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ABSTRACT

Prompt engineering is crucial for deploying LLMs but is poorly understood math-
ematically. We formalize LLM systems as a class of discrete stochastic dynamical
systems to explore prompt engineering through the lens of control theory. We
investigate the reachable set of output token sequences Ry(x0) for which there
exists a control input sequence u for each y ∈ Ry(x0) that steers the LLM to out-
put y from initial state sequence x0. We offer analytic analysis on the limitations
on the controllability of self-attention in terms of reachable set, where we prove an
upper bound on the reachable set of outputs Ry(x0) as a function of the singular
values of the parameter matrices. We present complementary empirical analy-
sis on the controllability of a panel of LLMs, including Falcon-7b, Llama-7b, and
Falcon-40b. Our results demonstrate a lower bound on the reachable set of outputs
Ry(x0) w.r.t. initial state sequences x0 sampled from the Wikitext dataset. We
find that the correct next Wikitext token following sequence x0 is reachable over
97% of the time with prompts of k ≤ 10 tokens. We also establish that the top
75 most likely next tokens, as estimated by the LLM itself, are reachable at least
85% of the time with prompts of k ≤ 10 tokens. Intriguingly, short prompt se-
quences can dramatically alter the likelihood of specific outputs, even making the
least likely tokens become the most likely ones. This control-centric analysis of
LLMs demonstrates the significant and poorly understood role of input sequences
in steering output probabilities, offering a foundational perspective for enhancing
language model system capabilities.

1 INTRODUCTION

LLMs pre-trained on unsupervised next token prediction objectives exhibit unprecedented dynamic
reprogrammability achieved through “prompting”, often referred to as zero-shot learning (Brown
et al., 2020; Wei et al., 2022; Hagendorff, 2023; Noever & McKee, 2023; OpenAI, 2023; 2022).
These capabilities appear to emerge as the model’s size, training data, and training time are scaled.
The dynamic reprogrammability of LLMs is akin to the adaptable computational capacities observed
in biological systems. This feature finds applications across domains such as machine translation
(Wang et al., 2023a), code generation (Rozière et al., 2023), and chatbots Bai et al. (2022). A
rigorous understanding of the prompt’s influence over LLM generation would be of great utility for
understanding LLMs and building more robust and capable systems leveraging LLMs.

Strategies for controlling pre-trained LLM generation today fall into three broad categories (Zhang
et al., 2022):

1. Input Optimization (Prompting): Adjusting the input tokens (e.g., rewording the
prompt) to improve subsequent text generation.

2. Model Optimization: Adjusting the weights of the network (e.g., fine-tuning, RLHF) to
improve model behavior during inference.

3. Post-processing: Adjusting or re-ranking generated text (e.g., surrogate ranking algo-
rithm).

Of all these approaches, input optimization (i.e., prompting) is the least invasive and lowest-cost
method – and the least understood. Prompt optimization is also deeply connected to the zero-shot
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capabilities of LLMs – the mysterious emergent capabilities of LLMs such as problem-solving,
knowledge retrieval, reasoning, and apparent general intelligence (Bubeck et al., 2023). With such
a view, we seek to characterize the controllability of LLMs via prompting.

1.1 CONTRIBUTION

We formalize LLM systems in the mathematical framework of control theory in Section 3. Our
analysis focuses on the reachable set of outputs Ry(x0) for an LLM system. The reachable set
is a fundamental concept in control theory that underlies notions of controllability, stability, and
observability (cf. Appendix A). The reachable output set Ry(x0) is the set of output sequences y
for which there exists a control input sequence u∗ that steers the LLM from initial state x0 to output
y (cf. Definitions 3, 11).

Our analytic results in Section 4 prove an upper bound on the contents of the reachable output set
for a self-attention head as a function of the singular values of its parameter matrices. Since self-
attention is the only component in a transformer block where significant information is exchanged
between token representations, this bound provides a foothold for analysis of LLM controllability
from the perspective of mechanistic interpretability (e.g., Bricken et al. (2023); Chefer et al. (2021);
Conmy et al. (2023)). Moreover, this bound represents a necessary condition for an output to be in
the reachable set.

Our empirical results apply state-of-the-art prompt optimization techniques (Section 5.1) to demon-
strate a lower bound on the contents of the reachable output set for a panel of LLMs, including
Llama-7b (Touvron et al., 2023), Falcon-7b, and Falcon-40b (Almazrouei et al., 2023). Specifically,
we sample initial states x0 from the Wikitext dataset (Merity et al., 2016) and probe the reachable
output tokens y under length-constrained control input sequences u : |u| ≤ k. The length constraint
k is highly relevant for optimal control of LLMs, as prompts with fewer tokens require fewer com-
putation and memory resources. We find that the reachable output set contains the “correct” next
Wikitext token following x0 over 97% of the time with prompts of k ≤ 10 tokens. We expand our
analysis of the contents of Ry(x0) by sampling target output tokens y based on the LLMs initial
estimate of output likelihood PLM (y|x0). We find that the top 75 most likely output tokens y are
reachable at least 85% of the time with prompts of k ≤ 10 tokens. Intriguingly, some tokens drawn
from the set of least likely outputs are controllable to the most likely output with k ≤ 4 control input
tokens. Our results suggest that prior likelihood-based metrics, such as cross-entropy loss, cannot
guarantee exclusion from the reachable set, emphasizing the gap in our current understanding of
LLM systems and control. Implications of our results and open questions in LLM control theory are
further discussed in Section 6.

