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ABSTRACT

The need for transparency and interpretability in critical domains has led to an in-
creasing interest in understanding the inner workings of Graph Neural Networks
(GNNs). While local-level GNN explainability has been extensively studied to
find important features within individual graph samples, recent research has em-
phasized the importance of global explainability of GNNs by uncovering global
graphical concepts in a dataset underlying GNN behaviors. In this paper, we look
into the intrinsic message-passing mechanism of standard GNNs and introduce a
new method, STExplainer, to directly extract global explanations of GNNs using
rooted subtrees on a dataset level instead of per instance. Unlike existing global
explainers, which typically identify clusters of instance-level explanations or ag-
gregate local graphical patterns into prototypes represented as latent vectors or
rely on human-defined natural language rules, our approach extracts more intuitive
global explanations through rooted subtree patterns and subgraph patterns, along
with their associated relative importance scores, without relying on any instance-
level explainers. We empirically demonstrate the effectiveness of our approach in
extracting meaningful and high-quality global explanations on both synthetic and
real-world datasets. The global explanations extracted by STExplainer are faithful
to the original GNNs and distinguishable among different classes.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Kipf & Welling, 2017; Xu et al., 2019; Hamilton et al., 2017) are
recognized for their remarkable scalability and expressive power in solving graph-related tasks, in-
cluding node and graph classifications. However, the black-boxed nature of GNN predictions poses
limitations to their utilization in critical domains, e.g., healthcare, finance, and autonomous systems,
where decisions made by a model can have significant real-world impacts. This has motivated the
research on GNN explainability, which is crucial to ensuring the transparency and trustworthiness
in GNN decision making.

Existing works on GNN explainability can be categorized mainly into local-level explainabil-
ity (Ying et al., 2019; Luo et al., 2020; Vu & Thai, 2020; Yuan et al., 2021; Shan et al., 2021;
Bajaj et al., 2021; Lin et al., 2021; Wang et al., 2021; Feng et al., 2022; Xie et al., 2022; Zhang et al.,
2022) and global-level explainability (Magister et al., 2021; Azzolin et al., 2023; Xuanyuan et al.,
2023). While local-level explainability focuses on identifying important nodes, edges or subgraphs
behind a GNN model’s specific predictions, these explanations are generated per individual data
instance. In contrast, recent work emphasizes global explainability which aims to provide a more
comprehensive understanding of a model’s behavior on a given dataset, extending its scope beyond
predictions on individual data instances. By distilling the model’s behaviour into coherent global
patterns, global explainers aim to capture the overarching graphical patterns or concepts across the
entire dataset underlying the decisions made by a GNN regarding a class of samples, and thus offer
a systematic view of the model’s overall functioning. This broader perspective also plays a pivotal
role in debugging and continually improving GNNs.

In this paper, we propose a new approach to global-level GNN explanation, named SubTree Ex-
plainer (STExplainer), that extracts subgraph patterns critical to the decision making toward a class
of graphs by mining important rooted subtrees, which align more closely with the message-passing
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mechanism of GNNs, over the entire dataset. The overview of the approach is illustrated in Figure 1.
Our contributions can be summarized as follows:

i) Unlike prior methods that cluster and aggregate concepts found by a local explainer, our
method directly enumerates and extracts L-hop rooted subtrees across the entire dataset
based on frequency (which is tunable to adjust coverage and efficiency), where L is the
number of layers in the GNN, without relying on a local explainer as a prior step.

ii) Unlike existing global explainers, which use prototypes of local explaining concepts rep-
resented in a latent encoding space as explanations (Magister et al., 2021; Azzolin et al.,
2023), or rely on human-defined natural language rules (Xuanyuan et al., 2023), we gener-
ate induced explanation subgraphs on the dataset level from all the subtrees mined. Since
STExplainer produces subgraph-based concepts rather than latent representations of pro-
totypes or manually defined rules, STExplainer can offer more intuitive and visualizable
interpretation of GNN behavior on each class of graph samples.

iii) We provide an optimization method to quantitatively compute the relative importance of
the extracted rooted subtrees and their induced subgraphs, identifying how significant or
relevant the subtree or subgraph patterns are in predicting the target class.

iv) Our approach further utilizes node embeddings to represent graphical patterns of subtrees,
and thus offers an efficient way to quickly assess whether the knowledge gained (subgraph
concepts) from a training set is present in and relevant to decision making for any new
graph instance.

Through extensive evaluations, we demonstrate the advantages of our proposed approach in pro-
viding high-quality, meaningful and intuitive global explanations for different classes of samples
on various synthetic datasets and real-world datasets, in comparison to existing methods on global
GNN explainability. We also show that the global concepts found by STExplainer are faithful to
GNN predictions and class-distinguishing, while covering a majority of data samples in the datasets.

2 RELATED WORK

Global-level GNN explainability is a relatively nascent research direction, with limited exploration
and investigation. GCExplainer (Magister et al., 2021) adapts the well-known Automated Concept-
based Explanation (ACE) (Ghorbani et al., 2019) approach to GNNs by introducing human expertise
into the process. It employs the k-Means clustering algorithm on GNN-generated embeddings to
group nodes or graphs of similar types, with each cluster serving as a representation of a concept.
Subsequently, human experts engage in the analysis of instances within each cluster to discern clear
rules or subgraph patterns that represent these concepts. While this method is conceptually sound,
it faces practical challenges in real-world applications due to reliance on human experts.

