camera.
A: about 5 meters

Q: How far is the striped tie towards the 
left from the black cell phone?
A: about 0.2 meter

Q: Could you provide the distance between 
the sign and the motorcyclist?
A: about 0.5 meter

Q: What is the distance between the sand and the 
people that are standing on the beach?
A: 0, as the people are directly standing on the 
sand

Figure 8 | Example question-answer pairs of the Spatial VQA quantitative benchmark

Q: How far is the yellow robot gripper finger 
from the white bottle that is laying on the 
left side of the table?
A: 10 cm.

Q: What is the elevation of the bag of 
chips on table with respect to the table 
top surface?
A: The height of the bag of chips on table 
from the ground is 6 cm.

Q: Could you provide the distance between 
the yellow finger and the black snacks bag?
A: 5 inches

Q: How much distance is the red apple 
from the can on the table?
A: It's approximately 20 centimeters.

Figure 9 | Examplequestion-answerpairs of the roboticmanipulationVQAquantitative benchmark

Chain-of-thoughts Here we provide more details to our implementation of chain-of-thought spatial
reasoning. As we mentioned in main paper, we prompt a LLM to perform chain-of-thought reasoning

18



SpatialVLM: Endowing Vision-Language Models with Spatial Reasoning Capabilities

is of on to in
wh

ich
wh

ite sid
e

rig
ht

wo
m

an le
ft

po
sit

io
ne

d
bl

ac
k

yo
u

m
or

e
we

ar
in

g
de

te
rm

in
e

do
es

be
hi

nd
bl

ue
fro

nt
m

an
th

at
's

clo
se

r
re

d
ta

bl
e

br
ow

n
gr

ee
n

ob
je

ct
wo

od
en ca
n

to
wa

rd
s lie

le
ft-

ha
nd

st
an

di
ng

co
m

pa
re

rig
ht

-h
an

d
m

e
sh

irt
sit

tin
g at

fu
rth

er
wa

ll do
ch

ai
r

kn
ow

ab
ov

e
fro

m
im

ag
e

ye
llo

w
sm

al
le

r
flo

or
tre

e
te

ll
pe

rs
on gi
rl

te
rm

s
be

lo
w

ot
he

r?
pi

nk
ha

ng
in

g
po

sit
io

n
ed

ge
co

m
e

on
e

ce
ilin

g
ar

e
hi

gh
er

be
nc

h
co

ul
d

lig
ht

le
ss

dr
es

s
ob

je
ct

,
wi

de
r

sh
irt

?
ta

bl
e?

flo
we

rs
wi

dt
h?

po
sit

io
ns

gr
ou

nd
pl

an
t

id
en

tif
y

ru
g

ba
ck

gr
ou

nd
bi

gg
er

fin
d

wa
te

r
sit

ua
te

d
pe

op
le

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

Fr
eq

ue
nc

y

1e8 Top Word Frequencies in Questions

Figure 10 | Top word frequency. Top words appeared in the training dataset, the red color indicate
the word is involved in discussing a spatial concept. It shows that our training data is rich and diverse
in spatial questions.

Figure 11 | Error vs Scene Depth ablation. The errors that SpatialVLMmake eventually attributes
to the noise in the data, we plot the distance estimation relative error (capped at 1.0) w.r.t. ground
truth distance, and found that there are generally larger errors for bigger distance. We hypothesize
this might be due to dataset bias of ZoeDepth [6].

with ability to query our SpatialVLM for visual information. Since the LLM isn’t aware of visual infor-
mation itself, we prompt it to make decision as if it’s playing a game, by asking its friend who can see
an image that it cannot see itself. We provide the full prompt below:

Listing 1 | SpatialVLM CoT Prompts

You are participating in a visual question answering game with your
friend. In this game, you are presented with a question which requires visual information from an

image to answer. You can see the question but not the image, while your friend can see the image but
not the original question. Luckily, you are allowed to decompose the question and ask your friend
about the image. Your friend gives you answers which can be used to answer the original question.

