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Abstract

We study policy optimization in an infinite
horizon, γ-discounted constrained Markov de-
cision process (CMDP). Our objective is to
return a policy that achieves large expected
reward with a small constraint violation. We
consider the online setting with linear function
approximation and assume global access to the
corresponding features. We propose a generic
primal-dual framework that allows us to bound
the reward sub-optimality and constraint vi-
olation for arbitrary algorithms in terms of
their primal and dual regret on online lin-
ear optimization problems. We instantiate this
framework to use coin-betting algorithms and
propose the Coin Betting Politex (CBP)
algorithm. Assuming that the action-value
functions are εb-close to the span of the d-
dimensional state-action features and no sam-
pling errors, we prove that T iterations of CBP
result in an O

(
1

(1−γ)3
√

T
+ εb

√
d

(1−γ)2

)
reward

sub-optimality and an O
(

1
(1−γ)2

√
T

+ εb
√

d
1−γ

)
constraint violation. Importantly, unlike gradi-
ent descent-ascent and other recent methods,
CBP does not require extensive hyperparame-
ter tuning. Via experiments on synthetic and
Cartpole environments, we demonstrate the
effectiveness and robustness of CBP.

1 INTRODUCTION

Popular reinforcement learning (RL) algorithms focus
on optimizing an unconstrained objective, and have
found applications in games such as Atari (Mnih et al.,

∗The first two authors contributed equally. Email:
arushi.jain@mail.mcgill.ca, vaswani.sharan@gmail.com.

2015) or Go (Silver et al., 2016), robot manipulation
tasks (Tan et al., 2018; Zeng et al., 2020) or clinical
trials (Schaefer et al., 2005). However, many applica-
tions require the planning agent to satisfy constraints –
for example, in wireless sensor networks (Buratti et al.,
2009; Julian et al., 2002) there is a constraint on aver-
age power consumption of a deployed policy. Similarly,
in safe RL, the policy is constrained to only visit certain
states while exploring in physical systems (Moldovan
and Abbeel, 2012; Ono et al., 2015; Fisac et al., 2018).
The constrained Markov decision process (CMDP) (Alt-
man, 1999) is a natural framework to model long-term
constraints that need to be satisfied by a policy. The
typical objective for CMDPs is to maximize the cumu-
lative reward (similar to unconstrained MDPs), while
(approximately) satisfying the constraint.

We focus on a well-studied problem in CMDPs – re-
turn an approximately feasible policy (that is allowed
to violate the constraints by a small amount), while
(approximately) maximizing the cumulative reward.
The past literature on this topic considered two ap-
proaches. The first approach is primal-only algorithms,
where constraints are (approximately) enforced without
directly relying on introducing a Lagrangian formula-
tion (Achiam et al., 2017; Chow et al., 2018; Dalal
et al., 2018; Liu et al., 2020; Xu et al., 2021). Of these
methods, only the recent work of Xu et al. (2021) guar-
antees global convergence to the optimal feasible policy
in both the tabular and function approximation set-
tings.

The second approach in CMDPs is to form the La-
grangian, and solve the resulting saddle-point problem
using primal-dual algorithms (Altman, 1999; Borkar,
2005; Bhatnagar and Lakshmanan, 2012; Borkar and
Jain, 2014; Tessler et al., 2018; Liang et al., 2018; Pa-
ternain et al., 2019; Yu et al., 2019; Ding et al., 2021,
2020; Stooke et al., 2020). Such approaches update
both the policy parameters (primal variables), while
updating the Lagrange multipliers (dual variables). Of
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(a) Optimality gap
(OG)

(b) Constraint violation
(CV)

Figure 1: Hyperparameter sensitivity: Optimality
gap and constraint violation (averaged across 5 runs) for
different hyperparameters for GDA (Ding et al., 2020),
CRPO (Xu et al., 2021) and the proposed algorithm
CBP on a gridworld environment with access to the
true CMDP. The dark lines show the performance of
the best hyperparameter, while the lighter-shade lines
represent results while using other hyperparameters.
Both GDA and CRPO exhibit large variations in their
performance, while CBP is more robust. See Section 6
for details.

these methods, Tessler et al. (2018) prove a local con-
vergence guarantee, while Paternain et al. (2019) prove
that their proposed algorithm will converge to a neigh-
bourhood of the optimal policy. More recently, Ding
et al. (2020) proposed to use natural policy gradient
updates (Kakade, 2001) for changing the policy param-
eters while using gradient descent to update the dual
variables. They prove that this primal-dual algorithm
converges to the optimal policy in both the tabular and
the function approximation settings.

Although there is no lack in algorithms designed for
CMDPs, these algorithms are often highly sensitive to
the choice of their hyperparameters. For example, Fig-
ure 1 demonstrates the effect of varying the hyper-
parameters for two provably efficient algorithms, the
primal-dual natural-policy ascent, gradient descent
method (in short, GDA) of Ding et al. (2020) and
the primal-only CRPO method of Xu et al. (2021) on
a synthetic tabular environment. While one can find
hyperparameters that control the worst-case perfor-
mance of either GDA or CRPO, such choices result in
a poor empirical performance on individual instances,
a feature that GDA and CRPO share with uncon-
strained MDP policy optimization algorithms, such as
Politex (Abbasi-Yadkori et al., 2019), or natural policy
gradient (Kakade, 2001).

CONTRIBUTIONS: Designing robust policy opti-
mization algorithms that require minimal hyperparam-
eter tuning is our main motivation, and towards this,
we make the following contributions.

