
Published as a conference paper at ICLR 2024

SGD FINDS THEN TUNES FEATURES IN TWO-LAYER
NEURAL NETWORKS WITH NEAR-OPTIMAL SAMPLE
COMPLEXITY: A CASE STUDY IN THE XOR PROBLEM

Margalit Glasgow ∗

Department of Computer Science
Stanford University
Stanford, CA 94305, USA
{mglasgow}@stanford.edu

ABSTRACT

In this work, we consider the optimization process of minibatch stochastic gradient
descent (SGD) on a 2-layer neural network with data separated by a quadratic
ground truth function. We prove that with data drawn from the d-dimensional
Boolean hypercube labeled by the quadratic “XOR” function y = −xixj , it is
possible to train to a population error o(1) with dpolylog(d) samples. Our result
considers simultaneously training both layers of the two-layer-neural network
with ReLU activations via standard minibatch SGD on the logistic loss. To our
knowledge, this work is the first to give a sample complexity of Õ(d) for efficiently
learning the XOR function on isotropic data on a standard neural network with
standard training. Our main technique is showing that the network evolves in
two phases: a signal-finding phase where the network is small and many of the
neurons evolve independently to find features, and a signal-heavy phase, where
SGD maintains and balances the features. We leverage the simultaneous training
of the layers to show that it is sufficient for only a small fraction of the neurons to
learn features, since those neurons will be amplified by the simultaneous growth of
their second layer weights.

1 INTRODUCTION

Stochastic gradient descent (SGD) is the primary method of training neural networks in modern
machine learning. Despite the empirical success of SGD, there are still many questions about why
SGD is often able to efficiently find good local minima in the non-convex optimization landscape
characteristic of training neural networks.

A growing body of work aims to theoretically understand the optimization dynamics and sample
complexity of learning natural classes of functions via SGD on neural networks. A particularly
well-understood regime in this regard is the neural tangent kernel (NTK)(Jacot et al., 2021a), where
the network only moves a small distance from its initialization. However, in many cases, the NTK
provably requires a poor sample complexity to generalize (Abbe et al., 2022).

More recent work aims to prove convergence guarantees for SGD on neural networks with tight
sample complexity guarantees. A natural test-bed for this, which has garnered a lot of attention, is
learning target functions that are inherently low-dimensional, depending only on a constant number
of dimensions of the data (Chen & Meka, 2020; Chen et al., 2020; Nichani et al., 2022; Barak
et al., 2022; Bietti et al., 2022; Mousavi-Hosseini et al., 2022; Refinetti et al., 2021; Abbe et al.,
2021a; 2022; 2023). Such functions, often called sparse or multi-index functions, can be written
as f(x) := g(Ux), where U ∈ Rk×d has orthogonal rows, and g is a function on Rk. Many works
have shown that learning such target functions via SGD on neural networks is possible in much
fewer samples than achievable by kernel methods (Chen et al., 2020; Bai & Lee, 2019; Damian et al.,
2022; Abbe et al., 2021a; 2022; 2023). The results in these papers apply to a large class of ground

∗https://web.stanford.edu/ mglasgow/index.html.

1

Published as a conference paper at ICLR 2024

truth functions, and have greatly enhanced our understanding of the sample complexity necessary for
learning via SGD on neural networks.

The limitation of the aforementioned works is that they typically modify the SGD algorithm in ways
that don’t reflect standard training practices, for example using layer-wise training, changing learning
rates, or clipping. While providing strong guarantees on certain subclasses of multi-index functions,
such modifications may limit the ability of SGD to learn broader classes of multi-index functions
with good sample complexity. We discuss this more in the context of related work in Section 1.1.

The goal of this paper is to show that for a simple but commonly-studied problem, standard minibatch
SGD on a two-layer neural network can learn the ground truth function in near-optimal sample
complexity. In particular, we prove in Theorem 3.1 that a polynomial-width ReLU network trained
via online minibatch SGD on the logistic loss will classify the boolean XOR function f(x) := −xixj

with a sample complexity of Õ(d).1 We study the XOR function because it one of the simplest
test-beds for a function which exhibits some of the core challenges of analyzing SGD on neural
networks: a random initialization is near a saddle point, and the sample complexity attainable by
kernel methods is suboptimal (see further discussion in Section 1.1).

Despite its simplicity, the prior theoretical understanding of learning the XOR function via SGD on
standard networks is lacking. It is well-known that the NTK requires Θ(d2) samples to learn this
function (Wei et al., 2019; Ghorbani et al., 2021; Abbe et al., 2023). Wei et al. (Wei et al., 2019)
showed that Õ(d) samples statistically suffice, either by finding the global optimum of a two-layer
network, or by training an infinite-width network, both of which are computationally intractable.
Similar guarantees of Õ(d) are given by Bai et al. (Bai & Lee, 2019) and Chen et al. (Chen et al.,
2020); however, such approaches rely on drastically modifying the network architecture and training
algorithm to achieve a quadratic neural tangent kernel. Abbe et al. (Abbe et al., 2023) proves a sample
complexity of Õ(d) for the XOR problem, but uses an algorithm which assumes knowledge of the
coordinate system under which the data is structured, and is thus not rotationally invariant. It is also
worth noting that several works have studied the XOR problem with non-isotropic data, where the
cluster separation grows to infinity (Frei et al., 2022; Ben Arous et al., 2022), in some cases yielding
better sample complexities.