Here is a sample conversation:
[Question] How can I clean up the table? Give detailed instruction about how should I move my hand.
[You] What objects are there in the image?
[Friend] There is an empty coke can, a trash bin and a coffee machine.
[You] Is the trash bin to the left or to the right of the coke can?
[Friend] It’s to the left.
[You] Is the trash bin or the coke can further from you?
[Friend] They are similar in depth.
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[You] How much to the left is the trash bin compared to the coke can?
[Friend] Around 20 centimeters.
[Answer] One

should grab the coke can, move it 20 centimeters left and release it so it falls in the trash bin.

Here is another example:
[Question] Tell me if the distance

between the blue bottle and the yellow book is longer than that between the plant and the coke can?
[You] What is the distance between the blue bottle and the yellow book?
[Tool] 0.3m
[You] What is the distance between the plant and the coke can?
[Friend] 0.7m
[Robot] Since the distance between the blue bottle and the

yellow book is 0.3m and distance between the plant while the coke can is 0.7m, the distance between
the blue bottle and the yellow book is not longer than that between the plant and the coke can.

[Answer] No.

Here is another example:
[Question] Which object can

be reached by kids more easily, the white and yellow rabbit toy can or the dark green can of beer?
[You] What is the elevation of the white and yellow rabbit toy can?
[Friend] 0.9 m.
[You] What is the elevation of the dark green can of beer?
[Friend] 0.2 m.
[Answer] Since the kids are generally shorter, it is easier for them to

reach something that are lower in altitude, so it would be easier for them to reach the can of beer.

Now, given
a new question, try to answer the questions by asking your friend for related visual information.

[Question]

By doing so, we find LLM and SpatialVLM can effectively work together to derive the correct .

A.2. Implementation Details

Semantic Filtering In the data filtering phase, we have 2 important objectives: First, we shall filter
out images that humans can hardly ask any spatial questions, such as photo of a single object before
a white background. Second, since our process requires lifting a 2D image to 3D point cloud, we desire
the field of view to be close to a value our monocular depth estimation model is optimized for.

To achieve the first objective, we use a pretrained CLIP model to label the candidate images, and
filter out those that represent a product or an artwork. Positive CLIP labels include “an iphone photo
of an indoor scene", and “an iphone photo of an outdoor scene", while negative labels are “a close up
shot of a single object", “a product displayed in front of a white background", “an artwork", “a painting",
“a screenshot of graphics user interface", “a piece of text", “a sketch".

We choose “an iphone photo” as a prefix for positive cases to satisfy the second objective. We observe
that this prefix effectively filters out data that has a wider field of view, as well as certain images with
uncommon perspective ratio.

Such design choices in data filtering ensure the images left are within the effective distribution of
our expert models and qa generation.

2D Contexts Extraction As we mentioned in method section, we use a variety of off-the-shelf models
to extract relavent information to synthesize our question answer data. Here we provide additional
details to context extraction. After data filtering, we run a region proposal network (RPN) followed by a
non-max suppression (NMS) [30]. For each object bounding box, we run a class agnostic segmentation
model [41] to segment out the object. For each bounding box, we use FlexCap [4] to sample an
object-centric caption with random length between 1−6words. In particular, we deliberately choose
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to avoid traditional object detectors, as they are fixed to very coarse categories such as “cake”, while
our approach can annotate objects with fine-grained descriptions like “cake shaped like a house” and
“cup cake in plastic container” for the image in Figure 2.

2DContext to3DContextLifting Wethen run the state-of-the-artmetricdepthdetector, ZoeDepth [6]
on the image. ZoeDepth outputs metric depth (in real-world “meters”). Combined with an fov esti-
mation, we are able to to lift 2D images into 3D point clouds as illustrated with real-world scale as
illustrated in Figure 2.

