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ABSTRACT

Recent advances in vision-language pre-training have pushed the state-of-the-art on
various vision-language tasks, making machines more capable of multi-modal writ-
ing (image-to-text generation) and painting (text-to-image generation). However,
few studies investigate if these two essential capabilities can be learned together and
boost each other, making a versatile and powerful multi-modal foundation model.
In this work, we disclose the potential of symmetric generative vision-language
pre-training in learning to write and paint concurrently, and propose a new unified
modal model, named DAVINCI, trained with prefix language modeling and prefix
image modeling, a simple generative self-supervised objective on image-text pairs.
Thanks to the proposed prefix multi-modal modeling framework, DAVINCI is sim-
ple to train, scalable to huge data, adaptable to both writing and painting tasks, and
also strong on other vision, text, and multi-modal understanding tasks. DAVINCI
achieves competitive performance on a wide range of 27 generation/understanding
tasks and demonstrates the superiority of combining vision/language generative
pre-training. Furthermore, we carefully benchmark the performance of different
vision-language pre-training objectives on different scales of pre-training datasets
on a heterogeneous and broad distribution coverage. Our results demonstrate the
potential of exploiting self-supervision in both language and vision inputs, and
establish new, stronger baselines for future comparisons at different data scales.1

1 INTRODUCTION

Self-supervised language model pre-training (Peters et al., 2018; Radford et al., 2018; Devlin et al.,
2019; Liu et al., 2019; Lewis et al., 2020; Raffel et al., 2020; Brown et al., 2020; Fu et al., 2022; Zhou
et al., 2021b; Diao et al., 2020; 2021; Zhou et al., 2021a; Xu et al., 2020; Zhou et al., 2020; 2022a;
Pan et al., 2022; Diao et al., 2023) has reshaped the landscape of modern natural language processing
(NLP) research, pushing the state-of-the-art of a wide range of NLP tasks. Recently, this success
has been transferred to the multi-modal context and resulted in a number of vision-language pre-
trained models (VLMs) (Lu et al., 2019; Tan & Bansal, 2019a), achieving state-of-the-art results on
various vision-language tasks. Most existing VLMs are BERT-like Transformer (Vaswani et al., 2017)
encoders pre-trained with a combination of different vision-language pre-training (VLP) objectives:
masked multi-modal modeling (Lu et al., 2019; Tan & Bansal, 2019b; Chen et al., 2020; Li et al.,
2020), multi-modal alignment prediction (Lu et al., 2019; Tan & Bansal, 2019b; Chen et al., 2020; Li
et al., 2020), region of interest feature regression (Tan & Bansal, 2019b), image-text matching (Li
et al., 2021; Zeng et al., 2021), to name a few. However, the roadmap towards large language models
reveals a transition pattern from encoder-only models like BERT (Devlin et al., 2019) / RoBERTa (Liu
et al., 2019) to sequence-to-sequence models like T5 (Raffel et al., 2020) / BART (Lewis et al., 2020)
and autoregressive models like GPT-3 (Brown et al., 2020) / PaLM (Chowdhery et al., 2022) to tackle
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more tasks in a unified way, and from complicated objectives like masked language modeling / next
sentence prediction / replace token detection to a simple language modeling objective to improve the
scalability of pre-training. This suggests that the generative pre-training paradigm with simple targets
shows great potential for pre-training more scalable and general VLMs.
To this end, several recent studies (Cho et al., 2021; Zhang et al., 2021a; Wang et al., 2021b; 2022)
investigated sequence-to-sequence (seq2seq) vision-language pre-training and achieved state-of-
the-art results on a range of vision-language understanding and generation tasks. For example,
VL-T5 (Cho et al., 2021), OFA (Wang et al., 2022) and PaLI (Chen et al., 2022) formulate various
vision-and-language problems into seq2seq tasks and pre-train a seq2seq VLM by multi-tasking
on these tasks. In addition, ERNIE-ViLG (Zhang et al., 2021a) and SimVLM (Wang et al., 2021b)
pre-train seq2seq VLMs with a simple language modeling or prefix language modeling objective on
a large number of image-caption pairs. While achieving promising results, these objectives are not
versatile enough, resulting in VLMs that are only capable of a subset of tasks in image-text modalities.
On the other hand, the recent success of generative language pre-training (Brown et al., 2020) and
generative vision pre-training (He et al., 2022; Bao et al., 2021) motivates us to explore generative
vision-language pre-training to learn more versatile and scalable vision-language models.
In this work, we introduce prefix multi-modal modeling, a unified generative pre-training framework
that extends prefix language modeling to the multi-modal context and learns a multi-modal foundation
model by learning to write and paint simultaneously. As illustrated in Figure 1, given an image-
caption pair, we split the image and caption into two parts denoted as prefix and suffix. To make prefix
image modeling compatible with the seq2seq formulation of conventional prefix language modeling,
we follow DALLE (Ramesh et al., 2021) and convert images into discrete sequences of image
tokens (van den Oord et al., 2017). We then train the model to generate the suffix in one modality
based on the prefix in the same modality and the complete input in the other modality. In this way,
prefix multi-modal modeling can fully exploit self-supervision from large-scale image-caption pairs
by learning to write and paint simultaneously. We pre-train DAVINCI 2, a vision-language foundation
model, with the proposed prefix multi-modal modeling framework on large-scale image-text pairs.
DAVINCI is the first self-supervised vision-language foundation model that is versatile for all kinds of
tasks in vision-and-language modalities, including image-to-text generation, text-to-image generation,
vision-language understanding, and single-modal language / vision tasks. DAVINCI consistently
outperforms FLAVA (Singh et al., 2021), an existing vision-language foundation model, on both
language, vision, and multi-modal tasks, and performs competitively with state-of-the-art models
across a wide range of tasks and modalities. Moreover, DAVINCI also shows strong few-shot and
zero-shot image/text generation capability.
In addition, most existing VLMs are pre-trained with mixed pre-training objectives and different data
sources varying in size, making it difficult to disentangle the impact of pre-training objectives and data
sources on the downstream tasks. To this end, we conduct a systematic analysis of the performance
of generative vision-language pre-training by carefully ablating different pre-training objectives, such
as prefix language / image modeling, and the amount of pre-training data with different qualities,
revealing the impact of different objectives and data sources to facilitating future research.
To summarize, our contribution is three-fold: (1) We introduce prefix multi-modal modeling, a simple
unified generative vision-language pre-training framework that is scalable for large-scale pre-training
and versatile for image-to-text generation, text-to-image generation and various multi-modal / single-
modal understanding tasks. (2) We pre-train DAVINCI, a vision-language foundation model, with the
proposed approach, demonstrating competitive performance on a wide range of 27 downstream tasks
and the superiority of combining vision/language generative pre-training. (3) We conduct an analysis
about the impact of different pre-training data sources and pre-training objectives on the performance
of seq2seq VLMs.

