
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

MIXED-CURVATURE DECISION TREES
AND RANDOM FORESTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Decision trees (DTs) and their random forest (RF) extensions are workhorses of
classification and regression in Euclidean spaces. However, algorithms for learn-
ing in non-Euclidean spaces are still limited. We extend DT and RF algorithms
to product manifolds: Cartesian products of several hyperbolic, hyperspherical,
or Euclidean components. Such manifolds handle heterogeneous curvature while
still factorizing neatly into simpler components, making them compelling em-
bedding spaces for complex datasets. Our novel angular reformulation of DTs
respects the geometry of the product manifold, yielding splits that are geodesi-
cally convex, maximum-margin, and composable. In the special cases of single-
component manifolds, our method simplifies to its Euclidean or hyperbolic coun-
terparts, or introduces hyperspherical DT algorithms, depending on the curvature.
We benchmark our method on various classification, regression, and link predic-
tion tasks on synthetic data, graph embeddings, mixed-curvature variational au-
toencoder latent spaces, and empirical data. Compared to six other classifiers,
product DTs and RFs ranked first on 21 of 22 single-manifold benchmarks and 18
of 35 product manifold benchmarks, and placed in the top 2 on 53 of 57 bench-
marks overall. This highlights the value of product DTs and RFs as straightfor-
ward yet powerful new tools for data analysis in product manifolds.

1 INTRODUCTION

While much of machine learning focuses on Euclidean spaces, these can fail to capture the true
structure of complex datasets. For example, hierarchical structures, which are common in taxonomy
(e.g., phylogenetic trees) are better represented in hyperbolic space due to its exponential volume
growth, which naturally mirrors tree-like data (Sonthalia & Gilbert, 2020). Similarly, cyclical struc-
tures, often encountered in time-series data with periodic patterns (e.g., seasonal trends, neuronal
spiking dynamics), can benefit from spherical representations (Ding & Regev, 2021).

However, many real-world datasets don’t conform to a single geometric structure. Any constant-
curvature manifold—–whether hyperbolic, spherical, or Euclidean—–would struggle to represent all
the nuances of such data simultaneously. Product manifolds, as proposed by Gu et al. (2018), offer
a solution. By combining multiple constant-curvature component manifolds (spherical, Euclidean,
and hyperbolic spaces) into a single product manifold, they can better capture the complexity of
such mixed-structure data. This flexibility reduces distortion when modeling pairwise distances and
enables a more accurate representation of the underlying data structure.

Despite their advantages, product manifolds have seen limited adoption in machine learning, partic-
ularly for inference tasks like classification and regression. Existing work has primarily focused on
applications in biology (McNeela et al., 2024) and knowledge graphs (Wang et al., 2021). However,
tools for leveraging product manifold representations in downstream tasks remain scarce.

In this paper, we introduce mixed-curvature decision trees (DTs) and random forests (RFs), ex-
panding the toolkit for analyzing product manifold data. By enabling inference directly on product
manifold coordinates, our approach is well-suited for datasets that combine hierarchical, cyclical,
and other complex geometric patterns. This framework provides a principled way to learn from
such structures, achieving more accurate results than competing models. These contributions offer
new possibilities for applying product manifold representations in fields ranging from biological
modeling to temporal-spatial analysis.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

X,y sampled from P

Known signature: P = S1 × S1

Split X

θ1 = 3π/4

Split X+

θ2 = π/4

Split X−

θ1 = π/2

Decision regions on P

Figure 1: An illustration of the product manifold DT in action. We consider a sample of labeled
points (X,y) from one of the simplest possible product manifolds: the torus P = S1 × S1. Since
we know the signature for P , we can factorize X into coordinates on two circles. Our DT splits
these factorized coordinates to a maximum depth of 2, partitioning P into a total of 22 = 4 disjoint
decision areas (colored positive or negative to reflect the classes).

Our contributions:

1. We generalize DTs and RFs to all constant-curvature manifolds. Unlike existing methods,
we represent data and splits as angles in two-dimensional subspaces. This guarantees splits
are geodesically convex, maximum-margin, and composable. In the single-manifold case, this
extends existing Euclidean and hyperbolic models or introduces hyperspherical DTs and RFs.

2. We introduce novel DT and RF algorithms for product manifolds.
3. We extend techniques for sampling distributions in non-Euclidean manifolds to describe mix-

tures of Gaussians in product manifolds.
4. We show how problems like link prediction in graphs and signal analysis can be recast as

inference problems on product manifolds.
5. We demonstrate the effectiveness of our component- and product-manifold algorithms over

competing algorithms on a suite of 57 diverse non-Euclidean benchmarks.

1.1 RELATED WORK

Non-Euclidean representation learning. Important background on manifolds in machine learning
is given in Cayton (2005) and Bengio et al. (2014). Much of the work on product manifolds is
indebted to early works on hyperbolic spaces, including Nickel & Kiela (2017); Chamberlain et al.
(2017), and Ganea et al. (2018).

Machine learning in product manifolds. Tabaghi et al. (2021) describe linear classifiers, including
perceptron and support vector machines; Tabaghi et al. (2024) adapt principal component analysis;
and Cho et al. (2023) generalize Transformer architectures to product manifolds.

Computationally tractable manifolds. Besides product manifolds, other methods for represent-
ing data with heterogeneous curvature also exist: Borde & Kratsios (2023) is based on fractals,
while Cruceru et al. (2020) is based on matrix manifolds.

Product manifold-derived features. Tsagkrasoulis & Montana (2017) train RF classifiers on dis-
tance matrices from arbitrary manifolds, e.g. product manifolds. Sun et al. (2021) and Borde
et al. (2023b) use product manifolds to compute rich similarity measures as features for classifica-
tion. Giovanni et al. (2022) introduce a heterogeneous variant of product manifolds; Borde et al.
(2024) combine quasi-metrics and partial orders in a product manifold for graph representations.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

S

xd

x0 E

xd

x0 H

xd

x0

Figure 2: Decision boundaries in any constant-curvature manifold are found by 2-D projections into
2-dimensional subspaces. In this perspective, both data and splits are parameterized by an angle θ.
Each split divides the manifold into positive-class regions and negative-class regions.

Hyperbolic random forests. Our method is inspired by recent work by Doorenbos et al. (2023)
and Chlenski et al. (2024) extending RFs to hyperbolic space. In particular, our angular-split per-
spective synthesizes the ideas in Chlenski et al. (2024) and Tabaghi et al. (2021).

Applications of product manifolds. Product manifolds are popular for embedding knowledge
graphs Wang et al. (2021); Li et al. (2024); Nguyen-Van et al. (2023). In biology, they have been
used to represent pathway graphs (McNeela et al., 2024), cryo-EM images (Zhang et al., 2021), and
single-cell transcriptomic profiles (Tabaghi et al., 2021). Skopek et al. (2020) also embed image
datasets into product manifolds.

2 PRELIMINARIES

We review relevant details of different Riemannian manifolds (Euclidean spaces, hyperspheres, hy-
perboloids, and product manifolds), along with key properties of the Euclidean and hyperbolic vari-
ants of DTs and RFs.

2.1 RIEMANNIAN MANIFOLDS

We will begin by reviewing key details of hyperspheres, hyperboloids, and Euclidean spaces. For
more details, readers can consult Do Carmo (1992).

Each space described is a Riemannian manifold, meaning that it is locally isomorphic to Euclidean
space and equipped with a distance metric. The shortest paths between two points u and v on a
manifold are called geodesics. As all three spaces we consider have constant Gaussian curvature,
we define simple closed forms for geodesic distances in each of the following subsections in lieu of
a more general discussion of geodesic distances in arbitrary Riemannian manifolds.

Any constant-curvature manifold M is parameterized by a dimensionality D and a curvature K.
They can also all be considered embedded in an ambient space RD+1. Finally, for each point
x ∈M, the tangent plane at x, TxM, is the space of all tangent vectors at x:

TxM = {x′ ∈M : ⟨x′, x⟩M = 0}. (1)

2.1.1 EUCLIDEAN SPACE

Euclidean spaces are naturally understood as RD, but we will use the notation ED = RD when
treating Euclidean spaces as manifolds. In contrast, we will continue to use RD to refer to ambient
spaces. Euclidean spaces use the familiar inner product (dot product), norm (ℓ2 norm), and distance
function (Euclidean distance):

⟨u,v⟩ = u0v0 + u1v1 + . . .+ u2v2, (2)

∥u∥ =
√
⟨u,u⟩, (3)

δE(u,v) = ∥u− v∥. (4)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

2.1.2 HYPERSPHERICAL SPACE

Hyperspheres can be viewed as surfaces embedded in a higher-dimensional, Euclidean ambient
space. Hyperspherical space uses the same inner products as Euclidean space. The hypersphere
is the set of points in the ambient space having a Euclidean norm equal to some radius inversely
proportional to the curvature K > 0:

SD,K = {x ∈ RD+1 : ∥x∥ = 1/K}. (5)

Because shortest paths between two points u and v in SD,K through the ambient space leave the
surface of the manifold, we must define the hyperspherical distance function for the shortest path
entirely in SD,K between u and v:

δS(u,v) = cos−1(K2⟨u,v⟩)/K. (6)

2.1.3 HYPERBOLIC SPACE

Hyperbolic space is characterized by constant negative metric curvature. This has several conse-
quences: for instance, the angles in any triangle sum to less than π, many lines through a point can
be parallel to any given line, and neighborhoods grow exponentially with radius.

There are several equivalent models of hyperbolic space. For our purposes, we will describe the
hyperbolic space from the perspective of the hyperboloid model. First, we must define the ambient
Minkowski space. This is a vector space equipped with the Minkowski inner product:

⟨u,v⟩L = −u0v0 + u1v1 + . . .+ unvn. (7)

Similar to the Euclidean case, we let ∥u∥L = ⟨u,u⟩L (we do not wish to take the square root of a
negative number). The hyperboloid of dimension D and curvature K < 0, written HD,K , is a set of
points with constant Minkowski norm:

HD,K = {x ∈ RD : ∥x∥L = −1/K2, x0 > 0}, (8)

Finally, the hyperbolic distance function for geodesic distances between u,v ∈ HD,K is given by

δH(u,v) = − cosh−1(K2⟨u,v⟩L)/K. (9)

2.1.4 MIXED-CURVATURE PRODUCT MANIFOLDS

We reiterate the definition of product manifolds from Gu et al. (2018). A product manifold P is the
Cartesian product of one or more spherical, Euclidean, and hyperbolic manifolds:

P = Ss1,K1 × Ss2,K2 × · · · × Ssn,Kn ×Hh1,K1 × · · · ×Hhm,Km × Rd (10)

The total number of dimensions is
∑n

i si +
∑m

j hj + d. Each individual manifold is called a
component manifold, and the decomposition of the product manifold into component manifolds
is called the signature. Informally, the signature can be considered a list of dimensionalities and
curvatures for each component manifold.

Distances in P decompose as the ℓ2 norm of the distances in each of the component manifolds:

δP(u,v) =

√ ∑
M∈P

δM(uM,vM)2, (11)

where uM and vM denotes the restriction of u and v to their components inM and δM refers the
distance function appropriate toM.

For x ∈ P , the tangent plane at x, TxP , is the concatenation (denoted by the direct sum
⊕

) of all
component tangent planes:

TxP =
⊕
M∈P

TxMM. (12)

We additionally define the origin of P , µ0, as the concatenation of the origins of each respective
manifold. The origin is (1/|K|, 0, . . .) for HD,K and SD,K , and (0, 0, . . .) for ED.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

2.2 DECISION TREES AND RANDOM FORESTS

The Classification and Regression Trees (CART) (Breiman, 2017) algorithm fits a DT T to a set of
labeled data (X,y). Specifically, it greedily selects a split at each set to partition the dataset in such
a way as to maximize the information gain,

IG(y) = C(y)− |y
+|
|y|

C(y+)− |y
−|
|y|

C(y−). (13)

In this case, C(·) is some sort of impurity function (we use Gini impurity for classification and
variance for regression). Some splitting function S(·) is used to partition the labels y into two
classes, y+ and y−; however, S(·) also partitions the input space (corresponding to some X that
does not appear in Eq. 13) into decision regions. Classically, S(·) is a thresholding function and thus
breaks the input space into high-dimensional boxes given some dimension d and threshold θ:

S(x) = I{xd > θ}. (14)

This algorithm is applied recursively to each decision region until a stopping condition is met (e.g.,
maximum number of splits is reached). The result is a fitted DT, T , which can be used for inference.
During inference, an unseen point x is passed through T until it reaches a leaf node corresponding
to some decision region. For classification, the point is then assigned the majority label inside that
region; for regression, it is assigned the mean value inside that region.

Finally, a RF is an ensemble of DTs, typically trained on a bootstrapped subsample of the points and
features in X (Breiman, 2001).

2.2.1 HYPERBOLIC DECISION TREE ALGORITHMS

The hyperplane perspective on DTs is helpful background for understanding our method: mathemat-
ically, thresholding x on a dimension is equivalent to taking its dot product with the normal vector of
a separating hyperplane P, even in hyperbolic space. Although this is easy to compute for classical
thresholding boundaries, which are zero in all dimensions but d, this perspective principally admits
any hyperplane P as a valid decision boundary.

Naturally, considerations around choosing an appropriate (and computationally efficient) P abound.
To this end, Chlenski et al. (2024) impose homogeneity and sparsity constraints on the hyperplanes
they consider for hyperbolic DTs. In hyperbolic space, homogenous hyperplanes— hyperplanes
that contain the origin of the ambient space—intersect HD,K at geodesic submanifolds: that is,
P ∩ HD,K is closed under shortest paths according to δH . The sparsity constraint enforces that the
normal vectors of P must be nonzero only in two positions: the timelike coordinate x0 and some
other xd, which ensures that only O(nd) candidate hyperplanes are considered per split, and each
decision can be computed in O(1) time using sparse dot products.

3 MIXED-CURVATURE DECISION TREES

For any DT, we must transform the input X into a set of candidate hyperplanes. To this end, we
reframe and generalize the hyperplane approach of hyperbolic DTs. First, we observe that homoge-
nous hyperplanes are geodesically convex in any constant-curvature manifold; therefore, we can
extend the hyperbolic DT approach to E and S. Second, we observe that fitting sparse, homogenous
DTs is equivalent to thresholding on angles under 2-dimensional projections.

We consider the set of all projections onto the basis {x0, xd}, which can be computed in O(1) time
per projection by coordinate selection. First, we compute the angles in each projection:1

θ(x, d) = tan−1(x0/xd). (15)

Next, we use a modified splitting criterion to account for the geometry of angular splits:

S(x, d, θ) = I{θ(x, d) ∈ [θ, θ + π)}. (16)

1Note that, in our implementation, we use the PyTorch arctan2 function to ensure that we can recover
the full range of angles in [0, 2π). This is essential for properly specifying decision boundaries in S.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Once the best angle is selected, we must compute angular midpoints to select P that intersectsM at
a point geodesically equidistant the two points to either side of it (Euclidean DTs do this by sampling
averaging the threshold values). Angular midpoints for each component manifold are described in
the following sections and summarized in Table 4 in the Appendix.