2 RELATED WORK

Much of the work on prompt optimization is concerned with finding prompts that induce higher
LLM performance on “fill-in-the-blank” or “cloze” tasks (Taylor, 1953). One can frame a range
of tasks including knowledge retrieval (Petroni et al., 2019), reasoning (Weston et al., 2016), and
sentiment analysis (Wang et al., 2023b) as fill-in-the-blank tasks:

• Knowledge Retrieval: “The Titanic sank in the year [MASK].” (Answer: “1912”)

• Reasoning: “A is taller than B. B is taller than C. Is A taller than C? Answer: [MASK]”
(Answer: “Yes”)

• Sentiment Analysis: “I am sad today. The sentiment of the previous sentence was
[MASK]” (Answer: “Negative”)

Notably, there is some freedom in the bolded “prompt text” that surrounds the question to convert
it into a “fill-in-the-blank” task. As it turns out, the prompt tokens have a large effect on LLM
performance (Brown et al., 2020; Zhang et al., 2022; Jiang et al., 2020).

Modern prompt optimization algorithms generally consist of two iterated steps: a sampling step
where new prompts are generated and a testing step where the utility of the new prompts is evaluated,
and the best are selected for the next iteration. Algorithms primarily differ in the sampling procedure,
where various heuristics may be used to pick high-value swaps (Wen et al., 2023; Zhou et al., 2023;
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Reynolds & McDonell, 2021). Overall, AutoPrompt and its derivative algorithms have been the most
numerically successful prompt optimization methods, with the greedy coordinate gradient (GCG)
algorithm having state-of-the-art performance (Zou et al., 2023).

The AutoPrompt Family: AutoPrompt (Shin et al., 2020) pioneered the current wave of prompt
optimization. Shin et al propose a prompt optimization technique and demonstrate its effectiveness
for engineering prompts to improve LLM performance on knowledge and sentiment analysis tasks.
At its core, the AutoPrompt algorithm leverages gradient information at the token embedding layer
to inform iterative token exchanges within the prompt. This method was extended in Zou et al.
(2023) as the greedy coordinate gradient (GCG) algorithm. Taking inspiration from adversarial ex-
amples (Goodfellow et al., 2015), Zou et al applied this AutoPrompt variant to generate “jailbreak”
prompts that cause aligned LLMs to generate objectionable content.

Other Prompt Optimization Methods: Other investigations on LLMs as prompt optimizers
(Zhou et al., 2023) and further analysis of manual prompt optimization (Reynolds & McDonell,
2021) are informative but do not exceed the AutoPrompt family’s performance. Some other methods
include GBDA (Guo et al., 2021), an approach based on the Gumbel-Softmax reparametrization, the
PEZ algorithm (Wen et al., 2023), which directly optimizes embeddings via gradient information,
and FluentPrompt (Shi et al., 2022), which differs from AutoPrompt by incorporating Langevin
dynamics. Despite the variety of alternatives, GCG retains state-of-the-art performance.

Control Theory for LLMs: To our knowledge, the only other work to date on the controllabil-
ity of LLMs is Soatto et al. (2023). Soatto et al analyze the controllability of LLMs in terms of
“meaningful sentences”, defined as the sigma-algebra generated by snippets of text written on the
Internet. Their empirical analysis revolves around demonstrating that LLMs are capable of attribut-
ing meaning. The theoretical analysis of LLM controllability is limited to “meaningful sentences”,
eliminating the possibility of out-of-distribution inputs and outputs. These restrictions render their
results challenging to leverage toward a practical understanding of LLM controllability. We situate
our work as a practically oriented exploration of LLM controllability. Motivated by challenges in
developing LLM systems, we do not eliminate “meaningless sentences” from the state space or in-
put space. We aim to establish a rigorous, general framework for understanding LLM systems and
controllability that is amenable to the development of theory and practical engineering insights on
systems design.

3 CONTROL THEORY FOR LLMS

Control theory originates from the study of automatic control systems in engineering. It seeks to
understand how a “plant” system can be influenced toward a desired state using a “control signal” –
often in the presence of disturbances and uncertainty.

Control theory is central to a variety of engineering problems, from electrical engineering to au-
topilot to telecommunications to manufacturing. Surprisingly, control theory has also been highly
applicable to a diverse range of scientific disciplines. Analyzing systems through the lens of con-
trollability has proven fruitful for generating insight into biological systems such as cell signaling
pathways and neural networks (Yi et al., 2000), the economics of central banking (Aniţa et al., 2011),
and controlling the spread of infectious diseases (Roy et al., 2009). One of the central benefits of
studying systems via controllability is that a range of questions and problems naturally emerge from
the framing: when is control possible? What is the cost of control? How computationally intensive
is control? These questions are both practically useful and often lead to fundamental insights about
the nature of the system in question.

To develop a control theory of LLMs, we provide fundamental abstract definitions of systems and
control (Appendix A). We apply them to define LLM systems and outline specific canonical control
concepts and problems such as controllability and reachability that arise naturally for LLM systems.

Language Model Notation: We denote a causal language model using PLM . PLM maps from
an ordered list of tokens from a vocabulary set V (e.g., x ∈ Vn) to the probability distribution over
the next token PLM (xn+1|x) ∈ [0, 1]|V|. We use V∗ to denote the set of all possible sequences
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of any length composed of tokens from V . The addition operator indicates the concatenation of
token sequences. Bolded lowercase variables (e.g., x = [x1, . . . , xn]) denote token sequences while
unbolded lowercase variables refer to individual tokens (e.g., x ∈ V).