Rather than directly employing node or graph embeddings, GLGExplainer (Azzolin et al., 2023)
leverages local subgraph explanations generated by PGExplainer (Luo et al., 2020). These sub-
graph explanations are fed into the original GNN to produce subgraph embeddings. Following this,
GLGExplainer applies prototype learning to these subgraph embeddings, forming clusters and iden-
tifying a prototype within each cluster. These prototypes are essentially vectors in the latent space,
initially randomized from a uniform distribution, and learned alongside other architectural parame-
ters. These prototypes are subsequently employed in an E-LEN model to derive a Boolean formula
that mimics the behavior of the underlying GNN. As a result, the global explanation provided by
this method is represented in the form of a Boolean formula, where the premises are the latent
prototypes.

GCNeuron (Xuanyuan et al., 2023) adopts a different approach by formulating human-defined rule
templates in natural language and considering graphs with certain nodes masked as concepts. When
a natural language rule can describe a masked graph, the masked graph is identified as an inter-
pretable concept. Subsequently, they follow Mu & Andreas (2020) to perform beam search over the
space of compositional concepts for logical compositional rules. The highest-scoring compositional
concepts that enhance the prediction probability of the target class are then identified as the global
explanations.

2



Under review as a conference paper at ICLR 2024

O

Cl

C

C

C

C

C

C

C

C

Cl

O

H

H

H

H

Dataset

O

Cl

C

C

O

C

C O Cl

Induced

Subgraph

Rooted

Subtree

Pattern

Node/Subtree 

Embedding
Frequency

466

231

…
 …

…
 …

…

… ×
Weighted 

Embedding

Classifier 

in GNN
Output

Subtree importance

O

Cl

C

C

O

Cl

C

C O

1.0

O

N

N

O

N

N O

0.86

-0.8

H

C

C

C

H

C

C

C H

O

Cl

C

C

O

Cl

C

C O

O

Cl

C

C

Cl

O

C

C Cl

+

O Cl(     ,     ) within two hop 

of each other.   

O

Cl

C
C

MLP

O

Cl

C
C

O

Cl

C
N

O

Cl

C

O

Cl

C

O

Cl

C
O

Cluster 1 Cluster 2

C

O

N
O

Cluster 4

H

H

N

Cluster 3

O

Cl

C

C

O

N
O

H

H

N

1. Collect T candidate subtrees based on frequency in the dataset. 3. Global explanation: 

M subtrees based on 

absolute value of 

importance. 

2. Optimize for the importance of T subtrees.

…

4. Construct subgraph 

with subtrees in the 

same data instance.

(a) ↓ Extract global subtree patterns from the datasets. 

(b) ↓ Construct global subgraph explanations from the subtree patterns. 

5. Cluster the subgraphs, and find common 

subgraphs for the patterns in each cluster.

6. Find common subgraphs for the patterns of 

different clusters to remove redundancy. 

Figure 1: Overview of STExplainer. (a) In this phase, we extract subtree patterns as the explanations. Step
1: We enumerate all the subtrees in the dataset and count their frequency. Then, we pick only top T subtrees
with the highest frequencies as candidates. We use the embeddings of the rooted nodes to represent candidate
subtree embeddings. Step 2: We feed the embeddings of T subtrees to an MLP. The output vector is then used to
aggregate the subtrees. The weighted embedding is fed to GNN classifier to optimize the prediction at the target
class. Step 3: Remove unimportant subtrees. (b) In this phase, we obtain global subgraph explanations based
on subtrees. Step 4: We construct the induced subgraph explanation from the subtrees in each data instance.
Step 5: We cluster all the subgraphs obtained from different instances and find the common pattern shared by
all subgraphs in each cluster. Step 6: Find common patterns across different clusters to remove redundancy.

Generation-based explainers (Yuan et al., 2020; Wang & Shen, 2022) train a graph generator or gen-
erative models to produce numerous new data samples for the target class, which do not provide clear
concepts, leaving the human observer to draw a conclusion. Global counterfactual explainer (Huang
et al., 2023) greedily finds graph edits that change the prediction labels, which provide insights from
the perspective of counterfactual reasoning, whereas we focus on factual concepts in our work.

3 BACKGROUND

3.1 GRAPH NEURAL NETWORKS

Let G = (V, E) be a graph with the associated nodes set V , edges set E , and N = |V| represents
the number of nodes. A GNN model f(X,A) maps the node features X ∈ RN×d of dimension
d and the adjacency matrix A ∈ RN×N indicating the existence or absence of edges E to a target
output, such as node labels, graph labels, or edge labels. Let l be a message-passing layer in the
GNN. At layer l, the GNN aggregates the neighbourhood information for each node v ∈ V with the
representation h

(l−1)
v , and embeds the information into the next layer representation h

(l)
v . Typical

GNNs (Kipf & Welling, 2017; Xu et al., 2019; Hamilton et al., 2017) aggregate the information
from the 1-hop neighbours N of v as

h(l)
v = UPDATE(l)

(
h(l−1)
v ,AGG(l)

({
h(l−1)
u : u ∈ N (v)

}))
, (1)

where UPDATE(l) and AGG(l) represent the updating and aggregation functions.