The main approach in our work is showing that while running SGD, the network naturally evolves
in two phases. In the first phase, which we call the signal-finding phase, the network is small, and
thus we can show that a sufficient fraction of the neurons evolve independently, similarly to how
they would evolve if the output of the network was zero. Phase 1 is challenging because it requires
moving away from the saddle near where the network is initialized, which requires super-constant
time (here we use “time” to mean the number of iterations times step size). This rules out using the
mean field model approach as in Mei et al. (Mei et al., 2018b; 2019), or showing convergence to a
lower-dimensional SDE as in Ben Arous et al. (Ben Arous et al., 2022), which both break down after
constant time when directly applied to our setting. 2

After the signal components in the network have become large enough to dominate the remaining
components, the network evolves in what we call the signal-heavy phase. In this phase, we show
inductively that throughout training, the signal components stay significantly larger than their counter-
parts. This inductive hypothesis allows us to approximate the output of the network on a sample x by
its clean approximation, given by a network where all the non-signal components have been removed.
Under this approximation, the dynamics of the network are easier to compute, and we can show that
the signal components will grow and rebalance until all four of the clusters in the XOR problem have
sufficiently small loss. The division into signal-finding and signal-heavy phases is similar to the two
phases of learning in e.g. Arous et al. (2021).

Our Phase 2 analysis leverages the simultaneous training of both layers to show that the dominance of
the signal components will be maintained throughout training. In particular, we show once individual
neurons become signal heavy, their second layer weights become large, and thus a positive feedback

1We consider this near-optimal in the sense that for algorithms that are rotationally invariant Θ̃(d) samples
are required. See Section G for details.

2Ben Arous et al. (2022) considers a setting of high-dimensional SGD where a constant number of summary
statistics sufficient to track the key features of the SGD dynamics and the loss, which can only be applied to
constant-width 2-layer neural networks. Their coupling between high-dimensional SGD and a low-dimension
SDE holds for Θ(1) time, which is not enough time to learn the XOR function, which requires Θ(log(d)) time.

2

Published as a conference paper at ICLR 2024

cycle between the first and second layer weights of that neuron causes it to grow faster than non-
signal-heavy neurons. This allows us to maintain the signal-heavy inductive hypothesis. If we only
trained the first layer, and all second layer weights had equal absolute value, then unless we have
strong control over the balance of the clusters, it would be possible for the non-signal components to
grow at a rate which is on the same order as the rate of the signal components (see Remark 4.3).

1.1 RELATED WORK

Learning Multi-Index Functions via Neural Networks Most related to our work is a body of
work aiming to understand the sample complexity of learning multi-index functions via SGD on
neural networks Bietti et al. (2022); Refinetti et al. (2021); Chen et al. (2020); Abbe et al. (2021a;
2022; 2023); Damian et al. (2022); Barak et al. (2022); Daniely & Malach (2020); Mousavi-Hosseini
et al. (2022); Nichani et al. (2022); Ge et al. (2017); Mahankali et al. (2023); Ba et al. (2022);
Dandi et al. (2023). Such functions are typically studied in either the Gaussian data setting where
x ∼ N (0, Id), or in the Boolean hypercube setting, where x ∼ Uniform({±1}d). In both cases, we
have f(x) := g(Ux), where U projects x onto a lower dimensional space of dimension k, and g is
an arbitrary function on k variables. In the Boolean setting, U projects onto a subset of k coordinates
of x, so in the case of the XOR function we study, k = 2 and g is a quadratic function.

Chen and Meka (Chen & Meka, 2020) showed when k is constant, and g is a degree-D polynomial
for constant D, there exists a polynomial-time algorithm which learns such multi-index functions on
Gaussian covariates in Õ(d) samples. Such algorithms can also be emulated in the same sample com-
plexity via SGD on neural networks designed to emulate arbitrary Statistical Query algorithms (Abbe
& Sandon, 2020; Abbe et al., 2021b), though these networks bear little similarity to standard neural
networks used in practice.

The sample complexity of learning multi-index functions via SGD on standard neural networks is an
open and active area of research. It is known that the neural tangent kernel (and more generally, kernel
methods) require Ω(dD) samples (Hsu, 2021). A line of work by Abbe et al. (Abbe et al., 2021a;
2022; 2023) has conjectured that the sample complexity required for SGD is Θ̃(dmax(L−1,1)), where
L denotes the “leap complexity”, a measure of hierarchical structure upper bounded by D, and which
equals 2 for the XOR function. If true, this conjecture would place the sample complexity of SGD on
standard neural networks squarely between that of kernel methods and arbitrary polynomial-time
algorithms. When L = 1, Abbe et al. (2022) showed via a mean-field analysis that is possible to
learn with Θ(d) samples via layer-wise training, where the first layer is trained until it learns the
subspace U , and then the second layer is trained as a linear model. For L > 1, Abbe et al. (2023)
provided a layer-wise SGD algorithm achieving the conjectured complexity, but which assumes
knowledge of the coordinate system under which the data is structured. This means the algorithm
is not-rotationally invariant, barring the network from learning more general multi-index functions.
Other works have also used layer-wise training to give similar results for subclasses of multi-index
functions (Damian et al., 2022; Mousavi-Hosseini et al., 2022; Barak et al., 2022); Mousavi-Hosseini
et al. (2022) studies a setting where k = 1 and L = 1, while Damian et al. (2022); Barak et al. (2022)
study settings where L ≥ 2, and use just a single gradient step on on the first layer, which requires
Ω(dL) samples. Numerous other works (Tan & Vershynin, 2019; Bietti et al., 2022; Wu et al., 2023;
Arous et al., 2021) have made progress in the setting of single-index functions (k = 1) when L > 1.
In some cases, the result achieve tight guarantees that depend on a quantity called the “information
exponent” of g, which is equivalent to the leap complexity when k = 1, though these methods require
training only a single neuron in Rd. The recent work Mahankali et al. (2023) considers training a
single-index target function with k = 2 and degree 4 on a 2-layer neural network via vanilla gradient
descent, and shows a sample complexity of O(d3+ϵ), which improves over kernel methods.