While LLMs are at times leveraged in a manner that masks the iterative aspects of generation,
the reality is that token generation and externally imposed “control input” sequences are generated
and processed sequentially, leading to non-trivial system dynamics. Several key differences remain
between LLM-based systems and systems typically modeled through ordinary differential equations
(ODEs), which have long been a cornerstone in the study of continuous-time dynamical systems:

1. Discrete state and time: LLM systems operate on sequences of discrete tokens over a
discrete time set, in contrast to the continuous state spaces and time sets studied in classical
control theory.

2. Shift-and-Grow State Dynamics: Whereas the system state in an ODE-based system has
a fixed size over time, the system state x(t) for LLM systems grows as tokens are added to
the state sequence.

3. Mutual exclusion on control input token vs. generated token: The LLM system state
x(t) is written to one token at a time. The newest token is either drawn from the control
input u(t) or is generated by the LLM by sampling x′ ∼ PLM (x′|x(t)). This differs from
traditional discrete stochastic systems, where the control sequence and internal dynamics
generally affect the state synchronously.

We begin by rigorously defining LLM systems with user input, drawing from the abstract mathe-
matical definition of a system (Definition 7).

Definition 1 (LLM System with Control Input). An autoregressive LLM system with control input
Σ = (V, PLM ) consists of:

• T = N : The time set is the natural numbers.

• X = V∗ : The state space consists of all possible token sequences of any length drawn
from V . We denote the state at time t as x(t) = [x0(t), . . . , xt(t)].

• U = V ∪∅ : The input takes values from the vocabulary set V or null.

• ϕ : X × U × T 2 → X : The transition map is

ϕ(x(t), u(t), t, t+ 1) =

{
x(t) + u(t) if u(t) ̸= ∅
x(t) + x′|x′ ∼ PLM (x′|x(t)) else

(1)

Note that the general multi-step transition map ϕ(x(t), u, t, t + N) can be achieved by
iterating equation 1 for control sequences u defined over the interval [t, t+N ].

• h(x(t); r) = [xt−r(t), . . . , xt(t)] : The readout map returns the most recent r tokens from
state x(t).

We note that this LLM system definition is generalizable to a variety of LLM augmentation, in-
cluding chain-of-thought (Wei et al., 2023), retrieval-augmented generation (Lewis et al., 2020),
and chatbot interaction. For example, chain-of-thought is equivalent to sampling the readout map
h(x(t), r) at time T > |u| + |x0| + r for prompt u and initial state x0. A similar formulation may
be applied to LLM systems endowed with programmatic tools (e.g., Patil et al. (2023)).

In Definition 1, we assume that the control input gets to “decide” whether to yield token generation
to the LLM (u(t) = ∅) or override the LLM and add some token u(t) ̸= ∅ to the state x(t).
This assumption generally holds when building LLM systems, though it may not hold when using
existing systems (e.g., via non-streaming API). When discussing finite-length control inputs – e.g.,
the family of k-long input sequences u ∈ Vk – the value of u(ℓ) : ℓ > k is implicitly ∅ unless
otherwise stated.

While next token generation x′ ∼ PLM (x′|x(t)) in equation 1 is probabilistic, we may render
the system deterministic by sampling with zero temperature (i.e., greedy decoding). The greedy
decoding assumption provides a foothold to analyze the reachable sets and controllability of LLM
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systems without invoking notions of stochastic control as in Sivaramakrishnan et al. (2023); Soatto
et al. (2023). Moreover, it remains connected to temperature-based stochastic decoding strategies as
a limiting case of temperature-based sampling.

We now extend Definition 10 to define output controllability for LLM systems:
Definition 2 (LLM Output Reachability). Output token sequence y ∈ Vr is reachable from initial
state x0 ∈ V∗ for LLM system Σ(V, PLM ) iff there exists some time T and input u∗ ∈ UT that
steers the LLM from initial state x0 to output y = h(x(T ), r) at time T .

We disregard the trivial solution wherein the control input u∗(t) overrides the LLM to force the state
sequence to take on the desired output value y.

The reachable output set definition for LLM systems follows from Definition 11:
Definition 3 (LLM Reachable Output Set). The reachable output set from initial state x0 ∈ V∗ for
LLM system Σ = (V, PLM ) is denoted Ry(x0) and consists of all reachable outputs y ∈ V∗ from
initial state x0.

Output controllability for LLMs follows from Definition 13.
Definition 4 (LLM Output Controllability). An LLM system Σ = (V, PLM ) is output controllable
iff, for every initial state x0 ∈ V∗, the reachable output set Ry(x0) = V∗.

The turn-based nature of writing to the LLM state sequence x(t) invites the question of whether the
prompt u should preempt the imposed state x0 or come after the state 1. We focus our efforts on
cases where u comes before imposed state sequence x0 due to its importance for developing system
prompts and controlling text completion-based generation where the desired output is x0 + y∗ for
some desired continuation y∗ of partial string x0. Due to the costly nature of long prompts, we are
especially interested in the existence of prompts u∗ with minimal length |u∗|.
Definitions 3 and 4 form the basis for our control theory of LLMs. While amenable to analytic
analysis as in Section 4 and Soatto et al. (2023), empirical analysis of the reachable set and control-
lability is challenging due to the intractable size of V∗. We propose the following statistical measure
of controllability for practically assessing the controllability of an LLM system w.r.t. a dataset D
under prompt length constraint |u| ≤ k:
Definition 5 (k − ϵ Controllability). Consider a dataset of state-output pairs D = {(xi

0, y
i)}i∈[N ].

An LLM Σ = (V, PLM ) is k − ϵ controllable w.r.t. D if, for at least a proportion of (1 − ϵ) of
(xi

0, y
i) ∈ D, the following condition holds:

yi ∈ Rk
y(x

i
0) (2)

Where Rk
y(x

i
0) is the reachable set of outputs as in Definition 3 under the constraint that prompts u

must have length |u| ≤ k.