3.2 SUBTREE PATTERNS

A (rooted) subtree typically refers to a subgraph of a graph, devoid of cycles, and structured like a
tree with a designated root node. A subtree of G can thus be seen as a connected subset of distinct
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nodes of G with an underlying tree structure. A k-hop subtree is the underlying tree structure within
k-hop distance from the root node. Similar to the notion of walk that extends the notion of path by
allowing nodes to be equal, the notion of subtrees can be extended to subtree patterns (Shervashidze
et al., 2011), which can have nodes that are equal (see Figure 1). These repetitions of the same node
are then treated as distinct nodes, such that the pattern is still a cycle-free tree. Note that similar
to Shervashidze et al. (2011), Xu et al. (2019), and Zhang & Li (2021), the “subtrees” considered
in this paper refers to the subtree patterns, not strict subtrees. Major GNN variants like GCN and
GIN, which are based on the Weisfeiler-Lehman (1-WL) test (Leman & Weisfeiler, 1968), aggregate
information from subtree patterns in their message passing layers. This is precisely the reason we
look into subtrees.

4 METHOD

In this section, we first introduce our methodology for extracting global subtree explanations and
then discuss how we extend this to generate global subgraph explanations using the clustering algo-
rithm. The code is uploaded with the supplementary material of our submission.

4.1 EXTRACT SUBTREE PATTERNS AS THE GLOBAL EXPLANATIONS

Collect candidate subtrees based on frequency. As illustrated in Figure 1 Step 1, to mitigate the
influence of noisy data and improve the quality of our candidate explanations, we focus solely on
the patterns that occur frequently in the dataset. Traditional Frequent Subtree Mining problem (Chi
et al., 2004) is defined as: Given a threshold minfreq, for non-isomorphic subtrees P

∀P ∈ P : freq(P,D) =
∑
G∈D

ψ(P,G) ≥ minfreq, (2)

where D is the set of induced trees from the graph instances in the dataset, ψ is a function indicating
the frequency of subtree P in the induced tree G of the corresponding data instance. Following this
problem setup, we are able to ignore the subtree patterns that barely appear in the dataset.

In our paper, we want to additionally ignore the subtrees shared between the target class and other
classes. In other words, let C be the set of induced trees of the target class, H be the set of induced
trees of other classes, we define the frequent subtrees as

∀P ∈ P : freq(P,D) =

∣∣∣∣∣∑
G∈C

ψ(P,G)−
∑
G∈H

ψ(P,G)

∣∣∣∣∣ ≥ minfreq. (3)

We quantify the magnitude of the frequency difference, as a negative difference indicates the corre-
sponding subtree P appears more often in other classes, which, in global view, could have a negative
impact on the prediction of the target class. Hence, we consider these subtrees in our analysis. We
collect a set of T candidate subtrees, where the threshold minfreq is determined by the minimum
frequency of the top T subtrees.

This approach is efficient because, in the case of an L-layer Graph Neural Network (GNN), we limit
our focus to L-hop subtrees within the data samples. So, if each data sample has an average of
N nodes, and the dataset contains |G| samples, we only need to enumerate N |G| subtrees. In con-
trast, when dealing with subgraphs, the enumeration process becomes much more computationally
demanding as we would potentially have to consider up to N ! subgraphs within each data sample.
Therefore, focusing on L-hop subtrees in a L-layer Graph Neural Network (GNN) is computation-
ally efficient, reducing the enumeration complexity to N |G| compared to the potentially factorial
complexity of subgraph enumeration.

Importance learning for candidate subtrees. As illustrated in Figure 1 Step 2, after we obtain the
top T subtrees in Step 1, we use the corresponding L-layer node embeddings to represent the L-hop
rooted subtrees, and feed the embeddings to a multilayer perceptron (MLP) that outputs a vector
W ∈ R1×T . We will use this vector later in Step 3 to represent the importance of subtrees. Next, we
perform matrix multiplication between W and the embeddings H of the top T subtrees to obtain the
weighted embedding of the dataset. Then, the weighted embedding is passed to the classifier ϕ(·)
of the original GNN, resulting in the final prediction values at each output class before any softmax
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layers. It is worth noting that the parameters in the classifier is fixed throughout the training process
of our model.

The training objective is to minimize the prediction loss on the target class that we aim to explain.
Additionally, we use a penalty term to limit the total weights that the explanations can take. For-
mally, the loss function is defined as:

L = − log
exp(pt)∑C
c=1 exp(pc)

+ λ ∥W∥2 , (4)

where pc is the output of ϕ(WH) at class c, C is the number of classes, t is the index of the target
class, and λ is a weighing factor.

We incorporate a penalty term for the following reason. As previously mentioned, WH represents
the weighted sum of candidate subtree embeddings. By controlling the overall weights, our objective
is to encourage the “significant” subtrees to occupy only a minor portion of the “dataset embedding”,
which can mimic the readout functions typically employed in GNNs. In order words, we introduce
this penalty term based on the intuition that GNNs can effectively represent the dataset using a
limited number of “significant” subtrees, with the remaining “non-significant” subtrees exerting
minimal influence on the prediction of the target class.

