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Abstract

This work aims to identify interpretable low-dimensional structure inherent in high-dimensional
language embeddings. Prior studies have shown that linear ICA can uniquely transform
embeddings into spaces with semantically meaningful axes, with evidence pointing toward
extensions beyond language (including vision) (Yamagiwa et al., 2023; Li et al., 2024). As
a natural extension, we consider nonlinear ICA to capture the latent structure of nonlin-
ear internal representations; however, generic nonlinear ICA suffers from the long-standing
identifiability problem (Hyvérinen et al., 2019). To address this, we adopt CEBRA, a
contrastive-learning framework that achieves theoretical identifiability up to linear trans-
formations by leveraging auziliary variables (Schneider et al., 2023). In preliminary exper-
iments using emotion labels as auxiliary variables, CEBRA maps sentence embeddings into
a low-dimensional, linearly separable space, consistent with the view that its InfoNCE loss
behaves as a multiclass discriminative objective under discrete labels. Moreover, across ran-
dom initializations, the learned embeddings exhibit high alignment up to linear transforms,
empirically supporting identifiability in practice. We discuss open questions regarding the
choice of auziliary variables, the interpretation of linearly equivalent solutions, and the
topology of the learned low-dimensional manifolds. As a longer-term goal, we plan brain-
encoding studies (fMRI) to test whether the discovered structures correspond to neural
representations involved in affective language processing.
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1. Introduction

A central challenge in representation learning is the interpretability of high-dimensional
vector spaces. For language embeddings, linear IC'A has emerged as a powerful tool: prior
work indicates that one can construct a unique linear transformation yielding independent,
interpretable semantic azes, with signs of cross-modal applicability (Yamagiwa et al., 2023;
Li et al., 2024). Yet Language Embedding model implement intrinsically nonlinear map-
pings, suggesting that their internal representations may organize meaning along nonlinear
factors that linear methods only partially capture.

A natural next step is nonlinear ICA, aimed at recovering latent structure after nonlinear
mixing. However, generic nonlinear ICA lacks identifiability: without additional assump-
tions or supervisory signals, true latent factors cannot be uniquely recovered (Hyvérinen
et al., 2019). We therefore turn to CEBRA (Schneider et al., 2023), which circumvents this
issue by contrastive learning with auxiliary variables, providing identifiability up to linear
transformations under realistic conditions. This makes CEBRA an attractive, practically
deployable alternative to unconstrained nonlinear ICA for embedding analysis.
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2. Material and Method

2.1. Objective: Manifold Discovery

Our objective is to recover, within the high-dimensional observation space (LLM embed-
dings), a low-dimensional manifold that is diffeomorphic to the latent variable space re-
sponsible for observed variation. We experimentally apply CEBRA to this end.

2.2. Datasets

We evaluated our approach on two publicly available emotion-labeled text datasets. dair-
ai/emotion corpusSaravia et al. (2018), which consists of 20000 English Twitter messages
categorized into six basic emotions: anger, fear, joy, love, sadness, and surprise.

2.3. Embeddings

we obtained a fixed-dimensional vector representation using pre-trained transformer lan-
guage models from Hugging Face. In particular, we extracted text embeddings from three
models: BERT (Bidirectional Encoder Representations from Transformers)Devlin et al.
(2019), RoBERTa (a robustly optimized BERT variant)Liu et al. (2019), and all-MiniLM-
L6-v2?. BERT and RoBERTa were used in their base uncased versions, each producing
a 768-dimensional embedding for an input sentence (corresponding to the model’s hidden
size). The all-MiniLM-L6-v2 model (a distilled sentence transformer) yields a more compact
384-dimensional sentence embedding.

2.4. CEBRA with Discrete Auxiliary Variables

CEBRA optimizes an InfoNCE-based objective. When the auxiliary variable is a discrete
label (e.g., emotion), the loss acts as a multiclass classifier: it attracts same-label pairs and
repels different-label pairs in the learned space. Consequently, we expect a low-dimensional
representation in which classes are linearly separable.

2.5. Preliminary Findings

Our preliminary results demonstrate that CEBRA can successfully overcome the identifia-
bility problem of nonlinear ICA Using emotion-labeled text, we extract sentence embeddings
and train CEBRA with labels as the auxiliary variable. The resulting latent space shows
clearly separable clusters aligned with labels. This is shown in Figure 1. Crucially, train-
ing from different random seeds yields embeddings that are highly congruent up to linear
transforms (rotations/scalings), supporting stable, identifiable latent structure in practice.

3. Discussion and Open Questions

CEBRA enables us to sidestep the identifiability bottleneck of generic nonlinear ICA, yield-
ing low-dimensional, linearly separable structure from language embeddings while remaining
unique up to linear transformations. Several issues merit further study:
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Figure 1: CEBRA Embedding visualization Left:cebra outputdimension 4dim with PCA
Right:cebra outputdimension 5dim with PCA

1. Choice of auxiliary variables. Beyond emotion labels, which supervisory signals
(topic, style, syntax, speaker/context) best expose semantically meaningful latent
geometry?

2. Interpreting linearly equivalent embeddings. Because solutions are defined up
to linear transforms, axes need not carry fived semantics individually; interpretation
should leverage global geometry and pairwise relations among clusters/trajectories.

3. Manifold topology. CEBRA extracts nonlinear low-dimensional manifolds em-
bedded in the observation space. Characterizing their topological properties (e.g.,
connectivity, holes, loops) is key to understanding how LLMs “fold” meaning.

4. Future Work: Neuroscientific Validation

The ultimate goal of this research is to establish that the computationally identified low-
dimensional structures correspond to the mechanisms of language processing in the human
brain. To this end, we plan to validate our findings using a brain encoding mode framework.
The experimental paradigm will involve two main stages. First, we will use CEBRA to derive
low-dimensional coordinates for a set of linguistic stimuli (e.g., sentences). Concurrently, we
will record brain activity (via fMRI) from human subjects as they listen to or read the same
set of stimuli. Subsequently, we will train a regression model to predict the recorded brain
activity in each voxel using the low-dimensional coordinates from CEBRA as input features.
This interdisciplinary validation experiment would bridge the gap between representation
learning in artificial intelligence and cognitive neuroscience, paving the way for a deeper
understanding of both artificial and natural language processing.
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Appendix A. First Appendix

Results with Metrics
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