Generic Primal-Dual Framework: In Section 3,
we cast the problem of planning in discounted infinite
horizon CMDPs to a generic primal-dual framework.
In particular, we prove that any algorithm that can
control (i) the primal and dual regret for specific online
linear optimization problems and (ii) the errors due to
function approximation and sampling, will (approxi-
mately) maximize the cumulative discounted reward
while (approximately) minimizing the constraint viola-
tion (Theorem 3.1). Importantly, this result holds for
any CMDP and is independent of how the policies or
value functions are represented.

Instantiating the Framework: In Section 4, we in-
stantiate the framework using two algorithms from the
online linear optimization literature – Gradient De-
scent Ascent (GDA) (Section 4.2.1) and Coin-Betting
(CB) (Section 4.2.2). While GDA requires setting the
hyperparameters to specific problem-dependent con-
stants, CB is more robust to hyperparameter tuning
(see Figure 1). In the simpler tabular setting, the ap-
proximation errors can be easily controlled and we
use Theorem 3.1 in conjunction with existing regret
bounds to prove that the average optimality gap (dif-
ference in the cumulative reward of achieved policy and
the optimal policy) and the average constraint violation
decrease at an O (1/

√
T) rate (Corollaries A.1 and A.2).

Handling Linear Function Approximation: In Sec-
tion 5, we assume global access to a d-dimensional fea-
ture map Φ : S × A → Rd, and that the action-value
functions for any policy are εb-close to the span of
these features. With this assumption, we prove that
it is possible to control the approximation errors for
each state-action pair. Subsequently, in Section 5.1, we
use the robust coin-betting algorithms to instantiate
the primal-dual framework in the linear function ap-
proximation setting and propose the Coin-Betting Poli-
tex (CBP) algorithm. Ignoring sampling errors, in Sec-
tion 5.1.1, we prove that the average optimality gap
for CBP scales as O

(
1

(1−γ)3
√

T
+ εb

√
d

(1−γ)2

)
, while the

average constraint violation is O
(

1
(1−γ)2

√
T

+ εb
√

d
(1−γ)

)
.

With linear function approximation, the average con-
straint violation for the algorithm of Ding et al. (2020)
decreases at a worse O (1/T 1/4) rate. On the other hand,
the CRPO algorithm of Xu et al. (2021) results in
an O (1/

√
T) bound for both the average suboptimal-

ity and constraint violation. However, both algorithms
can amplify the function approximation errors to large,
potentially unbounded values. Importantly, both al-
gorithms require typically unknown quantities which
impedes their practical use.

Experimental Evaluation: In Section 6, we first de-
scribe some practical considerations when implement-
ing CBP. We then evaluate CBP and compare its em-



pirical performance to the algorithms of Ding et al.
(2020); Xu et al. (2021). Our experiments on synthetic
tabular environment and the Cartpole environment
with linear function approximation demonstrate the
consistent effectiveness and robustness of CBP.

2 PROBLEM FORMULATION

We consider an infinite-horizon discounted constrained
Markov decision process (CMDP) (Altman, 1999) de-
fined by the tuple ⟨S,A,P, r, c, b, ρ, γ⟩ where S is the
countable set of states, A is the countable action set,
P : S ×A → ∆S is the transition probability function,
∆S is the S-dimensional probability simplex, ρ ∈ ∆S
is the initial distribution of states and γ ∈ [0, 1) is the
discount factor. The primary reward to be maximized
is denoted by r : S × A → [0, 1]. For each state s,
we define the reward value function w.r.t. the policy
π : S → ∆A as V π

r (s) = Eπ,P

[∑∞
t=0 γtr(st, at)|s0 = s

]
where at ∼ π(·|st), and st+1 ∼ P(·|st, at) and ∆A
is A-dimensional simplex. The expected discounted
return or reward value of a policy π is defined as
V π

r (ρ) = Es0∼ρ

[
V π

r (s0)
]
. Similarly, the constraint re-

ward is denoted by c : S × A → [0, 1] and the
constraint reward value for π by V π

c (ρ). For each
(s, a) under policy π, the reward action-value func-
tion is defined as Qπ

r : S × A → R s.t. Qπ
r (s, a) =

r(s, a) + γEs′∼P(·|s,a)[V π
r (s′)] and satisfies the relation:

V π
r (s) = ⟨π(·|s), Qπ

r (s, ·)⟩ = Ea∼π(·|s)[Qπ
r (s, a)]. We de-

fine Qπ
c analogously. The agent’s objective is to return

a policy π that maximizes V π
r (ρ), while ensuring that

V π
c (ρ) ≥ b. Formally,

max
π

V π
r (ρ) s.t. V π

c (ρ) ≥ b. (1)

Throughout, we will assume the existence of a feasible
policy (i.e., one with V π

c (ρ) ≥ b), and denote the opti-
mal feasible policy by π∗. Due to sampling and other
errors, we will aim for finding policy π with some ε > 0
such that,

V π
r (ρ) ≥ V π∗

r (ρ)− ε s.t. V π
c (ρ) ≥ b− ε. (2)

In the next section, we specify a generic primal-dual
framework solving the problem in Equation (2).

3 PRIMAL-DUAL FRAMEWORK

By Lagrangian duality, π∗ is a solution to Equation (1)
if and only if for some λ∗ ≥ 0, (π∗, λ∗) solves the
saddle-point problem

max
π

min
λ≥0

V π
r (ρ) + λ[V π

c (ρ)− b] . (3)

Here, λ ∈ R is the Lagrange multiplier for the con-
straint.