2 RELATED WORK

Inspired by the success of language model pre-training, several studies investigated vision-language
pre-training on large-scale image-caption pairs. ViLBERT (Lu et al., 2019) and LXMERT (Tan
& Bansal, 2019b) first propose to extract visual object features with an external object detection
model like Fast-RCNN (Girshick, 2015), feed the image features together with texts into Transformer

2Named after the Italian polymath Leonardo da Vinci, who displayed infinite grace in everything. We noticed
that this name is used in GPT-3 versioning. However, we think there is no conflict because it is only a suffix for
a specific checkpoint of the GPT-3 family.
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Figure 1: Illustration of the overall architecture and pre-training procedures of DAVINCI, a Transformer-based
sequence-to-sequence model. Given an image-text pair, DAVINCI first splits either the word sequence or image
token sequence into prefix and suffix. It then concatenates the prefix with the complete sequence in the other
modality as input. DAVINCI is trained to recover the suffix with maximum likelihood estimation.
models, and train the model to align vision and language representations with masked multi-modal
modeling and multi-modal alignment prediction objectives. Many following works (Li et al., 2020;
Zhang et al., 2021b; Chen et al., 2020; Li et al., 2022a; 2021; Zeng et al., 2021; Wang et al., 2021a)
propose several new objectives to improve object detection based VLP and explored using vision
Transformer (Dosovitskiy et al., 2021; Touvron et al., 2021) as visual feature extractor.
More recently, FLAVA (Singh et al., 2021), a new vision-language foundation model, is pre-trained
with a masked multi-modal modeling objective. Performing competitively on language, vision, and
vision-language understanding tasks, FLAVA is designed for understanding tasks without text and
image generation abilities.
While achieving promising results on multi-modal understanding tasks, most VLMs are based on
encoder-only architectures with bidirectional attention, making them non-trivial to adapt to multi-
modal generation tasks such as image captioning and text-to-image generation. Inspired by the
success of seq2seq pre-trained language models such as T5 (Raffel et al., 2020) and BART (Lewis
et al., 2020), VL-T5 (Cho et al., 2021) and OFA (Wang et al., 2022) propose to formulate both
vision-language pre-training objectives and various downstream vision-language tasks as seq2seq
tasks and pre-train a seq2seq VLM by multi-tasking on these tasks. However, the scalability and
the zero-shot transfer capability of this approach are limited by the availability of large-scale and
diverse vision-language tasks. To this end, SimVLM (Wang et al., 2021b), the most related work to
our approach, instead pre-trains a seq2seq VLM with a simple prefix language modeling objective
on text generation. It easily scales to very large and potentially noisy pre-training data and achieves
competitive results. However, SimVLM only exploits language self-supervision, and thus it does not
perform well on image understanding tasks and is unable to tackle image generation tasks. Another
recent study is CM3 (Aghajanyan et al., 2022), which proposes a causal masked multi-modal model
learned from large web data and differs from our work in pre-training objectives and target tasks.
As for the text-to-image generation task, Ramesh et al. (2021); Ding et al. (2021); Yu et al. (2022)
achieved promising performance by learning an auto-regressive target with Transformer and VQ-VAE
/ VQ-GAN tokenizer. Most recently, Ramesh et al. (2022); Saharia et al. (2022) advanced the image
generation capability by using diffusion models and high-quality text embeddings (e.g., CLIP, T5).
Therefore, it is natural to explore boosting image generation via stronger multi-modal understanding.
Previous studies are good at either image-to-text or text-to-image generation, but few studies investi-
gate whether these two important capabilities can be learned together and boost each other. In this
paper, we explore making a versatile and powerful multi-modal foundation model that is good at
text-to-image generation, image-to-text generation, and multi-modal understanding tasks.

3 DAVINCI

Given the superior performance of auto-regressive language models (LM) (Brown et al., 2020;
Chowdhery et al., 2022; Rae et al., 2021) on zero-shot and few-shot transfer abilities, we decided to
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adopt a decoder optimized by language modeling loss to retain the generalization capabilities, and an
encoder to represent the prefix input. Unlike using a causal mask in the decoder, the encoder employs
fully-visible attention for the prefix input. This architecture resembles prefix language modeling,
which shows effectiveness in a wide range of language tasks (Dong et al., 2019; Raffel et al., 2020)
and enables zero-shot generalization abilities. Contrary to the previous multi-stage approaches (Wang
et al., 2021a; Singh et al., 2021), our model is trained from scratch in an end-to-end manner thanks
to the model’s simplicity. In this section, we introduce the proposed prefix multi-modal modeling
framework and the DAVINCI model. The overall architecture of DAVINCI is depicted in Figure 1.
We first explain our model architecture in detail in §3.1 and then introduce pre-training objectives
and procedures in §3.2.

3.1 MODEL ARCHITECTURE

Textual Feature Embedding Given an input sentence S, we first use WordPiece (Wu et al., 2016)
to tokenize it to a sequence of tokens W = {w1, w2, ..., wn}. To obtain text features T , for
each token wi, a token embedding ei and position embedding pi are computed by two separate
embedding matrices. Finally, the textual feature embedding T = {t1, t2, ..., ti, ..., tn} is calculated
by ti = LayerNorm(ei+pi), where i indicates the i-th position, and LayerNorm (Ba et al., 2016)
is a layer normalization function.
Visual Feature Embedding Given an input image I , we first use a CNN backbone to extract and
learn the image features. Following (Dai et al., 2021; Wang et al., 2021b), we use the first three
blocks of ResNet (He et al., 2016) to obtain the feature maps. The feature maps are then flattened
to F = {f1, f2, ..., fm} along the spatial dimension, where m denotes the number of features. To
keep the position information of visual features, we inject absolute learned positional embeddings p
and the final visual embeddings V = {v1, v2, ..., vi, ..., vm} are calculated by vi = fi + pi, where i
indicates the i-th position.
Cross-Modal Transformer To fuse the textual and visual feature embeddings into a common space,
we adopt a simple canonical Transformer architecture as the fusion module. The input is the combi-
nation of visual embedding V and textual embedding T , namely X = {x1, x2, ..., xl} = [V, T ] =
{v1, v2, ..., vm, t1, t2, ..., tn}. The input embedding vectors X are then fed into a cross-modal Trans-
former encoder to obtain hidden state vectors H = {h1, h2, ..., hl}. Finally, a Transformer decoder
is applied to generate visual or textual tokens with H and decoder input as illustrated in Figure 1.
Image Tokenizer and Decoder Because Transformer is modeling on discrete tokens, to unify
the text tokens and image tokens, we discretize an image into tokens by an image tokenizer and
reconstruct the raw image by an image decoder. The image tokenizer and decoder are implemented
with a discrete variational autoencoder (dVAE) (Ramesh et al., 2021). After training of the image
tokenizer, it could tokenize an image I into a sequence of discrete visual tokens Z = {z1, z2, ..., zm}
according to a learned vocabulary. Visual tokens Z serve as the ground-truth labels for the prefix
image modeling objective. In our work, we directly use an off-the-shelf image tokenizer and decoder
from VQGAN (Esser et al., 2021), with a vocabulary size of 1024 and a compression rate of 16,
which means a 256 × 256 image will be tokenized into 16 × 16 grid of tokens and then flattened to a
sequence of 256 tokens.

3.2 PRE-TRAINING OBJECTIVES

Our major motivation is to conduct language modeling with image information and image modeling
with text information simultaneously, which only requires image and text pairs that are easy to collect,
making our approach easy to scale. The interaction would force the vision-language model to have
a deeper understanding of both text and image. Learning from this interaction connects the visual
representation with textual representation, enabling zero-shot transfer.
Prefix Language Modeling (PLM) The core idea of prefix language modeling is “given a full
image Ximage and a prefix caption X̃text, recover the masked textual tokens (i.e., suffix caption
Ytext)”. Given an input caption, we first randomly mask some continuous words at the end (we call it
suffix caption hereafter) and recover the masked textual tokens with full image by optimizing the
cross-entropy loss,

LPLM = −
∑

(I,S)∈D

log p(Ytext |Ximage, X̃text), (1)

where I and S are images and captions from the pre-training corpus D.
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Because of the lack of textual information, recovering the suffix caption requires the model to
understand both the image and prefix caption. The full image is rich in semantic information that
would help language modeling. The prefix length is randomly decided during training, and especially
when prefix caption is none, this task will degenerate into “image captioning” task, which forces the
model to generate a caption with the input image.

L′
PLM = −

∑
(I,S)∈D

log p(Ytext |Ximage) (2)

Prefix Image Modeling (PIM) The core idea of prefix image modeling is “given a full caption and
a corrupted image (we call it prefix image hereafter), recover the masked visual tokens”. Given an
input image, we first randomly mask some continuous image patches at the end (we call it suffix
image hereafter). The prefix image and full caption will be fed into the model and try to recover the
original visual tokens obtained from the image tokenizer by optimizing the cross-entropy loss.