In this point cloud processing step, outliers, or points that significantly deviate from the main group,
are removed to enhance data accuracy. A clustering algorithm DBSCAN [22] groups the points based
on proximity, focusing on densely populated regions and eliminating sparse, less significant points.
This results in a cleaner, more structured point cloud, ideal for subsequent shape and geometry analysis
where dimensions of the shapes are measured. Since we already obtained the semantic segmentation
for the point cloud, we may use this information to process outliers at adaptive scales. For smaller
objects, we use a smaller threshold, proportional to the along each axis. We observe that such choice
effectively removes point cloud outliers while also keeping important points for smaller objects. We
provide algorithm details below in Algorithm 2.
Listing 2 | Outlier removal with DBScan
Input:
points_obj: Pointcloud of object of interest
pcd: Full Pointcloud

scale = norm(points_obj.std(axis=0)) * 3.0 + 1e-6
pcd = pcd.remove_stat_outlier(neighbors=50, std=1.2)
pcd = pcd.down_sample(voxel_size=max(0.01, scale / 20))
labels = array(pcd.cluster_dbscan(

eps=scale / 3.6, min_points=len(pcd) // 10))

clear plastic container
clear plastic container

append spatial attribute =2

delete due to ambiguity>2

no changes=1

girl wearing a blue sweatshirt
keyboard of the laptop

girl wearing a purple shirt

cake shaped like a house
cake in container
cake on the plate

clear plastic container to the left
clear plastic container to the right

girl wearing a blue sweatshirt
keyboard of the laptop
girl wearing a purple shirt

cake shaped like a house
cake in container
cake on the plate

Embedding Cluster and Modify Objects without Ambiguity

no changes=1

no changes=1

Figure 12 | This is a figure illustrating ambiguity removal.

Coordinate Canonicalization Now we have a 3D point cloud under metric scale. However, the point
cloud is still in camera frame, which limits the information we can extract. For example, an object closer
to the upper side of the image isn’t necessarily further from the ground, because the camera might be
pointing at the ground instead of the front. In order to solve this problem,we canonicalize the coordinate
systemof the pointcloud by detecting horizontal surfaces. We use a lightweight segmentationmodel [9]
to segment out pixels correspond to categories like “floor”, “table top”, before using RANSAC to fit the
biggest plane among these 3D points.

When we detect a surface defined by enough points, we canonicalize the coordinate of the point
cloud by creating a new origin by projecting camera origin to the detected plane. We use the normal
axis of the detected plane as z-axis and project the original z-axis of camera on the the plane as the
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new x-axis. By doing so, when we can detect horizontal surfaces like ground, we effectively transform
the point cloud into world coordinate instead of camera coordinate. A more detailed algorithm can be
found in our algorithm box 3. On the other hand, when not enough points corresponding to horizontal
surfaces are detected, we flag canonicalization as failed and avoid synthesizing questions that depends
on canonicalization, such as questions about elevation.

Listing 3 | Canonicalization Algorithm
Input:
depth: predicted depth for each point
ground_mask: detected ground or not for each point

points_cam = unproject_to_pointcloud(depth, fov)
points = points_cam
ground_mask = ground_mask.flatten()
canonicalized = False

if ground_mask.mean() > canonicalize_threshold:
canonicalized = True
ground_pcd = subset(points_cam, ground_mask)
plane, _ = ground_pcd.segment_plane(

distance_threshold=0.05, ransac_n=3, num_iterations=1000)
if array([0, -1, 0]) @ plane[:3] < 0:

plane = -plane
a, b, c, d = plane
normal = array([a, b, c])
ez = array([0, 0, 1])
new_y = ez - normal @ ez * normal
new_y = new_y / norm(new_y)
rot = array([cross_prod(new_y, normal), new_y, normal])
rot = array([[0, -1, 0], [1, 0, 0], [0, 0, 1]]) @ rot
trans = array([0, 0, d])
points_world = points_cam @ rot.T + trans[None]
points = points_world

return points, canonicalized

Ambiguity Removal As shown in Figure 12, we first embed all captions with CLIP encoder [52].
This allows us to calculate a cosine distance between each caption pair. This forms a similarity matrix
between all objects. If we threshold the similarity score, we can identify whether an object caption is too
close to others. In many cases, we have groups of exactly two similar captions, so we can easily augment
each caption by appending an differentiating clause such as “that’s more to the top of the image”. Other
cases involvemore than two similar captions, whichwe choose to remove all together to avoid ambiguity.
We also remove common background objects based on CLIP similarity to categories like “sun” or “sky”.