The above discussion highlights a gap in our understanding when k ≥ 2 and L ≥ 2. Indeed, such
a setting is challenging because it requires learning multiple neurons, and escaping one (or more)
saddles (Abbe et al., 2023). For this reason, we believe the XOR function (with k, L = 2) is a good
stepping stone for understanding the behaviour of SGD on neural networks for more general functions
with k ≥ 2, L ≥ 2. Note that other works (Bai & Lee, 2019; Chen et al., 2020) have achieved a
near-optimal sample complexity of Õ(d) for the XOR problems; these works use a non-standard
architecture and training algorithm which puts SGD into a quadratic NTK regime. While such a
regime can often attain sample complexities beating the standard (linear) NTK, in general this method
yields complexities of Õ(dD−1), which is larger than the rate achieved by Abbe et al. (2022) whenever

3

Published as a conference paper at ICLR 2024

L = 1 and D ≥ 3. We emphasize that our work achieves the near-optimal sample complexity Õ(d)
with a standard two-layer neural network, trained with standard minibatch SGD.

We note that many more works have explored both empirically (eg. (Woodworth et al., 2020; Chizat
et al., 2019)) and theoretically (eg.(Li et al., 2020; Allen-Zhu & Li, 2020; Suzuki & Akiyama, 2020;
Telgarsky, 2022; Jacot et al., 2021b)) the sample-complexity advantages of “rich” SGD training over
the “lazy” NTK regime.

Simultaneous Training of Layers. While many of the works mentioned above use layer-wise
training algorithms, the standard empirical practice is to train all layers simultaneously. Several
theoretical works explore this setting, uncovering implicit biases of ReLU (or other homogeneous)
networks trained simultaneously (Wei et al., 2019; Chizat & Bach, 2020; Lyu & Li, 2019; Lyu
et al., 2021; Maennel et al., 2018). Under a variety of assumptions, these works have related the
solutions found via gradient descent to margin-maximizing solutions. A much finer understanding
of the implicit bias of simultaneous training is provided for a line of work on diagonal neural
networks (Pesme & Flammarion, 2023; Even et al., 2023).

1.2 ORGANIZATION OF PAPER

In Section 2, we describe the data and training model. In Section 3 we state our result. In Section 4,
we overview the proof techniques. We conclude in Section 5. All proofs are in the Appendix.

1.3 NOTATION

For a vector v, we use ∥v∥ to denote the ℓ2 norm, and ∥v∥1 to denote the ℓ1 norm. We use ∥M∥2 to
denote the spectral norm of a matrix M . All big-O notation is with respect to d → ∞, and we use Õ
to suppress log factors in big-O notation. ω(1) denotes growing to infinity with d. We use Sd−1(r) to
denote the sphere of radius r in d dimensions, and 1(·) to denote the indicator variable of an event.

2 MODEL AND SETTING

2.1 DATA.
We study the setting where the data comes from the Boolean hypercube x ∼ Uniform({−1, 1}d),
and the label y is given by y(x) = XOR(x1, x2) := −x1x2.

Note that with µ1 := e1 − e2, and µ2 := e1 + e2, we can model the distribution as

(x, y) =

{
(µ1 + ξ, 1) w.p. 1/4 (−µ1 + ξ, 1) w.p. 1/4

(µ2 + ξ,−1) w.p. 1/4 (−µ2 + ξ,−1) w.p. 1/4
,

where ξ ∼ Uniform(02 × {−1, 1}d−2) so that ξ ⊥ {µ1, µ2}. We will often write

x = z + ξ,

where z is the projection of x onto the space spanned by e1 and e2, and ξ is the projection of x
orthogonal to e1 and e2. We denote this distribution by Pd, and throughout, it is implicitly assumed
that all probabilities and expectations over x are for x ∼ Pd.
Remark 2.1. While for simplicity, we state our results for the setting where the data comes from an
axis-aligned Boolean hypercube, and where ground truth depends on the first two dimensions, the
minibatch SGD algorithm and the initialization of the network will be rotationally invariant. Thus all
our results hold for a Boolean hypercube with any basis.

2.2 TRAINING.
Model. We train both layers of a two-layer ReLU network with width p:

1

p

p∑
j=1

ajσ(w
T
j x),

4

Published as a conference paper at ICLR 2024

where σ(α) = max(0, α) is the ReLU function. We will use the variable ρ := 1
p

∑p
j=1 1(wj ,aj) to

denote the empirical distribution of the neurons and their second layer weights. Thus we denote

fρ(x) := Ew,a∼ρa · σ(wTx),

We will often abuse notation and write probabilities and expectations using w ∼ ρ, and use aw to
denote its associated second layer weight. We note that it is not necessarily the case the second layer
weight aw is a function of w; we do this for the convenience of not indexing each pair as (wj , aj).

Initialization. We initialize the network with wj ∼ Uniform(Sd−1(θ)) for a scale parameter θ,
such that ∥wj∥ = θ. We initialize the second layer as aj = ϵj∥wj∥, where ϵj ∼ Uniform(±1).

Minibatch SGD. We train using minibatch SGD on the logistic loss function

ℓρ(x) := −2 log

(
1

1 + exp(−y(x)fρ(x))

)
,

and define the population loss Lρ := Ex∼P ℓρ(x). We will use the shorthand ℓ′ρ(x) to denote the
derivative of ℓρ(x) with respect to fρ(x):

ℓ′ρ(x) := −2y(x) exp(−y(x)fρ(x))

1 + exp(−y(x)fρ(x))
.

We use ρt to denote the empirical distribution of the p neurons (w(t), a
(t)
w) at iteration t. At each step,

we perform the minibatch SGD update

w(t+1) := w(t) − η∇L̂ρ(w
(t)) a(t+1)

w := a(t)w − η∇L̂ρ(a
(t)
w).