For example, in graph classification tasks, the mean-pooling function is typically utilized to obtain
the graph embedding for each data instance, which is defined as: r = 1

N

∑N
n=1 h

(L)
n , where h

(L)
n

is the last layer node embedding for the n-th node. We can observe from this equation that all the
subtrees are equally weighted when evaluating the graph embedding, where each subtree takes only
a small portion. By limiting the total weights that the candidate subtrees can take, we effectively
suppress the influence of non-significant subtrees on predictions, even when they receive greater
weights. Conversely, significant subtrees retain the capacity to exert a crucial impact on predictions.
Consequently, the model is incentivized to assign greater importance to these significant subtrees
during the learning process.

Global subtree explanations. Lastly, as illustrated in Figure 1 Step 3, we standardize the acquired
weights relative to the one with the maximum magnitude. Then, we select M subtrees, considering
their relative importance magnitude, to serve as the global subtree explanations. This approach al-
lows to consider both the positively significant patterns as well as the negatively significant patterns,
which is useful for analysing the predictions of a biased class. For example, if there are three classes
in a task, the first and the second classes have patterns of A and B respectively, while the third class
does not have any outstanding patterns. Then, the explanation for the third class can be: If neither
pattern A nor pattern B is present in the graph, it should be classified into the third class. In our
case, the explanation would be the two patterns A and B, both with negative scores.

Utilize learned global subtree patterns to explain new instances. The design nature of our subtree
explainer provides a straightforward approach to effectively explaining new data samples using the
learned concepts. By representing subtree embeddings directly using the embeddings of their root
nodes, when a new instance is introduced, we can readily acquire all the subtree embeddings by
feeding the new data into the GNN. Subsequently, we cross-reference these subtree embeddings
with the learned concepts. If any of these subtrees are found within the learned concepts, it signifies
that we can utilize the acquired knowledge to provide explanations for the new data instances.

4.2 EXTRACT SUBGRAPH PATTERNS AS THE GLOBAL EXPLANATIONS

Subgraph explanations are able to capture patterns that are larger or smaller than the L-hop subtrees,
thus offering a more comprehensive insight of the GNNs. However, when we intend to employ
these acquired subgraph patterns as global concepts for inference or reasoning on new data instances,
mirroring human reasoning, a challenge arises. The obstacle lies in the computational cost associated
with enumerating all potential subgraphs within a new graph and comparing them with the learned
concepts. In the following, we elaborate on how we address this challenge by generating subgraph
explanations with the subtrees previously extracted.

Unions of subtrees in the same data instance. In order to cover the frequent patterns that are
larger than L-hop subtrees, we look into the overlapped subtree explanations in each data instance
by examining the L-hop nodes of the rooted nodes.
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Figure 2: Global explanations by STExplainer (ours), GCNeuron and GLGExplainer. We run both
baseline methods so that they explain the same GNN models as our approach. Due to space limit,
the explanations on BAMultiShapes and NCI1 datasets are moved to the appendix.

Definition 1 (Overlapped Subtrees) If the rooted node of one rooted subtree is located within the
L-hop distance of the rooted node of another rooted subtree, we say that these two rooted subtrees
are overlapped subtrees.

We consider L-hop neighbors because, in cases where two rooted nodes are L-hop neighbors of one
another, certain graph patterns are inherently overlapped. This is due to the fact that the path con-
necting these two nodes is, by definition, overlapping. When two subtree explanations overlap, they
are more likely to function as a cohesive group rather than independently. Therefore, we construct
subgraph patterns using the overlapping subtrees. The embedding of a subgraph representing the
union of subtrees is acquired by averaging the embeddings of the subtrees in this union. Similarly,
the importance score of this union is determined by averaging the importance scores of the sub-
trees within this union. Additionally, we memorize the embeddings of the subtrees consisting this
subgraph for quick assessment on new instances.

Intersections of the subgraph patterns in the same cluster. After deriving the subgraph patterns
by combining overlapping subtrees within each data instance, we employ the k-Means clustering
algorithm on these subgraphs. The choice of k is determined based on the mean distance between
the subgraph embeddings and the centroid of each cluster. We increase k until the mean distance of
all clusters falls below a predefined threshold, denoted as τ . Subsequently, we randomly select S
subgraph patterns from each cluster and perform subgraph matching on them, ultimately yielding the
intersection of these S subgraphs. This intersection serves as the representative subgraph concept for
a given cluster. In cases no common subgraphs are found in a cluster, we simply discard this cluster.
This is unlikely since we have constrained τ to force the subgraphs in a cluster to be similar to each
other. To gauge the importance of each subgraph concept, we compute the average importance score
across all subgraph patterns within the same cluster.
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Table 1: Results averaged over ten runs with the standard deviations reported.

Datasets Fidelity Infidelity
Train Test Train Test

BA-2Motifs 0.99±0.02 0.98±0.02 0.52±0.00 0.50±0.00
BAMultiShapes 0.97±0.05 0.94±0.07 0.50±0.03 0.47±0.03
Mutagenicity 0.87±0.03 0.83±0.04 0.52±0.03 0.49±0.05
NCI1 0.58±0.07 0.61±0.08 0.47±0.05 0.48±0.03

Intersections of the subgraph patterns across different clusters. Now that we have obtained k
subgraph patterns, the next step is to remove the redundant ones. For example, if there are two
subgraph explanations with similar confidence scores, and one is a subgraph of the other, we should
retain only the smaller one. To facilitate this, we engage in subgraph matching on the k subgraph
patterns. In cases where two subgraph patterns from the prior step share a common subgraph and
their score difference is less than ϵ, we accept the common subgraph while simultaneously removing
the two original subgraph patterns from the global explanations. The score assigned to the common
subgraph is the maximum score between the two original patterns. This process ensures a more
concise and informative set of subgraph explanations.