Human Alignment Humans rarely say a distancemeasure withmany decimal places like 0.95meters.
Rather, they round such distance into some thing they prefer, such as 1meter or half a meter. We would
like our model to align with such human preferences as well. In fact, since depth estimation and fov
estimation contain irreducible errors, themodel shouldbe allowed tophrase its answerswithuncertainty
by rounding just like humans, unless when prompted to be accurate. To this end, we post process any
quantitative distance unit to align with human preferences. As illustrated in Figure 13, we coded a
decision tree to make such alignment. For example, when the estimated distance is 0.86meters, with
75%probabilitywe just round it to1meters, whileweanswer3 feet, 90 cmwith some lower probabilities.
For a distance like 23meters, we round it to 20meters with high probability as well. We also sample
imperial units instead of metric units by a 20% chance, with similar human-like rounding rules.

While this may align the model better with humans, at sampling time, one may want to get more
accurate distance estimation. To do so, one simply need to sample multiple distance estimations and
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take the average. We used this in our robotic experiments to get more fine-grained values. Another
way is to prompt VLM itself to keep a certain amount of digits. This can be added to data synthesis
but we leave this to future work.

-0.5

0.5
0

0.86 1m
0.8m
90 cm

3 feet

Human-like 
Units

Human-like 
Rounding

Human Alignment

Human-like 
Distribution

Figure 13 | In human alignment, we define a set of rules that rounds with a probability that mimics
the decision rules of humans.

VLMTraining Wetrainedourmulti-modal large languagemodelwithabatch sizeof 512andanADAM
optimizerwith learning rateof2e-4. Wetrained thePaLM2-E-Smodelusingamixtureof theoriginalVQA
datasets in PaLM-E and our generated spatial VQA dataset, with a sampling ratio of 174:2.5. We initially
train themodel with a frozen vision encoder for 110k steps, which doesn’t use all the data we exhausted.
Therefore the data we generated is more than enough. We then, like described in the experiment
section, finetune with the vision encoder either frozen or unfrozen for 70k steps till convergence.

A.3. Question and Answer Template

As we mentioned in our method section, we synthesis question and answering pairs via templates.
Given a description of a pair of objects, such as “the yellow banana” and “the cake in the shape of a
house”, our data synthesis pipeline can effectively extract an answer based on question types.

Herewe provide a distribution of the question and answer types in Figure 14 and Figure 15, followed
by a description about each category.

1. left predicate A question asking whether object A is to the left of object B from the viewer’s
perspective. The solution is a binary predicate true or false expressed in natural language, or
a phrase expressing uncertainty.

2. right predicate A question asking whether object A is to the right of object B from the viewer’s
perspective. The solution is a binary predicate true or false expressed in natural language, or
a phrase expressing uncertainty.

3. above predicate A question asking whether object A is above object B. Requires coordinate
canonicalization. The solution is a binary predicate true or false expressed in natural language,
or a phrase expressing uncertainty.

4. below predicate A question asking whether object A is below object B. Requires coordinate
canonicalization. The solution is a binary predicate true or false expressed in natural language,
or a phrase expressing uncertainty.

5. behind predicate A question asking whether object A behind object B from the viewer’s perspec-
tive. The solution is a binary predicate true or false expressed in natural language, or a phrase
expressing uncertainty.

6. front predicate A question asking whether object A is in front of object B. The solution is a binary
predicate true or false expressed in natural language, or a phrase expressing uncertainty.
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7. tall predicate A question asking whether object A is taller than object B. Requires coordinate
canonicalization. The solution is a binary predicate true or false expressed in natural language,
or a phrase expressing uncertainty.

8. short predicate A question asking whether object A is shorter than object B. Requires coordinate
canonicalization. The solution is a binary predicate true or false expressed in natural language,
or a phrase expressing uncertainty.