LPIM = −
∑

(I,S)∈D

log p(Yimage |Xtext, X̃image) (3)

Similar to PLM, when prefix image is none, this task will degenerate into “text-to-image generation”
task, forcing the model to generate an image with the input caption:

L′
PIM = −

∑
(I,S)∈D

log p(Yimage |Xtext) (4)

Unified Learning Objective Our model is learned by optimizing the combination of PLM and PIM.

L = LPLM + LPIM (5)

4 EXPERIMENTS

4.1 PRE-TRAINING DATASETS

Since existing studies pre-trained their models on different corpora, making the fair comparison
difficult. Considering results only on state-of-the-art performance would underestimate the potential
of this line of research. Therefore, we propose several practical settings including small-scale and
large-scale, and then conduct detailed comparisons on them in Section 5.1. More details about the
datasets are shown in Appendix A.3.

Data Type Dataset Image Domain #Total

In-Domain Data (ID) COCO, Visual Genome COCO 1.3M
Small-scale Web Data (SWD) SBU, CC-3M, CC-12M Web 14.9M
Object-Region Data (ORD) VG regions, VG objects, COCO objects, Refcoco, Open Image, Obj365 COCO, Flickr 17.0M
Vision Data (VD) ImageNet-21K ImageNet 13.2M
Large-scale Web Data (LWD) LAION-400M, DAVINCI-200M Web 601.3M
Text Data (TD) C4 Web 800GB

Table 1: Statistics of the pre-training datasets. #Total denotes the total number of image-text pairs.

4.2 DOWNSTREAM TASKS

We test our models’ ability and versatility on five dimensions: language understanding on 8 GLUE
tasks (Wang et al., 2019), vision understanding on ImageNet fine-tuning and 12 popular vision
datasets for linear evaluation, multi-modal understanding on VQAv2 (Goyal et al., 2017b), SNLI-
VE (Xie et al., 2019) and NLVR2 (Suhr et al., 2019), text-to-image generation on COCO (Chen et al.,
2015), and image-to-text generation on COCO, NoCaps (Agrawal et al., 2019), and VLUE (Zhou
et al., 2022b). Details of downstream tasks and fine-tuning process are described in Appendix A.2.

4.3 IMPLEMENTATION DETAILS

Our model is a base-size Transformer implemented with a 6-layer encoder and a 6-layer decoder, 768
dimensions for hidden states, 512 for maximum input length, and 3072 for intermediate size. We
train our model from scratch without initializing the Transformer encoder and decoder. However, the
image encoder is initialized from ResNet-101 (He et al., 2016) with ImageNet weights since we find
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BERT RoBERTa ViT MLM MIM FLAVA CLIP SimVLM DAVINCI SimVLM DAVINCI

1 2 3 4 5 6 7 8

Task Eval. 16GB 160GB 13.2M 70M 70M 70M 70M 46.4M 46.4M 647.7M 647.7M

MNLI FT 84.20 87.60 – 73.23 – 80.33 32.85 82.13 82.25 83.27 83.13
CoLA FT 54.60 63.60 – 39.55 – 50.65 11.02 52.47 52.10 54.22 54.75
MRPC FT 84.75 90.20 – 73.24 – 84.16 68.74 82.70 83.14 84.26 84.54
QQP FT 89.00 91.90 – 86.68 – 88.74 59.17 88.39 88.15 89.05 88.92
SST-2 FT 92.50 94.80 – 87.96 – 90.94 83.49 90.65 90.48 91.12 91.37
QNLI FT 91.00 92.80 – 82.32 – 87.31 49.46 87.55 87.21 88.28 87.90
RTE FT 62.50 78.70 – 50.54 – 57.76 53.07 59.80 60.72 63.34 64.22
STS-B FT 88.20 91.20 – 78.89 – 85.67 13.70 86.62 86.27 87.24 87.05

NLP Avg. 80.84 86.35 – 71.55 – 78.19 46.44 78.79 78.79 80.10 80.23

ImageNet LE – – 80.90 – 41.79 75.54 72.95 74.31 75.87 76.04 77.65
Food101 LE – – 86.70 – 53.30 88.51 85.49 83.41 89.33 85.52 90.12
CIFAR10 LE – – 96.90 – 76.20 92.87 91.25 91.56 93.01 92.41 93.96
CIFAR100 LE – – 86.40 – 55.57 77.68 74.40 72.51 78.98 75.23 80.11
Cars LE – – 54.70 – 14.71 70.87 62.84 61.44 72.69 68.83 74.57
Aircraft LE – – 46.00 – 13.83 47.31 40.02 41.28 47.42 47.75 49.55
DTD LE – – 74.30 – 55.53 77.29 73.40 72.55 77.12 76.59 78.33
Pets LE – – 92.70 – 34.48 84.82 79.61 78.77 85.52 86.13 88.21
Flowers102 LE – – 99.20 – 67.23 96.37 94.94 93.24 96.12 95.41 96.88
MNIST LE – – 97.40 – 96.40 98.42 97.38 96.66 98.67 98.45 99.01
STL10 LE – – 99.50 – 80.12 98.89 97.29 97.51 99.03 98.02 99.21
Country211 LE – – 17.50 – 8.87 28.92 25.12 26.45 28.99 27.81 29.94

Vision Avg. – – 77.68 – 49.84 78.12 74.56 74.14 78.56 77.34 79.80

VQAv2 FT – – – – – 72.49 59.81 72.12 73.89 75.03 76.44
SNLI-VE FT – – – – – 78.89 73.53 78.74 79.11 79.63 80.01
NLVR2 FT – – – – – – – 77.45 77.91 79.72 80.25
I2T@B4 FT – – – – – – – 38.00 38.50 38.10 39.20
I2T@C FT – – – – – – – 126.96 128.66 128.91 130.44
T2I@IS ↑ FT – – – – – – – – 17.55 – 22.41
T2I@FID ↓ FT – – – – – – – – 23.58 – 19.82
VQAv2 FS – – – – – – – 54.69 54.85 51.88 54.90
SNLI-VE FS – – – – – – – 67.45 67.57 67.96 68.04
NLVR2 FS – – – – – – – 51.46 51.19 51.49 51.52
I2T@B4 FS – – – – – – – 35.90 36.40 32.70 37.00
I2T@C FS – – – – – – – 117.75 120.43 112.20 122.56
I2T@B4 ZS – – – – – – – 11.40 10.80 13.80 18.70
I2T@C ZS – – – – – – – 45.30 45.55 56.69 68.44
VLUE@B4 ZS – – – – – – – 9.20 9.40 10.40 10.60
VLUE@C ZS – – – – – – – 33.92 34.80 39.75 40.83
NoCaps@C ZS – – – – – – – 48.05 45.51 48.64 58.58
T2I@IS ↑ ZS – – – – – – – – 14.91 – 17.44
T2I@FID ↓ ZS – – – – – – – – 29.83 – 24.21

Multi-modal Avg. – – – – – – – 57.89 58.30 59.13 62.50

Table 2: Experimental results on vision, language and multi-modal downstream tasks. @B4, @C denote
BLEU@4, CIDEr, respectively. I2T and T2I denote image-to-text and text-to-image tasks. Multi-modal Avg. is
the average score of all multi-modal tasks. FT: fine-tuning, LE: linear evaluation, FS: few-shot, ZS: zero-shot.
Under few-shot setting, we fine-tune a pre-trained model for 3 epochs on 1% training data. Results for BERT are
obtained from Iki & Aizawa (2021). Results for RoBERTa are from its corresponding paper (Liu et al., 2019)
and they use the mid-training (Phang et al., 2018) on MNLI for RTE, MRPC and STS-B while other models
(e.g., BERT, SimVLM, DAVINCI) do not apply this trick. Results for ViT are from ViT-Base/16 model (Radford
et al., 2021). We list the reported performance of text-only and image-only models in grey for reference.

a warm start provides a reliable visual representation and helps the convergence. All pre-training
experiments are conducted on 32GB NVIDIA V100 GPUs. The model trained on the largest data
takes around 10 days on 1024 V100 GPUs. We adopt dynamic masking in our experiments, where
the masking ratio is randomly sampled from a uniform distribution U(0, 1). More details of the
fine-tuning, network architectures, and hyper-parameters setups are given in Appendix A.1.