Utilize learned global subgraph patterns to explain new instances. Since we have memorized
which subtree patterns that each subgraph pattern is contructed from, when new data instance comes
in, we can do something similar to the subtree lookups as described in Section 4.1. First, we look
up each subtree embedding of the new instance in the memorized subtrees that consist the subgraph
explanations. If any of these subtrees are found within the learned concepts, it signifies that we can
utilize the acquired knowledge to provide explanations for the new data instances.

5 EXPERIMENTS

5.1 DATASETS

In this paper, similar to prior works (Azzolin et al., 2023; Xuanyuan et al., 2023), we focus on graph
classifications and conduct experiments on two synthetic datasets BA-2Motifs (Luo et al., 2020) and
BAMultiShapes (Azzolin et al., 2023), as well as two real-world datasets Mutagenicity Kazius et al.
(2005) and NCI1 (Wale et al., 2008; Pires et al., 2015) on Graph Isomorphism Networks (Xu et al.,
2019) to demonstrate the efficacy of our approach. The statistics of these datasets can be found in
Appendix A.1.

The BA-2Motifs dataset employs Barabasi-Albert (BA) graphs as base graphs. In this dataset, Class
0 graphs are augmented with five-node cycle motifs, while Class 1 graphs are enriched with “house”
motifs. The GNNs are desired to correctly identify the five-node cycle motif as a positive pattern for
Class 0 and a negative pattern for Class 1, while recognizing the “house” motif as a positive pattern
for Class 1 and a negative pattern for Class 0.

The BAMultiShapes dataset consists of 1,000 Barabasi-Albert (BA) graphs, each containing ran-
domly positioned house, grid, and wheel motifs. Class 0 includes plain BA graphs and those with
individual motifs or a combination of all three. In contrast, Class 1 comprises BA graphs enriched
with any two of the three motifs. Notably, all motifs, including BA, house, grid, and wheel, are
present in both classes, posing a challenge for differentiation. This task underscores the role of
global explainers in confirming whether GNNs align with human expectations when known rules
exist.

Mutagenicity and NCI1 are real-world chemical and medical datasets, which are challenging for
both classification or explainability due to their complex graph structures. Mutagenicity comprises
4,337 molecule graphs, categorized into two classes based on their mutagenic effects. Graphs in
Class 0 are mutagenic molecules, and graphs in Class 1 are non-mutagenic molecules. NCI1 con-
tains a few thousand chemical compounds screened for activity against non-small cell lung cancer
and ovarian cancer cell lines. The intricacy of these datasets makes it challenging to derive definitive
classification rules, even for human experts. This emphasizes the importance of global explainers in
facilitating knowledge and pattern discovery within real-world graph data.
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Figure 3: Scatter plots of the global subtree explanations and the original graphs. In the plots of the
global subtree explanations, the radius of each marker indicates the number of data samples each
subtree covers. The larger a marker is, the more data samples it covers. While the scatter plots of the
original graphs in different classes are largely overlapped, the plots of the subtrees in various classes
are distanced from each other, clearly representing different concepts.

5.2 EVALUATION METRICS

As discussed in Section 1, global explanations are expected to encompass the majority of the data
samples while offering meaningful patterns to distinguish between various classes of data. To high-
light the robustness of our proposed method in achieving these objectives, we qualitatively evaluate
STExplainer based on the following metrics: i) Fidelity, which represents the percentage of pre-
diction matching with the original graphs when only the explanation patterns are used to make
prediction, for the instances covered by the global explanations. ii) Infidelity, which represents the
percentage of prediction changes when the explanation patterns are removed relative to the original
graphs, for the instances covered by the global explanations. Fidelity and Infidelity are two metrics
that have been widely used in the vision domain (Yeh et al., 2019; Zhou et al., 2021). We adopt their
definitions of these metrics for graphs to test the faithfulness of the extracted global explanations,
which are also known as (1 − Fidelity−acc) and Fidelity+acc in Yuan et al. (2022). It is impor-
tant to note that the subgraph explanations derived from our approach are not prototypes of clusters.
Instead, they are pure concepts obtained through subgraph matching. Therefore, we do not measure
the purity of these explanations.