Our empirical work in Section 5.2 explores k − ϵ controllability w.r.t. initial states x0 sampled
from the Wikitext dataset. While empirical analysis of LLM controllability is challenging due to
the lack of apparent structure in LLM dynamics and the combinatorially large state space, we may
still experimentally establish the existence of optimal prompts u∗ that elicit a given output, and thus
establish a lower bound on the content of the reachable set. Meanwhile, our theoretical work in
Section 4 establishes upper bounds on the content of the reachable set for self-attention. We hope
these complementary approaches may one day unify our understanding of LLM systems.

4 MATHEMATICAL ANALYSIS ON THE CONTROLLABILITY OF
SELF-ATTENTION

Self-attention is a central component in modern transformer-based language models (Brown et al.,
2020; Touvron et al., 2023; Radford et al., 2019; Min et al., 2023). Introduced in Vaswani et al.

1Both situations are reasonable in developing LLM systems: u preceding x0 may arise when prompting an
LLM to complete a partial string x0. u proceeding x0 may arise when prompting an LLM in the presence of
an imposed system prompt x0. Therefore, how an initial state x0 is interleaved with control input u is largely
a design decision.
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(2017), self-attention is the primary component in transformers where token representations ex-
change information.
Definition 6 (Self-Attention). Self-attention Ξ = (Wq,Wk,Wv) is a map from RN×din →
RN×dout where N is an arbitrary number of input token representations each of dimensionality
din, and dout is the dimensionality of the output token representations.

Ξ(X) = D−1 exp
(

QK⊤
√
dk

)
V (3)

where exp() denotes element-wise exponentiation of the matrix entries, Wq,Wk ∈ Rdin×dk ,
Wv ∈ Rdin×dout , Q = XWq, K = XWk, V = XWv, and D is a diagonal positive definite
matrix defined as

D = diag
(
exp

(
QK⊤
√
dk

)
1N×1

)
(4)

where 1N×1 is an N × 1 matrix of ones.

Note that the parameters and operation of Ξ are independent of the number of token representations
N . Self-attention may be applied to discrete token sequences x ∈ V∗ provided that each token
xi ∈ x is first mapped to a representation in the input dimension with some embedding map E :
V → Rdin .

We are interested in the reachability of output token representations, where we partition the input
X ∈ R(k+M)×din into an k × din block of control input representations U and an M × din block
of imposed state representations X0 (cf. Definition 1). We also partition the output X′ = Ξ(X) ∈
R(k+M)×din into a corresponding k × dout matrix U′ and an M × dout matrix Y. Motivated by
the architecture of transformer-based language models, we seek to characterize the reachable set of
output representations Y ∈ Rk

y(X0) under imposed input representations X0 and controllable input
representations U, where U consists of k token representations. While the reachable set is now a set
of continuous-valued output representation matrices in RM×din , we may readily adapt Definition 3
to define the reachable set for these conditions.
Theorem 1 (Condition for Exclusion from the Reachable Set). A desired output representation
Y∗ ∈ RM×dout must be excluded from the reachable set Rk

y(X0) if the following condition holds
for any row i:

⟨y∗i, ŷi
x⟩ ≤ 0 and ∥y∗i − D̂i

xx

D̂i
xx + k exp

(
ΩxσqσkΩu√

dk

) ŷi
x∥ ≤ σqΩu (5)

where Ωu = maxj ∥uj∥ for rows uj of U, Ωx = maxj ∥xj
0∥ for rows xi

0 of X0, σq and σk are the
maximum singular values of Wq,Wk respectively, D̂i

xx is the ith element on the diagonal of D̂xx,
which is given by

D̂xx = diag
(
exp

(
QxKx

⊤
√
dk

)
1M×1

)
, (6)

y∗i is the ith row of Y∗, and yix is the ith row of Ŷx, which is given by

Ŷx = D̂−1
xx exp

(
QxKx

⊤
√
dk

)
Vx (7)

where Qx = X0Wq, Kx = X0Wk, and Vx = X0Wv

The proof of Equation 5 is provided in Appendix B.

Intuitively, this condition arises when when the output representation Ŷx that occurs when only the
imposed state X0 is fed into the transformer is too far away for the control tokens U to steer it to
Y∗. The ability for the control input U to nullify the impact of Ŷx = Ξ(X0) on the output scales
with the number of control input tokens k. A control input with many tokens can “dominate” the
influence of X0 by re-allocating attention away from the component of the output Ŷx that arises
from X0. A notable insight from the proof is that one may decompose the output of attention into
a components that arise largely from different parts of the input. While there are cross terms in
the attention matrix, these amount to only a positive scaling factor applied to the “independent”
components like Ŷx. Thus, we have an analytic bound on the reachable output set for self-attention.
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5 EXPERIMENTS

To gain a practical, empirical understanding of the reachable set Rk
y(x0), we probe the existence of

optimal prompts u∗ across datasets D of initial state–desired output pairs (x0, y
∗). We scope our

experiments to study immediate control (i.e., we check the LLM output after |y∗| tokens are gener-
ated) where the control input u is prepended to the imposed state x0. Moreover, we focus on the
case of controlling the LLM system to produce a single output token y∗ ∈ V under some constraint
|u| ≤ k. This “single-step” control renders the problem of gauging reachability computationally
tractable and is a fundamental step toward understanding the iterated dynamics of LLM systems in
terms of reachability and controllability. We leave the exploration of reachability and controllability
under an extended time horizon (e.g., chain-of-thought, chatbot dynamics, tool-wielding LLMs) and
under the requirement of multi-token outputs y to future work.