9. wide predicate A question asking whether object A is wider than object B. The solution is a binary
predicate true or false expressed in natural language, or a phrase expressing uncertainty.

10. thin predicate A question asking whether object A is thiner than object B. The solution is a binary
predicate true or false expressed in natural language, or a phrase expressing uncertainty.

11. big predicate A question asking whether object A is bigger than object B. Requires coordinate
canonicalization. The solution is a binary predicate true or false expressed in natural language,
or a phrase expressing uncertainty.

12. small predicate A question asking whether object A is smaller than object B. Requires coordinate
canonicalization. The solution is a binary predicate true or false expressed in natural language,
or a phrase expressing uncertainty.

13. left choice A question asking which of object A and object B is more to the left from the viewer’s
perspective. The solution is an object name expressed in natural language, or a phrase expressing
uncertainty.

14. right choiceA question askingwhich of object A and object B ismore to the right from the viewer’s
perspective. The solution is an object name expressed in natural language, or a phrase expressing
uncertainty.

15. above choice A question asking which of object A and object B is more above. Requires coordinate
canonicalization. The solution is an object name expressed in natural language, or a phrase
expressing uncertainty.

16. below choiceA question askingwhich of object A and object B is more below. Requires coordinate
canonicalization. The solution is an object name expressed in natural language, or a phrase
expressing uncertainty.
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Figure 14 | Distribution of generated question-answer categories when canonicalization fails.

17. behind choice A question asking which of object A and object B is more behind. The solution
is an object name expressed in natural language, or a phrase expressing uncertainty.

18. front choice A question asking which of object A and object B is more to the front from the
viewer’s perspective. The solution is an object name expressed in natural language, or a phrase
expressing uncertainty.

19. tall choice A question asking which of object A and object B is taller. Requires canonicalization.
The solution is an object name expressed in natural language, or a phrase expressing uncertainty.
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Figure 15 | Distribution of generated question-answer categories when canonicalization is successful.

20. short choiceAquestion askingwhich of object A and object B is shorter. Requires canonicalization.
The solution is an object name expressed in natural language, or a phrase expressing uncertainty.

21. wide choice A question asking which of object A and object B is wider. The solution is an object
name expressed in natural language, or a phrase expressing uncertainty.

22. thin choice A question asking which of object A and object B is thinner. The solution is an object
name expressed in natural language, or a phrase expressing uncertainty.

23. big choice A question asking which of object A and object B is bigger. The solution is an object
name expressed in natural language, or a phrase expressing uncertainty.

24. small choice A question asking which of object A and object B is smaller. The solution is an object
name expressed in natural language, or a phrase expressing uncertainty.

25. left-right classify A question asking about the left-right comparative relationship between two
objects. The solution is left-right expressed innatural language, or a phrase expressinguncertainty.

26. above-below classify A question asking about the above-below comparative relationship be-
tween two objects. Requires canonicalization. The solution is above-below expressed in natural
language, or a phrase expressing uncertainty.

27. behind-front classifyAquestion asking about the behind-front comparative relationship between
two objects. The solution is behind-front expressed in natural language, or a phrase expressing
uncertainty.

28. tall-short classify A question asking about the tall-short comparative relationship between two
objects. Requires canonicalization. The solution is tall-short expressed in natural language, or
a phrase expressing uncertainty.

29. wide-thin classify A question asking about the wide-thin comparative relationship between
two objects. The solution is wide-thin expressed in natural language, or a phrase expressing
uncertainty.

30. big-small classify A question asking about the big-small comparative relationship between two
objects. Requires canonicalization. The solution is big-small expressed in natural language, or
a phrase expressing uncertainty.

31. distance estimation A question asking about the distance between the center of two objects. The
solution is a distance expressed in natural language, with a human-like distribution for rounding.

32. gap estimation A question asking about the gap between two objects. The solution is a distance
expressed in natural language, with a human-like distribution for rounding.

33. height estimation A question asking about the height of an object. The solution is a distance
expressed in natural language, with a human-like distribution for rounding. Requires canoni-
calization.