5.3 RESULTS

We illustrate the global explanations by our approach, and two existing global GNN explainers in
Figure 2. Since GCExplainer requires humans in the loop, we did not compare with it in our paper.
As shown in Figure 2, GLGExplainer has limitations in delivering clear global explanations. As we
discussed in Section 2, the prototypes it generates are latent vectors, lacking clear motifs to represent
each prototype. Instead, it provides random local explanations for instances within the cluster. This
means that, from the perspective of providing intuitive global explanations, GLGExplainer’s outputs
remain implicit and require human experts to interpret and draw meaningful conclusions. On the
other hand, GCNeuron provides global explanations in the form of logical rules with human-defined
premises. However, without prior knowledge, it becomes challenging to define meaningful graph
patterns as premises when dealing with the BA-2Motifs dataset. Consequently, the explanations rely
on more abstract concepts like the “degree of nodes” or “degree of neighboring nodes”, which can
make them quite perplexing and challenging for humans to understand. When applied to the Mu-
tagenicity dataset, GCNeuron manually defines 44 premises, including terms like “NO2”, “NH2”,
“NO”, “is(C)”, “neighbour of C”, “2-hop from C”. However, GCNeuron fails to recognize “NO2”
as a Class 0 motif, even though it’s known to be relevant to mutagenic effects Luo et al. (2020).
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Figure 4: Fidelity of covered data samples relative to the top-T Subtrees (%) as candidate subtrees.
Conversely, STExplainer is able to accurately extract the significant global patterns on BA-2Motifs
mentioned in Section 5.1. That is, the five-node cycle motif is the positive graph pattern of Class
0, but the negative graph pattern of Class 1; the “house” motif is the positive graph pattern of Class
1, but the negative graph pattern of Class 0. On the Mutagenicity dataset, STExplainer successfully
identifies the “-NO2” and “-NH2” chemical groups as Class 0 patterns with high confidence scores,
which are well-known to be associated with mutagenicity, as discussed in previous studies (Ying
et al., 2019; Luo et al., 2020; Debnath et al., 1991). Additionally, it identifies “-N2O”, “-OCH3” as
the Class 0 motifs, and “-CH2”, “-OH” as the Class 1 motifs, albeit with relatively lower but still
positive confidence. These chemical groups have been widely studied in terms of their mutagenic
effects (Hill et al., 1998; Baden & Kundomal, 1987). Explicitly highlighting these chemical groups
provides a more comprehensive understanding of how GNNs make decisions and can be valuable for
debugging GNNs. Due to the space limit, we have moved the qualitative results on BAMultiShapes
and NCI1 to appendices. Please see Appendix A.4 for more results and discussions on these datasets.

We present the performance of our approach on Fidelity and Infidelity metrics in Table 1. These
results are obtained by adjusting hyperparameters T and λ to fully cover the data samples in the
dataset. The high fidelity scores indicate that STExplainer successfully extracts global explanations
that closely align with the original GNNs’ behavior. The infidelity results, which hover around
0.5, are reasonable for binary classification tasks. This is because, in cases where one class is
biased, even if we remove the motifs important to that class, due to the absence of motifs crucial
to the other class, the predictions would remain unchanged, resulting in an infidelity score around
0.5. Discussions on the comparison with other global explainers over qualitative evaluations can be
found in the appendix.

We additionally illustrate STExplainer is capable to extract subtrees that clearly distinguish between
the classes by scatter plots as shown in Figure 3. We obtain the scatter plots via the linear Principal
Component Analysis (PCA) (Halko et al., 2011). In the plots of subtree explanations, the larger a
marker is, the more data samples the corresponding subtree covers. We can observe that the original
data of different classes are largely overlapped. In contrast, the subtrees of various classes are
distanced from each other, representing different concepts. For instance, the three lighter clusters in
Figure 3 (b.1) represent house, wheel and grid motifs respectively, and the darker clusters are various
sub-patterns of BA. For details on these global explanations please also refer to Appendix A.4 and
A.3. Furthermore, we report the fidelity performance with respect to T in Figure 4, where we select
top T candidate subtrees for training. The results on all the datasets coverage as T increases. In
particular, STExplainer achieves a high fidelity on BAMultiShapes with a very small portion of
subtrees, where T = 0.2%. It maintains a near optimal fidelity on BA-2Motifs with less than top
1% subtrees selected as the candidates. On real world dataset such as Mutagenicity and NCI1, which
contains more complicated sub-structures, it requires 4% ∼ 6% subtrees to converge. Due to space
limitations, we have moved the discussions on hyperparameter selection and implementation details
to the appendices.

6 CONCLUSION

In this paper, we primarily focus on global-level explanations for Graph Neural Networks (GNNs),
and introduce a novel approach STExplainer, which offers global insights of the GNN models with
the intuitive subtree patterns and subgraph patterns. Our approach inherently allows rapid lookups
on the learned concepts while doing inference. Through detailed empirical analysis, we show that
the global explanations extracted by STExplainer are more intuitive and human-understandable
compared with existing global-level GNN explainers while maintaining the faithfulness and dis-
criminability.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Steve Azzolin, Antonio Longa, Pietro Barbiero, Pietro Lio, and Andrea Passerini. Global explain-
ability of gnns via logic combination of learned concepts. In The Eleventh International Confer-
ence on Learning Representations, 2023.

JM Baden and YR Kundomal. Mutagenicity of the combination of a volatile anaesthetic and nitrous
oxide. British journal of anaesthesia, 59(6):772–775, 1987.

Mohit Bajaj, Lingyang Chu, Zi Yu Xue, Jian Pei, Lanjun Wang, Peter Cho-Ho Lam, and Yong
Zhang. Robust counterfactual explanations on graph neural networks. Advances in Neural Infor-
mation Processing Systems, 34:5644–5655, 2021.

Yun Chi, Richard R. Muntz, Siegfried Nijssen, and Joost N. Kok. Frequent subtree mining - an
overview. Fundam. Informaticae, 66:161–198, 2004.

Asim Kumar Debnath, Rosa L Lopez de Compadre, Gargi Debnath, Alan J Shusterman, and Cor-
win Hansch. Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro com-
pounds. correlation with molecular orbital energies and hydrophobicity. Journal of medicinal
chemistry, 34(2):786–797, 1991.