With the angular features and manifold-informed midpoint modifications in place, the rest of the
algorithm follows Section 2.2 unmodified.

3.1 EUCLIDEAN DECISION TREES

While the intersections of homogenous hyperplanes in RD with ED are (trivially) convex, these lack
the expressiveness of an ambient-space formulation. Thus, we embed ED in RD+1 by a trivial lift:

ϕ : ED → RD+1, ϕ(u) = (1,u). (17)

For two points u,v ∈ ED, the midpoint angles in ED can be described in terms of the coordinates
of u and v or their respective projection angles (θu, θv) as

mE(u,v) = tan−1(2/(ud + vd)) (18)

= tan−1

(
tan−1(θu) tan

−1(θv)

tan−1(θu) + tan−1(θv)

)
. (19)

While this presentation of Euclidean DTs is unconventional, it is completely equivalent to thresh-
olding in the basis dimensions. See Appendix C for the proof.

3.2 HYPERBOLIC DECISION TREES

For two points u,v ∈ HD,K , we compute θu and θv according to Eq 15 and follow Chlenski et al.
(2024) in computing the hyperbolic midpoint angle in HD,K as:

V :=
sin(2θu − 2θv)

sin(θu + θv) sin(θv − θu)
, (20)

mH(u,v) =

{
cot−1(V −

√
V 2 − 1) if θu + θv < π

cot−1(V +
√
V 2 − 1) otherwise.

(21)

3.3 HYPERSPHERICAL DECISION TREES

The hyperspherical case is quite simple, except that unlike hyperbolic space and the “lifted” Eu-
clidean space after applying Eq 17, we lack a natural choice of x0. We adopt the convention of
fixing the first dimension of the embedding space as x0, which intuitively corresponds to fixing a
“north pole” at the origin µ0 = (1/|K|, 0, . . .).
Angular midpoints are particularly well-behaved in hyperspherical manifolds: given u,v ∈ SD,K ,
the hyperspherical midpoint angle by finding θu and θv using Eq 15 and taking their mean:

mS(u,v) = (θu + θv)/2. (22)

3.4 PRODUCT DECISION TREE ALGORITHM

Intuitively, the transition from DTs in a single component manifold to a product manifold is that we
now iterate over all preprocessed angles together, using the angular midpoint formula appropriate to
each component. The complete pseudocode for this algorithm is in Appendix B.

Allowing for a single DT to span all components—as opposed to, e.g., an ensemble of DTs, each
operating in a single component,—allows the model to independently allocate its splits across com-
ponents according to their relevance to the task at hand. Recasting DT learning in terms of angular
comparisons has three major advantages over finding planar decision boundaries directly:

1. We can consider angles under arbitrary linear projections (not just projections onto basis di-
mensions) while maintaining O(1) decision complexity. For instance, we can easily search
over all

(
D
2

)
2-dimensional projections if we wish.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

2. As there is no longer any need to enforce the constraints in Equations 5 and 8 at inference time,
it becomes possible to subsample the features (precomputed angles) in RFs.

3. Product manifolds can always represent additional features in a new Euclidean manifold. For
instance, this can be useful for incorporating metadata into DT training.

4 BENCHMARKS

We carried out benchmarks to evaluate which model, given a labeled set of mixed-curvature em-
beddings, achieves the lowest validation error. While we produced embeddings using a range of
datasets and embedding techniques, our results focus only on performance on downstream tasks.
We describe our data generation/embedding methods in more detail in the Appendix.

We summarize our benchmark results, with references to specific figures and tables, in Table 1. Our
full results can be found in Table 5 in the Appendix.

Table 1: Benchmarks summary. “#Top-k” columns count how often product DTs or RFs were
among the top k predictors for a given set of benchmarks.

Manifold type Task Reference #Top-1 #Top-2 Total

Single-curvature Classification Figure 3 10 (91%) 11 (100%) 11
Single-curvature Regression Figure 4 11 (100%) 11 (100%) 11
Product manifold Classification Table 2 11 (46%) 22 (92%) 24
Product manifold Regression Table 3 7 (64%) 9 (82%) 11

Total 39 (68%) 53 (93%) 57

4.1 EXPERIMENT DETAILS

Problem setup. Given a dataset X, a set of labels y, and a product manifold P , we evaluate a
variety of classifiers on their ability to predict y from X. We apply an identical 80:20 train-test split
to all of our data, train our models on the training set, and evaluate performance on the test set.

Results reporting. We report 95% confidence intervals for micro-averaged F1 scores for classifi-
cation and root mean squared error (RMSE) for regression benchmarks. Pairwise statistical signifi-
cance is determined by the Wilcoxon signed-rank test comparing all same-type classifiers (i.e. trees
to trees and forests to forests). We also apply a Bonferroni correction: starting with a critical value
of .05, we divide by the total number of comparisons carried out for a given signature: since we
compare 5 different models, our critical value becomes .05/10 = .005.

4.2 DATASETS

Synthetic data. We develop a novel method to sample mixtures of Gaussians in P to generate
classification and regression datasets. For classification, we generate 8 classes using 32 clusters. For
regression, we generate a single scalar response variable using 32 clusters with randomly-generated
intercepts. Our full method is described in Appendix Section A

Graph embeddings. For classification and regression on graph datasets, we generate
embeddings that approximate shortest-path distances in the graph using the method de-
scribed in Gu et al. (2018). We select the optimal signature from the candidate set
{(H2)2,H2E2,H2S2,S2E2, (S2)2,H4,E4,S4} by generating embeddings in each signature and se-
lecting the signature with the lowest metric distortion. For link prediction, we embed all datasets in
P = (S2E2H2), then create a binary classification dataset by associating each pair of nodes with a
point in P2E1, where each pair of points is included and the last Euclidean dimension is the man-
ifold distance δP(xi,xj); labels are simply whether there is an edge between nodes i and j. Full
details on graph embeddings are described in Appendix Section E.2.

Mixed-curvature VAE latent space. We follow Skopek et al. (2020) in training variational autoen-
coders (VAEs) whose latent space is P . Once the VAE is trained, we use its encoder to generate

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

0.2

0.4

0.6

0.8

F
1
 S

co
re * **

*
* *

* *

*

* *

*
* *

* *

* *

* *

* *
* *

Decision Trees

-4 -2 -1 -0.5 -0.25 0 0.25 0.5 1 2 4
Curvature

0.2

0.4

0.6

0.8

F
1
 S

co
re * *

* *
* * * *

* *

* *
* *

* *
* *

* *

*
*

* * * *

* *
*

*

*
*

*
*

* *
*

*
*

*

*
*

*
*

*

Random Forests

Model
Product
Ambient
Tangent
k-NN

Classification benchmark: Synthetic (single K)

Figure 3: Classification benchmark comparison of DTs (top) and RFs (bottom). We report micro-
averaged F1 scores on a synthetic data classification task involving mixtures of 8 Gaussians in
manifolds of varying constant curvatures K. We compare DTs and RFs in the product manifold,
the ambient space, and the tangent plane, along with k-nearest neighbors on distances in P .
Statistical significance (Bonferroni-corrected p < 0.05) is marked with an asterisk (*). We omit
product space perceptrons, which never achieved competitive results.

0.2

0.3

0.4

R
M

SE * *
** *

*

* *
* * *

* * ** *
*

*

*

* *
* * *

* * *
*

*

* *
* * *

* * *

Decision Trees

-4 -2 -1 -0.5 -0.25 0 0.25 0.5 1 2 4
Curvature

0.2

0.3

0.4

R
M

SE * *
*

* *
* *

** * *
* *

*
* *

*
* * *

*
*

* *
*

* *
*

*
* *

*
*

*
* * *

*
*

* *
** *

*
* * *

*
*

* *
*

Random Forests

Model
Product
Ambient
Tangent
k-NN

Regression benchmark: Synthetic (single K)

Figure 4: Regression benchmarks (RMSE) for single-curvature manifolds. We follow the conven-
tions of Figure 3 and mark Bonferroni-corrected significance with an asterisk (*).

embeddings for our dataset and classify these embeddings. Full details on VAE training and down-
stream inference are described in Appendix Section E.3.

Empirical datasets. Some datasets can be represented in a non-Euclidean geometry without gen-
erating embeddings: for instance, geospatial data lives in S2, while cyclic time series embed in
S1. We describe our approach to generating embeddings for these empirical datasets in Appendix
Section E.4.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 2: F1 scores for all classification and link prediction (LP) benchmarks. Best predic-
tors are shown in bold, while second-best predictors are underlined. For brevity, we omit
columns for low-performing methods and merge DT and RF columns (e.g. “Ambient” means
max(mean(Ambient DT),mean(Ambient RF)).)

Dataset Signature k-NN Ambient Product

Sy
nt

he
tic

(m
ul

ti-
K

) Gaussian (S2)2 35.7±.5 32.3±.5 33.1±.5
E4 34.9±.5 30.0±.4 31.3±.4

H2E2 40.3±.4 34.7±.5 36.1±.5
H2S2 38.4±.5 33.3±.5 35.2±.5
H4 47.5±.5 35.9±.4 40.0±.4
S2E2 35.8±.5 32.7±.5 33.5±.4
S4 33.1±.4 27.6±.4 28.0±.5

(H2)2 41.5±.5 34.5±.5 37.0±.5

G
ra

ph
em

be
dd

in
gs

CiteSeer H2S2 25.9±.5 26.1±.7 25.8±.6
Cora H4 20.7±.4 28.9±.5 28.9±.4

PolBlogs (S2)2 93.5±.4 93.2±.5 92.9±.4
AdjNoun (LP) (S2E2H2)2E1 93.3±1.1 93.7±1.1 93.7±1.1
Dolphins (LP) (S2E2H2)2E1 96.6±.3 92.3±.9 96.6±.3
Football (LP) (S2E2H2)2E1 79.8±3.3 85.7±3.6 85.7±3.6

Karate Club (LP) (S2E2H2)2E1 95.1±1.5 88.6±2.2 95.1±1.5
Les Mis (LP) (S2E2H2)2E1 95.7±.7 92.7±.9 95.6±.8

PolBooks (LP) (S2E2H2)2E1 95.8±.4 92.9±.6 95.8±.4

VA
E

Blood S2E2(H2)3 17.4±.5 19.3±.5 20.1±.5
CIFAR-100 (S2)4 8.6±.4 11.5±.5 12.0±.3
Lymphoma (S2)2 77.8±1.4 81.7±1.2 83.7±1.2

MNIST S2E2H2 41.9±3.7 35.7±2.8 39.4±2.3

O
th

er

Landmasses S2 91.4±.2 83.5±.3 84.2±.3
Neuron 33 (S1)5 50.5±.5 76.2±.4 77.0±.4
Neuron 46 (S1)5 50.2±.2 61.1±.3 61.2±.3

Table 3: Regression results (RMSE) for all benchmarks. We follow the conventions of Table 2. CS
PhDs is a graph embedding dataset, whereas Temperature and Traffic are empirical.

Dataset Signature k-Neighbors Ambient Product

Synthetic (multi-K) (S2)2 .196±.002 .191±.002 .191±.002
E4 .194±.003 .191±.002 .190±.002

H2E2 .196±.003 .194±.002 .193±.002
H2S2 .197±.003 .194±.002 .193±.002
H4 .175±.003 .184±.003 .178±.003
S2E2 .199±.003 .194±.002 .194±.002
S4 .194±.002 .188±.002 .189±.002

(H2)2 .193±.003 .193±.002 .191±.002
CS PhDs H4 .053±.005 .052±.005 .041±.004

Temperature S2S1 7.198±.212 4.531±.187 7.130±.123
Traffic E1(S1)4 .510±.003 .505±.003 .534±.003

4.3 BASELINES

We use Scikit-Learn (Pedregosa et al., 2011) DTs and RFs in both the ambient space RD+1 and the
tangent plane Tµ0

P as baselines. Ambient space models operate directly on ambient space coordi-
nates. Tangent plane models project points from P to Tµ0

P by applying the logarithmic map at µ0

as a preprocessing step. We use Scikit-Learn k-nearest neighbor (k-NN) classifiers and regressors
with precomputed pairwise distance matrices according to δP (Eq. 11). Finally, we implemented the
product space perceptron algorithm described in Tabaghi et al. (2021). For our own models, we set
hyperparameters identically to Scikit-Learn DTs and RFs, except we consider all

(
D
2

)
projections—

for a total of 3 features per 2-dimensional component manifold, just like ambient space methods use.
Full details for each model can be found in Appendix E.1.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Product Space RF Euclidean RF

Tangent RF k-Nearest Neighbors

0.0

0.5

1.0

(L
an

d)

Decision boundaries visualized: land vs water

Figure 5: We color a world map with each model’s predicted P(Land) for the “Landmasses” dataset,
a land vs. water classification benchmark in S2. Each RF consists of 12 DTs with a max depth of 3.
Note the artifacts learned by Euclidean, tangent RFs, and k-NN models.

4.4 RESULTS

For single-curvature synthetic datasets, our method was the best classifier in 10 out of 11 signatures
(Figure 3) and the best regressor (Figure 4 for all signatures. In Tables 2 and 3, we demonstrate
consistently good performance across a diverse range of benchmarks.

Further experiments can be found in the Appendix: we provide ablations in F, detailed tables and
latent space visualizations in G, comparisons to MLP and GNN models in I, runtime and computa-
tional complexity analysis in J, and interpretability experiments in K.

5 CONCLUSION

We present strong preliminary evidence favoring mixed-curvature DTs and RFs. In particular, we
motivate and describe our entire algorithm and demonstrate its effectiveness across a highly diverse
set of 57 benchmarks covering a variety of tasks and geometries.

Product manifold DTs and RFs offer a valuable balance of expressiveness and simplicity, positioned
between extremely legible but underpowered linear classifiers and powerful but uninterpretable neu-
ral networks operating in product manifolds. We believe that these qualities, combined with their
demonstrated performance across our benchmark datasets, are compelling evidence of our method’s
usefulness in a non-Euclidean data analysis toolkit.

Limitations. While we view our work as downstream of signature selection and embedding gener-
ation, its value heavily depends on the availability of good product manifold embeddings. There are
challenges in selecting appropriate signatures (Borde et al., 2023a), and product manifolds are not
able to represent all patterns in data (Borde & Kratsios, 2023). Furthermore, it is computationally
intensive to generate of embeddings. There are also tradeoffs between DTs and RFs and other high-
performing methods, especially graph neural networks when topologies are known. The complexity
of working with non-Euclidean data could pose a potential barrier to adoption. Finally, the lack of
a privileged basis (Elhage et al., 2023) in non-Euclidean embeddings makes the inductive bias of
decision trees less well-motivated.

