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Abstract

Large Language Models (LLMs), such as GPT001
and LLaMA, are susceptible to generating hal-002
lucinated answers in a confident tone. While003
previous efforts to elicit and calibrate confi-004
dence scores have shown some success, they005
often overlook biases towards certain groups,006
such as specific nationalities. Existing calibra-007
tion methods typically focus on average per-008
formance, failing to address this disparity. In009
our study, we demonstrate that the concept010
of grouping loss is an effective metric for un-011
derstanding and correcting the heterogeneity012
in confidence levels. We introduce a novel013
evaluation dataset, derived from a knowledge014
base, specifically designed to assess the confi-015
dence scores of LLM responses across differ-016
ent groups. Our experimental results highlight017
significant variations in confidence, which are018
accurately captured by grouping loss. To tackle019
this issue, we propose a new method to cali-020
brate the confidence scores of LLMs by con-021
sidering different groups, a process we term022
reconfidencing. Our findings indicate that this023
approach effectively mitigates biases against024
minority groups, contributing to the develop-025
ment of fairer LLMs.026

1 Introduction027

While Large Language Models (LLMs) such as028

ChatGPT (OpenAI, 2022) and LLaMA (Touvron029

et al., 2023) can generate responses that are flu-030

ent and plausible, they can also provide incorrect031

and untruthful information in a confident and com-032

pelling tone. This phenomenon, often called hallu-033

cination, poses a notable challenge to their use (Ji034

et al., 2023; Baan et al., 2023).035

In response, extensive research has focused on036

estimating the confidence (or uncertainty) of LLM037

answers (Huang et al., 2023; Zhang et al., 2023).038

Through expressions of confidence levels, we know039

to what degree to trust a statement rather than040

blindly believing. Figure 1 illustrates an ideal user041

Tell me something about Albert Einstein e.g., a short 
bio with the birth date and place

Albert Einstein was a German-born theoretical physicist 
who is widely held to be one of the greatest scientists 
of all time. Born in the German Empire, on January 14, 
1879, Einstein grew up in Ulm, Germany. In 1905, he 
submitted a successful PhD dissertation to the 
Humboldt University of Berlin 

Figure 1: Desired user experience – An illustration of
our goals of eliciting confidence levels in LLMs. High
confidence scores are represented in green, while red in-
dicates a higher likelihood of encountering hallucinated
sentences.

experience, where LLMs document sentence-level 042

confidence in their answers. Methods of estimat- 043

ing confidence can be categorized into two groups: 044

White-box and Black-box methods. White-box 045

methods require access to internal states (Azaria 046

and Mitchell, 2023) or model logits (Lin et al., 047

2022a) while Black-box methods rely solely on 048

text responses to obtain confidence scores. In 049

cases where the LLM allows only restricted ac- 050

cess to internal states (e.g., ChatGPT), black-box 051

methods are more suitable. These methods es- 052

tablish confidence scores by analyzing the consis- 053

tency of multiple answers to a single query (Kuhn 054

et al., 2022; Manakul et al., 2023) or by creating 055

specific prompts to capture expressed confidence 056

scores (Zhou et al., 2023; Xiong et al., 2023; Tian 057

et al., 2023). 058

Although some methods use calibration to adjust 059

the predictions of a model to better match the true 060

probabilities (Hendrycks et al., 2021; Gawlikowski 061

et al., 2021; Mielke et al., 2022; Tian et al., 2023), 062

these approaches predominantly concentrate on av- 063

erage performance metrics, often neglecting the het- 064

erogeneity among different groups. Consequently, 065

calibration alone proves inadequate. Even when a 066
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Figure 2: Calibration curves of the Birth_Date relation. The LLM here is Mistral-7B (MistralAI, 2023), and
we use SelfCheckGPT (Manakul et al., 2023) to compute confidence scores. An increased number of ⋆ symbols
signifies a sub-group containing more popular samples.