34. width estimation A question asking about the width of an object. The solution is a distance
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expressed in natural language, with a human-like distribution for rounding.
35. elevation estimation A question asking about the elevation of an object. The solution is a

distance expressed in natural language, with a human-like distribution for rounding. Requires
canonicalization.

36. vertical distance estimation A question asking about the vertical distance between the center
of two objects. The solution is a distance expressed in natural language, with a human-like
distribution for rounding. Requires canonicalization.

37. horizontal distance estimation A question asking about the horizontal distance between the
center of two objects. The solution is a distance expressed in natural language, with a human-like
distribution for rounding. Requires canonicalization.

38. abovedifference estimationAquestionasking about the thedistancebetween thebottomofmore
elevated object and the bottom of the less elevated object. The solution is a distance expressed
in natural language, with a human-like distribution for rounding. Requires canonicalization.

39. below difference estimation A question asking about the distance between the bottom of less
elevated object and the bottom of the more elevated object. The solution is a distance expressed
in natural language, with a human-like distribution for rounding. Requires canonicalization.

40. behind difference estimation A question asking about how much an object is in behind another
a distance alone the camera ray. The solution is a distance expressed in natural language, with
a human-like distribution for rounding.

41. front difference estimation A question asking about howmuch an object is in in front of another
a distance alone the camera ray. The solution is a distance expressed in natural language, with
a human-like distribution for rounding.

42. left difference estimation A question asking about howmuch an object is to the left of another,
from the viewer’s perspective. The solution is a distance expressed in natural language, with a
human-like distribution for rounding.

43. right difference estimationA question asking about howmuch an object is to the right of another,
from the viewer’s perspective. The solution is a distance expressed in natural language, with a
human-like distribution for rounding.

We provide a small set of question and answer pairs for generating QA data. For the full list please
refer to our website.

Listing 4 | SpatialVLM Question and Answer Template

OBJ_A = "[A]"
OBJ_B = "[B]"
DIST = "[X]"

distance_questions = [
"What is the distance between [A] and [B]?",
"How far apart are [A] and [B]?",
"How distant is [A] from [B]?",
"How far is [A] from [B]?",
"How close is [A] from [B]?",
"Could you measure the distance between [A] and [B]?",
"Can you tell me the distance of [A] from [B]?",
"How far away is [A] from [B]?",
"Can you provide the distance measurement between [A] and [B]?",
"Can you give me an estimation of the distance between [A] and [B]?",
"Could you provide the distance between [A] and [B]?",
"How much distance is there between [A] and [B]?",
"Tell me the distance between [A] and [B].",
"Give me the distance from [A] to [B].",
"Measure the distance from [A] to [B].",
"Measure the distance between [A] and [B].",

]
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distance_answers = [
"[X]",
"[A] and [B] are [X] apart.",
"[A] is [X] away from [B].",
"A distance of [X] exists between [A] and [B].",
"[A] is [X] from [B].",
"[A] and [B] are [X] apart from each other.",
"They are [X] apart.",
"The distance of [A] from [B] is [X].",

]

vertical_distance_questions = [
"What is the vertical distance between [A] and [B]?",
"How far apart are [A] and [B] vertically?",
"How distant is [A] from [B] vertically?",
"How far is [A] from [B] vertically?",
"Could you measure the vertical distance between [A] and [B]?",
"Can you tell me the vertical distance between [A] and [B]?",
"How far away is [A] from [B] vertically?",
(

"Can you provide the measurement of the vertical distance between [A]"
" and [B]?"

),
"Estimate the vertical distance between [A] and [B].",
"Could you provide the vertical distance between [A] and [B]?",
"How much distance is there between [A] and [B] vertically?",
"Tell me the distance between [A] and [B] vertically.",
"Give me the vertical distance from [A] to [B].",
"Measure the vertical distance from [A] to [B].",
"Measure the distance between [A] and [B] vertically.",

]

vertical_distance_answers = [
"[X]",
"[A] and [B] are [X] apart vertically.",
"[A] is [X] away from [B] vertically.",
"A vertical distance of [X] exists between [A] and [B].",
"[A] is [X] from [B] vertically.",
"[A] and [B] are [X] apart vertically from each other.",
"Vertically, They are [X] apart.",
"The vertical distance of [A] from [B] is [X].",
"They are [X] apart.",
"It’s approximately [X]."