Future work. It may be possible to exploit non-privileged basis dimensions using approaches such
as rotation forests (Bagnall et al., 2020), random 2-D subspace angles, or oblique decision trees. A
continuous unification, such as the κ-stereographic model described in (Skopek et al., 2020), may
be more robust and elegant. Extensions to simplex geometry (Mishra et al., 2020) are also worth
considering.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

10x Genomics. Hodgkin’s Lymphoma, Dissociated Tumor: Targeted, Immunology Panel, 2020a.
URL https://www.10xgenomics.com/datasets/hodgkins-lymphoma-disso
ciated-tumor-targeted-immunology-panel-3-1-standard-4-0-0.

10x Genomics. PBMCs from a Healthy Donor: Targeted-Compare, Immunology Panel, 2020b.
URL https://www.10xgenomics.com/datasets/pbm-cs-from-a-healthy-d
onor-targeted-compare-immunology-panel-3-1-standard-4-0-0.

Lada A. Adamic and Natalie Glance. The political blogosphere and the 2004 U.S. election: divided
they blog. In Proceedings of the 3rd international workshop on Link discovery, LinkKDD ’05,
pp. 36–43, New York, NY, USA, August 2005. Association for Computing Machinery. ISBN
978-1-59593-215-0. doi: 10.1145/1134271.1134277. URL https://doi.org/10.1145/
1134271.1134277.

Gregor Bachmann, Gary Bécigneul, and Octavian-Eugen Ganea. Constant Curvature Graph Con-
volutional Networks, May 2020. URL http://arxiv.org/abs/1911.05076.
arXiv:1911.05076 [cs].

A. Bagnall, M. Flynn, J. Large, J. Line, A. Bostrom, and G. Cawley. Is rotation forest the best
classifier for problems with continuous features?, April 2020. URL http://arxiv.org/ab
s/1809.06705. arXiv:1809.06705 [cs].

Gary Becigneul and Octavian-Eugen Ganea. Riemannian Adaptive Optimization Methods. Septem-
ber 2018. URL https://openreview.net/forum?id=r1eiqi09K7.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation Learning: A Review and New
Perspectives, April 2014. URL http://arxiv.org/abs/1206.5538. arXiv:1206.5538.

Haitz Saez de Ocariz Borde, Alvaro Arroyo, Ismael Morales, Ingmar Posner, and Xiaowen Dong.
Neural Latent Geometry Search: Product Manifold Inference via Gromov-Hausdorff-Informed
Bayesian Optimization, October 2023a. URL http://arxiv.org/abs/2309.04810.
arXiv:2309.04810.

Haitz Sáez de Ocáriz Borde and Anastasis Kratsios. Neural Snowflakes: Universal Latent Graph
Inference via Trainable Latent Geometries, October 2023. URL http://arxiv.org/abs/
2310.15003. arXiv:2310.15003.

Haitz Sáez de Ocáriz Borde, Anees Kazi, Federico Barbero, and Pietro Liò. Latent Graph Inference
using Product Manifolds, June 2023b. URL http://arxiv.org/abs/2211.16199.
arXiv:2211.16199 [cs].

Haitz Sáez de Ocáriz Borde, Anastasis Kratsios, Marc T. Law, Xiaowen Dong, and Michael Bron-
stein. Neural Spacetimes for DAG Representation Learning, August 2024. URL http:
//arxiv.org/abs/2408.13885. arXiv:2408.13885.

Leo Breiman. Random forests. Machine Learning, 45(1):5–32, October 2001. ISSN 1573-0565. doi:
10.1023/A:1010933404324. URL https://doi.org/10.1023/A:1010933404324.

Leo Breiman. Classification and Regression Trees. Routledge, New York, October 2017. ISBN
978-1-315-13947-0. doi: 10.1201/9781315139470.

Lawrence Cayton. Algorithms for manifold learning. 2005.

Benjamin Paul Chamberlain, James Clough, and Marc Peter Deisenroth. Neural Embeddings of
Graphs in Hyperbolic Space, May 2017. URL http://arxiv.org/abs/1705.10359.
arXiv:1705.10359.

Philippe Chlenski, Ethan Turok, Antonio Moretti, and Itsik Pe’er. Fast hyperboloid decision tree
algorithms, March 2024. URL http://arxiv.org/abs/2310.13841. arXiv:2310.13841
[cs].

11

https://www.10xgenomics.com/datasets/hodgkins-lymphoma-dissociated-tumor-targeted-immunology-panel-3-1-standard-4-0-0
https://www.10xgenomics.com/datasets/hodgkins-lymphoma-dissociated-tumor-targeted-immunology-panel-3-1-standard-4-0-0
https://www.10xgenomics.com/datasets/pbm-cs-from-a-healthy-donor-targeted-compare-immunology-panel-3-1-standard-4-0-0
https://www.10xgenomics.com/datasets/pbm-cs-from-a-healthy-donor-targeted-compare-immunology-panel-3-1-standard-4-0-0
https://doi.org/10.1145/1134271.1134277
https://doi.org/10.1145/1134271.1134277
http://arxiv.org/abs/1911.05076
http://arxiv.org/abs/1809.06705
http://arxiv.org/abs/1809.06705
https://openreview.net/forum?id=r1eiqi09K7
http://arxiv.org/abs/1206.5538
http://arxiv.org/abs/2309.04810
http://arxiv.org/abs/2310.15003
http://arxiv.org/abs/2310.15003
http://arxiv.org/abs/2211.16199
http://arxiv.org/abs/2408.13885
http://arxiv.org/abs/2408.13885
https://doi.org/10.1023/A:1010933404324
http://arxiv.org/abs/1705.10359
http://arxiv.org/abs/2310.13841

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Sungjun Cho, Seunghyuk Cho, Sungwoo Park, Hankook Lee, Honglak Lee, and Moontae Lee.
Curve Your Attention: Mixed-Curvature Transformers for Graph Representation Learning,
September 2023. URL http://arxiv.org/abs/2309.04082. arXiv:2309.04082 [cs].

Calin Cruceru, Gary Bécigneul, and Octavian-Eugen Ganea. Computationally Tractable Riemannian
Manifolds for Graph Embeddings, June 2020. URL http://arxiv.org/abs/2002.086
65. arXiv:2002.08665.

Jiarui Ding and Aviv Regev. Deep generative model embedding of single-cell RNA-Seq profiles
on hyperspheres and hyperbolic spaces. Nature Communications, 12(1):2554, May 2021. ISSN
2041-1723. doi: 10.1038/s41467-021-22851-4. URL https://www.nature.com/artic
les/s41467-021-22851-4. Publisher: Nature Publishing Group.

Manfredo Do Carmo. Riemannian Geometry. Springer US, 1992. URL https://link.sprin
ger.com/book/9780817634902.

Lars Doorenbos, Pablo Márquez-Neila, Raphael Sznitman, and Pascal Mettes. Hyperbolic Random
Forests, August 2023. URL http://arxiv.org/abs/2308.13279. arXiv:2308.13279
[cs].

Nelson Elhage, Robert Lasenby, and Christopher Olah. Privileged Bases in the Transformer Residual
Stream, 2023. URL https://transformer-circuits.pub/2023/privileged-b
asis/index.html.

Fedesoriano. Traffic Prediction Dataset, 2020. URL https://www.kaggle.com/dataset
s/fedesoriano/traffic-prediction-dataset.

Octavian-Eugen Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic Entailment Cones for
Learning Hierarchical Embeddings, June 2018. URL http://arxiv.org/abs/1804.018
82. arXiv:1804.01882.

C. Lee Giles, Kurt D. Bollacker, and Steve Lawrence. CiteSeer: an automatic citation indexing
system. In Proceedings of the third ACM conference on Digital libraries, DL ’98, pp. 89–98,
New York, NY, USA, May 1998. Association for Computing Machinery. ISBN 978-0-89791-
965-4. doi: 10.1145/276675.276685. URL https://dl.acm.org/doi/10.1145/276
675.276685.

Francesco Di Giovanni, Giulia Luise, and Michael Bronstein. Heterogeneous manifolds for
curvature-aware graph embedding, February 2022. URL http://arxiv.org/abs/22
02.01185. arXiv:2202.01185.

M. Girvan and M. E. J. Newman. Community structure in social and biological networks. Pro-
ceedings of the National Academy of Sciences of the United States of America, 99(12):7821–
7826, June 2002. ISSN 0027-8424. doi: 10.1073/pnas.122653799. URL https:
//www.ncbi.nlm.nih.gov/pmc/articles/PMC122977/.

Albert Gu, Frederic Sala, Beliz Gunel, and Christopher Ré. Learning Mixed-Curvature Representa-
tions in Product Spaces. September 2018. URL https://openreview.net/forum?id=
HJxeWnCcF7.

Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring Network Structure, Dynamics,
and Function using NetworkX. pp. 11–15, Pasadena, California, June 2008. doi: 10.25080/TCW
V9851. URL https://doi.curvenote.com/10.25080/TCWV9851.

John D. Hunter. Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering,
9(3):90–95, May 2007. ISSN 1558-366X. doi: 10.1109/MCSE.2007.55. URL https:
//ieeexplore.ieee.org/document/4160265. Conference Name: Computing in
Science & Engineering.

David S. Johnson. The genealogy of theoretical computer science: a preliminary report. SIGACT
News, 16(2):36–49, July 1984. ISSN 0163-5700. doi: 10.1145/1008959.1008960. URL
https://dl.acm.org/doi/10.1145/1008959.1008960.

12

http://arxiv.org/abs/2309.04082
http://arxiv.org/abs/2002.08665
http://arxiv.org/abs/2002.08665
https://www.nature.com/articles/s41467-021-22851-4
https://www.nature.com/articles/s41467-021-22851-4
https://link.springer.com/book/9780817634902
https://link.springer.com/book/9780817634902
http://arxiv.org/abs/2308.13279
https://transformer-circuits.pub/2023/privileged-basis/index.html
https://transformer-circuits.pub/2023/privileged-basis/index.html
https://www.kaggle.com/datasets/fedesoriano/traffic-prediction-dataset
https://www.kaggle.com/datasets/fedesoriano/traffic-prediction-dataset
http://arxiv.org/abs/1804.01882
http://arxiv.org/abs/1804.01882
https://dl.acm.org/doi/10.1145/276675.276685
https://dl.acm.org/doi/10.1145/276675.276685
http://arxiv.org/abs/2202.01185
http://arxiv.org/abs/2202.01185
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC122977/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC122977/
https://openreview.net/forum?id=HJxeWnCcF7
https://openreview.net/forum?id=HJxeWnCcF7
https://doi.curvenote.com/10.25080/TCWV9851
https://ieeexplore.ieee.org/document/4160265
https://ieeexplore.ieee.org/document/4160265
https://dl.acm.org/doi/10.1145/1008959.1008960

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Allan R. Jones, Caroline C. Overly, and Susan M. Sunkin. The Allen Brain Atlas: 5 years and
beyond. Nature Reviews Neuroscience, 10(11):821–828, November 2009. ISSN 1471-0048. doi:
10.1038/nrn2722. URL https://www.nature.com/articles/nrn2722. Publisher:
Nature Publishing Group.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization, January 2017.
URL http://arxiv.org/abs/1412.6980. arXiv:1412.6980 [cs].

Donald Ervin Knuth. The Stanford GraphBase : a platform for combinatorial computing. New
York, N.Y. : ACM Press ; Reading, Mass. : Addison-Wesley, 1993. ISBN 978-0-201-54275-2.
URL http://archive.org/details/stanfordgraphbas00knut.

Max Kochurov, Rasul Karimov, and Serge Kozlukov. Geoopt: Riemannian Optimization in PyTorch,
July 2020. URL http://arxiv.org/abs/2005.02819. arXiv:2005.02819 [cs].

Valdis Krebs. Books about US politics, 2004. URL http://www.orgnet.com.

Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. 2009.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, November 1998. ISSN 1558-2256. doi:
10.1109/5.726791. URL https://ieeexplore.ieee.org/document/726791.
Conference Name: Proceedings of the IEEE.

Kaibei Li, Yihao Zhang, Junlin Zhu, Xiaokang Li, and Xibin Wang. Multi-space interaction learn-
ing for disentangled knowledge-aware recommendation. Expert Systems with Applications, 254:
124458, November 2024. ISSN 0957-4174. doi: 10.1016/j.eswa.2024.124458. URL https:
//www.sciencedirect.com/science/article/pii/S0957417424013241.

David Lusseau, Karsten Schneider, Oliver J. Boisseau, Patti Haase, Elisabeth Slooten, and Steve M.
Dawson. The bottlenose dolphin community of Doubtful Sound features a large proportion
of long-lasting associations. Behavioral Ecology and Sociobiology, 54(4):396–405, September
2003. ISSN 1432-0762. doi: 10.1007/s00265-003-0651-y. URL https://doi.org/10.1
007/s00265-003-0651-y.

Daniel McNeela, Frederic Sala, and Anthony Gitter. Product Manifold Representations for Learning
on Biological Pathways, January 2024. URL http://arxiv.org/abs/2401.15478.
arXiv:2401.15478 [cs, q-bio].

Bamdev Mishra, Hiroyuki Kasai, and Pratik Jawanpuria. Riemannian optimization on the simplex of
positive definite matrices, November 2020. URL http://arxiv.org/abs/1906.10436.
arXiv:1906.10436.

Yoshihiro Nagano, Shoichiro Yamaguchi, Yasuhiro Fujita, and Masanori Koyama. A Wrapped
Normal Distribution on Hyperbolic Space for Gradient-Based Learning, May 2019. URL http:
//arxiv.org/abs/1902.02992. arXiv:1902.02992 [cs, stat].

M. E. J. Newman. Finding community structure in networks using the eigenvectors of matrices,
May 2006. URL https://arxiv.org/abs/physics/0605087v3.

Tuc Nguyen-Van, Dung D. Le, and The-Anh Ta. Improving Heterogeneous Graph Learning with
Weighted Mixed-Curvature Product Manifold, July 2023. URL http://arxiv.org/abs/
2307.04514. arXiv:2307.04514 [cs].

Maximilian Nickel and Douwe Kiela. Poincaré Embeddings for Learning Hierarchical Representa-
tions, May 2017. URL http://arxiv.org/abs/1705.08039. arXiv:1705.08039.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas,
Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Edouard Duch-
esnay. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12
(85):2825–2830, 2011. ISSN 1533-7928. URL http://jmlr.org/papers/v12/pedr
egosa11a.html.