We will solve the above primal-dual saddle-point prob-
lem iteratively, by alternatively updating the policy
(primal variable) and the Lagrange multiplier (dual
variable). If T is the total number of iterations, we
define πt and λt to be the primal and dual iterates
for t ∈ [T ] := {1, . . . , T}. Updating the (πt, λt) vari-
ables will require estimating the action-value functions.
We define Q̂t

r := Q̂πt
r and Q̂t

c := Q̂πt
c as the estimated

action-value functions corresponding to the policy πt.
We also define V̂ π

c (s) := ⟨π(·|s), Q̂t
c(s, ·)⟩, V t

r (ρ) :=
V πt

r (ρ) and V t
c (ρ) := V πt

c (ρ). In this section, we as-
sume that

∥∥∥Qt
r − Q̂t

r

∥∥∥
∞
≤ ε̃ and

∥∥∥Qt
c − Q̂t

c

∥∥∥
∞
≤ ε̃.

Given a generic primal-dual algorithm, our task is to
characterize its performance in terms of its cumula-
tive reward and constraint violation. Specifically, for
a sequence of policies {π0, π1, . . . , πT −1} and Lagrange
multipliers {λ0, λ1, . . . , λT −1} generated by an algo-
rithm, we define the average optimality gap (OG) and
the average constraint violation (CV) as,

Avg. optimality gap (OG) := 1
T

T −1∑
t=0

[V π∗

r (ρ)− V t
r (ρ)]

Avg. constraint violation (CV) := 1
T

[
T −1∑
t=0

b− V t
c (ρ)

]
+

where [x]+ = max{x, 0}. For this algorithm, we define
the primal regret and dual regret as follows:

Rp(π∗, T ) :=
T −1∑
t=0

〈
π∗(·|s)− πt(·|s), (4)

Q̂t
r(s, ·) + λtQ̂

t
c(s, ·)

〉
s∼νρ,π∗

,

Rd(λ, T ) :=
T −1∑
t=0

(λt − λ) (V̂ t
c (ρ)− b) . (5)

Here, ⟨f, g⟩s∼νρ,π∗ = Es∼νρ,π∗ [f(s)g(s)] and νρ,π∗ is the
discounted occupation measure induced by following
π∗ from ρ normalized so that it becomes a probability
measure. Observe that the above quantities correspond
to the regret for online linear optimization algorithms
that can independently update the primal and dual
variables.1 Our main result (proved in Appendix B) in
this section characterizes the performance of a generic
algorithm in terms of its primal and dual regret.
Theorem 3.1. Assuming that

∥∥∥Qt
r − Q̂t

r

∥∥∥
∞
≤ ε̃ and∥∥∥Qt

c − Q̂t
c

∥∥∥
∞
≤ ε̃, for a generic algorithm producing

a sequence of polices {π0, π1, . . . , πT −1} and dual vari-
ables {λ0, λ1, . . . , λT −1} such that for all t, λt is con-
strained to lie in the [0, U ] where U > λ∗, OG and CV

1Note: We are computing the primal regret with re-
spect to the optimal policy π∗ that satisfies the constraints.
Rp(π∗, T ) can be negative since the current policy πt can
violate the constraints and obtain higher rewards.



can be bounded as:

OG ≤ R
p(π∗, T ) + (1− γ)Rd(0, T )

(1− γ)T + ε̃ g(U),

CV ≤ R
p(π∗, T ) + (1− γ)Rd(U, T )

(U − λ∗)(1− γ)T + ε̃ g(U)
(U − λ∗) ,

where g(U) :=
[

1+U
1−γ + U

]
.

We note that such a general primal-dual regret decom-
position for convex MDPs (including CMDPs) was re-
cently done by Zahavy et al. (2021). However, they han-
dle the tabular setting where the primal variables cor-
respond to state-action occupancy measures, whereas,
the above result defines the primal variables to be
the policy parameters. More importantly, our result
does not require any assumption about the underly-
ing CMDP. In the unconstrained setting, reducing the
policy optimization problem to that of online linear
optimization has been previously explored in the Po-
litex algorithm (Abbasi-Yadkori et al., 2019), and we
build upon this work. Politex is an iterative policy op-
timization algorithm where the policy at each timestep
is proportional to the softmax over the sum of all the
action-value functions seen in the past. This algorithm
bounds the optimality gap in terms of approximation
error in the action-value functions and a regret term
similar to online linear optimization.

In order to bound the average reward optimality gap
and the average constraint violation, we need to (i)
project the dual variables onto the [0, U ] interval and en-
sure that U > λ∗, (ii) update the primal and dual vari-
ables to control the respective regret in Equation (5),
and (iii) control the approximation error ε̃. Next, we
use this recipe to design algorithms with provable guar-
antees.

4 INSTANTIATING THE
FRAMEWORK

In this section, we will instantiate the primal-dual
framework by using the above technique – specifying
the value of U in Section 4.1 and describing algorithms
that control the primal and dual regret in Section 4.2.

4.1 UPPER-BOUND FOR DUAL
VARIABLES

In Appendix B, we prove the following upper-bound
on the optimal dual variable
Lemma 4.1. The objective Equation (1) satisfies
strong duality, and the optimal dual variables are
bounded as λ∗ ≤ 1

ζ(1−γ) , where ζ := maxπ V π
c (ρ)− b >

0.