5.1 METHODS

We apply prompt optimization algorithms to establish the existence of optimal prompts u∗ of length
k that steer the LLM system from initial state x0 to output y for some dataset D of initial state-output
pairs. In general, prompt optimization algorithms accept a token sequence and a loss function on
said token sequence, along with a specification of which tokens are manipulable. The output of a
prompt optimizer is a manipulated token sequence (i.e., optimized prompt) designed to minimize the
loss. We apply two computational methods to generating optimal prompts: greedy back-generation
(Algorithm C) and greedy coordinate gradient (GCG, Algorithm C, invented in Zou et al. (2023)).
We found that greedy back-generation performed best for short prompts k ≤ 3 tokens, while GCG
was the best-performing algorithm for prompts of 4 or more tokens. To our knowledge, our greedy
back-generation algorithm is novel. For brevity, we place the full description and our parameter
values for the two algorithms in Appendix C, as the specifics of the algorithms are not the main
contribution of this work.

We focus on understanding the content and structure of the reachable set of LLM system outputs
Rk

y(x0), particularly under a constraint on the number of input tokens k. To prove which output
tokens are reachable under varying input sequence lengths, we apply an incremental prompt length-
ening procedure when searching for optimal prompts on some dataset D.

Algorithm 1 Back-off Prompt
Require: State-output token sequence (x0, y); LLM system Σ = (PLM ,V).

1: for k from 1 to 3 do
2: uk = Greedy Back Generate(x0, y; Σ)
3: return uk if it steers Σ from x0 → y.
4: end for
5: for k ∈ [4, 6, 8, 10] do
6: uk = Greedy Coordinate Gradient(x0, y; Σ)
7: return uk if it steers Σ from x0 → y.
8: end for
9: return Failed to establish reachability.

5.2 RESULTS

Our results revolve around the reachable set Rk
y(x0) for state sequences sampled from the Wikitext

dataset. We applied the same Back-off Prompt strategy (Algorithm 1) to determine k−ϵ controllabil-
ity for all experiments, varying the specifics of the dataset D (cf 5). We established the reachability
of the “ground truth” next token y proceeding state token sequence x0 in Wikitext. In our tests on
a dataset of 5000 state-output sequences with states of length 8− 32 tokens, we found that the true
next token y is reachable over 97% of the time with a prompt of length k ≤ 10 (Figure 1).

To explore the reachable set Rk
y(x0) beyond the ground truth of Wikitext outputs, we generated a

synthetic dataset of outputs by sampling 25 Wikitext sequences x0 and selecting the top 75 most
likely next-tokens according to the model itself PLM (y|x0) as the target tokens (Figures 1).
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Figure 1: Main experimental results on k − ϵ
controllability Top left: k−ϵ values for Falcon-
7b on ground truth target token y∗. 97.16%
of the instances were solved with a prompt of
length k ≤ 10.
Top right: k − ϵ values for reaching the top
75 most likely outputs y∗ for each x0. The top
75 targets were reachable at least 89.39% of the
time with a prompt of length k ≤ 10.
Bottom right: Prior likelihood rank of target
token y∗ in terms of likelihood ascribed by the
LLM PLM versus required prompt length to
elicit y∗. Target tokens were sampled uniformly
from the least to most likely token.
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To maximally push the bounds of the reachable set within our single output token scope, we created
another synthetic dataset where the target output token y∗ was sampled uniformly from the highest
likelihood next token to the lowest likelihood token. Although the overall reachability score was low
(only 46.43% reachable with k = 10), we were intrigued by the near-uniform relationship between
prior token rank (based on PLM (y|x0)) versus the required number of prompt tokens. Figure 1 plots
the relationship between prior target token rank based on P (y∗|x0) and the required prompt length
k to elicit the prompt. While over half were unreachable, the remaining reachable tokens appear
uniformly distributed in terms of required prompt length, regardless of rank. We replicated these
results (and more) across Llama-7b and Falcon-40b in Appendix D.

6 DISCUSSION

We proposed a control theoretic framework for understanding language model prompting, orienting
our investigation around the reachable set of outputs Rk

y(x0). We proved a bound on the reachable
set of outputs for self-attention in terms of the singular values of its weight matrices, and we es-
tablished fundamental results on the reachability of “correct” next tokens (according to Wikitext).
We expanded the scope of this investigation by probing the reachability of tokens assigned high
likelihood by the LLM itself, and tokens assigned minimal likelihood by the LLM itself.

Bounding the reachable set for self-attention is deeply related to the mechanism by which consistent
representations are formed for multi-token generation. Steering a language model to generate a de-
sired token sequence requires that the control input induce a token representation in the right-most
token such that the next token prediction logits P (y|u + x0) achieves a desired value. Moreover,
generated tokens are fed back into the model, and their representations must be steered as well to
control iterated generation. Self-attention is the primary mechanism by which the token represen-
tations exchange information, making the reachable set of output representations across multiple
tokens in X0 for self-attention a fundamental part of LLM control theory.

8
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Our empirical results suggest that there is far more to the reachability of a given output than just
prior likelihood or the prior rank the LLM assigns to a given token. Although prompt optimization-
based k − ϵ controllability experiments are only able to provide a lower bound on the content of
the reachable set, the ability to frequently control even the least likely token to being the most likely
token with just a few input tokens is intriguing. We believe this result indicates the importance
of further investigating the reachability and controllability of LLMs, particularly for developing
capable and reliable LLM systems.