13

https://www.nature.com/articles/nrn2722
http://arxiv.org/abs/1412.6980
http://archive.org/details/stanfordgraphbas00knut
http://arxiv.org/abs/2005.02819
http://www.orgnet.com
https://ieeexplore.ieee.org/document/726791
https://www.sciencedirect.com/science/article/pii/S0957417424013241
https://www.sciencedirect.com/science/article/pii/S0957417424013241
https://doi.org/10.1007/s00265-003-0651-y
https://doi.org/10.1007/s00265-003-0651-y
http://arxiv.org/abs/2401.15478
http://arxiv.org/abs/1906.10436
http://arxiv.org/abs/1902.02992
http://arxiv.org/abs/1902.02992
https://arxiv.org/abs/physics/0605087v3
http://arxiv.org/abs/2307.04514
http://arxiv.org/abs/2307.04514
http://arxiv.org/abs/1705.08039
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and Tina Eliassi-Rad.
Collective Classification in Network Data. AI Mag., 29(3):93–106, September 2008. ISSN 0738-
4602. doi: 10.1609/aimag.v29i3.2157. URL https://doi.org/10.1609/aimag.v29i
3.2157.

Ondrej Skopek, Octavian-Eugen Ganea, and Gary Bécigneul. Mixed-curvature Variational Autoen-
coders, February 2020. URL http://arxiv.org/abs/1911.08411. arXiv:1911.08411
[cs, stat].

Rishi Sonthalia and Anna C. Gilbert. Tree! I am no Tree! I am a Low Dimensional Hyperbolic Em-
bedding, October 2020. URL http://arxiv.org/abs/2005.03847. arXiv:2005.03847
[cs, math, stat].

Li Sun, Zhongbao Zhang, Junda Ye, Hao Peng, Jiawei Zhang, Sen Su, and Philip S. Yu. A Self-
supervised Mixed-curvature Graph Neural Network, December 2021. URL http://arxiv.
org/abs/2112.05393. arXiv:2112.05393 [cs].

Puoya Tabaghi, Chao Pan, Eli Chien, Jianhao Peng, and Olgica Milenkovic. Linear Classifiers in
Product Space Forms, February 2021. URL http://arxiv.org/abs/2102.10204.
arXiv:2102.10204 [cs, stat] version: 1.

Puoya Tabaghi, Michael Khanzadeh, Yusu Wang, and Sivash Mirarab. Principal Component
Analysis in Space Forms, July 2024. URL http://arxiv.org/abs/2301.02750.
arXiv:2301.02750 [cs, eess, math, stat].

Dimosthenis Tsagkrasoulis and Giovanni Montana. Random Forest regression for manifold-
valued responses, February 2017. URL http://arxiv.org/abs/1701.08381.
arXiv:1701.08381 [stat].

Marco Virgolin. Time complexity for different machine learning algorithms, February 2021. URL
https://marcovirgolin.github.io/extras/details_time_complexity_m
achine_learning_algorithms/.

Shen Wang, Xiaokai Wei, Cicero Nogueira Nogueira dos Santos, Zhiguo Wang, Ramesh Nallapati,
Andrew Arnold, Bing Xiang, Philip S. Yu, and Isabel F. Cruz. Mixed-Curvature Multi-Relational
Graph Neural Network for Knowledge Graph Completion. In Proceedings of the Web Conference
2021, WWW ’21, pp. 1761–1771, New York, NY, USA, June 2021. Association for Computing
Machinery. ISBN 978-1-4503-8312-7. doi: 10.1145/3442381.3450118. URL https://doi.
org/10.1145/3442381.3450118.

Wikipedia. List of cities by average temperature, August 2024. URL https://en.wikipedia
.org/w/index.php?title=List_of_cities_by_average_temperature&old
id=1241784795#cite_note-1. Page Version ID: 1241784795.

Wayne W. Zachary. An Information Flow Model for Conflict and Fission in Small Groups. Journal
of Anthropological Research, 33(4):452–473, 1977. ISSN 0091-7710. URL https://www.js
tor.org/stable/3629752. Publisher: [University of New Mexico, University of Chicago
Press].

Sharon Zhang, Amit Moscovich, and Amit Singer. Product Manifold Learning. In Proceedings
of The 24th International Conference on Artificial Intelligence and Statistics, pp. 3241–3249.
PMLR, March 2021. URL https://proceedings.mlr.press/v130/zhang21j.ht
ml. ISSN: 2640-3498.

Grace X. Y. Zheng, Jessica M. Terry, Phillip Belgrader, Paul Ryvkin, Zachary W. Bent, Ryan Wilson,
Solongo B. Ziraldo, Tobias D. Wheeler, Geoff P. McDermott, Junjie Zhu, Mark T. Gregory, Joe
Shuga, Luz Montesclaros, Jason G. Underwood, Donald A. Masquelier, Stefanie Y. Nishimura,
Michael Schnall-Levin, Paul W. Wyatt, Christopher M. Hindson, Rajiv Bharadwaj, Alexander
Wong, Kevin D. Ness, Lan W. Beppu, H. Joachim Deeg, Christopher McFarland, Keith R. Loeb,
William J. Valente, Nolan G. Ericson, Emily A. Stevens, Jerald P. Radich, Tarjei S. Mikkelsen,
Benjamin J. Hindson, and Jason H. Bielas. Massively parallel digital transcriptional profiling
of single cells. Nature Communications, 8(1):14049, January 2017. ISSN 2041-1723. doi:
10.1038/ncomms14049. URL https://www.nature.com/articles/ncomms14049.
Publisher: Nature Publishing Group.

14

https://doi.org/10.1609/aimag.v29i3.2157
https://doi.org/10.1609/aimag.v29i3.2157
http://arxiv.org/abs/1911.08411
http://arxiv.org/abs/2005.03847
http://arxiv.org/abs/2112.05393
http://arxiv.org/abs/2112.05393
http://arxiv.org/abs/2102.10204
http://arxiv.org/abs/2301.02750
http://arxiv.org/abs/1701.08381
https://marcovirgolin.github.io/extras/details_time_complexity_machine_learning_algorithms/
https://marcovirgolin.github.io/extras/details_time_complexity_machine_learning_algorithms/
https://doi.org/10.1145/3442381.3450118
https://doi.org/10.1145/3442381.3450118
https://en.wikipedia.org/w/index.php?title=List_of_cities_by_average_temperature&oldid=1241784795#cite_note-1
https://en.wikipedia.org/w/index.php?title=List_of_cities_by_average_temperature&oldid=1241784795#cite_note-1
https://en.wikipedia.org/w/index.php?title=List_of_cities_by_average_temperature&oldid=1241784795#cite_note-1
https://www.jstor.org/stable/3629752
https://www.jstor.org/stable/3629752
https://proceedings.mlr.press/v130/zhang21j.html
https://proceedings.mlr.press/v130/zhang21j.html
https://www.nature.com/articles/ncomms14049

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

A GAUSSIAN MIXTURE DETAILS

A.1 OVERALL STRUCTURE

The structure of our sampling algorithm is as follows. Note that, rather than lettingM be a mani-
fold of arbitrary curvature, we force its curvature to be one of {−1, 0, 1} for implementation reasons.
This necessitates rescaling steps, which take place in Equations 29, 33, and 39. The result is equiv-
alent to performing the equivalent steps, without rescaling, on a manifold of the proper curvature.

1. Generate c, a vector that divides m samples into n clusters:

praw = ⟨p0, p1, . . . , pn−1⟩ (23)
pi ∼ Uniform(0, 1) (24)

pnorm =
praw∑n−1
i=0 pi

(25)

c = ⟨c0, c1, . . . cm−1⟩ (26)
ci ∼ Categorical(n,pnorm) (27)

2. Sample Meuc, an n×D matrix of n class means:

Meuc = ⟨m0,m1, . . . ,mn−1⟩T (28)

mi ∼ N (0,
√
KI). (29)

3. Move Meuc into T0M, the tangent plane at the origin of M, by applying ψ : x → (0,x)
per-row to Meuc:

Mtan = ⟨ψ(m0), ψ(m1), . . . ψ(mn−1)⟩T , (30)

ψ : RD → RD+1, x→ ⟨0,x⟩. (31)

4. Project Mtan ontoM using the exponential map from T0M to Mtan:

M = exp0(Mtan). (32)

5. For 0 ≤ i < n, sample a corresponding covariance matrix. Here, σ is a variance scale
parameter that can be set:

Σi ∼Wishart(σ
√
KI, D) (33)

6. For 0 ≤ j < m, sample Xeuc, a matrix of m points according to their clusters’ covariance
matrices:

Xeuc = ⟨x0,x1, . . .xm−1⟩T (34)
xj ∼ N (0,Σcj

). (35)

7. Apply ψ(·) from Eq 31 to each xj to move it into T0M:

Xtan = ⟨ψ(x0), ψ(x1), . . . ψ(xm−1)⟩T . (36)

8. For each row in Xtan, apply parallel transport from T0M to its class mean:

XPT = ⟨x0,µ,x1,µ, . . . ,xm−1,µ⟩ (37)
xj,µ = PT0→mcj

(xj) (38)

9. Use the exponential map at TµM to move the points onto the manifold:

XM = ⟨x0,M,x1,M, . . . ,xm−1,M⟩ (39)

xj,M =
expmcj

(xj,µ)
√
K

(40)

10. Repeat steps 2–9 for as many manifolds as desired; produce a final embedding by concatenat-
ing all component embeddings column-wise:

X = ⟨XM0 ,XM1 , . . .XMp⟩ (41)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

A.2 EQUATIONS FOR MANIFOLD OPERATIONS

First, we provide the forms of the parallel transport operation in hyperbolic, hyperspherical, and
Euclidean spaces:

PTH
ν→µ(v) = v +

⟨µ− αν, ν⟩L
α+ 1

(ν + µ) (42)

α = −⟨ν, µ⟩L (43)

PTS
ν→µ(v) = v cos(d) +

sin(d)

d
(µ− cos(d)ν) (44)

d = cos−1(ν · µ) (45)

PTE
ν→µ(v) = v + µ− ν. (46)

The exponential map is defined as follows in each of the three spaces:

expHµ (u) = cosh(∥u∥L)µ+ sinh(∥u∥L)
u

∥u∥L
(47)

expSµ(u) = cos(∥u∥)µ+ sin(∥u∥) u

∥u∥
(48)

expEµ(u) = u. (49)

A.3 GENERATING CLASSIFICATION TARGETS

To generate classification targets covering p ≤ n classes, all we need to do is map clusters to classes.
To ensure that each class has at least one associated cluster, we arbitrarily assign the first p clusters
to the first p classes. In the p = n case, this is equal to the p-dimensional identity matrix, and we
conclude. In the p < n case, we assign the remaining n− p by drawing assignments from a uniform
categorical distribution over the p classes.

A.4 GENERATING REGRESSION TARGETS

To generate regression targets, we draw per-cluster slopes and intercepts:

βi,k ∼ Uniform(−1, 1) (50)
αi ∼ Uniform(−10, 10 (51)

We then multiply each xj ∈ Xeuc (i.e. the pre-transport samples from the normal distribution) by
β and add α:

yj = xjβ + α+ ε (52)

To make the regression task more constrained and, therefore, to make the RMSEs across samples
more comparable, we further normalize the labels to the range [0, 1] by subtracting the minimum y
value and dividing by the range.

A.5 RELATIONSHIP TO OTHER WORK

Nagano et al. (2019) developed the overall technique used for a single cluster and a single manifold,
i.e. steps 6–9. Chlenski et al. (2024) modified this method to work for mixtures of Gaussians in
Hd,1, and deployed it for d ∈ 2, 4, 8, 16. This corresponds to steps 1–5 of our procedure (although
note that our covariance matrices are sampled differently in step 5). Thus, our contribution is simply
to add step 10, modify step 5 to use the Wishart distribution, to add curvature-related scaling factors
in Equations 29, 33, and 39, and to generate classification and regression targets as described in the
preceding sections.

We apply this to hyperspherical manifolds, for which the von Mises-Fisher (VMF) distribution is
typically preferred. This is an unconventional choice, but has been employed previously by Skopek
et al. (2020) in their mixed-curvature VAE formulation. We do not argue for the superiority of our
approach over the VMF distribution in general; however, we prefer to use ours for these benchmarks,
as it allows us to draw simpler parallels between manifolds of different curvatures.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

B PRODUCT SPACE DECISION TREE PSEUDOCODE

Algorithm 1 Product Space Decision Tree

1: Procedure FIT:
2: P (signature of) product manifold
3: X data points
4: y target labels
5: Initialize:
6: T an empty tree
7: return FITTREE(X,y, 0)
8:
9: Procedure FITTREE:

10: X data points
11: y target labels
12: t current depth of the tree.
13: Initialize:
14: dbest dimension of best split,
15: θbest angle of best split,
16: IGbest information gain of best split.
17: for each d ∈ D′ do
18: M← component manifold for dimension d
19: Θ← GETCANDIDATES(M,X, d)
20: for each candidate θ ∈ Θ do
21: Partition X,y into X+,X−,y+,y− via Eq. 16.
22: Apply Eq. 13 on y+,y− to compute IGcurrent
23: if IGcurrent > IGbest then
24: dbest, θbest, IGbest ← d, θ, IGcurrent
25: end if
26: end for
27: end for
28: if no valid split was found then
29: return N , a new leaf node with y probabilities.
30: else
31: Create N , a decision node with dbest and θbest
32: NL ← FITTREE(X−, y−, t+ 1)
33: NR ← FITTREE(X+, y+, t+ 1)
34: return N with left child NL and right child NR

35: end if
36:
37: Procedure GETCANDIDATES:
38: M A component manifold
39: X A dataset of points inM
40: d A dimension index
41: if d is the special dimension then
42: return empty array []
43: end if
44: Θ← Angles of X via Eq. 15
45: Θ← sort and deduplicate Θ
46: return [θm for θi, θi+1 ∈ Θ via Eq. 18, 20, or 22] (depending on curvature ofM).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

C PROOF OF EQUIVALENCE FOR EUCLIDEAN CASE

A classical CART tree splits data points according to whether their value in a given dimension is
greater than or less than some threshold value t. Midpoints are simple arithmetic means. This can
be written as:

S′(x, d, t) =

{
1 if xd > t,

0 otherwise.
(53)

mDT (u,v) =
ud + vd

2
. (54)

In our transformed DT, we lift the data points by applying ϕ : x → (1,x) and then check which
side of an axis-inclined hyperplane they fall on. The splitting function is based on the angle θ of
inclination with respect to the (0, d) plane, i.e., ⟨1, xd⟩. Our midpoints are computed to ensure
equidistance in the original manifold:

S(x, d, θ) = sign(sin(θ)xd − cos(θ)x0) (55)

mE(u,v) = tan−1

(
2

ud + vd

)
(56)

To demonstrate the equivalence of the classical DT formulation to our transformed algorithm in
E, we will show that Equation 53 is equivalent to Equation 55 and Equation 54 is equivalent to
Equation 56 under

θ = cot−1(t). (57)

C.1 EQUIVALENCE OF SPLITS

First, we show that Equations 53 and 55 are equivalent, assuming t ̸= 0:

S(x, d, θ) = sign(sin(θ)xd − cos(θ)x0) = 1 (58)
⇐⇒ sin(θ)xd − cos(θ) > 0 (59)

⇐⇒ sin(θ)

cos(θ)
xd = tan(θ)xd > 1 (60)

⇐⇒ xd/t > 1 (61)
⇐⇒ xd > t (62)

⇐⇒ S′(x, d, t) = 1 (63)

C.2 EQUIVALENCE OF MIDPOINTS

Now, we show that Equations 54 and 56 are equivalent:

cot−1(mDT (u,v)) = cot−1

(
ud + vd

2

)
(64)

= tan−1

(
2

ud − vd

)
(65)

= mE(u,v) (66)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

D SUMMARY OF ANGULAR MIDPOINT FORMULAS

Table 4: Distance functions and midpoint angle formulas for each component manifold type.