Unlike Ding et al. (2020, 2021) who bound the dual
variables in terms of the unknown Slater constant, the
upper-bound from Lemma 4.1 can be computed by
maximizing the constraint value function as an uncon-
strained problem. Throughout, we will set U = 2

ζ (1−γ)
that satisfies the requirement U > λ∗ and projects the
dual variables onto [0, U ] range (in Section 3).

4.2 CONTROLLING THE PRIMAL AND
DUAL REGRET

In this section, we specify two algorithms to update
the primal and dual variables, and control the pri-
mal and dual regret respectively. In particular, in Sec-
tion 4.2.1, we will use mirror ascent to update the
primal variables, and gradient descent to update the
dual variables. Inspired by the literature on online lin-
ear optimization (Orabona and Pal, 2016), we will use
robust, parameter-free algorithms to update the primal
and dual variables in Section 4.2.2.

4.2.1 Gradient descent ascent

At iteration t ∈ [T ], if the primal and dual iterates
are πt and λt respectively, given Q̂t

r and Q̂t
c, the gra-

dient descent ascent (GDA) update can be written
as follows: if Q̂t

l(s, a) = Q̂t
r(s, a) + λt Q̂t

c(s, a) and
V̂ t

c (ρ) =
∑

s∈S ρ(s)
∑

a∈A πt(a|s)Q̂t
c(s, a), then,

πt+1(a|s) =
πt(a|s) exp

(
η1Q̂t

l(s, a)
)

∑
a′ πt(a′|s) exp

(
η1Q̂t

l(s, a′)
) (6)

λt+1 = P[0,U ][λt − η2 (V̂ t
c (ρ)− b)]. (7)

Here P[a,b] is a projection onto the [a, b] interval, and
η1 and η2 are the step-size parameters for the primal
and dual updates respectively. In the tabular setting,
the resulting algorithm is the same as that analyzed
by Ding et al. (2020).

Analyzing the primal and dual regret for the above up-
dates is fairly standard in online linear optimization. Us-
ing results from the paper of Orabona (2019, Theorem
6.8), by setting η1 =

√
2 log |A|

t
1−γ
1+U , η2 = U(1−γ)√

t
and

U = 2
ζ (1−γ) , we get Rp(π∗, T ) ≤ 1+U

1−γ

√
2 log |A|

√
T

and Rd(λ, T ) ≤ U
1−γ

√
T . Observe that both the primal

and dual regret scale as O(
√

T ), and using Theorem 3.1,
both the average optimality gap and constraint viola-
tion will decrease at an O(1/

√
T) rate.

We also note that obtaining the above bounds requires
setting the two step-sizes (η1 and η2) to specific values
that depend on problem-dependent parameters. In Fig-
ure 1, we have seen that GDA is quite sensitive to the



values of η1 and η2, even in the simple tabular setting.
In order to alleviate this, we use the recent progress
in online linear optimization, and propose robust algo-
rithms in the next section.

4.2.2 Coin-betting

Orabona and Pal (2016) and Orabona and Tommasi
(2017) propose coin-betting algorithms that reduce the
online linear optimization problems in Equation (5)
to online betting. Unlike adaptive gradient methods
like AdaGrad (Duchi et al., 2011) or Adam (Kingma
and Ba, 2014) that require setting the initial step-size,
coin-betting algorithms are completely parameter-free.
In this work, we will directly instantiate the regret-
minimization algorithms from these works. We first
provide some intuition for the coin-betting algorithms.

Coin-betting algorithms: Orabona and Pal (2016)
shows that the online linear optimization can be viewed
as a problem of placing repeated bets (denoted by xt)
in round t on the outcomes of unknown adversarial
coin flips (denoted by ct). The outcomes of the coin are
either heads or tails meaning that ct ∈ {−1, +1}. With
our bet xt, we earn an amount xtct in round t. Start-
ing with an initial wealth of ε0, at round t we place
bets with a fraction (denoted by βt) of the remain-
ing wealth on either heads or tails where xt becomes
xt = βt

(
ε0 +

∑t−1
i=1 xici

)
. Our goal is to maximize the

wealth generated from this process. The coin-betting
strategy uses KT estimator (Krichevsky and Trofimov,

1981) which bets βt =
∑t−1

i=1
ci

t fraction of the current
wealth on the most common outcome observed until
time t. Orabona and Pal (2016) connects the problem
of maximizing wealth to the problem of minimizing the
regret in online linear optimization setting. In particu-
lar, the authors view the outcome of coin (ct) as the
negative of subgradient of the losses (denoted by gt) on
current prediction and xt as the our response at round
t. Using this reduction, we get a parameter-free 1-d
online linear optimization algorithm where we predict

xt =
(
−
∑t−1

i=1 gi

t

) (
ε0 −

t−1∑
i=1

xigi

)

in round t. This problem can be further extended to
d−dimensional and Learning with Expert Advice (sim-
plex) setting (Orabona and Pal, 2016). For the problem
at hand, the iterates xt correspond to either the policy
πt for the primal problem or the Lagrange multipliers
λt for the dual problem.