Here L̂ρ = 1
m

∑
x(i)∈Mt

ℓρ(x
(i)) denotes the empirical loss with respect to a minibatch Mt of m

random samples chosen i.i.d. from Pd at step t, and for a loss function L and a parameter u in the
network, ∇uL := p∂L

∂u denotes the scaled partial derivative of the loss with respect to u, defined in
particular for a neuron (w, aw), as follows: 34

∇wL̂ρ =
1

m

∑
x(i)∈Mt

∂

∂w
pℓρ(x

(i)) =
1

m

∑
x(i)∈Mt

awℓ
′
ρt
(x(i))σ′(wTx(i))x(i);

∇aw L̂ρ =
1

m

∑
x(i)∈Mt

∂

∂aw
pℓρ(x

(i)) =
1

m

∑
x(i)∈Mt

ℓ′ρt
(x(i))σ(xT

i w).

3 MAIN RESULT

The following theorem is our main result.
Theorem 3.1. There exists a constant C > 0 such that the following holds for any d large enough.
Let θ := 1/ logC(d). Suppose we train a 2-layer neural network with minibatch SGD as in Section 2.2
with a minibatch size of m ≥ d/θ, width 1/θ ≤ p ≤ dC , step size d−C ≤ η ≤ θ, and initialization
scale θ. Then for some t ≤ C log(d)/η, with probability 1− d−ω(1), we have

Ex∼Pd
[ℓρt

(x)] ≤ (log(d))−Θ(1).

By setting η = θ and m = d/θ, Theorem 3.1 states that we can learn the XOR function up to ϵ
population loss in Θ(dpolylog(d)) samples and iterations on a polynomial-width network.

3Since the ReLU function is non-differentiable at zero, we define σ′(0) = 0.
4For convenience, we scale this derivative up by a factor of p to correspond to the conventional mean-field

scaling. If we didn’t perform this scaling, we could achieve the same result by scaling the learning rate η.

5

Published as a conference paper at ICLR 2024

Table 1: Summary of Notation used in Proof Overview and Proofs

wsig =

{
1
2µ1µ

T
1 w aw ≥ 0

1
2µ2µ

T
2 w aw < 0

wopp =

{
1
2µ2µ

T
2 w aw ≥ 0

1
2µ1µ

T
1 w aw < 0

{
w1:2 = wsig + wopp

w⊥ = w − w1:2

γµ = fρ(µ)y(µ) γmin = minµ∈{±µ1,±µ2} γµ γmax = maxµ∈{±µ1,±µ2} γµ

gµ = |ℓ′ρ(µ)| gmin = minµ∈{±µ1,±µ2} |ℓ′ρ(µ)| gmax = maxµ∈{±µ1,±µ2} |ℓ′ρ(µ)|

4 PROOF OVERVIEW

Throughout the following section, and in our proofs, we will use the following shorthand to refer to
the components of a neurons w. We decompose w = w1:2 +w⊥, where w1:2 is the projection of w in
the direction spanned e1 and e2 (and equivalently by µ1 = e1 − e2 and µ2 = e1 + e2), and w⊥ is the
component of w in the orthogonal subspace. We further decompose w1:2 = wsig + wopp as follows:

wsig =

{
1
2µ1µ

T
1 w aw ≥ 0;

1
2µ2µ

T
2 w aw < 0.

wopp =

{
1
2µ2µ

T
2 w aw ≥ 0;

1
2µ1µ

T
1 w aw < 0.

Intuitively, we want the neurons to grow in the wsig direction, but not the wopp direction; in a network
achieving the maximum normalized margin, we will have w = wsig exactly, and wopp = w⊥ = 0. We
summarize this notation in Table 1, along with future shorthand we will introduce in this section.

The main idea of our proof is to break up the analysis of SGD into two main phases. In the first phase,
the network is small, and thus we have (for most x) that the loss ℓρ(x) is well approximated by a first
order approximation of the loss at fρ = 0, namely

ℓ0(x; ρ) := −2 log(1/2)− y(x)fρ(x).

As long as this approximation holds, the neurons of the network evolve (approximately) independently,
since ℓ′0(x) :=

∂ℓ0(x;ρ)
∂fρ(x)

= −y(x) does not depend on the full network ρ. We will show under this
approximation that for many neurons, ∥wsig∥ grows exponentially fast. Thus we will run this first
phase for Θ(log(d)/η) iterations until for all four clusters µ ∈ {±µ1,±µ2}, there exists a large set
of neurons Sµ on which wT

sigµ > 0, and the “margin” from this set of neurons is large, i.e.

γ̃µ := Eρ[1(w ∈ Sµ)awσ(w
Tµ)] ≫ Eρ∥w⊥ + wopp∥2. (4.1)

In the Phase 2, we assume that Eq. 4.1 holds, and we leverage the dominance of the signal to show
that (1) The signal components wsig grow faster that wopp + w⊥, and thus Eq. 4.1 continues to hold;
and (2) SGD balances the signal components in the 4 cluster directions such that the margins γ̃µ
balance, and become sufficiently large to guarantee o(1) loss.

We proceed to describe the analysis in the two phases in more detail. Full proofs are in the Appendix.

4.1 PHASE 1

In Phase 1, we approximate the evolution of the network at each gradient step by the gradient step
that would occur for a network with output 0. The main building blocks of our analysis are estimates
of the L0 := Exℓ0(x; ρ) population gradients, and bounds on the difference ∇L0 −∇Lρ.