Our investigations provide an entry into the understanding of LLM controllability via prompts. How-
ever, a comprehensive understanding necessitates extending our exploration into diverse regimes.
Exploring the controllability with longer prompts and longer questions (base token sequences) will
be pivotal. Equally important is the study of diverse models to verify the generality of our findings.
Moreover, the direct comparison of controllability scores of different model families is challenging
since family uses a different tokenizer. The Llama family tokenizer, for instance, has a vocabulary
of 30,000 tokens whereas the Falcon family has a vocabulary of 65,536 tokens. Further work is
required to robustly compare controllability across models.

An intriguing observation from our study is the log-linear relationship between prompt length k and
controllability fraction ϵ (see Figure 2 in Appendix D). While this is compelling within our studied
domain, it raises the essential question: is this relationship robust outside our current explorative
scope? Unearthing universal scaling laws in LLM controllability would not only inform practical
control applications but also open the door for theoretical insight into the nature of LLM behavior.

The progress we have made, both in understanding the bounds on self-attention controllability and
the empirical measures of k − ϵ LLM controllability, underscores the potential of this control theo-
retic framing for studying LLMs. Below is a non-exhaustive list of open problems in LLM control,
all stemming from the framing in section A:

• Control Properties of Chain-of-Thought: Chain-of-Thought is a powerful technique
where LLMs are allowed to generate intermediate tokens (i.e., “thoughts”) between a ques-
tion and an answer (Wei et al., 2023). The control properties (e.g., stability, reachability) of
systems leveraging these techniques are of great interest for understanding and composing
systems of LLMs in the real world.

• Distributional Control: To what extent can we control the output distribution of a lan-
guage model PLM (y|x0 + u) to a desired distribution P ∗(y)?

• Computational Cost of Control: What are the performance characteristics of LLM con-
trol regularized by computational cost?

• Learnability of Control: To what extent can LLMs learn to control each other? Work such
as Zhou et al. (2023) showed that LLMs are capable of human-level prompt engineering,
but it is unclear how well an LLM can learn to control another when explicitly optimized
on the objective of LLM control.

• Controllable Subspaces: In the control of linear dynamical systems, it is known that un-
controllable systems are often coordinate transformable into a representation where a subset
of the coordinates are controllable and a subset are uncontrollable Sontag (2013). We have
shown that controllable and uncontrollable components naturally emerge for self-attention
heads in section 4 – can this be generalized to transformer blocks with nonlinearities and
residual streams?

• Composable LLM Systems: One of the greatest boons of control theory is the ability to
compose control modules and subsystems into an interpretable, predictable, and effective
whole (Lian et al., 2002). The composition of LLM systems (potentially with non-LLM
control modules) is an exciting avenue for scaling super intelligent systems.
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A ABSTRACT SYSTEMS AND CONTROL THEORY BACKGROUND

This section aims to provide an overview of fundamental control-theoretic concepts from an abstract
perspective. We primarily draw from Sontag (2013); Kalman et al. (1969), and Ogata (2010).

Diverse definitions of “system” or “machine” exist in the literature, all representing the same core
concept but varying in mathematical details. We offer the following high-level definition based on
Sontag (2013):
Definition 7 (System). A “system” or “machine” Σ = (T ,X ,U , ϕ) consists of:

• T : The time set along which system state evolves.

• X : The state space.

• U : The input space.

• ϕ : X × U × T 2 → X : The transition map.

A system may also be equipped with an output space and readout map (Y, h):

• Y : The output space.

• h : X × U × T → Y : The readout map.

In other words, at time t ∈ T , the system’s state takes on values x ∈ X , and the control input
takes values u ∈ U . The system evolves over time with the transition map ϕ(x, u, t, t′) that returns
the new state value x′ ∈ X at time t′ > t. A system can also have a readout map h(x, u, t) that
produces the output value y ∈ Y given the current time, state, and input value. An input u ∈ U
defined over interval [t, t′] may be said to steer the system Σ = (T ,X ,U , ϕ) from state x0 to state
x′ if x′ = ϕ(x0, u, t, t

′). A wide variety of systems are expressible within this framework. E.g., we
obtain discrete-time dynamical systems for T = Z+. Continuous-time dynamical systems emerge
for T = R+.

Note that we assume that the system Σ is time-invariant; its dynamics ϕ do not change as a function
of time. This assumption is widely applicable and is often made in the literature (Kalman et al.,
1969; Ogata, 2010; Sontag, 2013) to simplify definitions and discussions of systems.

Reachability is a core control theory concept and central to defining controllability. At their core,
definitions of reachability revolve around the existence of control inputs u ∈ U that steer the system
from a starting state x0 ∈ X to some desired state(s). Following from Kalman et al. (1969); Sontag
(2013), we define state reachability as:
Definition 8 (State Reachability). State x ∈ X is reachable from initial state x0 ∈ X for system
Σ = (T ,X ,U , ϕ) iff there exists some time T and control input u∗ ∈ U such that u∗ steers the
system from state x0 to state x at time T .

We may use this definition of state reachability to define the reachable state set for some initial state
x0 ∈ X :
Definition 9 (Reachable State Set). The reachable state set from initial state x0 ∈ X for system
Σ = (T ,X ,U , ϕ) is denoted R(x0) ⊆ X and consists of all reachable states x ∈ X from initial
state x0 (cf. Definition 8).

For systems with readout maps h, notions of output reachability arise naturally. Note that state
reachability is neither necessary nor sufficient to guarantee output reachability.
Definition 10 (Output Reachability). Output y ∈ Y is reachable from initial state x0 ∈ X for
system Σ = (T ,X ,U , ϕ,Y, h) iff there exists some time T and control input u∗ ∈ U such that u∗

steers the system from state x0 to output y in time T .
Definition 11 (Reachable Output Set). The reachable output set from initial state x0 ∈ X for system
Σ = (T ,X ,U , ϕ,Y, h) is denoted Ry(x0) and consists of all reachable outputs y ∈ Y from initial
state x0 (cf. Definition 10).