ManifoldM Distance δM(u,v) Midpoint angle θM(u,v)

SD,K cos−1

(
K2⟨u,v⟩

K

)
θu + θv

2

ED,0
√
⟨u,v⟩ tan−1

(
2

ud + vd

)

HD,K − cosh−1(K2⟨u,v⟩L)
K

cot−1(V −
√
V 2 − 1) if θu + θv < π,

cot−1(V +
√
V 2 − 1) otherwise.

V :=
sin(2θu − 2θv)

2 sin(θu + θv) sin(θv − θu)

E FULL EXPERIMENTAL HYPERPARAMETERS

E.1 SCIKIT-LEARN HYPERPARAMETERS

Random forests and decision trees. For fairness, we set all DT and RF hyperparameters identically.
Specifically, we set the following hyperparameters for both DTs and RFs:

• max depth = 5
• min samples split = 2
• min samples leaf = 1
• min impurity decrease = 0.0

For RFs, we also set the following hyperparameters:

• n estimators = 12
• max features = "sqrt"
• bootstrap = True (subsamples the training data)
• max samples = None (draws n samples from a set of n points)

Because the scikit-learn implementation differs substantially from ours, subsamples vary even when
the random seed is set. Nevertheless, we also employ the same random seed for all RF models.

k-nearest neighbor models. For k-nearest neighbors, we use default hyperparameters.

Product space perceptrons and SVMs. Product space perceptrons only have one hyperparameter,
which is the relative weight assigned to each component manifold. We elect to give each component
manifold equal weight.

Neither the SVM code provided by Tabaghi et al. (2021) nor our own reimplementation would run
on our datasets. In particular, we had issues satisfying the convexity constraints described in their
paper, causing the solve to crash. Correcting this mistake and augmenting our benchmarks with
SVM evaluations is a direction for future research.

Product space decision trees and random forests. For our models, we set the n features
= "n choose 2" parameter. This means that we consider all

(
n
2

)
linear projections. We do this

because we restrict ourselves to 2-dimensional component manifolds, and therefore we only observe(
3
2

)
= 3 total angles, equal to the number of features used by ambient space Euclidean methods.

E.2 GRAPH EMBEDDINGS

Learning embeddings. We reimplement the method in Gu et al. (2018) to learn graph embed-
dings. In particular, we use the NetworkX package (Hagberg et al., 2008) to load the graph, extract

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

the largest connected component, and compute pairwise distances between nodes using the Floyd-
Warshall algorithm. For embedding purposes, we treat all graphs as undirected. Pairwise distances
were normalized into the range [0, 1] by dividing by the maximum distance.

Embedding hyperparameters. Embeddings were learned using Riemannian Adam (Becigneul &
Ganea, 2018) implemented in Geoopt (Kochurov et al., 2020). For each signature, we train 10
randomly-initialized embeddings for 3,000 epochs each. We treat the first 300 epochs as a burn-in
period, during which the learning rate is .01 and the curvature of each manifold is fixed. For the
remaining epochs, we train embedding coordinates with a learning rate of 0.1 and scale factors with
a learning rate of 0.01. These hyperparameters were chosen based on their stability and convergence
in exploratory experiments.

Train-test split. Because embeddings must be learned per-node, it was not possible to perform a
train-test split prior to the embedding step; however, we performed the train-test split at the node
level for all tasks including link prediction. This means that we discarded all edges between test and
training nodes from our dataset. While we acknowledge the embeddings step could be a source of
leakage, we have no reason to believe this would bias evaluations in favor of any particular model.
Future work should focus on developing methods to learn node embeddings in phases or to use
masked gradients to minimize leakage at the embedding step.

Evaluations. Since it was not clear a priori which signature would embed each graph the best, we
learned 10 embeddings for each candidate signature and took the one with the best Davg to be the
benchmark signature. Our reasoning is that the lowest-distortion embedding of the graph is the most
appropriate benchmark for evaluating the geometrical appropriateness of a classifier. Thus, scores
for the lowest-distortion signature appear in Tables 2 and 3, whereas scores for all signatures can be
found in Table 5.

Link prediction. To generate link prediction datasets, we trained 100 randomly initialized sets of
node embeddings in S2 × E2 × H2. If we let X be our original node embeddings and E be the
ground-truth edges of the graph, we then generated the following dataset:

XLP = {⟨xi,xj⟩ for (xi,xj , δP(xi,xj) ∈ X} (67)
yLP = {I{(xi,xj) ∈ E} for (xi,xj) ∈ X} (68)

The corresponding signature is (P)2×E1; in the case of our embeddings, that is (S2×E2×H2)2×E1.

E.3 VAE TRAINING

Encoder/decoder architectures. Following Tabaghi et al. (2021), we use the following en-
coder/decoder architectures:

• Lymphoma dataset: Two 200-dimensional hidden layers, 500 epochs
• Blood cell dataset: Three 400-dimensional hidden layers, 200 epochs
• Omniglot and MNIST: 400-dimensional latent
• CIFAR-100: 4×4 convolutional kernels with stride 2 and padding 1. Encoder: 3 CNN layers of

64, 128, and 512 channels. Decoder: 2048-dimensional dense layer, followed by 2 CNN layers
of 256, 64, and 3 channels.

Training hyperparameters. Our VAEs were trained using the Adam optimizer (Kingma & Ba,
2017) with default parameters (learning rate .001, β1 = 0.9, β2 = 0.999. In all models, each
layer except the last is followed by a ReLU activation function. Curvatures were trained identically,
except using a learning rate of .0001, after 100 burn-in epochs. Because some training details were
omitted from the original papers, we additionally chose the following hyperparameters:

• Batch size: 4,096
• Number of samples per point: 64
• β (weight for KL-divergence in VAE loss): 1

Train-test split. To minimize the risk of data leakage, we trained our VAEs on only the training
data, then used the trained VAEs to generate embeddings for the training and test data. Embeddings
were generated by running points through the VAE encoder and taking the returned mean parameter.

Evaluations. To conserve memory, we randomly subsampled 1,000 points from the training and
test sets for each evaluation. We ran 10 trials per dataset in total.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

E.4 EMPIRICAL DATASETS

Landmasses. We generated a geospatial classification dataset for land versus water prediction by
sampling 1,000 points from an evenly sampled grid of 10,000 longitudes and latitudes, transforming
them to 3-dimensional coordinates, and assigning a “land” or “water” label to each point using the
Basemap library in Matplotlib (Hunter, 2007). For classification, we associate the 3-dimensional
coordinates with the signature S2.

Neural spiking prediction. We use patch-clamp electrophysiology datasets downloaded from the
Allen Mouse Brain Atlas (Jones et al., 2009). We arbitrarily pick Neurons 33 and 46 for their non-
trivial spiking dynamics. To represent signals in product spaces, we apply a Fast Fourier Transform
and take the top 5 Fourier coefficients by magnitude. We then take their corresponding frequencies
fi and represent each time point in S1 via the following transformation:

ϕ : R1 → (S1)5, ϕ(t) =
(
cos

(
2π

t

fi

)
, sin

(
2π

t

fi

))∣∣∣∣5
i=1

(69)

This yields a product space representation in (S1)5. We plot both signals, along with their recon-
struction using their top 5 Fourier components, in Figure 6.

Global temperature by month. We downloaded a list of global average monthly temperatures for
the 400 largest cities in the world from Wikipedia (Wikipedia, 2024). We transform longitude and
latitude into 3-D coordinates to represent our data in S2. To convert months to S1 valued coordinates,
we transform ordinal representations of months t ∈ [0, 11] via the following transformation:

ϕ : R1 → S1, ϕ(t) =
(
cos

(
2π

t

12

)
, sin

(
2π

t

12

))
(70)

This yields a product space representation of the data in S2 × S1.

0 500 1000 1500 2000 2500 3000 3500 4000
Time (ms)

0.05

0.00

Vo
lta

ge
 (m

V
)

Sweep 33

0 2000 4000 6000 8000 10000 12000 14000
Time (ms)

0.05

0.00

Vo
lta

ge
 (m

V
)

Sweep 46

Figure 6: The “Neuron 33” and “Neuron 46” datasets, along with their reconstruction using the top
5 Fourier coefficients shown in red.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Traffic prediction. We download an automobile traffic prediction dataset from Kaggle (Fedesori-
ano, 2020). This dataset aggregates readings across four sensors with date and time annotations. We
process the date and time annotation into day of year (d), day of week (w), hour (h), and minute (m)
labels and transform to (S1)4 analogously to the month timestamps in the global temperature data.
Letting l be the (numeric) label of the sensor, we apply the following transformation to our data:

ϕ : R5 →(S1)5 × E1 (71)

ϕ(d,w, h,m, l) =

(
cos

(
2π

d

365

)
, sin

(
2π

d

365

)
,

cos
(
2π
w

7

)
, sin

(
2π
w

7

)
,

cos

(
2π

h

24

)
, sin

(
2π

h

24

)
,

cos
(
2π
m

60

)
, sin

(
2π
m

60

)
, l
)

(72)

F ABLATIONS AND EFFECTS OF HYPERPARAMETERS

For all experiments, we sampled 100 mixtures of 32 Gaussians using the signatureP = S2×E2×H2

in an 8-class regression setting (analogous to the multi-K benchmark in Tables 2 and 3, varying one
parameter at a time. Results are plotted in Figure 7.

DT
(d)

DT
(d_choose_2)

RF
(d)

RF
(d_choose_2)

0.4

0.5

0.6

0.7

0.8

0.9

F1
 S

co
re

* **
* *

Ablation: number of features

(a) Changing the number of features seen by each
DT/RF from 6 to 9 by including the (x1, x2) angle is
massively beneficial.

RF
(sqrt)

RF
(log2)

RF
(none)

0.5

0.6

0.7

0.8

F1
 S

co
re

Ablation: feature subsampling strategy

(b) Changing feature subsampling approaches in RFs
doesn’t appear to do much.

DT
(1)

DT
(2)

DT
(3)

DT
(4)

DT
(5)

DT
(6)

DT
(None)

RF
(1)

RF
(2)

RF
(3)

RF
(4)

RF
(5)

RF
(6)

RF
(None)

0.2

0.4

0.6

0.8

F1
 S

co
re

Ablation: maximum depth

(c) Increasing the maximum depth of each DT/RF is
massively beneficial, and shows no signs of overfitting
even at unrestricted max depth. All within-predictor
differences are significant.

DT
(False)

DT
(True)

RF
(False)

RF
(True)

0.4

0.5

0.6

0.7

0.8

0.9

F1
 S

co
re

ns ns

Ablation: remove midpoint angles

(d) Replacing the midpoint-angle computations with
arithmetic means has no statistically significant effect
on performance for DTs or RFs, surprisingly.

Figure 7: Effects of various hyperparameters on the performance of our algorithms.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

G DETAILED RESULTS

G.1 GLOBAL TEMPERATURE PREDICTION PLOTS

Product DT (RMSE: 2.60) Ambient DT (RMSE: 2.06)

Tangent DT (RMSE: 6.39) k-Nearest Neighbors (RMSE: 6.24)

32

24

16

8

0

8

16

24

32

Te
m

pe
ra

tu
re

 (°
C

)

January temperature predictions by classifier

(a) January temperatures.

Product DT (RMSE: 2.60) Ambient DT (RMSE: 2.06)

Tangent DT (RMSE: 6.39) k-Nearest Neighbors (RMSE: 6.24)

10

5

0

5

10

15

20

25

30

35

Te
m

pe
ra

tu
re

 (°
C

)

April temperature predictions by classifier

(b) April temperatures.

Product DT (RMSE: 2.60) Ambient DT (RMSE: 2.06)

Tangent DT (RMSE: 6.39) k-Nearest Neighbors (RMSE: 6.24)

0

5

10

15

20

25

30

35

40

Te
m

pe
ra

tu
re

 (°
C

)

July temperature predictions by classifier

(c) July temperatures.

Product DT (RMSE: 2.60) Ambient DT (RMSE: 2.06)

Tangent DT (RMSE: 6.39) k-Nearest Neighbors (RMSE: 6.24)

5

0

5

10

15

20

25

30

Te
m

pe
ra

tu
re

 (°
C

)

October temperature predictions by classifier

(d) October temperatures.

Figure 8: Decision boundaries for the temperature prediction task for the months of January, April,
July, and October, colored by predicted temperature across four trained predictors.

G.2 VAE LATENT SPACE VISUALIZATIONS

B
lo

od
 C

el
l s

cR
N

A

2 2 2 2 2 Class
CD8 Cytotoxic T
CD8 CD45RA Naive Cytotoxic T
CD14 Monocytes
CD19 B
CD34
CD4 CD25 Regulatory T
CD4 CD45RA CD25 Naive T
CD4 CD45RO Memory T
CD4 Helper T
CD56 Natural Killer

Ly
m

ph
om

a

2 2

Class
Lymphoma
Healthy

C
IF

A
R

-1
00

2 2 2 2

Class
Aquatic Mammals
Fish
Flowers
Food Containers
Fruit and Vegetables
Household Electrical Devices
Household Furniture
Insects
Large Carnivores
Large Man-made Outdoor Things
Large Natural Outdoor Scenes
Large Omnivores and Herbivores
Medium Mammals
Non-insect Invertebrates
People
Reptiles
Small Mammals
Trees
Vehicles 1
Vehicles 2

M
N

IS
T

2 2 2 Class
0
1
2
3
4
5
6
7
8
9

Latent space visualizations for mixed-curvature VAEs

Figure 9: Visualizations of the latent space for all four of the datasets we embed using a VAE, colored
by class. For visualization purposes, we show S2 components in 2-dimensional polar coordinates,
and project H2 embeddings to the Poincaré disk.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

G.3 FULL RESULTS TABLE

Table 5: Full results for all benchmarks. Unlike Tables 2 and 3, this table reports full results for
all classifiers. It also includes single-K results and all signatures for graph embeddings. Recall the
following shorthand: C=Classification (F1), R=Regression (RMSE), LP=Link prediction (F1); bold
= best predictor, underline = second-best predictor; * = beating product space methods, † = beating
ambient space methods, ‡ = beating tangent plane methods, § = beating k-nearest neighbors, ¶
= beating product space perceptrons.