L0 population gradients. Since the primary objective of this phase is to grow the neurons in the
signal direction, we sketch here the computation of the gradient ∇w1:2

L0 in the subspace spanned by
µ1, µ2. The remaining estimates of ∇L0 are simpler, and their main objective is to show that ∇w⊥L0

and ∇aw
L0 are sufficiently small, such that ∥w⊥∥ doesn’t change much throughout Phase 1, and

|aw| stays approximately the same as ∥w∥. For convenience, the reader may assume that |aw| = ∥w∥
exactly, which would hold if we took η to 0 as in gradient flow.

For a data sample x ∼ Radd, we denote x = z + ξ, where z ∈ Span({±µ1,±µ2}), and ξ ⊥
Span({±µ1,±µ2}). By leveraging the symmetry of the data distribution and the fact that y(z) =

6

Published as a conference paper at ICLR 2024

y(−z), we can compute

∇w1:2
L0 = −awEx=z+ξy(x)σ

′(wTx)z

= −awEξ
1

2
Ezy(z)

(
σ′(wT ξ + wT z)− σ′(wT ξ − wT z)

)
z

= −awEξ
1

2
Ezy(z)1(|wT z| ≥ |wT ξ|) sign(wT z)z

= −1

2
awEzy(z) sign(w

T z)zPξ[|wT z| ≥ |wT ξ|]

≈ −1

2
awEzy(z) sign(w

T z)zPG∼N (0,∥w⊥∥2)[G ≤ |wT z|]

≈ −1

2
awEzy(z) sign(w

T z)z

√
2

π

|wT z|
∥w∥

.

(4.2)

Here the two approximations come from the fact that ξ has boolean coordinates and not Gaussian,
and from an approximation of the Gaussian distribution, which holds whenever |wT z|

∥w⊥∥ is small. By
taking the expectation over z ∈ {±µ1,±µ2}, the last line of Eq 4.2 can be shown to evaluate to

− |aw|
∥w∥

√
2π

wsig +
|aw|

∥w∥
√
2π

wopp. (4.3)

Observe that near initialization, this gradient is quite small, since ∥wsig∥
∥w∥ is approximately 1√

d
for a

random initialization. Nevertheless, this gradient suggests that wsig will grow exponentially fast.

Bounding the difference ∇L0 −∇Lρ. To bound ∥∇wLρ −∇wL0∥2, first recall that

∇wL0 −∇wLρ = Exaw(ℓ
′
ρ(x)− ℓ′0(x))σ

′(wTx)x.

Defining ∆x := (ℓ′ρ(x)− ℓ′0(x))σ
′(wTx), we can show using routine arguments (see Lemma D.2

for the details) that:

∥∇wLρ −∇wL0∥2 = |aw|∥Ex∆xx∥ ≤ |aw|
√
Ex∆2

x (4.4)

≈ |aw|
√

Exfρ(x)2

⪅ |aw|Eρ[∥aww∥] ≈
|aw|

polylog(d)
.

While this deviation bound is useful for showing that w⊥ doesn’t move too much, this bound far
exceeds the scale of the gradient in the wsig, which is on the scale |aw|√

d
near initialization. Fortunately,

we can show in Lemma D.3 that the deviation is much smaller on the first two coordinates, namely,

∥∇w1:2
Lρ −∇w1:2

L0∥2 ≤ |aw|O(log2(d))

(
Eρ[∥aww1:2∥] + Eρ[∥aww∥]

∥w1:2∥
∥w∥

)
(4.5)

Note that since near initialization ∥w1:2∥ ≪ ∥w∥ for all neurons, this guarantee is much stronger than
Eq. 4.4. In fact, since throughout this phase we can show that aw and ∥w∥ change relatively little,
staying at the scale 1/polylog(d), the approximation error in Eq. 4.5 is smaller than the gradient in
the wsig direction (Eq. 4.3) whenever say ∥wsig∥ ≥ 100Eρ[∥aww1:2∥], which occurs on a substantial
fraction of the neurons.

Lemma D.3 is the most important lemma in our Phase 1 analysis. At a high level, it shows that
the approximation error ∥∇w1:2Lρ − ∇w1:2L0∥2 can be coupled with the growth of the signal,
−(∇wL0)

T wsig

∥wsig∥ . This is because we use a symmetrization trick with the pairs z + ξ and −z + ξ

to show that both the error and the signal gradient only grow from samples x = z + ξ where
|zTw| ≥ |ξTw|.
In more detail, to prove Eq. 4.5, we also need to leverage the fact that for any ξ ∈ {µ1, µ2}⊥ and
z ∈ {±µ1,±µ2}, we have |ℓ′ρ(ξ + z)− ℓ′ρ(ξ − z′)| ≤ 4pEρ[∥aww1:2∥], much smaller than we can

7

Published as a conference paper at ICLR 2024

expect |ℓ′ρ(x) − ℓ′0(x)| to be. Thus |∆ξ+z −∆ξ−z| ≤ 4pEρ[∥aww1:2∥] whenever |ξTw| ≥ |zTw|
(such that σ′(wT (ξ + z)) = σ′(wT (ξ − z))). Following the symmetrization trick in Eq. 4.2, we have∥∥∥∥ 1

aw
(∇w1:2

Lρ −∇w1:2
L0)

∥∥∥∥ = ∥Ex∆xz∥

= ∥EξEz∆ξ+zz∥

=
1

2
∥EξEz(∆ξ+z −∆ξ−z)z∥

≤ 2
√
2Eρ[∥aww1:2∥] +

√
2EξEz1(|ξTw| ≤ |zTw|)|∆x|.

A careful computation comparing wT ξ to a Gaussian distribution then shows that

Ez1(|ξTw| ≤ |zTw|)|∆x| ≈
(
Px[|ξTw| ≤ |zTw|]

)
(Ex|∆x|) ⪅

∥w1:2∥
∥w∥

Eρ[∥aww∥].