4.4 EXPERIMENTAL RESULTS

We extensively compare the performance of DAVINCI with state-of-the-art unified foundation models
and vision-language models across vision, language, and multi-modal tasks, accessing five different
abilities: (1) text understanding, (2) image understanding, (3) text-to-image generation, (4) image-to-
text generation, (5) multi-modal understanding.
Overall Performance We report the overall performance on 8 language tasks from GLUE, 12
vision tasks, 3 multi-modal tasks, 3 image-to-text tasks and 1 text-to-image task. We compare our
model with FLAVA and SimVLM 3, two of the most recent and best performing vision-language

3Since SimVLM is not open-sourced and uses 1.8B in-house data without telling the exact size of its base
model, we replicate it on our data with the same size as DAVINCI. Experiments on SimVLMsmall ensure our
successful reproduction (see Appendix A.4).
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Model
Text Vision Image2Text Text2Image Multi-modal

#Params. MNLI ImageNet COCO COCO VQA NLVR2
Acc LE / FT B@4 / C IS↑ / FID↓ test-dev / test-std dev / test-P

Encoder-only Multi-modal Models

VinVL (Zhang et al., 2021b) 157M – – 38.2 / 129.3 – 75.95 / 76.12 82.05 / 83.08
ViLT (Kim et al., 2021) 88M – – – – 70.85 / – 74.91 / 75.57
ALBEF (Li et al., 2021) 210M – – – – 75.84 / 76.04 82.55 / 83.14
X-VLM (Zeng et al., 2021) 240M – – 39.6 / 132.6 – 78.22 / 78.37 84.41 / 84.76
VLMO (Wang et al., 2021a) – – – – 76.64 / 76.89 82.77 / 83.34

Encoder-Decoder Multi-modal Models

UNICORN (Yang et al., 2021) – – 35.8 / 119.1 – 69.20 / 69.40 – / –
Uni-ENDN (Li et al., 2022b) 110M – – – – 72.20 / 72.50 – / –
Pixel-BERT (Huang et al., 2020) 144M – – – – 74.45 / 74.55 76.50 / 77.20
E2E-VLP (Xu et al., 2021a) 94M – – 36.2 / 117.3 – 73.25 / 73.67 77.25 / 77.96
VL-T5 (Cho et al., 2021) 220M – – 34.5 / 116.5 – – / 70.30 74.60 / 73.60
VL-BART (Cho et al., 2021) 220M – – 35.1 / 116.6 – – / 71.30 71.70 / 70.30

Text2Image Models

DM-GAN (Zhu et al., 2019) – – – 32.20 / 26.50 – / – – / –
DALLE (Ramesh et al., 2021) (250M) 12B – – – 17.90 / 27.50 – / – – / –
DALLE (Ramesh et al., 2021) (640M)† 82M – – – 15.79 / 29.22 – / – – / –
CogView (Ding et al., 2021) 4B – – – 18.20 / 27.10 – / – – / –

Unified Models

Unifying (Huang et al., 2021) 228M – – 37.3 / 122.6 – / 29.90 – / – – / –
FLAVA (Singh et al., 2021) 240M 80.33 75.54 / – – – 72.80 / 72.49 – / –
SimVLM (Wang et al., 2021b) (640M)† 153M 83.27 76.04 / – 38.5 / 128.7 – 75.04 / 75.03 78.82 / 79.72
SimVLM (Wang et al., 2021b) (1.8B) 83.40 80.60 / – 39.0 / 134.8 – 77.87 / 78.14 81.72 / 81.77
OFA (Wang et al., 2022) 182M 84.30 – / 82.20 41.0 / 138.2 21.50∗ / 20.80∗ 78.00 / 78.10 – / –
Florence (Yuan et al., 2021) 637M – – / 90.05 – / – – / – 80.16 / 80.36 – / –
DAVINCI 154M 83.13 78.81 / 83.92 39.2 / 130.4 17.44 (22.41∗) / 24.21 (19.82∗) 76.32 / 76.44 80.03 / 80.25

Table 3: Comparison with state-of-the-art vision-language models on vision, language, and multi-modal
downstream tasks. All results are from base-size models. LE and FT denote linear evaluation and fine-tuning
performance, respectively. Image2Text results are reported without CIDEr optimization. † are our reproduced
models. ∗ are the results after fine-tuning. SimVLM (1.8B) and OFA are pre-trained with much larger corpus
or human-labeled data of many downstream tasks, and thus they are not comparable and are labeled in gray.
Florence (Yuan et al., 2021) is pre-trained with much larger model size (Florence-CoSwin-H, 637M) and more
pre-training data (900M), so the numbers are in grey. bold denotes the best across unified models.

foundation models. We also include comparisons with some baseline models (e.g., MIM, MLM,
CLIP). There are several observations. First, DAVINCI (column 8) outperforms FLAVA (column 3)
and SimVLM (column 7) across almost all tasks, providing a new and stronger unified foundation
model. Compared with FLAVA, DAVINCI improves an average of 2.04%, 1.68% on language and
vision tasks, respectively. Compared with SimVLM, DAVINCI achieves comparable results on
language tasks (+0.13%) while performing much better on vision tasks (+2.46%). To make a fair
comparison in terms of similar data size, we compare FLAVA (70M data, column 3) with DAVINCI
(46.4M data, column 6). It is observed that DAVINCI still outperforms FLAVA even with much less
data. Considering the multi-modal tasks, DAVINCI consistently outperforms FLAVA and SimVLM
on VQA and VE. Note that FLAVA is incapable of generation and SimVLM cannot generate images;
only DAVINCI is competent to all tasks and demonstrates a stronger capability of unifying vision and
language tasks.

Zero-shot and Few-shot Transfer One of the critical benefits of generative pre-trained vision-
language models is the good generalization ability on zero-shot and few-shot tasks. For zero-shot
transfer, two out-of-domain distribution datasets are considered (NoCaps and VLUE), with results
shown in Table 2. First, DAVINCI outperforms SimVLM on both zero-shot and few-shot settings,
demonstrating its better transfer capabilities. It also shows the effectiveness and robustness of the
synergy of our proposed language supervision and image supervision. Second, it is observed that
the performance improvement is bigger on 647.7M data (column 7 v.s. column 8) than 46.4M data
(column 5 v.s. column 6). This shows DAVINCI generalizes well with the increase of large-scale
data. We even observe some performance drops on small data (46.4M) but excellent performance
improvements on large data (647.7M). It is consistent with the recent observation that zero-shot
ability could only be triggered with large pre-training data (Wei et al., 2022) and scaling to large data
and keeping simple training objectives benefit generalization performance (Wang et al., 2021b).