Dataset Task Signature Perceptron k-Neighbors Euclidean DT Euclidean RF Tangent DT Tangent RF Product DT Product RF

Sy
nt

he
tic

(s
in

gl
e
K

)

Gaussian C E2 19.5 ± .5†§*‡ 28.2 ± .4†¶*‡ 28.4 ± .5¶ 30.5 ± .5§¶ 28.4 ± .5¶ 30.5 ± .5§¶ 28.5 ± .5¶ 30.9 ± .5§¶

H2,0.25 18.4 ± .6†§*‡ 27.8 ± .4†¶*‡ 28.5 ± .5¶ 29.7 ± .5§¶* 28.7 ± .5¶ 30.1 ± .5§¶ 28.7 ± .5¶ 30.6 ± .5†§¶

H2,0.5 21.2 ± .5†§*‡ 28.3 ± .5¶* 27.8 ± .5¶ 28.8 ± .5¶* 27.6 ± .5¶ 28.9 ± .5¶* 28.3 ± .5¶ 30.2 ± .4†§¶‡

H2,1.0 21.0 ± .5†§*‡ 28.5 ± .5¶* 27.9 ± .5¶‡ 28.9 ± .5¶*‡ 26.1 ± .5†¶* 27.7 ± .5†¶* 28.2 ± .5¶‡ 30.8 ± .5†§¶‡

H2,2.0 18.2 ± .5†§*‡ 27.0 ± .5¶ 26.2 ± .5¶‡ 26.6 ± .5¶*‡ 24.3 ± .5†¶* 25.6 ± .5†¶* 26.4 ± .5¶‡ 28.1 ± .5†¶‡

H2,4.0 17.3 ± .5†§*‡ 26.1 ± .5¶ 25.3 ± .5¶‡ 25.5 ± .5¶*‡ 22.7 ± .5†¶* 24.3 ± .4†¶* 25.2 ± .5¶‡ 27.2 ± .5†¶‡

S2,−0.25 16.1 ± .5†§*‡ 29.4 ± .5¶*‡ 29.1 ± .5¶ 29.5 ± .5¶* 29.2 ± .4¶ 30.5 ± .5§¶ 29.2 ± .5¶ 31.2 ± .5†§¶

S2,−0.5 16.3 ± .5†§*‡ 30.6 ± .5¶* 29.2 ± .5¶ 30.4 ± .5¶* 29.6 ± .5¶ 31.4 ± .5¶ 30.2 ± .5¶ 32.3 ± .5†§¶

S2,−1.0 16.1 ± .5†§*‡ 32.6 ± .5¶ 30.0 ± .5¶ 30.4 ± .5¶* 30.3 ± .5¶ 32.1 ± .5¶* 30.9 ± .5¶ 33.2 ± .5†¶‡

S2,−2.0 15.6 ± .6†§*‡ 36.1 ± .5¶ 32.3 ± .5¶* 32.9 ± .6¶* 33.8 ± .6¶ 35.5 ± .6¶ 34.1 ± .6†¶ 36.7 ± .5†¶

S2,−4.0 16.4 ± .6†§*‡ 41.6 ± .5¶ 32.4 ± .5¶* 33.0 ± .5¶* 35.2 ± .5¶ 37.6 ± .5¶* 36.3 ± .5†¶ 40.1 ± .5†¶‡

R E2 .211 ± .002†*‡ .201 ± .002§ .199 ± .002§* .201 ± .002§ .199 ± .002§* .201 ± .002§ .198 ± .002†§‡

H2,0.25 .207 ± .003†*‡ .199 ± .002§ .196 ± .002§ .199 ± .002§ .196 ± .002§ .199 ± .002§ .196 ± .002§

H2,0.5 .206 ± .003†*‡ .198 ± .002§ .194 ± .002§* .197 ± .002§ .194 ± .002§* .197 ± .003§ .193 ± .002†§‡

H2,1.0 .214 ± .003†*‡ .205 ± .003§ .201 ± .003§*‡ .206 ± .003§ .203 ± .003†§* .205 ± .003§ .201 ± .003†§‡

H2,2.0 .211 ± .003†*‡ .202 ± .003§ .199 ± .003§‡ .203 ± .003§ .201 ± .003†§* .202 ± .003§ .198 ± .003§‡

H2,4.0 .215 ± .003†*‡ .206 ± .003§ .202 ± .003§‡ .207 ± .003§ .204 ± .003†§* .206 ± .003§ .202 ± .003§‡

S2,−0.25 .206 ± .003†*‡ .198 ± .003§ .195 ± .003§ .198 ± .003§ .195 ± .003§ .198 ± .003§ .194 ± .003§

S2,−0.5 .209 ± .003†*‡ .203 ± .003§ .199 ± .003§* .201 ± .003§ .198 ± .003§ .202 ± .003§ .197 ± .003†§

S2,−1.0 .207 ± .003†*‡ .203 ± .003§* .199 ± .003§* .201 ± .003§ .197 ± .003§ .201 ± .003†§ .197 ± .003†§

S2,−2.0 .206 ± .003†*‡ .205 ± .003* .201 ± .003§* .201 ± .003§ .198 ± .003§ .201 ± .003†§ .196 ± .003†§

S2,−4.0 .198 ± .003*‡ .199 ± .003* .196 ± .002* .196 ± .003 .192 ± .003§* .195 ± .003†§ .190 ± .003†§‡

Sy
nt

he
tic

(m
ul

ti-
K

)

Gaussian C (S2)2 25.4 ± .5†§*‡ 35.7 ± .5¶ 29.6 ± .5¶ 32.3 ± .5¶ 28.9 ± .4¶* 31.5 ± .5¶* 30.2 ± .5¶‡ 33.1 ± .5¶‡

E4 21.2 ± .5†§*‡ 34.9 ± .5¶ 27.1 ± .5¶ 30.0 ± .4¶* 27.1 ± .5¶ 30.0 ± .4¶* 28.1 ± .5¶ 31.3 ± .4†¶‡

H2E2 20.2 ± .5†§*‡ 40.3 ± .4¶ 30.8 ± .5¶* 34.7 ± .5¶* 30.9 ± .5¶* 34.8 ± .5¶* 32.0 ± .5†¶‡ 36.1 ± .5†¶‡

H2S2 20.2 ± .5†§*‡ 38.4 ± .5¶ 30.6 ± .5¶ 33.3 ± .5¶* 30.5 ± .5¶ 33.6 ± .5¶* 31.2 ± .5¶ 35.2 ± .5†¶‡

H4 15.6 ± .5†§*‡ 47.5 ± .5¶ 32.9 ± .5¶* 35.9 ± .4¶* 33.0 ± .4¶* 37.9 ± .4¶* 35.2 ± .5†¶‡ 40.0 ± .4†¶‡

S2E2 23.7 ± .5†§*‡ 35.8 ± .5¶ 29.5 ± .4¶ 32.7 ± .5¶ 29.3 ± .5¶ 32.4 ± .4¶* 30.0 ± .5¶ 33.5 ± .4¶‡

S4 18.1 ± .6†§*‡ 33.1 ± .4¶ 25.9 ± .5¶‡ 27.6 ± .4¶‡ 24.0 ± .4†¶ 26.2 ± .5†¶* 25.1 ± .5¶ 28.0 ± .5¶‡

(H2)2 15.7 ± .6†§*‡ 41.5 ± .5¶ 31.7 ± .5¶ 34.5 ± .5¶* 31.9 ± .5¶ 35.4 ± .5¶* 32.3 ± .5¶ 37.0 ± .5†¶‡

R (S2)2 .196 ± .002†*‡ .196 ± .002 .191 ± .002§ .197 ± .002 .191 ± .002§ .196 ± .002 .191 ± .002§

E4 .194 ± .003†*‡ .197 ± .003 .191 ± .002§* .197 ± .003 .191 ± .002§* .196 ± .003 .190 ± .002†§‡

H2E2 .196 ± .003 .199 ± .002 .194 ± .002 .199 ± .002 .193 ± .002 .198 ± .002 .193 ± .002
H2S2 .197 ± .003†*‡ .200 ± .002 .194 ± .002§* .199 ± .002 .194 ± .002§* .199 ± .002 .193 ± .002†§‡

H4 .175 ± .003 .189 ± .003* .184 ± .003* .187 ± .003* .181 ± .003* .185 ± .003†‡ .178 ± .003†‡

S2E2 .199 ± .003†*‡ .200 ± .003 .194 ± .002§ .201 ± .003 .195 ± .003§ .199 ± .003 .194 ± .002§

S4 .194 ± .002†*‡ .193 ± .002 .188 ± .002§‡ .193 ± .002 .190 ± .002†§ .194 ± .002 .189 ± .002§

(H2)2 .193 ± .003 .198 ± .002* .193 ± .002* .198 ± .002 .192 ± .002 .196 ± .002† .191 ± .002†

G
ra

ph
em

be
dd

in
gs

CiteSeer C (S2)2 13.5 ± .6†§*‡ 25.1 ± .6¶ 25.3 ± .5¶ 27.0 ± .7¶ 25.3 ± .6¶ 26.2 ± .7¶ 25.8 ± .6¶ 27.1 ± .7¶

E4 13.4 ± .5†§*‡ 24.1 ± .4¶ 24.5 ± .7¶ 25.9 ± .4¶ 24.5 ± .7¶ 25.0 ± .7¶ 23.7 ± .4¶ 25.1 ± .5¶

H2E2 13.4 ± .4†§*‡ 24.7 ± .7¶ 25.4 ± .5¶ 26.6 ± .6¶ 24.9 ± .5¶ 25.6 ± .5¶ 25.2 ± .5¶ 26.4 ± .6¶

H2S2 13.7 ± .2†§*‡ 25.9 ± .5¶ 25.4 ± .4¶ 26.1 ± .7¶ 25.0 ± .6¶ 25.9 ± .7¶ 25.8 ± .6¶ 25.6 ± .6¶

H4 14.1 ± .4†§*‡ 26.2 ± .8¶ 25.5 ± .8¶ 26.9 ± .9¶ 24.6 ± .7¶ 26.5 ± .8¶ 24.0 ± .4¶ 26.0 ± .9¶

S2E2 13.7 ± .3†§*‡ 25.6 ± .8¶ 24.9 ± .6¶ 26.3 ± .6¶ 25.0 ± .7¶ 25.8 ± .6¶ 24.4 ± .5¶ 25.9 ± .5¶

S4 13.7 ± .4†§*‡ 24.7 ± .7¶ 24.5 ± .9¶ 25.5 ± .7¶ 24.4 ± .7¶ 24.9 ± .7¶ 24.2 ± .7¶ 24.9 ± .5¶

(H2)2 5.4 ± .2†§*‡ 24.9 ± .7¶ 25.8 ± .6¶ 27.3 ± .5¶ 25.3 ± .8¶ 26.6 ± .5¶ 25.4 ± .6¶ 26.8 ± .7¶

Cora C (S2)2 18.2 ± 1.2†*‡ 21.4 ± .4†*‡ 29.2 ± .5§¶ 29.9 ± .4§¶ 29.2 ± .4§ 29.7 ± .5§¶ 27.9 ± 1.2§¶ 29.6 ± .5§¶

E4 16.4 ± .5†§*‡ 21.1 ± .4†¶*‡ 28.4 ± .4§¶ 29.3 ± .5§¶ 28.4 ± .4§¶ 29.7 ± .6§¶ 28.9 ± .5§¶ 29.4 ± .6§¶

H2E2 17.3 ± .5†*‡ 20.1 ± .6†*‡ 28.7 ± .5§¶ 29.2 ± .5§¶ 28.8 ± .4§¶ 29.4 ± .5§¶ 28.7 ± .4§¶ 29.2 ± .5§¶

H2S2 15.9 ± .2†§*‡ 20.9 ± .5†¶*‡ 28.5 ± .5§¶ 29.8 ± .6§¶ 28.8 ± .4§¶ 29.8 ± .6§¶ 29.0 ± .6§¶ 29.9 ± .5§¶

H4 20.4 ± 1.8* 20.7 ± .4†*‡ 28.5 ± .6§ 28.9 ± .5§ 28.1 ± .6§ 28.7 ± .5§ 27.4 ± .6§ 28.9 ± .4§¶

S2E2 16.7 ± .2†§*‡ 21.0 ± .5†¶*‡ 28.0 ± .6§¶ 28.6 ± .5§¶ 27.8 ± .6§¶ 28.5 ± .5§¶ 28.5 ± .6§¶ 28.5 ± .5§¶

S4 16.8 ± .5†§*‡ 20.7 ± .5†¶*‡ 27.9 ± .8§¶ 28.9 ± .6§¶ 27.8 ± .5§¶ 28.9 ± .5§¶ 27.7 ± .7§¶ 28.8 ± .6§¶

(H2)2 5.1 ± .2†§*‡ 20.7 ± .4†¶*‡ 29.3 ± .6§¶ 30.3 ± .6§¶ 29.6 ± .6§¶ 30.5 ± .6§¶ 29.5 ± .5§¶ 30.3 ± .6§¶

PolBlogs C (S2)2 50.4 ± .8†§*‡ 93.5 ± .4¶ 93.2 ± .5¶ 93.1 ± .4¶ 90.9 ± .8¶ 91.0 ± .7¶ 89.6 ± 3.3¶ 92.9 ± .4¶