Putting Phase 1 Together The building blocks above, combined with standard concentration
bounds on ∇L̂ρ, suffice to show that a substantial mass of neurons will evolve according to Eq 4.3,
leading to exponential growth in wsig. After Θ(log(d)/η) iterations, for these neurons, we can achieve
∥wsig∥ ≫ ∥w⊥ + wopp∥. Formally, we show the following for some ζ = 1/polylog(d):
Lemma 4.1 (Output of Phase 1: Informal; See Lemma D.1 for formal version). With high probability,
for η ≤ Õ(1) and some ζ = 1/polylog(d), after some T = Θ(log(d)/η) iterations of minibatch
SGD, with m = Θ̃(d) samples in each minibatch, the network ρT satisfies:

1. EρT
[∥w⊥ + wopp∥2] ≤ θ.

2. For each µ ∈ {±µ1,±µ2}, on at least a 0.1 fraction of all the neurons, we have wT
sigµ > 0,

and ∥wsig∥2 ≥ ζ−1θ.

We remark that the analysis to prove Lemma 4.1 is somewhat subtle, since the tight approximation in
Eq 4.2 breaks down when ∥wsig∥ approaches ∥w⊥∥. The details are given in Appendix D.

4.1.1 PHASE 2

The conclusion of Lemma 4.1 is a sufficient condition of the network to begin the second phase. In
the second phase, we have that (for most x)

ℓ′ρ(x) ≈ ℓ′ρ(z), (4.6)

where we recall that z is the component of x in the space spanned by µ1 and µ2. We refer to this as
the clean loss derivative, and our main tool will be analyzing the evolution of SGD under this clean
surrogate for the loss derivative. Namely, we define:

∇cl
wLρ := awExℓ

′
ρ(z)σ

′(wTx)x and ∇cl
aw

Lρ := Exℓ
′
ρ(z)σ(w

Tx). (4.7)

Before proceeding, we introduce the following definitions, which will be useful in Phase 2 (summa-
rized in Table 1):

γmin := min
µ∈{±µ1,±µ2}

γµ gmin := min
µ∈{±µ1,±µ2}

|ℓ′ρ(µ)| =
exp(−γmax)

1 + exp(−γmax)

γmax := max
µ∈{±µ1,±µ2}

γµ gmax := max
µ∈{±µ1,±µ2}

|ℓ′ρ(µ)| =
exp(−γmin)

1 + exp(−γmin)

To ensure the approximation in Eq. 4.6 holds throughout the entire the second phase, we will maintain
a certain inductive hypothesis, which ensures the the scale of the signal-direction components of
the network continue to dominate the scale of the non-signal-direction components of the network.
Formally, we consider the following condition.
Definition 4.2 (Signal-Heavy Inductive Hypothesis). For parameters ζ = o(1) and H > 1 with
ζ ≤ exp(−10H), we say a network is (ζ,H)-signal-heavy if there exists some set of heavy neurons
S on which exp(6H)∥w⊥∥+ ∥wopp∥ ≤ ζ∥wsig∥, and

Eρ1(w /∈ S)∥w∥2 ≤ ζγ̃min.

8

Published as a conference paper at ICLR 2024

Here we have defined γ̃µ := E[1(w ∈ S,wT
sigµ > 0)awσ(w

Tµ)] and γ̃min := minµ∈{±µ1,±µ2} γ̃µ.
Further,

Eρ[∥w∥2] ≤ Eρ[|aw|2] + ζH ≤ 2H,

and for all neurons, we have |aw| ≤ ∥w∥.

We show via a straightforward argument in Lemma E.4 that if the conclusion of Lemma 4.1 (from
Phase 1) holds for some ζ, then the network is (Θ(ζ1/3), H)-signal-heavy, for H = Θ(log log(d)).

Assuming that the network is (ζ,H)-signal-heavy, using a similar approach to Eq. 4.4, we can show
(see Lemma E.5 for the precise statement) that for any neuron (w, aw),

1

|aw|
∥∇wLρ −∇cl

wLρ∥2 ⪅
√
Ex(fρ(x)− fρ(z))2 ⪅ Eρ[∥aww⊥∥] ≤ ζγmax,

and similarly ∥∇aw
Lρ −∇cl

aw
Lρ∥2 ⪅ ∥w∥ζγmax.

By working with the clean gradients, it is possible to approximately track (or bound) the evolution
of wsig, w⊥, and wopp on neurons in S, the set of neurons for which ∥wsig∥ ≫ ∥w⊥ + wopp∥. In
Lemmas E.6, E.7, and E.8 we show the following for any w ∈ S (let µ be the direction of wsig):

1. The signal component wsig grows quickly. We have −wT
sig∇cl

wLρ ≈ |awℓ′ρ(µ)|τ , where

τ :=
√
2
4 . Also aw grows at a similar rate. This growth is due to the fact that points with

z = −µ will almost never activate the ReLU, while points with z = µ almost always will.
2. A linear combination of ∥w⊥∥2 and ∥wopp∥2 decreases. The argument here is more subtle,

but the key idea is to argue that if |wT
⊥ξ| ≥ |wT

oppz| frequently, then ∥w⊥∥2 will decrease.
Meanwhile, if |wT

⊥ξ| ≤ |wT
oppz| frequently, then wopp will decrease (and there is a sizeable

event on which they both decrease).

Since most of the mass of the network is in S, this shows that the signal will grow at the exponential
rate τ |ℓ′ρ(µ)| — or for the “weakest” cluster, that is, in the direction µ that maximizes γ̃µ, we will

have γ̃
(t+1)
min ⪆ (1 + 2ητgmax) γ̃

(t)
min.