Comparison with state-of-the-art vision-language models In addition to unified vision-language
foundation models, we compare DAVINCI with state-of-the-art vision-language models as well. The
results are shown in Table 2. DAVINCI demonstrates its superiority in vision understanding and
text-to-image generation. Compared with current popular auto-regressive image generation models
like DALLE and CogView, our model achieves comparable IS and better FID scores with significantly
fewer model parameters than DALLE and CogView. Note that the original DALLE is implemented
based on VQVAE, so here, we compare our model with reproduced VQGAN-based DALLE with
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Settings Pre-training Data #Image #Caption Models COCO Captions VQA SNLI-VE NLVR2

ID SWD ORD VD LWD B@4 / C Acc Acc Acc

1 ✓ 0.2M 1.3M SimVLM 35.2 / 115.06 68.89 76.10 71.21
DAVINCI 35.8 / 117.30 69.25 76.22 72.55

2 ✓ ✓ 15.1M 16.2M SimVLM 37.0 / 122.63 71.54 78.36 75.50
DAVINCI 37.4 / 123.11 71.88 78.62 77.46

3 ✓ ✓ 2.7M 18.3M SimVLM 38.2 / 123.85 69.57 76.65 70.50
DAVINCI 38.0 / 124.20 70.02 76.92 72.01

4 ✓ ✓ 13.4M 14.5M SimVLM 36.2 / 119.73 70.53 76.90 73.25
DAVINCI 36.6 / 121.27 71.23 77.40 74.62

5 ✓ ✓ ✓ ✓ 30.5M 46.4M SimVLM 38.5 / 128.12 71.84 78.81 76.75
DAVINCI 38.6 / 128.73 73.53 79.24 77.55

6 ✓ 601.3M 601.3M SimVLM 37.3 / 123.81 73.73 78.79 77.69
DAVINCI 37.6 / 124.42 73.95 79.29 78.54

7 ✓ ✓ 601.5M 602.6M SimVLM 37.9 / 125.50 74.64 79.05 77.68
DAVINCI 38.1 / 125.91 74.91 79.22 78.12

8 ✓ ✓ ✓ ✓ ✓ 631.8M 647.7M SimVLM 38.5 / 128.25 75.04 79.32 78.82
DAVINCI 39.1 / 130.21 76.32 80.04 80.03

Table 4: Evaluation on downstream tasks using COCO Captions, VQA, SNLI-VE, and NLVR2. #Image
and #Caption denote the numbers of images and image-text pairs that are used in the pre-training.

similar model sizes, and find DAVINCI still achieves a significant improvement over it. Generated
images are presented in Appendix A.11 for further qualitative comparison.
On multi-modal tasks such as VQA, DAVINCI not only outperforms unified models (e.g., SimVLM
(640M)) and other encoder-decoder multi-modal models (e.g., E2E-VLP, VL-T5), but also achieves
competitive performance with many conventional encoder-only multi-model models (e.g., VinVL,
ALBEF, VLMO). Note that SimVLM (1.8B) and OFA are not directly comparable because SimVLM
uses 1.8B in-house image-text pairs, and OFA uses human-labeled data of many downstream tasks
during pre-training. Even though, we still report their results for reference and observe a better
performance on ImageNet fine-tuning and text-to-image generation than OFA.
The advantages of image generation over DALLE / CogView, the superiority of image-to-text over
SimVLM, and the competitive performance with conventional multi-modal models demonstrate the
synergistic effect of our proposed PLM (language supervision) and PIM (image supervision).

5 ANALYSIS

5.1 IMPACT OF PRE-TRAINING DATASETS

In this section, we disclose the impact of various multi-modal data sources for VLMs. We choose
SimVLM and DAVINCI as our baseline models for their competitive performance, the capability
of training from scratch, and the scalability of extending to the noisy large-scale corpus. We use
the same text corpus, C4, for all the variations. The results are shown in Table 4. In general, the
performance is increased along with the data size, and DAVINCI consistently outperforms SimVLM
on almost all the data settings and all the downstream tasks. Both object-region data and vision data
are clearly helpful in vision language pre-training (refer to settings 3 and 4). We surprisingly observe
that models pre-trained on object-region data with much fewer images performs even better than
models pre-trained with small-scale web data on the COCO Caption task (refer to settings 2 and 3).
Although large-scale web data is usually noisier than small datasets (e.g., ID, ORD, VD, and SWD),
it is powerful for multi-modal pre-training (refer to settings 5 and 8). We believe our analysis has
broader impacts on the research of VLMs in the community. First, this enables fair comparisons
for pre-trained models in the same data settings. Second, one can focus on the model designs at
part or all of the data settings according to available computation resources. Third, we reveal that
object-region and vision data, normally overlooked in VLM pre-training, also play a significant role.

5.2 ABLATION STUDY

To verify the contributions of different modules in our framework, we ablate them and evaluate
DAVINCI on five kinds of downstream tasks: language understanding (MNLI, SST-2), vision under-
standing (ImageNet, Food101, CIFAR10), multi-modal understanding (VQAv2, SNLI-VE, NLVR2),
image-to-text generation (COCO Captions), and text-to-image generation. Experiments are conducted
with the same model architecture on in-domain data (ID). The results are shown in Table 5.
Effects of Objectives First, all three objectives (PLM, PIM, and Text2Text) bring improvement
and the combination confirms a synergistic effect. Second, it is observed that without PLM, the
performance decreases significantly on multi-modal understanding and image-to-text generation,
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Method COCO VQA SNLI-VE NLVR2 ImageNet Food101 CIFAR10 MNLI SST-2 T2I
B@4 / C Acc Acc Acc Acc Acc Acc Acc Acc IS / FID

No Pre-training 32.1 / 96.71 52.73 54.23 51.08 –∗ –∗ –∗ 66.32 79.84 –∗

DAVINCI 35.8 / 117.30 69.25 76.22 72.55 48.88 75.32 73.82 81.76 90.25 12.35 / 53.14
– PLM 33.6 / 111.17 65.15 73.91 53.28 48.05 74.17 72.98 81.42 89.97 10.26 / 59.64
– PIM 34.3 / 116.58 68.89 75.79 69.78 45.54 71.18 70.11 81.94 90.53 –∗

– Text2Text 34.1 / 115.21 68.14 75.38 70.34 48.67 74.26 73.23 76.48 88.14 12.07 / 54.77

PL=0 35.4 / 117.00 66.90 75.52 71.05 48.45 68.18 73.73 78.69 89.00 11.76 / 55.38
PL=15% 35.7 / 116.53 69.16 75.09 70.44 41.58 52.15 68.55 79.02 89.46 –∗

PL=50% 35.1 / 115.53 68.55 74.54 56.92 37.69 49.16 70.15 78.59 89.69 –∗

MIM 34.7 / 113.4 68.18 75.34 69.66 48.46 56.95 72.79 81.72 89.84 9.50 / 74.13
In-painting 34.5 / 112.5 67.46 75.41 68.66 47.50 54.38 71.20 81.55 89.84 9.97 / 68.15

Token Projection 17.7 / 49.2 52.13 71.11 52.01 15.11 25.62 61.01 82.01 90.25 11.89 / 60.96
Patch Projection 25.7 / 79.5 57.69 71.92 57.45 36.23 44.31 69.40 81.73 90.05 11.41 / 61.87

Table 5: Ablation study on COCO Captions, VQA, SNLI-VE, NLVR2, ImageNet, Food101, CIFAR10,
MNLI, SST-2, and text-to-image (T2I) generation. “–” denotes removing the corresponding objective. PL
denotes the prefix length under fixed masking ratio settings. Because the linear probe requires a pre-trained
model to be frozen, “No Pre-training” results on ImageNet, Food101, and CIFAR10 are not reported and labeled
by ∗. For T2I, we report the zero-shot results. Note that the following four variants cannot perform zero-shot
text-to-image generation (labeled by ∗): (1) No Pre-training, (2) DAVINCI – PIM, (3) PL=15%, and (4) PL=50%.

indicating the importance of language supervision. Third, PIM brings more gains than PLM and
text2text on vision understanding, which is expected because it enhances the vision encoding ability
with image supervision. In addition, the text2text objective is important to text understanding. Last,
on the text-to-image generation task, it is observed that PLM is also helpful, confirming the synergistic
effect of PIM and PLM again. Intuitively, PIM and PLM can help each other learn the alignments of
visual and textual features, which will benefit both image generation and other multi-modal tasks.

Effects of Masking Ratios Our model adopts dynamic masking ratios as described in Section 3.2.
We also conduct experiments with static masking ratios with the prefix length fixed to 0, 15%, and
50%. The comparison between dynamic masking ratios and static masking ratios (PL=0, 15%, and
50%) reveals that dynamic masking is better. We attribute this improvement to the smoothing effects
of dynamic masking ratios. We also find that the standard language model (PL=0) performs worse on
VQA, Food101, and text-to-image generation, which is consistent with the observation in SimVLM.
In our experiments, the masking ratio is sampled from a uniform distribution U(0, 1).