A system is controllable when the reachable set extends to the entire state space. Practically speak-
ing, this implies that one can steer the system from any initial state to any desired state.
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Definition 12 (State Controllability). System Σ = (T ,X ,U , ϕ) is state controllable iff, for every
initial state x0 ∈ X , the reachable set R(x0) = X .

Definition 13 (Output Controllability). System Σ = (T ,X ,U , ϕ,Y, h) is output controllable iff, for
every initial state x0 ∈ X , the reachable output set Ry(x0) = Y .

A range of fruitful questions stem from these definitions: if there is a cost associated with control
inputs u ∈ U (e.g., power constraints, length constraints), what is the minimum cost of control?
What is the minimum time required to get from the initial state to the desired final state or output?
If the system is not completely controllable, under what conditions is it controllable? Under which
readout maps is a system output controllable?
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B PROOF OF SELF-ATTENTION CONTROLLABILITY THEOREM 1

Note: Key terms for the proof are introduced in Section 4 surrounding Theorem 1. Specifically, the
definition of self-attention mechanism Ξ, the control problem setup, and the reachable set Rk

y(X0)
are required background for this proof.

Proof. For each token representation matrix Q,K,V ∈ R(k+M)×·, we denote the first k rows
corresponding to U using u as a subscript, like Qu. The remaining M rows corresponding to X0

are denoted with subscript x like Qx.

Let A be the exponentiated query-key outer product matrix with the following block structure:

A = exp
(

Q K⊤
√
dk

)
= exp

([
QuK

⊤
u QuK

⊤
x

QxK
⊤
u QxK

⊤
x

]
1√
dk

)
=

[
Auu Aux

Axu Axx

]
(8)

We apply a similar quadrant decomposition to D, defined initially in Equation 4.

D = diag
(
exp

(
QK⊤
√
dk

)
1N×1

)
=

[
Du 0
0 Dx

]
(9)

where the quadrant demarcations in D follow from Equation 8.

We may now express the self-attention mechanism output representations Y as

Y = D−1
x AxuVu + D−1

x AxxVx (10)

We begin by stating the equality between the desired output Y∗ and the true system output from
Equation 10. The final bound in Equation 5 of Theorem 1 is derived by isolating terms depending
on control input U, bounding them, and expressing that bound as a condition for achieving equality
between the desired output Y∗ and the true system output.

Y∗ = D−1
x AxuVu︸ ︷︷ ︸

≜Yu

+D−1
x AxxVx︸ ︷︷ ︸

≜Yx

(11)

=⇒ Yu = Y∗ −Yx (12)

We may immediately bound the magnitude of the rows of Yu as the matrix D−1
x Axu

has rows that
sum to less than 1 (it represents one quadrant of the row-wise softmaxed attention map, which has
rows that sum to 1 by construction). Therefore, each row yi

u of Yu lies within the convex hull
defined by the row vectors vi

u of Vu. Recalling Definition 6, Vu = UWv. Let Ωu = maxj ∥uj∥
for rows uj of U, we can bound the norm of each vi

u in Vu with the maximum singular value
of parameter matrix Wv , denoted σq . Refer to Chapter 5 of Calafiore & El Ghaoui (2014) for an
overview of singular values. Thus we may bound each ∥vi

u∥ ≤ Ωuσq . By the properties of convex
hulls, each row of Yu must inherit this upper bound on magnitude to retain feasibility.

∥yi
u∥ < Ωuσq (13)

Refer to Chapter 8 of Calafiore & El Ghaoui (2014)) for a detailed explanation of convex hulls and
their properties.

While Yx in Equation 11 may appear to depend only on imposed X0, the denominator term D−1
x

contains influences from U. Let us split the denominator term Dx = D̂xx+D̂xu where D̂xx depends
solely on the imposed input X0. D̂xx is definedin Equation 6. Let D̂xu be defined as:

D̂xu = diag
(
exp

(
QxKu

⊤
√
dk

)
1k×1

)
(14)

Recall Equation 7, which defines Ŷx, the output of Ξ if only X0 is input. Let us express the condition
in Equation 11 using Ŷx to disentangle the influence of the control input:

Yu = Y∗ − (D̂xu + D̂xx)
−1D̂xxŶx (15)
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Observe that the rows of Yx and Ŷx are positively scaled versions of each other because the de-
nominator matrices are all positive and diagonal. Applying the bound in Equation 13 using row-wise
notation,

∥y∗i − D̂i
xx

D̂i
xx + D̂i

xu

ŷi
x∥ ≤ σqΩu (16)

Using the same singular values reasoning as in Equation 13 to bound the unknown denominator term
D̂i

xu, which is the only term still dependent on the control input U .

D̂i
xu ≤ k exp

(
ΩxσqσkΩu√

dk

)
(17)

Achieving this minimum value will minimize the value of yi
x by maximally scaling down ŷi

x. The
maximum value for yi

x arises when D̂i
xu is minimized (e.g., to zero) resulting in yi

x = ŷi
x.

Therefore, the the value of yi
x is constrained linear scalings between this minimum and this maxi-

mum. If every scaling violates the inequality in Equation 16, then the system is strictly controllable.