]

horizontal_distance_questions = [
"What is the horizontal distance between [A] and [B]?",
"How far apart are [A] and [B] horizontally?",
"How distant is [A] from [B] horizontally?",
"How far is [A] from [B] horizontally?",
"Could you measure the horizontal distance between [A] and [B]?",
"Can you tell me the horizontal distance of [A] from [B]?",
"How far away is [A] from [B] horizontally?",
(

"Can you provide the measurement of the horizontal distance between [A]"
" and [B]?"

),
(

"Can you give me an estimation of the horizontal distance between [A]"
" and [B]?"

),
"Could you provide the horizontal distance between [A] and [B]?",
"How much distance is there between [A] and [B] horizontally?",
"Tell me the distance between [A] and [B] horizontally.",
"Give me the horizontal distance from [A] to [B].",
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"Vertial gap between [A] and [B].",
"Measure the horizontal distance from [A] to [B].",
"Measure the distance between [A] and [B] horizontally.",

]

horizontal_distance_answers = [
"[X]",
"[A] and [B] are [X] apart horizontally.",
"[A] is [X] away from [B] horizontally.",
"A horizontal distance of [X] exists between [A] and [B].",
"[A] is [X] from [B] horizontally.",
"[A] and [B] are [X] apart horizontally from each other.",
"Horizontally, They are [X] apart.",
"The horizontal distance of [A] from [B] is [X].",
"They are [X] apart.",
"It’s approximately [X]."

]

width_questions = [
"Measure the width of [A].",
"Determine the horizontal dimensions of [A].",
"Find out how wide [A] is.",
"What is the width of [A]?",
"How wide is [A]?",
"What are the dimensions of [A] in terms of width?",
"Could you tell me the horizontal size of [A]?",
"What is the approximate width of [A]?",
"How wide is [A]?",
"How much space does [A] occupy horizontally?",
"How big is [A]?",
"How big is [A] in terms of width?",
"What’s the radius of [A]?"

]

width_answers = [
"[X]",
"The width of [A] is [X].",
"[A] is [X] wide.",
"[A] is [X] in width.",
"It’s [X]."

]

behind_predicate_questions = [
"Is [A] behind [B]?",
"Is the position of [A] more distant than that of [B]?",
"Does [A] lie behind [B]?",
"Is [A] positioned behind [B]?",
"Is [A] further to camera compared to [B]?",
"Does [A] come behind [B]?",
"Is [A] positioned at the back of [B]?",
"Is [A] further to the viewer compared to [B]?",

]

behind_true = [
"Yes.",
"Yes, it is.",
"Yes, it’s behind [B].",
"That’s True.",
"Yes, [A] is further from the viewer.",
"Yes, [A] is behind [B]."

]

behind_false = [
"No.",
"No, it is not.",
"No, it’s in front of [B].",
"That’s False.",
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"No, [A] is closer to the viewer.",
"No, [B] is in front of [A]."

]

front_predicate_questions = [
"Is [A] in front of [B]?",
"Is the position of [A] less distant than that of [B]?",
"Does [A] lie in front of [B]?",
"Is [A] positioned in front of [B]?",
"Is [A] closer to camera compared to [B]?",
"Does [A] come in front of [B]?",
"Is [A] positioned before [B]?",
"Is [A] closer to the viewer compared to [B]?",

]

front_true = [
"Yes.",
"Yes, it is.",
"Yes, it’s in front of [B].",
"That’s True.",
"Yes, [A] is closer to the viewer.",
"Yes, [A] is in front of [B]."

]

front_false = [
"No.",
"No, it is not.",
"No, it’s behind [B].",
"That’s False.",
"No, [A] is further to the viewer.",
"No, [B] is behind [A]."

]
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