We now instantiate the algorithm of Orabona and Pal
(2016) for updating the policy (primal variables) in the
CMDP setting. In order to do this, we define additional

variables wt for each (s, a) pair and iteration t. These
variables will be computed recursively, and used to
compute the policy πt+1 at iteration t. In particular,
for t ≥ 1,
wt+1(s, a) =

∑t
i=0 Ãi

l(s, a)
(t + 1) + T/2

(
1 +

t∑
i=0

Ãi
l(s, a) wi(s, a)

)

πt+1(a|s) =
{

π0(a|s), if
∑

a π0(a|s) [wt+1(s, a)]+ = 0
π0(a|s) [wt+1(s,a)]+∑

a′ π0(a′|s) [wt+1(s,a′)]+
, otherwise

(8)

where, given πt, Ãt
l(s, a) is equal to

Ât
l(s, a) I{wt(s, a) > 0}+ [Ât

l(s, a)]+ I{wt(s, a) ≤ 0}

and Ât
l(s, a) = 1−γ

1+U

[
Q̂t

l(s, a)−
〈

Q̂t
l(s, ·), πt(·|s)

〉]
.

I{ω} is the indicator function with value 1 when con-
dition ω satisfy. For the above calculation, we use the
normalized (by 1+U

1−γ ) action-value functions that are en-
sured to lie in the [0, 1] range. The quantity Ât

l(s, a) can
be interpreted as the (normalized) advantage function
for policy πt in the unconstrained MDP with rewards
equal to r(s, a) + λt c(s, a). Observe that the above
update does not have any tunable hyperparameters.

Similarly, we use the coin-betting algorithm of Orabona
and Tommasi (2017) to update the Lagrange multipli-
ers, instantiating it in the CMDP setting: for t ≥ 1, if
σ(x) := 1

1+exp(−x) , then,

λt+1 = λ0 − βt

[
1

1− γ
−

t∑
i=0

(λi − λ0) (V̂ πi
c (ρ)− b)

]
,

βt = (1− γ)
(

2σ

(
2
∑t

i=0(V̂ πi
c (ρ)− b)

1
1−γ +

∑t
i=0 |V̂

πi
c (ρ)− b|

− 1
))
(9)

Similar to the primal update, the dual update uses nor-
malized (by 1/1−γ) value functions that lie in the [−1, 1]
range, and does not have any tunable parameter. Im-
portantly, these updates result in no-regret algorithms
meaning that both the primal and dual regret scale
as o(T ). Specifically, for the primal updates in Equa-
tion (8) and the dual updates in Equation (9), the
results of Orabona and Tommasi (2017) imply that

Rp(π∗, T ) ≤ 3(1 + U)
1 − γ

√
T
√

1 + KL(π0||π∗),

Rd(λ, T ) ≤ 1
1 − γ

+
∥∥λ − λ0∥∥√( 1

(1 − γ)2 + GT

1 − γ

)
ΓT ,

where KL(π0||π∗) = Es∼νρ,π∗ KL(π0(·|s)||π∗(·|s),
ΓT = log

(
1 + (GT (1− γ) + 1)2

∥∥λ− λ0
∥∥2
)

and

GT =
∑T

i=0 |V̂ πi
c (ρ) − b| = O(T ). Since both regrets

scale as O(
√

T ) in the worst case, using the coin-betting
updates will also result in an O(1/

√
T) decrease in both



the average optimality gap and constraint violation.
Unlike the updates in Section 4.2.1, the coin-betting
updates do not require tuning a hyperparameter.

If we can control the approximation errors, we can
use the above algorithms to completely instantiate the
primal-dual framework. In Appendix A, we do this for
the simpler tabular setting, and consider the linear
function approximation setting in the next section.

5 PUTTING EVERYTHING
TOGETHER

In this section, we will bound the approximation er-
rors in the linear function approximation setting and
instantiate the above framework.

In order to scale to large state-action spaces, we con-
sider the special case of linear function approximation
and assume global access to a d-dimensional feature
map Φ : S ×A → Rd. Given Φ, we make the following
(approximate) realizability assumption on action-value
functions (Abbasi-Yadkori et al., 2019).
Assumption 5.1 (Linear function approximation).
With global access to the feature map Φ, the action-
value functions for each memoryless policy π are εb-
close to the span of the state-action features i.e.

inf
θ∈Rd

max
(s,a)
|Qπ

r (s, a)− ⟨θ, ϕ(s, a)⟩| ≤ εb,

inf
θ∈Rd

max
(s,a)
|Qπ

c (s, a)− ⟨θ, ϕ(s, a)⟩| ≤ εb.

This setting subsumes the tabular case which can be
recovered (with εb = 0) when d = |S| |A|, and the
feature-map consisting of one-hot vectors for each
state-action pair. Given a good estimate of θπ

r :=
arg min

[
max(s,a) |Qπ

r (s, a)− ⟨θ, ϕ(s, a)⟩|
]
, we can eas-

ily estimate the action-value functions for every (s, a)
pair as Qπ

r (s, a) ≈ ⟨θπ
r , ϕ(s, a)⟩. A naive way to esti-

mate θπ
r is to form a subset C ⊆ S ×A of (s, a) pairs,

rollout m independent trajectories using policy π and
starting from each (s, a) ∈ C. The average (across tra-
jectories) cumulative discounted return is an unbiased
estimate Qr(s, a) of the action-value function. If Qr is
defined to be the |C|-dimensional vector of estimated
action-value functions, and for a fixed set of weights
ω s.t. ω(s, a) ≥ 0 and

∑
(s,a)∈C ω(s, a) = 1, we use the

weighted-least squares estimate with z := (s, a),

θ̂π
r = arg min

θ

∑
z∈C

ω(z) [⟨θ, ϕ(z)⟩ −Qr(z)]2 . (10)

For the (s, a) ∈ C, the sampling error is O(1/
√

m) by
using Hoeffding’s inequality. For the (s, a) /∈ C, we
can then use the resulting θ̂π

r to estimate Q̂π
r as Q̂π

r =
⟨θ̂π, ϕ(s, a)⟩. In Appendix B, we prove the following
result to bound the extrapolation errors for all (s, a).