E4 48.4 ± .8†§*‡ 93.9 ± .4¶ 92.4 ± .3¶ 92.7 ± .5¶ 92.5 ± .3¶ 93.1 ± .3¶ 93.3 ± .3¶ 93.6 ± .5¶

H2E2 63.6 ± 5.2†§*‡ 93.6 ± .4¶ 92.9 ± .4¶ 93.4 ± .3¶ 92.7 ± .4¶ 92.9 ± .5¶ 93.1 ± .5¶ 93.6 ± .2¶

H2S2 62.1 ± 5.6§*‡ 94.0 ± .5¶ 92.9 ± .5 93.6 ± .6 92.2 ± .5 93.2 ± .6¶ 92.4 ± .4¶ 93.3 ± .5¶

H4 48.7 ± .6†§*‡ 93.5 ± .3¶ 92.1 ± .7¶ 92.5 ± .5¶ 91.9 ± .7¶ 92.5 ± .6¶ 92.7 ± .5¶ 93.1 ± .4¶

S2E2 49.8 ± 2.6†§*‡ 94.3 ± .2¶ 93.4 ± .6¶ 93.9 ± .5¶ 92.5 ± 1.1¶ 93.6 ± .5¶ 93.8 ± .6¶ 93.2 ± .6¶

S4 48.0 ± 1.2†§*‡ 93.4 ± .3¶ 91.5 ± .5¶ 92.9 ± .5¶ 91.7 ± .8¶ 92.8 ± .5¶ 92.8 ± .3¶ 93.1 ± .4¶

(H2)2 48.0 ± .9†§*‡ 93.9 ± .4¶ 92.5 ± .6¶ 92.8 ± .7¶ 92.7 ± .6¶ 93.3 ± .5¶ 92.7 ± .4¶ 93.7 ± .6¶

CS PhDs R (S2)2 .043 ± .004 .058 ± .006 .048 ± .004 .055 ± .006 .046 ± .004 .041 ± .003 .046 ± .003 .046 ± .005
E4 .035 ± .003 .056 ± .003 .040 ± .005 .047 ± .005 .040 ± .005 .048 ± .004 .038 ± .004 .046 ± .005
H2E2 .043 ± .004 .057 ± .004 .040 ± .004 .051 ± .003 .039 ± .005 .049 ± .006 .045 ± .003 .044 ± .004
H2S2 .045 ± .004 .048 ± .003 .043 ± .004 .054 ± .004 .045 ± .005 .048 ± .006 .044 ± .004 .055 ± .005
H4 .044 ± .002 .053 ± .005 .052 ± .002 .052 ± .005 .049 ± .005 .060 ± .003 .041 ± .004 .057 ± .003
S2E2 .042 ± .005 .067 ± .006*‡ .040 ± .002 .050 ± .004 .038 ± .004§ .048 ± .007 .040 ± .004§ .053 ± .005
S4 .043 ± .004 .065 ± .005†‡ .040 ± .004§ .050 ± .004 .041 ± .003§ .043 ± .004 .047 ± .004 .048 ± .003
(H2)2 .001 ± .001 .067 ± .006 .040 ± .003 .050 ± .004 .043 ± .002 .052 ± .006 .042 ± .004 .051 ± .004

AdjNoun LP S2E2H2 93.7 ± 1.1 93.3 ± 1.1 93.5 ± .9 93.7 ± 1.1 93.5 ± .9 93.7 ± 1.1 93.5 ± .9 93.7 ± 1.1
Dolphins LP S2E2H2 90.7 ± .7†*‡ 92.1 ± .6†*‡ 96.6 ± .3§¶ 92.3 ± .9 96.6 ± .3§¶ 90.9 ± .8 96.6 ± .3§¶ 90.7 ± .7
Football LP S2E2H2 82.0 ± 3.3 79.8 ± 3.3 85.7 ± 3.6 83.1 ± 3.5 85.7 ± 3.6 83.1 ± 3.5 85.7 ± 3.6 82.0 ± 3.3
Karate Club LP S2E2H2 65.7 ± 10.0 89.4 ± 1.9 95.1 ± 1.5 88.6 ± 2.2 95.1 ± 1.5 88.8 ± 1.9 95.1 ± 1.5 88.8 ± 2.6
Les Mis LP S2E2H2 92.2 ± .9 93.8 ± 1.1 95.7 ± .7 92.7 ± .9 95.5 ± .6 93.7 ± 1.0 95.6 ± .8 92.2 ± .9
PolBooks LP S2E2H2 92.2 ± .6†*‡ 94.8 ± .3 95.8 ± .4¶ 92.9 ± .6 95.8 ± .4¶ 92.1 ± .6 95.8 ± .4¶ 92.2 ± .6

VA
E

Blood C S2E2(H2)3 2.8 ± .0†§*‡ 17.4 ± .5†¶*‡ 18.9 ± .4§¶ 19.3 ± .5§¶* 18.7 ± .4§¶ 19.6 ± .4§¶ 17.6 ± 1.0¶ 20.1 ± .5†§¶

CIFAR-100 C (S2)4 5.7 ± .4†§*‡ 8.6 ± .4†¶*‡ 10.0 ± .4¶ 11.5 ± .5§¶ 10.1 ± .4¶ 11.5 ± .5§¶ 10.8 ± .3§¶ 12.0 ± .3§¶

Lymphoma C (S2)2 78.1 ± .3†*‡ 77.8 ± 1.4†*‡ 81.7 ± 1.2§¶* 81.6 ± 1.3§¶ 81.2 ± 1.4§* 81.4 ± 1.3§¶ 83.7 ± 1.2†§¶‡ 83.1 ± 1.2§¶

MNIST C S2E2H2 16.9 ± 3.0†§*‡ 41.9 ± 3.7¶ 28.9 ± 1.3¶ 35.7 ± 2.8¶ 28.6 ± 1.0¶ 36.5 ± 2.9¶ 30.9 ± 1.6¶ 39.4 ± 2.3¶

O
th

er

Landmasses C S2 70.6 ± .4†§*‡ 91.4 ± .2¶ 81.2 ± .4¶*‡ 83.5 ± .3¶‡ 79.7 ± .3†¶* 81.8 ± .3†¶* 83.5 ± .3†¶‡ 84.2 ± .3¶‡

Neuron 33 C (S1)5 53.9 ± .3†*‡ 50.5 ± .5†*‡ 76.2 ± .4§¶ 76.0 ± .5§¶* 76.2 ± .4§¶ 75.8 ± .5§¶* 76.0 ± .5§¶ 77.0 ± .4†§¶‡

Neuron 46 C (S1)5 51.5 ± .1†*‡ 50.2 ± .2†*‡ 60.7 ± .3§¶‡ 61.1 ± .3§¶‡ 59.3 ± .3†§¶* 59.9 ± .3†§¶* 60.8 ± .3§¶‡ 61.2 ± .3§¶‡

Temperature R S2S1 7.198 ± .212†‡ 5.290 ± .246§‡ 4.531 ± .187§‡ 7.823 ± .196† 6.261 ± .132†§ 7.574 ± .249 7.130 ± .123
Traffic R E1(S1)4 .510 ± .003 .521 ± .003‡ .505 ± .003‡ .526 ± .003† .515 ± .003† .534 ± .003 .577 ± .005

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

H DATASETS AVAILABILITY

Table 6: All of the datasets used in this paper, with download links and citations. CC-BY-SA is short
for the Creative Commons Attribution-ShareAlike license. Allen TOU is the Allen Institute terms
of use, found at https://alleninstitute.org/terms-of-use/.

Dataset Link License Citation
CiteSeer Network Repository: CiteSeer CC-BY-SA Giles et al. (1998)
Cora Network Repository: CORA CC-BY-SA Sen et al. (2008)
Polblogs Network Repository: Polblogs CC-BY-SA Adamic & Glance (2005)
CS PhDs Pajek datasets: PhD students in CS CC-BY-SA Johnson (1984)
Adjnoun Network Repository: Adjnoun CC-BY-SA Newman (2006)
Dolphins Network Repository: Dolphins CC-BY-SA Lusseau et al. (2003)
Football Network Repository: Football CC-BY-SA Girvan & Newman (2002)
Karate Club Network Repository: Karate CC-BY-SA Zachary (1977)
Les Mis Network Repository: Les Mis CC-BY-SA Knuth (1993)
Polbooks Network Repository: Polblooks CC-BY-SA Krebs (2004)
Blood 10x Genomics: CD8+ Cytotoxic T-

cells
CC-BY-SA Zheng et al. (2017)

Blood CD8+/CD45RA+ Naive Cytotoxic
T Cells

CC-BY-SA Zheng et al. (2017)

Blood 10x Genomics: CD56+ Natural
Killer Cells

CC-BY-SA Zheng et al. (2017)

Blood 10x Genomics: CD4+ Helper T
Cells

CC-BY-SA Zheng et al. (2017)

Blood 10x Genomics: CD4+/CD45RO+
Memory T Cells

CC-BY-SA Zheng et al. (2017)

Blood 10x Genomics:
CD4+/CD45RA+/CD25- Naive T
cells

CC-BY-SA Zheng et al. (2017)

Blood CD4+/CD25+ Regulatory T Cells CC-BY-SA Zheng et al. (2017)
Blood 10x Genomics: CD34+ Cells CC-BY-SA Zheng et al. (2017)
Blood CD19+ B Cells CC-BY-SA Zheng et al. (2017)
Blood 10x Genomics: CD14+ Monocytes CC-BY-SA Zheng et al. (2017)
Lymphoma Hodgkin’s Lymphoma, Dissociated

Tumor: Targeted, Immunology
Panel

CC-BY-SA 10x Genomics (2020a)

Lymphoma PBMCs from a Healthy Donor:
Targeted-Compare, Immunology
Panel

CC-BY-SA 10x Genomics (2020b)

MNIST HuggingFace: MNIST MIT Lecun et al. (1998)
CIFAR-100 HuggingFace: CIFAR-100 None Krizhevsky (2009)
Landmasses Basemap 1.4.1: is land None None
Neurons Allen Brain Atlas Allen TOU Jones et al. (2009)
Temperature Wikipedia: List of cities by average

temperature
CC-BY-SA Wikipedia (2024)

Traffic Kaggle: Traffic Prediction Dataset None Fedesoriano (2020)

25

https://alleninstitute.org/terms-of-use/
https://networkrepository.com/citeseer.php
https://networkrepository.com/cora.php
https://networkrepository.com/polblogs.php
http://vlado.fmf.uni-lj.si/pub/networks/data/esna/CSPhD.htm
https://networkrepository.com/adjnoun.php
https://networkrepository.com/dolphins.php
https://networkrepository.com/football.php
https://networkrepository.com/karate.php
https://networkrepository.com/lesmis.php
https://networkrepository.com/polbooks.php
https://www.10xgenomics.com/datasets/cd-8-plus-cytotoxic-t-cells-1-standard-1-1-0
https://www.10xgenomics.com/datasets/cd-8-plus-cytotoxic-t-cells-1-standard-1-1-0
https://www.10xgenomics.com/datasets/cd-8-plus-cd-45-r-aplus-naive-cytotoxic-t-cells-1-standard-1-1-0
https://www.10xgenomics.com/datasets/cd-8-plus-cd-45-r-aplus-naive-cytotoxic-t-cells-1-standard-1-1-0
https://www.10xgenomics.com/datasets/cd-56-plus-natural-killer-cells-1-standard-1-1-0
https://www.10xgenomics.com/datasets/cd-56-plus-natural-killer-cells-1-standard-1-1-0
https://www.10xgenomics.com/datasets/cd-4-plus-helper-t-cells-1-standard-1-1-0
https://www.10xgenomics.com/datasets/cd-4-plus-helper-t-cells-1-standard-1-1-0
https://www.10xgenomics.com/datasets/cd-4-plus-cd-45-r-oplus-memory-t-cells-1-standard-1-1-0
https://www.10xgenomics.com/datasets/cd-4-plus-cd-45-r-oplus-memory-t-cells-1-standard-1-1-0
https://www.10xgenomics.com/datasets/cd-4-plus-cd-45-r-aplus-cd-25-naive-t-cells-1-standard-1-1-0
https://www.10xgenomics.com/datasets/cd-4-plus-cd-45-r-aplus-cd-25-naive-t-cells-1-standard-1-1-0
https://www.10xgenomics.com/datasets/cd-4-plus-cd-45-r-aplus-cd-25-naive-t-cells-1-standard-1-1-0
https://www.10xgenomics.com/datasets/cd-4-plus-cd-25-plus-regulatory-t-cells-1-standard-1-1-0
https://www.10xgenomics.com/datasets/cd-34-plus-cells-1-standard-1-1-0
https://www.10xgenomics.com/datasets/cd-19-plus-b-cells-1-standard-1-1-0
https://www.10xgenomics.com/datasets/cd-14-plus-monocytes-1-standard-1-1-0
https://www.10xgenomics.com/datasets/hodgkins-lymphoma-dissociated-tumor-targeted-immunology-panel-3-1-standard-4-0-0
https://www.10xgenomics.com/datasets/hodgkins-lymphoma-dissociated-tumor-targeted-immunology-panel-3-1-standard-4-0-0
https://www.10xgenomics.com/datasets/hodgkins-lymphoma-dissociated-tumor-targeted-immunology-panel-3-1-standard-4-0-0
https://www.10xgenomics.com/datasets/pbm-cs-from-a-healthy-donor-targeted-compare-immunology-panel-3-1-standard-4-0-0
https://www.10xgenomics.com/datasets/pbm-cs-from-a-healthy-donor-targeted-compare-immunology-panel-3-1-standard-4-0-0
https://www.10xgenomics.com/datasets/pbm-cs-from-a-healthy-donor-targeted-compare-immunology-panel-3-1-standard-4-0-0
https://huggingface.co/datasets/ylecun/mnist
https://huggingface.co/datasets/uoft-cs/cifar100
https://matplotlib.org/basemap/stable/api/basemap_api.html#mpl_toolkits.basemap.Basemap.is_land
https://celltypes.brain-map.org/experiment/electrophysiology/623474400
https://alleninstitute.org/terms-of-use/
https://en.wikipedia.org/wiki/List_of_cities_by_average_temperature
https://en.wikipedia.org/wiki/List_of_cities_by_average_temperature
https://www.kaggle.com/datasets/fedesoriano/traffic-prediction-dataset

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

I COMPARISON TO NEURAL BASELINES

I.1 MODELS

Neural networks, especially graph neural networks, are a popular choice for representing and work-
ing with mixed-curvature representations (Sun et al., 2021; Cho et al., 2023; Bachmann et al., 2020;
McNeela et al., 2024). Following the typical node classification approach described in the literature,
we compared our method to both deep neural networks (ML) and graph neural networks (GNN).
We find that our methods are generally competitive with neural baselines, especially when less data
is available.

We trained each model for 200 epochs using Adam Kingma & Ba (2017) with a learning rate of
.01, β1 = 0.9, and β2 = −0.999. Each model used one hidden dimension equal to its ambient
dimension. For classification, we used an output dimension equal to the number of classes and
cross-entropy loss; for regression, we used a single output dimension and mean squared error loss.

We additionally train tangent plane variants of the MLP and GNN models, in which the data is
preprocessed using a logarithmic map and subsequently treated as Euclidean. For datasets where
the graph topology is not provided (e.g. Gaussian mixtures), we take the pairwise distances in the
manifold geometry and transform them into dense weighted edges using the Gaussian kernel:

Di,j = δP(xi,xj) (73)
A = exp(−D) (74)

For graph datasets with known topology, we instead used the true adjacency matrix and an ablation
in which the adjacency matrix is replaced by the dense Gaussian kernel estimate. Interestingly, for
several of the graph datasets, substituting the true adjacencies with a Gaussian kernel on embedding
distances did not substantially hinder performance; however, it rarely helped.

I.2 DATASETS

Due to time considerations, we ran our benchmarks on a representative sample of the datasets. For
adjacency-free datasets, we chose Gaussian mixtures in single-component signatures (as in Figures 3
and 4) and multiple-component signatures (as in Tables 2 and 3). We also ran each graph dataset on
the lowest Davg signature (i.e. the signatures reported in Tables 2 and 3).

I.3 RESULTS

We tabulate our results as follows: Tables 7 and 9 contain classification and regression benchmarks
for single-K manifolds; Tables 8 and 10 contain classification and regression benchmarks for prod-
uct spaces; and Table 11 contains graph dataset benchmarks. For all benchmarks except graph data,
we beat both MLPs and GNNs; for datasets with informative graph topologies, GNNs are a sensible
alternative.