Effects of Masking Strategies Here we also compared three different masking strategies: 1)
masked image modeling (randomly masking some patches), 2) in-painting (randomly masking
some continuous spans in the middle of the image), and 3) suffix-painting (ours). The results are
shown in Table 5. Both masked image modeling and in-painting are effective and competitive. It is
observed that suffix-painting is better than masked image modeling and in-painting across all tasks,
demonstrating that suffix-painting works well.

Effects of Image Feature Extraction There are several different ways to extract image features.
We compare three different image representation methods: 1) token projection (projecting the prefix
tokens to the hidden dimension of the backbone network on the token-level), 2) patch projection
(similar to ViT embedding, we split an image into fixed-size patches, embed each of them by a
trainable linear projection on the pixel-level), and 3) ResNet feature extraction (ours). From the
results in Table 5, we observed that ResNet feature extraction outperforms token projection and patch
projection by a large margin. Therefore, we decided to adopt ResNet to extract image features.
We provide more details and discussions about the effects of compute (A.5), masking strategies (A.6),
image feature extraction methods (A.7), and scaling effects of data size ( A.8) in the Appendix.

6 CONCLUSION AND DISCUSSION

In this work, we first benchmark several settings on sequence-to-sequence vision-language pre-
training in terms of pre-training dataset size, aligning SimVLM and our model on them. We
propose a simple and unified generative pre-training model, DAVINCI, to simultaneously leverage
the language supervision and image supervision through two objectives under a unified framework:
prefix language modeling and prefix image modeling. DAVINCI is simple yet effective, demonstrating
strong capabilities in both multi-modal writing and painting tasks. Experimental results explicitly
imply that combining suffix caption generation and suffix image generation offers large gains on all
benchmark settings. We also discussed limitations and future work in Appendix A.10.
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A APPENDIX

A.1 DETAILS OF HYPER-PARAMETERS

Pre-training Our model is a base-size Transformer implemented with a 6-layer encoder and a
6-layer decoder, 768 dimensions for hidden states, 512 for maximum input length, and 3072 for
intermediate size. We train our model from scratch without initializing the Transformer encoder
and decoder. The image encoder is initialized from ResNet-101 (He et al., 2016) with ImageNet
weights since we find a warm start provides a reliable visual representation and helps the convergence.
For models pre-training on large-scale data, we optimize 10 epochs while for other small-scale
datasets, we optimize 40 epochs with the AdamW optimizer. The weight decay is set to 0.01 with
β1 = 0.9, β2 = 0.999. The learning rate is 2e-4 with a warm-up period for the first 2% steps and
linearly decayed to 0 after 2% of the total training steps. In each batch, there are 8,192 image-text
pairs for text-to-image generation and image-to-text generation with 8,192 text-only documents for
text-to-text generation. We use center-crop to resize each image to the size of 256×256, which is the
only data augmentation used during training. All pre-training experiments are conducted on 32GB
NVIDIA V100 GPUs. We adopt mixed-precision (Micikevicius et al., 2018) to accelerate training
and save memory. The model trained on the largest data takes around 10 days on 1024 V100 GPUs.
The default settings are shown in Table 6. We adopt dynamic masking in our experiments, where the
masking ratio is randomly sampled from a uniform distribution U(0, 1).

Fine-tuning The learning rate is ∈ [1e-5, 5e-5] and our model is optimized by AdamW. Because the
image resolution differs between pre-training and fine-tuning, the position parameters are adapted
using linear interpolation. For all downstream tasks, we apply random resize crops and horizontal flips
augmentation during training. All fine-tuning experiments are conducted on 32GB NVIDIA V100
GPUs. The default settings for text classification, image classification, multi-modal understanding
and image-to-text generation are shown in Tables 7, 8, and 9, respectively.

config value
optimizer AdamW (Loshchilov & Hutter, 2019)

learning rate 2e-4
weight decay 0.01

optimizer momentum β1, β2=0.9, 0.999
batch size 8192

learning rate schedule linear decay
warmup ratio (Goyal et al., 2017a) 0.02

training epochs {10, 40}
augmentation RandomResizedCrop

Table 6: Pre-training setting.

config value
optimizer AdamW

learning rate {1e-5, 2e-5, 5e-5}
weight decay 0.01

optimizer momentum β1, β2=0.9, 0.999
batch size {16, 32, 64}

learning rate schedule linear decay
warmup ratio 0.1

training epochs {5, 10}

Table 7: Text classification: GLUE setting.

A.2 DETAILS OF DOWNSTREAM TASKS

Language Understanding We conduct experiments on GLUE benchmark including
MNLI (Williams et al., 2018), CoLA (Warstadt et al., 2019), MRPC (Dolan & Brockett,
2005), QQP (Iyer et al., 2017), SST-2 (Socher et al., 2013), QNLI (Rajpurkar et al., 2016),
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config value
optimizer LARS (You et al., 2017)

base learning rate 0.1
weight decay 0

optimizer momentum 0.9
batch size 16384

learning rate schedule cosine decay
warmup epochs 10
training epochs 90
augmentation RandomResizedCrop

Table 8: Image classification: Linear probing setting.

config value
optimizer AdamW

learning rate [1e-5, 5e-5]
weight decay 0.02

optimizer momentum β1, β2=0.9, 0.999
batch size 1024

learning rate schedule linear decay
warmup epochs [2, 5]
training epochs [5, 15]

label smoothing (Szegedy et al., 2016) 0.1
augmentation RandomResizedCrop, HorizontalFlips

Table 9: Multi-modal understanding and image-to-text generation: fine-tuning setting.

RTE (Dagan et al., 2005; Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli et al., 2009), and
STS-B (Agirre et al., 2007). We follow the practice of BART (Lewis et al., 2020) and feed the
same input to the encoder and decoder, and the hidden state of the final decoder token is fed into a
new multi-class linear classifier or regression head. MNLI results are an average of MNLI-m and
MNLI-mm. MRPC and QQP results are average of accuracy and F1. Matthews correlation coefficient
(MCC) is reported for CoLA and Pearson correlation coefficient (PCC) is reported for STS-B.

Vision Understanding We conduct vision experiments in both fine-tuning and linear evaluation
(linear eval). The linear evaluation follows a common practice (Caron et al., 2021; He et al.,
2020; Singh et al., 2021) in self-supervised learning to evaluate the representation quality, where
the pre-trained backbone model is frozen and a new linear classifier is appended on top of it.
We choose 12 popular datasets: ImageNet (Russakovsky et al., 2015), Food101 (Bossard et al.,
2014), CIFAR10 (Krizhevsky et al., 2009), CIFAR100 (Krizhevsky et al., 2009), Cars (Krause
et al., 2013), Aircraft (Maji et al., 2013), DTD (Cimpoi et al., 2014), Pets (Parkhi et al., 2012),
Flowers102 (Nilsback & Zisserman, 2008), MNIST (LeCun & Cortes, 2010), STL10 (Coates et al.,
2011), and Country211 (Radford et al., 2021).

Multi-modal Understanding We consider three popular multi-modal tasks: VQAv2 (Goyal et al.,
2017b), SNLI-VE (Xie et al., 2019) and NLVR2 (Suhr et al., 2019) to evaluate our model’s multi-
modal understanding ability. For VQAv2, following ALBEF (Li et al., 2021), the image and question
are fed to the encoder and the decoder generates answers based on the multi-modal embeddings. For
SNLI-VE, we follow SimVLM (Wang et al., 2021b) to feed the image to the encoder and the text to
the decoder. A classifier is appended on top of our pre-trained model, and it is trained to predict the
result based on the last hidden states of the decoder. For NLVR2, two input pairs are constructed,
each of them including one image and the textual description. The prediction is made based on the
concatenation of these two embeddings following SimVLM (Wang et al., 2021b). The resolutions for
VQAv2, SNLI-VE, NLVR2 are 480, 384, 384, respectively.