Lemma 5.2. For policy π, any distribution ω and sub-
set C, if we use m trajectories to estimate the action-
value function for each (s, a) ∈ C, and solve Equa-
tion (10) to compute θ̂π

r , then for any (s, a) ∈ (S ×A)
pair, the error |⟨ϕ(s, a), θ̂π

r ⟩−Qπ
r | can be upper-bounded

by

εb(1 + ∥ϕ(s, a)∥G†
ω

) +
∥ϕ(s, a)∥G†

ω

1− γ

√
log(2|C|/δ)

2m
,

where Gω =
∑

(s,a)∈C ω(s, a)ϕ(s, a)ϕ(s, a)T and A† is
pseudoinverse of A.

Hence, the extrapolation errors can be upper-bounded
by choosing C and ω to control the ∥ϕ(s, a)∥G†

ω
term

for each (s, a) pair. Moreover, to ensure scalability,
we want that size of C to be independent of |S||A|.
Fortunately, the Kiefer-Wolfowitz theorem (Kiefer and
Wolfowitz, 1960) guarantees the existence of a core-
set C s.t. |C| ≤ d(d+1)

2 and distribution ω that ensure
sup(s,a) ∥ϕ(s, a)∥G†

ω
≤
√

d. If we can find such a C
and distribution ω, then the error, ε̃ ≤ εb(1 +

√
d) +

√
d

1−γ

√
log(2d(d+1)/δ)

2m . Here, the first term in error is due
to the approximation error (εb) and the second term is
result of the sampling error (dependent on m trajecto-
ries). For our theoretical results, we assume that a core-
set C and distribution ω is provided, and in Appendix C,
we describe the G-experimental design procedure to
compute it.

Now that we have control over ε̃, we instantiate the
primal-dual framework with coin-betting algorithms.

5.1 CBP ALGORITHM

In this section, we use the coin-betting algorithms
( Section 4.2.2) with linear function approximation
to completely specify the Coin-Betting Politex (CBP)
algorithm (Algorithm 1). In Algorithm 1, Line 2 com-
putes the coreset C and distribution ω offline (see Ap-
pendix C.2 for details). In order to set U , the upper-
bound on the dual variables, we need to estimate ζ and
this is achieved by solving the unconstrained problem
maximizing V̂ π

c (ρ) in Line 3. While this can be done
by any algorithm that can solve MDPs with linear
function approximation (for example, NPG (Kakade,
2001) or Politex (Abbasi-Yadkori et al., 2019)), we will
use Equation (8) (see Section 6) work. After Monte-
Carlo sampling ∀(s, a) ∈ C (Line 5) and estimating
θ̂πt

r and θ̂πt
c according to Equation (10) (Line 6), these

vectors are used to calculate Q̂πt
r and Q̂πt

c for states
encountered in a trajectory generated by policy πt

(Line 8). These action-value functions are then used
to update the policy at these states. While this can
be achieved by any algorithm controlling the primal



regret, CBP uses the parameter-free coin-betting up-
dates (Line 9). At the end of iteration t, in Line 11,
the dual variables are updated using the coin-betting
algorithm.

In the next section, we bound the average optimality
gap and constraint violation for CBP.

5.1.1 Theoretical Guarantee

We now use Theorem 3.1 to bound the average opti-
mality gap and constraint violation for Algorithm 1.
We note that recent work (Liu and Orabona, 2021)
uses parameter-free coin-betting algorithms for convex-
concave min-max optimization. Since the function to
be maximized in Equation (3) is non-concave in π, this
work is not directly applicable to our setting.
Corollary 5.3. Under Assumption 5.1, OG and CV of
CBP can be bounded as:

OG ≤

(
3(1+U)

√
1+KL(π0||π∗)
1−γ + Ψ

)
(1− γ)

√
T

+ ε̃(1 + 2U)
1− γ

,

CV ≤
ζ

(
3(1+U)

√
1+KL(π0||π∗)
1−γ + Ψ

)
√

T
+ ζ ε̃(1 + 2U),

where U = 2
ζ(1−γ) , ε̃ = εb(1+

√
d)+

√
d

1−γ

√
log(2d(d+1)/δ)

2m

and Ψ = 4U
√

log((T + 1)U) + 1.

Since U = O(1/1−γ), the average optimality gap
for CBP is O

(
1

(1−γ)3
√

T
+ ε̃

(1−γ)2

)
, while the aver-

age constraint violation scales as O
(

1
(1−γ)2

√
T

+ ε̃
1−γ

)
.