Table 7: Comparison to neural networks on the constant-curvature classification task.

K Product DT Product RF Tµ0P MLP MLP Tµ0P GNN GNN

-4 0.34 ± 0.10 0.36 ± 0.07 0.27 ± 0.08 0.17 ± 0.10 0.23 ± 0.18 0.18 ± 0.15
-2 0.36 ± 0.10 0.37 ± 0.11 0.29 ± 0.12 0.21 ± 0.16 0.29 ± 0.10 0.21 ± 0.11
-1 0.32 ± 0.09 0.34 ± 0.08 0.26 ± 0.14 0.23 ± 0.09 0.27 ± 0.11 0.22 ± 0.15

-0.5 0.32 ± 0.09 0.33 ± 0.10 0.27 ± 0.10 0.29 ± 0.08 0.28 ± 0.07 0.23 ± 0.12
-0.25 0.30 ± 0.11 0.32 ± 0.11 0.26 ± 0.11 0.25 ± 0.08 0.26 ± 0.09 0.21 ± 0.08

0 0.29 ± 0.11 0.31 ± 0.08 0.23 ± 0.11 0.26 ± 0.12 0.24 ± 0.05 0.24 ± 0.05
0.25 0.28 ± 0.09 0.30 ± 0.11 0.26 ± 0.11 0.28 ± 0.09 0.27 ± 0.09 0.21 ± 0.14
0.5 0.25 ± 0.10 0.29 ± 0.11 0.26 ± 0.11 0.25 ± 0.13 0.25 ± 0.12 0.22 ± 0.14
1 0.27 ± 0.07 0.29 ± 0.05 0.21 ± 0.07 0.22 ± 0.07 0.22 ± 0.07 0.21 ± 0.07
2 0.26 ± 0.07 0.29 ± 0.07 0.23 ± 0.09 0.26 ± 0.09 0.23 ± 0.12 0.23 ± 0.12
4 0.25 ± 0.11 0.26 ± 0.08 0.22 ± 0.06 0.21 ± 0.07 0.21 ± 0.09 0.22 ± 0.07

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Table 8: Comparison to neural networks on the mixed-curvature classification task.

P Product DT Product RF Tµ0P MLP MLP Tµ0P GNN GNN

E4 0.31 ± 0.05 0.35 ± 0.07 0.30 ± 0.11 0.31 ± 0.11 0.27 ± 0.12 0.27 ± 0.12
H4 0.39 ± 0.08 0.43 ± 0.10 0.38 ± 0.11 0.31 ± 0.09 0.32 ± 0.13 0.22 ± 0.09

H2E2 0.34 ± 0.11 0.38 ± 0.11 0.35 ± 0.13 0.34 ± 0.14 0.30 ± 0.13 0.23 ± 0.11
(H2)2 0.35 ± 0.09 0.36 ± 0.08 0.35 ± 0.06 0.34 ± 0.06 0.28 ± 0.07 0.23 ± 0.11
H2S2 0.31 ± 0.09 0.36 ± 0.10 0.33 ± 0.10 0.35 ± 0.09 0.27 ± 0.09 0.22 ± 0.06
S4 0.25 ± 0.06 0.30 ± 0.05 0.25 ± 0.07 0.23 ± 0.08 0.20 ± 0.08 0.20 ± 0.10

S2E2 0.29 ± 0.09 0.32 ± 0.08 0.30 ± 0.09 0.31 ± 0.11 0.25 ± 0.06 0.24 ± 0.08
(S2)2 0.30 ± 0.08 0.34 ± 0.10 0.33 ± 0.08 0.34 ± 0.10 0.23 ± 0.09 0.18 ± 0.11

Table 9: Comparison to neural networks on the single- and mixed-curvature regression tasks.

K Product DT Product RF Tµ0
P MLP MLP Tµ0

P GNN GNN

-4 0.20 ± 0.04 0.19 ± 0.04 0.55 ± 0.13 0.55 ± 0.13 0.55 ± 0.13 0.55 ± 0.13
-2 0.21 ± 0.04 0.20 ± 0.04 0.55 ± 0.08 0.55 ± 0.08 0.55 ± 0.08 0.55 ± 0.08
-1 0.19 ± 0.03 0.19 ± 0.03 0.54 ± 0.09 0.54 ± 0.09 0.54 ± 0.09 0.54 ± 0.09

-0.5 0.19 ± 0.05 0.18 ± 0.05 0.53 ± 0.12 0.53 ± 0.12 0.53 ± 0.12 0.53 ± 0.12
-0.25 0.20 ± 0.02 0.19 ± 0.02 0.53 ± 0.10 0.53 ± 0.10 0.53 ± 0.10 0.53 ± 0.10

0 0.21 ± 0.03 0.20 ± 0.03 0.55 ± 0.11 0.55 ± 0.11 0.55 ± 0.11 0.55 ± 0.11
0.25 0.21 ± 0.03 0.20 ± 0.03 0.54 ± 0.08 0.54 ± 0.08 0.54 ± 0.08 0.54 ± 0.08
0.5 0.20 ± 0.06 0.19 ± 0.05 0.53 ± 0.09 0.53 ± 0.09 0.53 ± 0.09 0.53 ± 0.09
1 0.20 ± 0.04 0.20 ± 0.04 0.56 ± 0.09 0.56 ± 0.09 0.56 ± 0.09 0.56 ± 0.09
2 0.21 ± 0.06 0.21 ± 0.06 0.55 ± 0.11 0.55 ± 0.11 0.55 ± 0.11 0.55 ± 0.11
4 0.20 ± 0.03 0.20 ± 0.03 0.50 ± 0.10 0.50 ± 0.10 0.50 ± 0.10 0.50 ± 0.10

Table 10: Comparison to neural networks on the multi-curvature regression task.

P Product DT Product RF Tµ0P MLP MLP Tµ0P GNN GNN

E4 0.27 ± 0.04 0.20 ± 0.05 0.56 ± 0.09 0.56 ± 0.09 0.56 ± 0.09 0.56 ± 0.09
H4 0.24 ± 0.06 0.18 ± 0.04 0.54 ± 0.10 0.54 ± 0.10 0.54 ± 0.10 0.54 ± 0.10

H2E2 0.26 ± 0.05 0.20 ± 0.03 0.54 ± 0.12 0.54 ± 0.12 0.54 ± 0.12 0.54 ± 0.12
(H2)2 0.24 ± 0.06 0.18 ± 0.04 0.52 ± 0.11 0.52 ± 0.11 0.52 ± 0.11 0.52 ± 0.11
H2S2 0.26 ± 0.06 0.20 ± 0.04 0.52 ± 0.11 0.52 ± 0.11 0.52 ± 0.11 0.52 ± 0.11
S4 0.25 ± 0.02 0.19 ± 0.03 0.53 ± 0.10 0.53 ± 0.10 0.53 ± 0.10 0.53 ± 0.10

S2E2 0.26 ± 0.08 0.19 ± 0.06 0.51 ± 0.10 0.51 ± 0.10 0.51 ± 0.10 0.51 ± 0.10
(S2)2 0.28 ± 0.06 0.20 ± 0.04 0.54 ± 0.11 0.54 ± 0.11 0.54 ± 0.11 0.54 ± 0.11

Table 11: Comparison to neural networks on graph node classification/regression tasks (Citeseer,
Cora, Polblogs are classification tasks; CS PhDs is a regression task).

Dataset Product DT Product RF Tµ0
P MLP MLP Tµ0

P GNN GNN

Citeseer 0.23 ± 0.04 0.24 ± 0.04 0.23 ± 0.03 0.24 ± 0.02 0.24 ± 0.03 0.24 ± 0.03
Cora 0.19 ± 0.03 0.22 ± 0.04 0.29 ± 0.03 0.29 ± 0.03 0.29 ± 0.03 0.29 ± 0.03

Polblogs 0.89 ± 0.19 0.93 ± 0.02 0.85 ± 0.25 0.94 ± 0.03 0.88 ± 0.17 0.82 ± 0.38

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Table 12: Complexity comparison of machine learning models where: n: number of samples, d:
number of features, h: neurons per layer, L: number of layers, D: maximum tree depth, s: number
of support vectors. We include the complexity of computing pairwise distance, which are necessary
for operating models like k-nearest neighbors and GNNs without topologies, as well.

Time Space
Model Phase Worst Avg Worst Avg
Dists n2d n2d n2 n2

MLP Train ndh+ Lnh2 ndh+ Lnh2 nd+ dh+ L(h2 + nh) h2L
Test h2L h2L h2L h2L

Perceptron Train nd nd d d
Test d d d d

SVM Train n3d n2d n2 n2

Test sd sd sd sd

GNN Train n2d n2d n2 n2

Test n2 n2 n2 n2

k-NN Train 1 1 nd nd
Test nd+n log n log n nd nd

Decision Tree Train Dnd Dnd 2D 2D

Test D D 1 1

ProductDT (vanilla) Train Dnd Dnd 2D 2D

Test d+D d+D d d

ProductDT (
(
d
2

)
splits)

Train Dnd2 Dnd2 2D 2D

Test d2 +D d2 +D d2 d2

J RUNTIMES AND COMPLEXITY

We summarize complexities for models used in this paper, as well as the pairwise distance prepro-
cessing necessary for operations such as computing nearest neighbors and creating reasonable graph
edges for GNNs, in Table 12. Complexity estimates are adapted from Virgolin (2021).

To see that the training time complexity of ProductDT is O(Dnd), observe that we must first pre-
process the data into angles, which takes O(nd) operations. From there, the angular comparison
is a constant-time modification to the decision tree algorithm, so the complexity of ProductDT is
O(nd + Dnd) = O(nd). For inference, asymptotic performance is slightly slower than decision
trees because preprocessing an input requires O(d) operations.

If using all
(
d
2

)
2-D projections, training time complexities are all multiplied by d, and the O(d2)

preprocessing step is added to test time complexities.

101 102 103

Dataset Size

10 3

10 2

10 1

100

101

R
un

tim
e

(s
)

DT

Perceptron
RF
Product DT
k-NN
MLP

Product RF

GNN

Runtime vs. Dataset Size

Figure 10: Runtime comparison for all of our methods

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

K INTERPRETABILITY AND VISUALIZATION

Alongside their demonstrated accuracy and efficiency, decision tree algorithms are attractive for
their tractability and interpretability. In particular, given a trained decision tree T , it is possible to:

1. Predict its behavior on the entire space of possible inputs (equivalently: T partitions P in
a tractable way).

2. Determine the importance of features (for classic decision trees) or feature
pairs/components (for ProductDT) by observing how often and how early a fea-
ture(/pair/component) is used in the decision tree procedure. Heuristically, early-splitting
features are more important.

3. Visualize every node using a 2-dimensional projection of the input data and angle

K.1 SUBMANIFOLD-LEVEL ATTRIBUTION EXPERIMENT

To determine whether our method could accurately distinguish between relevant and irrelevant sub-
manifolds, we drew independent samples from Gaussian mixtures in H2, E2, and S2, and yielding
datasets (XH,yH), (XE,yE), (XS,yS). We then concatenated these embeddings together:

XP = XH ⊕XE ⊕XS. (75)

We trained three separate decision tree models on XP , using yH,yE, and yS as labels. Because the
labels and embeddings were drawn independently, it should be the case that only the component from
the same manifold as the labels contains any relevant information, and the other two components
are simply noise. Therefore, measuring the fraction of splits that fall in the “correct” manifold is
a useful proxy for understanding tree models’ ability to pick out signal that happens in individual
component manifolds.

Our results are summarized in Table 13. We found that both product space and ambient decision
trees perform well at this task, which is to be expected.

We note that this analysis is unique to tree methods, where the split dimensions are part of the
architecture; other methods, such as perceptrons, k-nearest neighbors, or neural networks are harder
to query for feature(/component) importances. Therefore, we consider this simple experiment a
useful demonstration of how decision tree learning can reveal aspects of structure in mixed-curvature
datasets that other learning algorithms cannot reveal.

Table 13: Intepretability outcomes for Gaussian mixture. Percentages reflect the proportion of splits
in the trained decision tree which fell in the non-spurious component manifold.

Model H2 E2 S2

Product DT 100% 83% 86%
Ambient DT 100% 83% 67%

K.2 VISUALIZATION

A trained tree gives us all of the information we need to visualize the data and how it is split at every
node, since each node looks at a 2-dimensional projection. We display three levels of a decision tree
with a max depth of 3 in Figure 11. Note that, in this case, the decision tree also gives us relevant
information about which 2-dimensional projections are worth looking at on the basis of their feature
importances.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

250005000075000100000
0

10000

20000

30000

40000

50000

(5, 9), =0.94

250005000075000100000

20000

0

20000

40000

60000

80000
(5, 6), =1.12

0.5 0.0 0.5

0.75

0.50

0.25

0.00

0.25

0.50

0.75

(1, 2), =-0.14

4000020000 0 2000040000
0

10000

20000

30000

40000

50000

(8, 9), =-0.98

0.5 0.0 0.5

0.75

0.50

0.25

0.00

0.25

0.50

0.75

(2, 3), =-2.86

25000 0 250005000075000
40000

20000

0

20000

40000

(6, 8), =1.11

0.5 0.0 0.5

0.75

0.50

0.25

0.00

0.25

0.50

0.75

(2, 3), =0.34

Visualized decision tree

Figure 11: An example of a visualized decision tree for a Gaussian mixture in P = S4H4. Greyed-
out points are discarded “earlier” in the tree.

30

	Introduction
	Related work

	Preliminaries
	Riemannian manifolds
	Euclidean space
	Hyperspherical space
	Hyperbolic space
	Mixed-curvature product manifolds

	Decision trees and random forests
	Hyperbolic decision tree algorithms

	Mixed-curvature decision trees
	Euclidean decision trees
	Hyperbolic decision trees
	Hyperspherical decision trees
	Product decision tree algorithm

	Benchmarks
	Experiment details
	Datasets
	Baselines
	Results

	Conclusion
	Gaussian mixture details
	Overall structure
	Equations for manifold operations
	Generating classification targets
	Generating regression targets
	Relationship to other work

	Product space decision tree pseudocode
	Proof of equivalence for Euclidean case
	Equivalence of Splits
	Equivalence of midpoints

	Summary of angular midpoint formulas
	Full experimental hyperparameters
	Scikit-learn hyperparameters
	Graph embeddings
	VAE training
	Empirical datasets

	Ablations and effects of hyperparameters
	Detailed results
	Global temperature prediction plots
	VAE latent space visualizations
	Full results table

	Datasets availability
	Comparison to neural baselines
	Models
	Datasets
	Results

	Runtimes and complexity
	Interpretability and visualization
	Submanifold-level attribution experiment
	Visualization