Qizhang Feng, Ninghao Liu, Fan Yang, Ruixiang Tang, Mengnan Du, and Xia Hu. Degree: Decom-
position based explanation for graph neural networks. In International Conference on Learning
Representations, 2022.

Amirata Ghorbani, James Wexler, James Y Zou, and Been Kim. Towards automatic concept-based
explanations. Advances in neural information processing systems, 32, 2019.

Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions. SIAM review, 53
(2):217–288, 2011.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Fergal Hill, David M Williams, David Loakes, and Daniel M Brown. Comparative mutagenicities of
n6-methoxy-2′, 6-diaminopurine and n6-methoxyaminopurine 2′-deoxyribonucleosides and their
5-triphosphates. Nucleic acids research, 26(5):1144–1149, 1998.

Zexi Huang, Mert Kosan, Sourav Medya, Sayan Ranu, and Ambuj Singh. Global counterfactual
explainer for graph neural networks. In Proceedings of the Sixteenth ACM International Con-
ference on Web Search and Data Mining, WSDM ’23, pp. 141–149. Association for Computing
Machinery, 2023. ISBN 9781450394079.

Jaykumar Kakkad, Jaspal Jannu, Kartik Sharma, Charu Aggarwal, and Sourav Medya. A survey on
explainability of graph neural networks. arXiv preprint arXiv:2306.01958, 2023.

Jeroen Kazius, Ross McGuire, and Roberta Bursi. Derivation and validation of toxicophores for
mutagenicity prediction. Journal of medicinal chemistry, 48(1):312–320, 2005.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations, 2017.

AA Leman and Boris Weisfeiler. A reduction of a graph to a canonical form and an algebra arising
during this reduction. Nauchno-Technicheskaya Informatsiya, 2(9):12–16, 1968.

Wanyu Lin, Hao Lan, and Baochun Li. Generative causal explanations for graph neural networks.
In International Conference on Machine Learning, pp. 6666–6679. PMLR, 2021.

Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang
Zhang. Parameterized explainer for graph neural network. Advances in neural information pro-
cessing systems, 33:19620–19631, 2020.

10



Under review as a conference paper at ICLR 2024

Jing Ma, Ruocheng Guo, Saumitra Mishra, Aidong Zhang, and Jundong Li. Clear: Generative
counterfactual explanations on graphs. Advances in Neural Information Processing Systems, 35:
25895–25907, 2022.

Lucie Charlotte Magister, Dmitry Kazhdan, Vikash Singh, and Pietro Liò. Gcexplainer: Human-in-
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A APPENDIX

A.1 DATASET STATISTICS

Table 2: Statistics of datasets.

Datasets BA-2Motifs BAMultiShapes Mutagenicity NCI1
#nodes #edges #nodes #edges #nodes #edges #nodes #edges

mean 25 51 40 87.5 30.3 61.5 29.9 64.6
std 0 1 0 7.2 20.1 33.6 13.6 29.9
min 25 49 40 78 4 6 3 4
quantile25 25 50 40 78 19 38 21 46
median 25 50 40 90 27 56 27 58
quantile75 25 52 40 92 35 76 35 76
max 25 52 40 100 417 224 111 238
#graphs 1000 1000 4337 4110

A.2 GNN IMPLEMENTATION DETAILS

Table 3: Details of the GNN models used to produce our experimental results, where “hidden” is the
latent dimension size, and L is the number of GNN layers.

Datasets BA-2Motifs BAMultiShapes Mutagenicity NCI1
L 3 3 3 3
hidden 32 20 64 64
pooling mean mean mean mean
layer type GIN GIN GIN GIN
learning rate 0.01 0.01 0.01 0.01
batch size 256 256 256 256
epochs 200 200 200 200

train acc 1.00 0.95 0.91 0.95
test acc 1.00 0.97 0.81 0.80

A.3 VISUALIZATION OF GLOBAL EXPLANATIONS ON DATA INSTANCES

Figure 5, 6, 7 visualize the global explanations extracted using our approach on the actual data in-
stances. We can easily observe that the five-node cycles and house motifs are accurately highlighted
on the graphs at the corresponding classes in the BA-2Motifs dataset. For BAMultiShapes, the BA
patterns for Class 0, as well as house, wheel, grid motifs for Class 1 are clearly illustrated. On Mu-
tagenicity and NCI1, STExplainer is able to highlight functional groups such as “-NO2”, “-NH2”,
“-NO”.

12



Under review as a conference paper at ICLR 2024

C
la

s
s
 0

C
la

s
s
 1

Not ImportantImportant

Figure 5: Visualization of the global explanations extracted by STExplainer on the actual data in-
stances of the BA-2Motifs dataset.
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Figure 6: Visualization of the global explanations extracted by STExplainer on the actual data in-
stances of the BAMultiShapes dataset.
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Figure 7: Visualization of the global explanations extracted by STExplainer on the actual data in-
stances of the Mutagenicity dataset.
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Figure 8: Visualization of the global explanations extracted by STExplainer on the actual data in-
stances of the NCI1 dataset.
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A.4 ADDITIONAL QUALITATIVE RESULTS
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Figure 9: Global explanations by STExplainer (ours), GCNeuron and GLGExplainer on BAMulti-
Shapes and NCI1 datasets. We run both baseline methods so that they explain the same GNN models
as our approach.