Text-to-Image Generation The text-to-image task requires the model to understand the textual
instruction first and then draw the image according to the input’s intention. The input text is fed to
our encoder, and our decoder will generate visual tokens one by one. After obtaining visual tokens,
they are decoded into a raw image by an image decoder. We directly use an off-the-shelf image
decoder from VQGAN (Esser et al., 2021). Following (Ramesh et al., 2021) we directly evaluate our
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Data Type Dataset Image Domain #Images #Captions #Total

In-Domain Data (ID) COCO COCO 110.3K 551.7K 1.3MVisual Genome COCO 108.2K 759.0K

Small-scale Web Data (SWD)
SBU Web 859.7K 859.7K

14.9MCC-3M Web 2.9M 2.9M
CC-12M Web 11.1M 11.1M

Object-Region Data (ORD)

VG regions COCO 108.2K 3.6M

17.0M

VG objects COCO 108.2K 925.6K
COCO objects COCO 110.3K 736.6K
Refcoco COCO 27.9K 589.9K
Open Image Flickr 1.7M 7.5M
Obj365 Flickr 577.6K 3.6M

Vision Data (VD) ImageNet-21K ImageNet 13.2M 13.2M 13.2M

Large-scale Web Data (LWD) DAVINCI-200M Web 205.6M 205.6M 601.3MLAION-400M Web 395.7M 395.7M
Text Data (TD) C4 Web – – 800GB

Table 10: Statistics of the pre-training datasets. #Images, #Captions, and #Total denote the number of images,
the number of image-text pairs, and the total number of image-text pairs, respectively.

pre-trained model on 30, 000 images randomly sampled from COCO (Chen et al., 2015) validation
split. Both Fréchet Inception Distance (FID) (Heusel et al., 2017) and Inception Score (IS) (Salimans
et al., 2016) are reported. The image resolution is 256.

Image-to-Text Generation For image-to-text generation (also called image captioning), the image
is given to encoder and the decoder will generate the corresponding caption. Our experiments are
conducted on COCO dataset (Chen et al., 2015) with cross-entropy optimization. Other task-specific
techniques such as CIDEr optimization (Rennie et al., 2017) are not introduced. The image resolution
is 480. We also conduct zero-shot captioning experiments on NoCaps (Agrawal et al., 2019) and
VLUE (Zhou et al., 2022b).

A.3 PRE-TRAINING DATASETS

Since existing studies pre-trained their models on different corpora, some of which are publicly
available (e.g., CC-3M, CC-12M) while some are in-house datasets (e.g., ALIGN (Jia et al., 2021)),
making the fair comparison difficult. Considering results only on the state-of-the-art performance
would underestimate the potential of this line of research. Therefore, we propose several practical
settings, including small-scale and large-scale, and then conduct detailed comparisons on them in
section 5.1.
We collect a large set of datasets with diverse distributions for pre-training. According to its source,
we divide them into in-domain, small-scale web data, object-region data, vision data, and large-scale
web data. The statistics and details are shown in Table 10. Most of them are naturally image-text
pairs, while to enrich our corpus, we leverage object descriptions, region descriptions, and vision data
(i.e., ImageNet). For objects and regions, we crop them from the original image according to their
bounding box. The text part is composed according to a human-written template and objects. For
example, the prompt template is "This image contains [OBJ_A] and [OBJ_B]", where [OBJ_A] and
[OBJ_B] are two object names from the data. For vision data, because they are usually labeled with
a single word or short phrase, we compose a description with prompt templates such as “A picture
of [LABEL]” or “The image contains [LABEL]”. For example, “A picture of cat” or “The image
contains cat”. We curated a dataset containing about 205.6M image-text pairs, which are available
publicly on the internet. The data distribution is similar to LAION-400M. Because both are from
web images, we merge them into large-scale web data (LWD).

A.4 REPRODUCTION OF SIMVLM

Since SimVLM is not open-sourced, we need to reproduce it by ourselves. There are two main
difficulties in the reproduction: 1. it uses 1.8 billion in-house data 2. the configurations (e.g.,
parameter size, number of layers) of its base model are not clearly stated. However, there are still
some clues in Section 4.4 of the SimVLM paper, where they propose a SimVLMsmall model with 8
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layers, 512 embedding dimensions, and trained on about 200M web data. To demonstrate the success
of our replication, we train a SimVLMsmall model with the exact same configurations on about 200M
web data. We obtain a VQA score of 68.50, surpassing the reported score of 67.43 in the original
paper. We argue this result verifies our successful replication.

A.5 EFFECTS OF COMPUTE

Our model is trained with large compute. To reveal the effects of compute, we visualize the
performance improvement trends of SimVLM and DAVINCI as a function of the compute spent.
There are two goals: 1) to compare better with prior work, as well as to 2) to show if that level of
pre-training compute was necessary. We conduct experiments on the image-to-text generation task
under both zero-shot and fine-tuning settings. The results are shown in Figure 2. It is observed
that with the increase in compute, both models are improved significantly and converged at 40% of
compute (zero-shot), and 80% of compute (fine-tuning), respectively. Large compute is especially
helpful for fine-tuning settings. After convergence, our model outperforms SimVLM consistently in
these two settings.

(a) COCO Captioning (Zero-shot) (b) COCO Captioning (Fine-tuning)

Figure 2: The effects of compute. X-axis is the percentage of compute and Y-axis is the CIDEr score on COCO
captioning task.

A.6 EFFECTS OF MASKING STRATEGIES

In our experiments, we adopt dynamic masking, where the masking ratio is sampled from a uniform
distribution U(0, 1). The prefix ratio could be 0, where the prefix image is none, and the model is
forced to predict the whole image with the input caption. There are other designs to mask images.
Here we compared three different masking strategies: 1) masked image modeling (randomly masking
some patches), 2) in-painting (randomly masking some continuous spans in the middle of the image),
and 3) suffix-painting (ours). The results are shown in Table 11. Both masked image modeling and
in-painting are effective and competitive. It is observed that suffix-painting is better than masked
image modeling and in-painting across all tasks, demonstrating that suffix-painting works well.

Method COCO VQA SNLI-VE NLVR2 ImageNet Food101 CIFAR10 MNLI SST-2 Text2Image
B@4 / C Acc Acc Acc Acc Acc Acc Acc Acc IS / FID

No Pre-training 32.1 / 96.71 52.73 54.23 51.08 –∗ –∗ –∗ 66.32 79.84 –∗

MIM 34.7 / 113.4 68.18 75.34 69.66 48.46 56.95 72.79 81.72 89.84 9.50 / 74.13
In-painting 34.5 / 112.5 67.46 75.41 68.66 47.50 54.38 71.20 81.55 89.84 9.97 / 68.15
Suffix-painting (ours) 35.8 / 117.3 69.25 76.22 72.55 48.88 75.32 73.82 81.76 90.25 12.35 / 53.14

Token Projection 17.7 / 49.2 52.13 71.11 52.01 15.11 25.62 61.01 82.01 90.25 11.89 / 60.96
Patch Projection 25.7 / 79.5 57.69 71.92 57.45 36.23 44.31 69.40 81.73 90.05 11.41 / 61.87
ResNet Feature (ours) 35.8 / 117.3 69.25 76.22 72.55 48.88 75.32 73.82 81.76 90.25 12.35 / 53.14

Table 11: The effects of masking strategies and image feature extraction on COCO Captions, VQA,
SNLI-VE, NLVR2, ImageNet, Food101, CIFAR10, MNLI, SST-2, and text-to-image generation. MIM
denotes masked image modeling, where some patches are randomly sampled and masked. Because linear probe
and zero-shot text-to-image generation require a pre-trained model to be frozen, the “No Pre-training” results on
ImageNet, Food101, CIFAR10, and Text2Image are not reported and labeled by ∗.
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A.7 EFFECTS OF IMAGE FEATURE EXTRACTION

There are several different ways to extract image features. We compare three different image
representation methods: 1) token projection (projecting the prefix tokens to the hidden dimension of
the backbone network on the token-level), 2) patch projection (similar to ViT embedding, we split an
image into fixed-size patches, embed each of them by a trainable linear projection on the pixel-level),
and 3) ResNet feature extraction (ours). The comparison is shown in Table 11. From the results, we
observed that ResNet feature extraction outperforms token projection and patch projection by a large
margin. Therefore, we decided to adopt ResNet to extract image features.