On neurons outside of S, we show in Lemma E.11 that they grow at most as fast as the rate of the
weakest clusters, meaning we can essentially ignore these neurons.
Remark 4.3. If we did not train the second layer weights (and for instance they all had norm 1),
then our tools would not suffice to maintain the signal-heavy hypothesis in Definition 4.2. Indeed, the
neurons in S would grow at a linear rate of τ |ℓ′ρ(µ)|, and at (up to) an equal linear rate outside of S.
Thus the neurons outside of S might eventually attain a non-negligible mass. However, because the
layers are trained simultaneously, this leads to positive feedback between the growth of ∥wsig∥ and
|aw|, leading to exponential growth, maintaining the mass ratios between the neurons in and out of S.

Combining the ideas above, we prove the following lemma, which shows that after one SGD step, the
network stays signal-heavy (with a slightly worse parameter), the behavior of the weakest margin
improves, and the network (measured by the size of the largest margin γmax) doesn’t become too big.
Lemma 4.4 (Phase 2 Inductive Step: Informal; See Lemma E.3 for formal version). If a network
ρt is (ζ,H)-signal heavy with heavy set S, then after one minibatch gradient step, with probability
1− d−ω(1),

1. ρt+1 is (ζ(1 + 10ηζH), H)-signal heavy.

2. γ̃
(t+1)
min ≥ (1 + 2ητ(1− o(1))gmax) γ̃

(t)
min

3. γ̃
(t+1)
max ≤ (1 + 2ητ(1 + o(1))gmin) γ̃

(t)
max, where γ̃

(t)
max := maxµ∈{±µ1,±µ2} γ̃

(t)
µ .

Theorem 3.1 is proved by iterating this lemma Θ(log log(d)/η) times, yielding γmin ≈ γ̃min = ω(1).

5 CONCLUSION

In this work, we showed that in Õ(d) samples, it is possible to learn the XOR function on Boolean
data on a 2-layer neural network. Our results shows that by a careful analysis that compares that

9

Published as a conference paper at ICLR 2024

dynamics to the dyamincs under the surrogate L0 loss, we can show that SGD find the signal features,
and escape the region of the saddle where it was initialized. Then, after learning the feature direction,
we show that SGD will enlarge and balance the signal components to learn well-classify points from
all 4 clusters. We discuss some of the limits and possible extensions of our techniques in Section A.

REFERENCES

Emmanuel Abbe and Colin Sandon. On the universality of deep learning. Advances in Neural
Information Processing Systems, 33:20061–20072, 2020.

Emmanuel Abbe, Enric Boix-Adsera, Matthew S Brennan, Guy Bresler, and Dheeraj Nagaraj. The
staircase property: How hierarchical structure can guide deep learning. Advances in Neural
Information Processing Systems, 34:26989–27002, 2021a.

Emmanuel Abbe, Pritish Kamath, Eran Malach, Colin Sandon, and Nathan Srebro. On the power of
differentiable learning versus pac and sq learning. Advances in Neural Information Processing
Systems, 34:24340–24351, 2021b.

Emmanuel Abbe, Enric Boix Adsera, and Theodor Misiakiewicz. The merged-staircase property: a
necessary and nearly sufficient condition for sgd learning of sparse functions on two-layer neural
networks. In Conference on Learning Theory, pp. 4782–4887. PMLR, 2022.

Emmanuel Abbe, Enric Boix-Adsera, and Theodor Misiakiewicz. Sgd learning on neural networks:
leap complexity and saddle-to-saddle dynamics. arXiv preprint arXiv:2302.11055, 2023.

Zeyuan Allen-Zhu and Yuanzhi Li. Backward feature correction: How deep learning performs deep
learning. arXiv preprint arXiv:2001.04413, 2020.

Gerard Ben Arous, Reza Gheissari, and Aukosh Jagannath. Online stochastic gradient descent on
non-convex losses from high-dimensional inference. The Journal of Machine Learning Research,
22(1):4788–4838, 2021.

Jimmy Ba, Murat A Erdogdu, Taiji Suzuki, Zhichao Wang, Denny Wu, and Greg Yang. High-
dimensional asymptotics of feature learning: How one gradient step improves the representation.
Advances in Neural Information Processing Systems, 35:37932–37946, 2022.

Yu Bai and Jason D Lee. Beyond linearization: On quadratic and higher-order approximation of wide
neural networks. arXiv preprint arXiv:1910.01619, 2019.

Boaz Barak, Benjamin Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril Zhang. Hidden
progress in deep learning: Sgd learns parities near the computational limit. Advances in Neural
Information Processing Systems, 35:21750–21764, 2022.

Gerard Ben Arous, Reza Gheissari, and Aukosh Jagannath. High-dimensional limit theorems for sgd:
Effective dynamics and critical scaling. Advances in Neural Information Processing Systems, 35:
25349–25362, 2022.

Alberto Bietti, Joan Bruna, Clayton Sanford, and Min Jae Song. Learning single-index models with
shallow neural networks. arXiv preprint arXiv:2210.15651, 2022.

Minshuo Chen, Yu Bai, Jason D Lee, Tuo Zhao, Huan Wang, Caiming Xiong, and Richard Socher.
Towards understanding hierarchical learning: Benefits of neural representations. Advances in
Neural Information Processing Systems, 33:22134–22145, 2020.

Sitan Chen and Raghu Meka. Learning polynomials in few relevant dimensions. In Conference on
Learning Theory, pp. 1161–1227. PMLR, 2020.

Lenaic Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural networks
trained with the logistic loss. In Conference on Learning Theory, pp. 1305–1338. PMLR, 2020.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
Advances in neural information processing systems, 32, 2019.

10

Published as a conference paper at ICLR 2024

Alexandru Damian, Jason Lee, and Mahdi Soltanolkotabi. Neural networks can learn representations
with gradient descent. In Conference on Learning Theory, pp. 5413–5452. PMLR, 2022.