In the function approximation case, ignoring
sampling errors, Ding et al. (2020) obtain an

O

(
1

(1−γ)3
√

T
+
[

εb
(1−γ)3

∥∥∥dπ∗

ρ

∥∥∥
∞

]1/2
)

average optimal-

ity gap, and an O

(
1

(1−γ)2T 1/4 +
[

εb
(1−γ)3

∥∥∥dπ∗

ρ

∥∥∥
∞

]1/4
)

average constraint violation. Here, dπ∗ is the distribu-
tion over states induced by the optimal policy, and ρ
is the initial state distribution. Compared to Corol-
lary 5.3, the CV decreases at a slower O (1/T 1/4) rate.
Comparing the error terms, the bound for Ding et al.
(2020) depends on the potentially large (even infinite)∥∥∥dπ∗

ρ

∥∥∥
∞

factor, while forming the coreset ensures that
the errors are well controlled for Corollary 5.3. Fur-
thermore, Ding et al. (2020) require knowledge of the
typically unknown Slater constant for the CMDP.

On the other hand, Xu et al. (2021) use a neural
function approximation (with 1 hidden layer) where
only the first layer is trained. In order to compare
to Corollary 5.3, we set the width of the second

Algorithm 1: Coin-Betting Politex
1 Input: π0 (arbitary policy initialization),

λ0 ∈ [0, U ] (dual variable initialization), m
(Number of trajectories), T (Number of
iterations), Feature map Φ.

2 Compute coreset C and distribution ω

3 Solve the unconstrained problem maxπ V̂ π
c (ρ) to

estimate ζ in Lemma 4.1 and set U = 2
ζ(1−γ) .

4 for t← 0 to T − 1 do
5 For every (s, a) ∈ C, use m trajectories starting

from (s, a) using policy πt and estimate the
action-value functions qr(s, a) and qc(s, a).

6 Compute and store θ̂πt
r and θ̂πt

c

using Equation (10).
7 for every s encountered in the trajectory

generated by πt, and for every a do
8 Compute Q̂t

r(s, a) = ⟨θ̂πt
r , ϕ(s, a)⟩;

Q̂t
c(s, a) = ⟨θ̂πt

c , ϕ(s, a)⟩ and
Q̂t

l(s, a) = Q̂t
r(s, a) + λt Q̂t

c(s, a).
9 Update πt+1(a|s) using Equation (8).

10 end
11 Compute V̂ πt

c (ρ), update λt+1
using Equation (9).

12 end

layer to 1 in Theorem 2 of Xu et al. (2021), mak-
ing the function approximation equal to a linear map-
ping with a ReLU non-linearity. In this setting, Xu
et al. (2021, Theorem 4) prove that both the av-
erage optimality gap and constraint violation scale
as O

(
1

(1−γ)
√

T
+ εb

(1−γ)2.5

∥∥∥dπ∗

ρ

∥∥∥
∞

)
. Observe that al-

though both OG and CV decrease at an O (1/
√

T) rate,
the error amplification also depends on

∥∥∥dπ∗

ρ

∥∥∥
∞

. Fur-
thermore, this result requires setting the hyperparam-
eters according to the typically unknown KL(π∗||π0)
quantity. These problems make the theoretical results
of Ding et al. (2020) and Xu et al. (2021) potentially
vacuous, and the algorithms difficult to use.

6 EXPERIMENTS

In this section, we first describe some practical con-
siderations for implementing CBP and compare with
baselines GDA and CRPO on a synthetic tabular en-
vironment and the Cartpole environment with linear
function approximation. For the experiments below,
we initialized π0 to a random policy and λ0 = 1 in
Algorithm 1. The parameter m effects the error ε̃ and
the performance. The code can be found at https://
github.com/arushijain94/CoinBettingPolitex.

https://github.com/arushijain94/CoinBettingPolitex
https://github.com/arushijain94/CoinBettingPolitex


6.1 PRACTICAL CONSIDERATIONS

Checking feasibility and Estimating ζ:We use the
updates in Equation (8) to solve the unconstrained
problem maximizing V̂ π

c (ρ), and return policy π̃. If
V̂ π̃

c (ρ) < b, we declare the problem infeasible, whereas,
if V̂ π̃

c (ρ) > b, we estimate ζ = V̂ π̃
c (ρ) − b.2 It is im-

portant to note that Lemma 4.1 does not require the
exact maximization of V̂ π

c (ρ) to upper-bound λ∗. Any
feasible policy for which V π

c (ρ) > b can be used to
estimate ζ and upper-bound λ∗, though the tightest
upper-bound is obtained for maxπ V π

c (ρ) (see the proof
of Lemma 4.1 in Appendix B).

Gradient normalization and practical coin-
betting: Recall that the coin-betting algorithms in Sec-
tion 4.2.2 require normalizing the gradients by 1+U/1−γ.
Unfortunately, this upper-bound on the gradient norms
is quite loose in practice, and directly using the up-
dates Equations (8) and (9) results in poor empirical
performance. Since coin-betting algorithms do not have
a step-size that can be scaled to counteract the nor-
malization, this issue needs to be handled differently.
In particular, we continue to directly use the updates
in Equation (8) with the normalization, but use a
heuristic, Algorithm 2 of Orabona and Tommasi 2017,
for updating the dual variable. This heuristic is a way
to adaptively normalize the dual gradients (depend-
ing on the previously observed values). For the details,
see Algorithm 1 in Appendix C.1. While this heuris-
tic introduces a hyperparameter in the dual updates,
our empirical results suggest that the resulting coin-
betting algorithm is quite robust to the choice of this
parameter and so we use this method in our subsequent
experiments.

(a) OG (b) CV

Figure 2: Environment Misspecification in model-
based tabular setting with varying γ: Assuming
access to the true CMDP, we vary discount factor γ =
{0.7, 0.8}. We use the hyperparameters for the original
CMDP with γ = 0.9. CBP converges faster with a
smaller variance as compared to GDA and CRPO.