Figure 9 presents the global explanations produced by various global explainers on BAMultiShapes
and NCI1 datasets. For the NCI1 dataset, we cannot map the node type numbers to the actual
atoms because that information was not available. So, the explanations we provide only include the
node type numbers. GLGExplainer generates long Boolean formulas on BAMultiShapes dataset.
However, it fails to identify the house motif. Moreover, the predicates in the Class 1 formula,
namely (P1 ∧ P3), (P2 ∧ P5) and (P5 ∧ P1), are not faithful to the ground-truth, as they require the
presence of multiple grids or multiple wheels in Class 1 graphs. Recall that the ground-truth rules
of BAMultiShapes is that Class 0 includes plain BA graphs and those with individual motifs or a
combination of all three, whereas Class 1 comprises BA graphs enriched with any two of the three
motifs. Furthermore, the Boolean formulas from GLGExplainer on NCI1 is a bit confusing, since
P0 ∨ (P0 ∧ P1) is logically equivalent to P0. Consequently, for the NCI1 dataset, GLGExplainer
only provides random local explanations of each prototype, where Prototype 0 stands for Class 0 and
Prototype 1 stands for Class 1. The insights provided by these random local explanations are less
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informative. On the other hand, the global explanations from GCNeuron are relatively less intuitive
as negations are frequently involved, and they are challenging for humans to understand.

In contrast, our approach successfully identifies all the outstanding motifs for the BAMultiShapes
dataset, namely, the house, wheel, as well as grid motifs. In particular, STExplainer recognize the
patterns in Barabasi-Albert (BA) graphs as the Class 0 motifs, and house, wheel, grid as the Class
1 motifs. This is reasonable because, as shown in Table 2, all the data samples in BAMultiShapes
contain 40 nodes. Hence, if more house, wheel or grid motifs are included in a graph, then less BA
patterns will be in it. Given that all the Class 1 graphs contain two out of three motifs in house,
wheel or grid, whereas most Class 0 graphs contain at most one of the three motifs, it is reasonable
for the GNNs to consider that the Class 0 graphs contains a larger portion of BA patterns than the
Class 1 graphs. Additionally, neither STExplainer nor GLGExplainer is able to capture the ground
truth rule that graphs contain all of the three motifs are Class 0 graphs, which is as expected, since
as shown in Table A.2, the GIN does not achieve perfect accuracy on BAMultiShapes, and there
are only around 4% of the graphs contain all of the three motifs. These experimental results have
demonstrate that our approach has the potential to provide insights into some occasionally incorrect
rules learned by the model. For the NCI1 dataset, the inherent design of STExplainer allows it to
capture larger graph patterns than GLGExplainer and GCNeuron.

A.5 DISCUSSION ON THE COMPARISON WITH GLGEXPLAINER ON FIDELITY

We did not compare with GLGExplainer on the fidelity metric for the following reasons. First, we
use a different definition of fidelity from GLGExplainer. GLGExplainer uses “fidelity” to gauge the
alignment between the predictions of their E-LEN model and the original GNN, a metric tailored
to their specific model and not widely recognized within the broader domain of explainability in
neural networks. On the contrary, we adopt the widely accepted concept of fidelity within the
field of neural network explainability as we discussed in Section 5, and measure the accuracy by
comparing predictions derived solely from the explanations with the original predictions. Second,
another metric employed by GLGExplainer, namely “accuracy”, bears similarity to the definition
of “fidelity” as delineated in our paper. Nonetheless, as expounded upon in Section 5, our reported
results stem from hyperparameter tuning efforts aimed at ensuring comprehensive coverage of data
samples by the global explanations. In contrast, the design of GLGExplainer presents challenges
in achieving full coverage. Specifically, GLGExplainer resorts to manual exclusion of data samples
in cases where local explanations fail to meet requirements. For instance, in their implementation
on the Mutagenicity dataset, they commenced with 3469 training samples but utilized only 2329 of
them for model training. And the accuracy evaluations were conducted exclusively on the subset
of data instances that survived this filtering process. These are the reasons that we did not compare
with GLGExplainer on the fidelity metrics in our experiments.

A.6 HYPERPARAMETER SETTINGS

In our experiments, we use the following hyperparameter settings. For BA-2Motifs and BAMul-
tiShapes, we choose T = 2%, M is determined by thresholding the subtrees of absolute scores
exceeding 0.03. For Mutagenicity, we choose T = 4%, M is determined by thresholding the sub-
trees whose absolute scores exceeding 0.01. For NCI1, we choose T = 5%, M is determined by
thresholding the subtrees whose absolute scores exceeding 0.001. The learning rate to train the
models for all the datasets in Step 2 of Figure 1 is lr = 0.002, and the number of epoch=2000. For
all the datasets, we set λ = 0.1, τ = 2.00 and allow a maximum of kmax = 40 clusters.

Table 4: Exact number of clusters.

Datasets BA-2Motifs BAMultiShapes Mutagenicity NCI1
k 10 21 32 36

Table 4 shows the exact number of clusters, i.e., k that is used in the experiments. Since the required
number of clusters does not go beyond 40, we set kmax = 40 to allow the cluster algorithm to
determine the number of clusters required for each dataset.
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Figure 10: Percentage of valid clusters (not discarded) over ten runs with respect to various choice
of τ .
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