Therefore, if ⟨y∗i, ŷi
x⟩ ≤ 0 for some row i following inequality is met, the output Y ∗ is strictly

unreachable under imposed input representations X0 and control input U:

∥y∗i − D̂i
xx

D̂i
xx + k exp

(
ΩxσqσkΩu√

dk

) ŷi
x∥ ≤ σqΩu (18)
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C PROMPT OPTIMIZATION ALGORITHMS

Greedy Back-Generation: While testing all prompts in Vk is intractable for k > 1, it takes only
|V| forward passes of the network to compute the loss on y induced by all possible single token
prompts u ∈ V . Our Greedy Back Generation algorithm leverages this fact to generate prompts u ∈
Vk one token at a time, working backward sampling the ith greedy-optimal single token extension
u′ = argmaxu′ PLM (y|u′ + u+ x) of the current prompt u ∈ Vi−1.

Algorithm 2 Greedy Token-Wise Prompt Generation
Require: A causal LLM PLM with vocabulary V , a set of base tokens x ∈ Vn, a desired final token

y ∈ V , and a desired number of prompt tokens k.
Ensure: Magic words u∗ of length k.

1: Initialize u∗ to be empty.
2: for i from 1 to k do
3: for all u′ ∈ V do
4: compute PLM (y|u′ + u∗ + x)
5: end for
6: Select the u′ that maximizes the probability of y given u′ + u∗ + x. Prepend u′ to u∗

7: end for
8: return u∗

This method is optimal for k = 1 prompt token u∗ ∈ V and generally outperforms GCG for short
prompts of length k ≤ 3. Computing 1 additional prompt token takes roughly 1-4 minute when using
an NVIDIA A100-80GB GPU with a 7 billion parameter model and 5-20 minutes on 2 NVIDIA
A100-80GB GPUs with a 40 billion parameter model.

Greedy Coordinate Gradient (GCG): The Greedy Coordinate Gradient algorithm, presented
by (Zou et al., 2023) building off the work of (Shin et al., 2020), is the state-of-the-art method for
optimizing prompts. Starting with a random prompt of length k, the algorithm generates a batch of
alternative prompts. Each member of the batch swaps a random token in the current prompt with a
promising alternate token. The value metric for a swap is given by a first order approximation of the
change in loss L = CELoss(y, PLM (y|u+ x)) with the embedding of each token in u.

Algorithm 3 Greedy Coordinate Gradient
Require: A causal LLM PLM that accepts token strings from a vocabulary X , an embedding dic-

tionary e, embeddings e∗i corresoponding to each token i of u∗, a set of base tokens x1:n, a
desired number of prompt tokens k, iterations T , ksub, and batch size B.

Ensure: Magic words u∗ of length k.
1: Initialize u∗ to be random tokens from vocabulary.
2: for iteration from 1 to T do
3: for i from 1 to k do ▷ Compute the top ksub most promising substitutions.
4: Xi = Top-ksub(eT∇e∗

i
PLM (xn|u∗ + x1:n−1))

5: end for
6: for b from 1 to B do
7: i = randint([1, . . . , k]) ▷ Select random position to swap.
8: j = randint([1, . . . , ksub] ▷ Select random token from candidate set.
9: ũ∗

b [i] = Xi[j] ▷ Swap token at position i.
10: end for
11: u∗ = ũ∗

b∗ , where b∗ = argmaxb(PLM (xn|u∗ + x1:n−1))) ▷ Select replacement which
maximizes probability of future token.

12: end for
13: return u∗

This method outperforms all other methods we tested for prompts of length k > 3. We use a batch
size B = 768, sampled from the top ksub = 128 token replacements at each index, and iterate for
T = 34 iterations. For each instance, this optimization took roughly 2 minutes for the 7 billion
parameter models on a single A100-80GB GPU and 4-8 minutes for the 40 billion parameter model
on 4 A100-80GB GPU.
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D SUPPLEMENTARY FIGURES: OPTIMAL CONTROL PROMPTS
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Figure 2: Log spaced main results of k− log(ϵ)
controllability. Interestingly, the relationship
between k and log(ϵ) appears roughly linear for
each question length in the regime studied.
Top left: k − log(ϵ) values for Falcon-7b.
Top right: k − log(ϵ) values for Llama-7b.
Bottom right: k−log(ϵ) values for Falcon-40b.
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[Llama-7b] Base Loss vs. Prompt Length Controllability Results on Wiki5k

Figure 3: Prompt length k versus base cross-
entropy loss on the final token for Llama-7b.
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Figure 4: Prompt length k versus base cross-
entropy loss on the final token for Falcon-7b.
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Figure 5: Prompt length k versus base cross-
entropy loss on the final token for Falcon-40b.
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Figure 6: Llama-7b k− ϵ reachability on top-75
data.
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Figure 7: Falcon-7b k−ϵ reachability on top-75
data.

0 2 4 6 8 10
Prompt Length [k]

0.0

0.2

0.4

0.6

0.8

1.0

Po
rti

on
 In

co
rre

ct
 [

]

[Falcon-40b] k-  Plot for Top 75 y* on 25 x_0 from Wikitext
|x_0| = 8
|x_0| = 10
|x_0| = 16
|x_0| = 22
|x_0| = 32

Figure 8: Falcon-40b k − ϵ reachability on top-
75 data.
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[Falcon-7b] Top 40 Prompt Tokens (k=1:10)

Figure 9: Prompt token frequencies for Falcon-7b across Wikitext5k instances for k = 1 : 10.
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[Llama-7b] Top 40 Prompt Tokens (k=1:10)

Figure 10: Prompt token frequencies for Llama-7b across Wikitext5k instances for k = 1 : 10.
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Figure 11: Prompt token frequencies for Falcon-40b across Wikitext500 instances for k = 1 : 10.
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