2If V̂ π̃
c (ρ) = b, then we return policy π̃ as the optimal

feasible policy in the CMDP.

6.2 TABULAR SETTING

We consider a synthetic gridworld environment similar
to Sutton and Barto (2018, Example 3.5) (see Ap-
pendix C.3 for details) and set the discount factor
γ = 0.9. We first consider a model-based setting,
where we have complete knowledge of the CMDP.
In Figure 1 (in Section 1), we compared the perfor-
mance of the three algorithms. For each algorithm, the
hyperparameter range is described in Appendix D and
the best hyperparameter corresponds to the least OG
while satisfying CV ∈ [−0.25, 0]. The key observation
is that CBP is robust to its hyperparameter values,
while GDA and CRPO are sensitive to their hyperpa-
rameter values. In Figure 7 (Appendix D.1), we show
best performing variants for all methods. In addition,
we demonstrate the poor performance of GDA when
used with the theoretical step-sizes suggested in Corol-
lary A.1. Next, we measure the robustness of the al-
gorithms with respect to environment misspecification
where we vary γ. In Figure 2, we observe that CBP has
consistently faster convergence with a lower variation
in the performance.

In the model-free setting, from Figure 3 we observe
the effect of increasing the number of samples in ap-
proximating the Q value function on the performance.
CBP consistently converges faster than its counter-
parts in sampling based approaches. In Appendix D.1,
we demonstrate CBP robustness to hyperparameters
(Figure 8) and environment misspecification (Figure 9).

6.3 LINEAR SETTING

In the following experiments, all the algorithms require
O(d) memory to construct Q value functions and have
a similar handle on the policy π.

Gridworld environment: We start with linear func-
tion approximation (LFA) on the gridworld environ-
ment. We use tile coding (Sutton and Barto, 2018)
to construct d-dimensional feature space (see Ap-
pendix D.2 for details). We used LSTDQ (Lagoudakis
and Parr, 2003) to estimate Q functions with 300 sam-
ples for all (s, a) pairs. In Figure 4, we show the perfor-
mance of the best hyperparameter (see Table 2 for spe-
cific values) for each algorithm. We observe that the OG
of CBP converges consistently faster across different fea-
ture dimensions. Again, we observe a good hyperparam-
eter robustness of CBP in Figure 10 (Appendix D). Fig-
ure 11 in Appendix D.2 shows that we can obtain simi-
lar performance by using G-experimental design, but
at a much lower computational cost.

Cartpole environment with exploration: We
use the Cartpole environment from the OpenAI



(a) OG (b) CV

Figure 3: Effect of sampling in model-free tabular
setting: Number of samples = {1000, 2000, 3000} are
varied for Q value estimation to observe the change in
performance (averaged over 5 runs). The performance
improves with increase in samples and CBP converges
faster than the baselines GDA and CRPO.

(a) OG (b) CV

Figure 4: LFA in gridworld environment: For vary-
ing feature dimension d, OG for CBP consistently con-
verges faster than the baselines GDA and CRPO.

gym (Brockman et al., 2016), and modify it to include
multiple constraints. The agent is rewarded to keep the
pole upright, whereas it receives a constraint reward
if (1) the cart enters certain areas (x-axis position), or
(2) the angle of pole is smaller than a certain threshold
(see Appendix D.2 for details). We used tile coding to
construct the feature space, and LSTDQ to estimate
the Q functions for both reward and constraint reward.

In Figure 5 we show the cumulative discounted reward
and the constraint violation (CV 1, CV 2) for the two
constraints as mentioned above. The dark lines corre-
spond to the best hyperparameter that achieves the
maximum return, while satisfying CV ∈ [−6, 0] for both
constraints, with the lighter shade-lines correspond to
the other hyperparameters. All the algorithms satisfy
the constraints and achieve comparable reward, but
CBP has considerably less variance in performance
for different values of the hyperparameters. In Fig-
ure 12 (Appendix D.2), we added entropy regulariza-
tion (Geist et al., 2019; Haarnoja et al., 2018) and
observed a similar robustness for CBP.

(a) CV 1 (b) CV 2

(c) Return

Figure 5: Cartpole environment: Performance of
CBP, GDA and CRPO with two constraints (averaged
across 5 runs). The dark lines depict performance with
the best hyperparameters. Light lines correspond to
performance with other setting of hyperparameters.
CBP exhibit robustness to the choice of hyperparame-
ters.

7 CONCLUSION

In this paper, we proposed a general primal-dual frame-
work to solve CMDPs with tabular and linear function
approximation setting. The main motivation of this
work was to reduce the hyperparameter sensitivity in
the policy optimization setting. We empirically showed
that the existing algorithms suffer from high hyper-
parameter sensitivity (Figure 1). Furthermore, they
can even lead to uncontrolled errors in function ap-
proximation setting. To alleviate the above mentioned
problems, we proposed a theoretically sound CBP algo-
rithm which leverages the coin-betting technique from
online linear optimization. In addition, we also use
experimental design procedure to control the errors.

Orabona and Tommasi (2017) has shown coin-betting
algorithms scale to neural networks. Similarly, in future
we plan to scale CBP to non-linear function approxi-
mation. We aim to use the recent advances in online
linear optimization to design “painless” parameter-free
policy optimization algorithms. We believe that this is
important for reproducibility in RL and hope our work
will encourage future research in this area.
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