Yatin Dandi, Florent Krzakala, Bruno Loureiro, Luca Pesce, and Ludovic Stephan. How two-layer
neural networks learn, one (giant) step at a time. In NeurIPS 2023 Workshop on Mathematics of
Modern Machine Learning, 2023.

Amit Daniely and Eran Malach. Learning parities with neural networks. Advances in Neural
Information Processing Systems, 33:20356–20365, 2020.

Mathieu Even, Scott Pesme, Suriya Gunasekar, and Nicolas Flammarion. (s) gd over diagonal
linear networks: Implicit regularisation, large stepsizes and edge of stability. arXiv preprint
arXiv:2302.08982, 2023.

Spencer Frei, Niladri S Chatterji, and Peter L Bartlett. Random feature amplification: Feature learning
and generalization in neural networks. arXiv preprint arXiv:2202.07626, 2022.

Rong Ge, Jason D Lee, and Tengyu Ma. Learning one-hidden-layer neural networks with landscape
design. arXiv preprint arXiv:1711.00501, 2017.

Behrooz Ghorbani, Song Mei, Theodor Misiaiewicz, and Andrea Montanari. Linearized two-layer
neural networks in high dimension. The Annals, 49(2):1029–1054, 2021.

Daniel Hsu. Dimension lower bounds for linear approaches to function approximation. Daneil Hsu’s
homepage, 2021.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: convergence and
generalization in neural networks. In Proceedings of the 53rd Annual ACM SIGACT Symposium
on Theory of Computing, pp. 6–6, 2021a.

Arthur Jacot, François Ged, Berfin Şimşek, Clément Hongler, and Franck Gabriel. Saddle-to-saddle
dynamics in deep linear networks: Small initialization training, symmetry, and sparsity. arXiv
preprint arXiv:2106.15933, 2021b.

Yuanzhi Li, Tengyu Ma, and Hongyang R Zhang. Learning over-parametrized two-layer relu neural
networks beyond ntk. arXiv preprint arXiv:2007.04596, 2020.

Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural networks.
arXiv preprint arXiv:1906.05890, 2019.

Kaifeng Lyu, Zhiyuan Li, Runzhe Wang, and Sanjeev Arora. Gradient descent on two-layer nets:
Margin maximization and simplicity bias. Advances in Neural Information Processing Systems,
34:12978–12991, 2021.

Hartmut Maennel, Olivier Bousquet, and Sylvain Gelly. Gradient descent quantizes relu network
features. arXiv preprint arXiv:1803.08367, 2018.

Arvind Mahankali, Jeff Z Haochen, Kefan Dong, Margalit Glasgow, and Tengyu Ma. Beyond ntk
with vanilla gradient descent: A mean-field analysis of neural networks with polynomial width,
samples, and time. arXiv preprint arXiv:2306.16361, 2023.

Song Mei, Yu Bai, and Andrea Montanari. The landscape of empirical risk for nonconvex losses.
The Annals of Statistics, 46(6A):2747–2774, 2018a.

Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of two-
layer neural networks. Proceedings of the National Academy of Sciences, 115(33):E7665–E7671,
2018b.

Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Mean-field theory of two-layers neural
networks: dimension-free bounds and kernel limit. In Conference on Learning Theory, pp.
2388–2464. PMLR, 2019.

Alireza Mousavi-Hosseini, Sejun Park, Manuela Girotti, Ioannis Mitliagkas, and Murat A Erdogdu.
Neural networks efficiently learn low-dimensional representations with sgd. arXiv preprint
arXiv:2209.14863, 2022.

11

Published as a conference paper at ICLR 2024

Eshaan Nichani, Yu Bai, and Jason D Lee. Identifying good directions to escape the ntk regime and
efficiently learn low-degree plus sparse polynomials. arXiv preprint arXiv:2206.03688, 2022.

Scott Pesme and Nicolas Flammarion. Saddle-to-saddle dynamics in diagonal linear networks. arXiv
preprint arXiv:2304.00488, 2023.

Maria Refinetti, Sebastian Goldt, Florent Krzakala, and Lenka Zdeborová. Classifying high-
dimensional gaussian mixtures: Where kernel methods fail and neural networks succeed. In
International Conference on Machine Learning, pp. 8936–8947. PMLR, 2021.

Taiji Suzuki and Shunta Akiyama. Benefit of deep learning with non-convex noisy gradient descent:
Provable excess risk bound and superiority to kernel methods. In International Conference on
Learning Representations, 2020.

Yan Shuo Tan and Roman Vershynin. Online stochastic gradient descent with arbitrary initialization
solves non-smooth, non-convex phase retrieval. arXiv preprint arXiv:1910.12837, 2019.

Matus Telgarsky. Feature selection with gradient descent on two-layer networks in low-rotation
regimes. arXiv preprint arXiv:2208.02789, 2022.

Colin Wei, Jason D Lee, Qiang Liu, and Tengyu Ma. Regularization matters: Generalization and
optimization of neural nets vs their induced kernel. Advances in Neural Information Processing
Systems, 32, 2019.

Blake Woodworth, Suriya Gunasekar, Jason D Lee, Edward Moroshko, Pedro Savarese, Itay Golan,
Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models. In
Conference on Learning Theory, pp. 3635–3673. PMLR, 2020.

Jingfeng Wu, Difan Zou, Zixiang Chen, Vladimir Braverman, Quanquan Gu, and Sham M Kakade.
Learning high-dimensional single-neuron relu networks with finite samples. arXiv preprint
arXiv:2303.02255, 2023.

12

	Introduction
	Related Work
	Organization of Paper
	Notation

	Model and Setting
	Data.
	Training.

	Main Result
	Proof Overview
	Phase 1
	Phase 2

	Conclusion