A.8 SCALING EFFECTS OF DATA SIZE

In this section, we explore the scaling effects of our model. We plot the trends with the increase
in data size on four tasks: COCO captioning, VQA, SNLI-VE, and NLVR2. The performance
improvement shown in Figure 3 demonstrates that both SimVLM and DAVINCI are scaling well with
pre-training data size. In addition, DAVINCI consistently outperforms SimVLM on different data
sizes across these tasks.

(a) COCO Captioning (b) VQA (c) SNLI-VE (d) NLVR2

Figure 3: The scaling effects of data size.

A.9 FULL COMPARISON WITH EXISTING METHODS

In Table 12, we display a comprehensive comparison with state-of-the-art vision-language models on
vision, language, and multi-modal downstream tasks.

A.10 LIMITATION AND SOCIETAL IMPACTS

Limitation. Like most of the previous pre-training studies, the entire project consumed 40 V100
GPU years on an in-house computing cluster with large electricity costs. We tried to keep our model
size small enough, but there is still potential for efficiency improvements such as sparse training (Zhou
et al., 2021d;c), dataset distillation (Zhou et al., 2022c), and progressive training (Rusu et al., 2016).
We will explore those techniques to improve the training efficiency and reduce the carbon footprint
so that it can adhere to proposals on “green” deep learning (Schwartz et al., 2020; Xu et al., 2021b).
Furthermore, although we have tried our best to include as many tasks as we can to demonstrate
the versatility of DAVINCI, we believe our method can be expanded to more tasks (e.g., machine
translation, summarization, object detection, etc.), modalities (e.g., video and speech). We leave these
investigations to future work.

Potential Societal Impacts. Our model has image generation ability with risk of abuse, like fake
portraits on social media (Hill & White, 2020), which is a common potential risk in image generation
research. Viable solutions are watermarking (Yu et al., 2021) and introducing a strict user license.

A.11 VISUALIZATION OF IMAGE GENERATION

In this section, we conduct a qualitative analysis by visualizing the generation samples. Figure 4
shows the comparison with DALLE and OFA with the same query. More generated samples are
shown in Figures 5.
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Model
Text Vision Image2Text Text2Image Multi-modal

#Params. MNLI ImageNet COCO COCO VQA NLVR2
Acc LE / FT B@4 / C IS↑ / FID↓ test-dev / test-std dev / test-P

Encoder-only Multi-modal Models

VisualBERT (Li et al., 2019) 170M 81.60 – – – 70.80 / 71.00 67.40 / 67.00
ViLBERT (Lu et al., 2019) 274M 79.90 – – – 70.55 / 70.92 –
VL-BERT (Su et al., 2020) 170M 81.20 – – – 71.16 / – –
LXMERT (Tan & Bansal, 2019a) 240M 80.40 – – – 72.42 / 72.54 74.90 / 74.50
OSCAR (Li et al., 2020) 155M – – 36.5 / 123.7 – 73.16 / 73.44 78.07 / 78.36
VinVL (Zhang et al., 2021b) 157M – – 38.2 / 129.3 – 75.95 / 76.12 82.05 / 83.08
ViLT (Kim et al., 2021) 88M – – – – 70.85 / – 74.91 / 75.57
ALBEF (Li et al., 2021) 210M – – – – 75.84 / 76.04 82.55 / 83.14
X-VLM (Zeng et al., 2021) 240M – – 39.6 / 132.6 – 78.22 / 78.37 84.41 / 84.76
VLMO (Wang et al., 2021a) – – – – 76.64 / 76.89 82.77 / 83.34

Encoder-Decoder Multi-modal Models

UNICORN (Yang et al., 2021) – – 35.8 / 119.1 – 69.20 / 69.40 – / –
Uni-ENDN (Li et al., 2022b) 110M – – – – 72.20 / 72.50 – / –
Pixel-BERT (Huang et al., 2020) 144M – – – – 74.45 / 74.55 76.50 / 77.20
E2E-VLP (Xu et al., 2021a) 94M – – 36.2 / 117.3 – 73.25 / 73.67 77.25 / 77.96
VL-T5 (Cho et al., 2021) 220M – – 34.5 / 116.5 – – / 70.30 74.60 / 73.60
VL-BART (Cho et al., 2021) 220M – – 35.1 / 116.6 – – / 71.30 71.70 / 70.30

Text2Image Models

AttnGAN (Xu et al., 2018) – – – 23.30 / 35.20 – / – – / –
DM-GAN (Zhu et al., 2019) – – – 32.20 / 26.50 – / – – / –
DALLE (Ramesh et al., 2021) (250M) 12B – – – 17.90 / 27.50 – / – – / –
DALLE (Ramesh et al., 2021) (640M)† 82M – – – 15.79 / 29.22 – / – – / –
CogView (Ding et al., 2021) 4B – – – 18.20 / 27.10 – / – – / –

Unified Models

Unifying (Huang et al., 2021) 228M – – 37.3 / 122.6 – / 29.90 – / – – / –
FLAVA (Singh et al., 2021) 240M 80.33 75.54 / – – – 72.80 / 72.49 – / –
SimVLM (Wang et al., 2021b) (640M)† 153M 83.27 76.04 / – 38.5 / 128.7 – 75.04 / 75.03 78.82 / 79.72
SimVLM (Wang et al., 2021b) (1.8B) 83.40 80.60 / – 39.0 / 134.8 – 77.87 / 78.14 81.72 / 81.77
OFA (Wang et al., 2022) 182M 84.30 – / 82.20 41.0 / 138.2 21.50∗ / 20.80∗ 78.00 / 78.10 – / –
Florence (Yuan et al., 2021) 637M – – / 90.05 – / – – / – 80.16 / 80.36 – / –
DAVINCI 154M 83.13 78.81 / 83.92 39.2 / 130.4 17.44 (22.41∗) / 24.21 (19.82∗) 76.32 / 76.44 80.03 / 80.25

Table 12: Comparison with state-of-the-art vision-language models on vision, language, and multi-modal
downstream tasks. All results are from base-size models. LE and FT denote linear evaluation and fine-tuning
performance, respectively. Image2Text results are reported without CIDEr optimization. † are our reproduced
models. ∗ are the results after fine-tuning. SimVLM (1.8B) and OFA are pre-trained with much larger corpus
or human-labeled data of many downstream tasks, and thus they are not comparable and are labeled in gray.
Florence (Yuan et al., 2021) is pre-trained with a much larger model size (Florence-CoSwin-H, 637M) and more
pre-training data (900M), so the numbers are in grey. bold denotes the best across unified models.

OFA

Ours

DALLE

a park with flowers on a 
sunny day

a large flower is sitting in the 
vase on the shelf

meat sitting on a plate with green 
vegetables on the side

a fire hydrant sitting in a 
front yard next to a sign

Figure 4: Comparison with DALLE and OFA on text-to-image generation.
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a one cart train coming down 
the railroad tracks

a beach on a sunny day

trees by the river in the mountainsa building in front of a roundabout 
with a tree in the center.

a red and white boat docked on shore a picture of a snowy mountain

a decorative flower vase full of 
purple and yellow flowers

a vase full of flowers on table a fire hydrant sitting in a front 
yard next to a sign

a park with flowers on a sunny day

noodles and broccoli on a platemany fruits on the plate on the table a bunch of fruit in a fruit shop

a red stop sign on the side 
of the road

bathroom with marble walls and 
counter surrounds a large mirror

a table set with a sandwich and a drink

Figure 5: Generation samples by DAVINCI.
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