calibration technique attains optimal average accu-067

racy, the calibrated scores can still markedly devi-068

ate from the true posterior probabilities for specific069

groups of queries – a phenomenon known as the070

grouping loss (Kull and Flach, 2015; Perez-Lebel071

et al., 2023). As an example, let us consider a query072

that asks for the birth dates of people, as in “What073

is the birth date of Albert Einstein?”. We submitted074

this query for 5K people to an LLM (Mistral-7B,075

MistralAI, 2023), and generated a confidence score076

for each answer with a consistency-based method077

(SelfCheckGPT, Manakul et al., 2023). In a clas-078

sic calibration analysis, we grouped the answers079

into buckets by their confidence score, and com-080

puted the observed ratio of correct answers in each081

bucket. Figure 2a shows the corresponding calibra-082

tion curve for all test samples. The curve is close083

to the diagonal, which means that the confidence084

score is close to the true ratio of correct answers in085

each bucket. This picture changes a bit when we086

split our data into popular and less popular persons087

based on the backlink numbers. As shown in Fig-088

ure 2b, answers on more popular entities tend to be089

better calibrated than answers on long-tail entities.090

The picture is even more dramatic when we split091

the people by nationality (Figure 2c): While the092

calibration is satisfactory for American and French093

individuals, it performs dismally for almost all In-094

dian and Chinese people. This illustrates grouping095

loss: a model’s calibration error may be small over-096

all, but can be catastrophically large for certain097

sub-groups. A well-calibrated LLM might be bi-098

ased, generating with high confidence untruthful099

information about a particular race, gender, etc.100

In this paper, we conduct a systematic study to101

measure the error of the confidence estimations.102

We create a new dataset that enables evaluating the103

quality of confidence scores for different types of104

groups. Our dataset consists of questions about 105

entities (people, locations, etc.) and the ground 106

truth from the YAGO knowledge base (Suchanek 107

et al., 2024). In addition, our dataset contains 108

features of the entities, such as popularity and 109

nationality, which allows us to study sub-groups 110

of entities. We evaluate two recently proposed 111

methods for deriving confidence levels: SelfCheck- 112

GPT (Manakul et al., 2023) and Just Ask for Cal- 113

ibration (Tian et al., 2023). To identify grouping 114

loss, we use both user-defined and latent groups. 115

User-defined groups rely on features (which may 116

be hand-crafted) such as popularity and nationality, 117

while latent groups are automatically identified by 118

decision trees (Perez-Lebel et al., 2023). Experi- 119

ments reveal that models like Mistral and LLaMA 120

tend to be overly confident across all questions. In 121

addition, they are more confident on some queries 122

than others: they display grouping loss. To improve 123

confidence scores, we propose an approach to ad- 124

just LLMs, tackling both calibration and grouping 125

loss. The core idea is to calibrate the confidence 126

score for each sub-group separately, a method we 127

term reconfidencing. Experimental results show 128

that our refined solution has a better performance 129

in terms of Brier score and grouping loss. 130

In summary, our contributions are threefold: 131

• We introduce a new framework and dataset 132

to analyze the capability of LLMs to elicit 133

confidence scores for different groups 134

• We prove the existence of the grouping loss 135

in LLMs and compare the heterogeneity of 136

confidence errors on both user-defined groups 137

and implicit groups 138

• We propose a refined way to reconfidence 139

LLMs from a group-level perspective, which 140
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can reduce discrimination of minority groups141

and lead to fairer LLMs.142

2 Related Work143

2.1 Confidence Elicitation in LLMs144

To alleviate the hallucination phenomenon, some145

methods attempt to elicit confidence (or un-146

certainty) scores for the generated answers of147

LLMs (Ji et al., 2023; Zhang et al., 2023; Huang148

et al., 2023). These efforts can be roughly catego-149

rized into two groups: White-box and Black-box150

methods. White-box methods need access to inter-151

nal states or token logits while Black-box methods152

use only textual responses to compute confidence153

scores.154

There are three primary white-box ways to en-155

courage LLMs to express uncertainty in a human-156

like manner: Verbalized Probability, Internal State,157

and Token Logit. The goal of verbalized proba-158

bility is to teach models to convey its degree of159

certainty, as in I’m 90% sure that it is.... The mod-160

els are fine-tuned on particular tasks (Lin et al.,161

2022a) to elicit probabilistic responses. The inter-162

nal state method builds a classifier to detect the163

truthfulness of a statement, which receives as in-164

put the activation values of the hidden layers of an165

LLM (Azaria and Mitchell, 2023). The token logit166

method evaluates the probability distribution of the167

words in the answer. At each step, LLMs produce168

a probability distribution across the entire vocabu-169

lary. Analyzing the distribution allows us to com-170

pute corresponding entropy values, which serve as171

indicators of confidence (Fu et al., 2023; Manakul172

et al., 2023). Generally, factual statements tend173

to feature tokens with higher likelihood and lower174

entropy, while hallucinated texts are likely to come175

from positions with flat probability distributions176

with high uncertainty.177

White-box methods need access to internal states178

or token logits which are unavailable for some179

LLMs such as ChatGPT. In such cases, one can180

use black-box methods, which rely solely on the181

textual answers of LLM. There are three main black182

box methods. The first relies on asking the same183

question to an LLM multiple times and assessing184

the coherence of its responses (Kuhn et al., 2022;185

Manakul et al., 2023; Lin et al., 2023; Xiong et al.,186

2023). If the answers contradict each other, one187

assumes a lack of confidence in the statement. The188

second method uses external resources and tools to189

verify the answers. For example, symbolic knowl-190

edge bases and search engines can be leveraged to 191

fact-check LLM outputs (Gou et al., 2023; Agrawal 192

et al., 2023). Finally, a third branch of approaches 193

resorts to in-context learning prompts for obtaining 194

confidence scores (Zhou et al., 2023; Xiong et al., 195

2023; Tian et al., 2023). 196

2.2 Confidence Calibration and Grouping 197

Loss 198

Ideally, a model’s confidence score should equal 199

the actual probability of the answer being correct. 200

Recent studies have shown that current power- 201

ful models are poorly calibrated: they are over- 202

confident or (more seldom) under-confident. This 203

holds both for modern neural networks (Guo et al., 204

2017) and LLMs like GPT (Hendrycks et al., 2021). 205

Dedicated approaches have been proposed to cali- 206

brate these models (Gawlikowski et al., 2021; Jiang 207

et al., 2021; Park and Caragea, 2022; Kadavath 208

et al., 2022; Xiao et al., 2022; Mielke et al., 2022). 209

Yet calibration is not enough: even a perfectly cal- 210

ibrated classifier can have confidence scores that 211

are far from the true posterior probabilities for cer- 212

tain types of questions – a phenomenon known as 213

the grouping loss (Kull and Flach, 2015). Perez- 214

Lebel et al. (2023) recently contributed a measure 215

for the grouping loss, which captures heterogeneity 216

in the confidence score. They revealed grouping 217

loss on pre-trained vision and text classifiers, but 218

did not study generative models. In this work, we 219

are the first to study the grouping loss of gener- 220

ative models. We are also the first to propose a 221

method to reconfidence LLMs from the grouping 222

loss perspective. 223

3 Analyzing the Grouping Loss in LLMs 224

In this section, we aim to measure the calibration 225

of existing confidence methods and identify the 226

grouping loss in LLMs. 227

3.1 Dataset Construction 228

229

To study the grouping loss in LLM confidence 230

scores, we need control over the entities that ap- 231

pear in the questions, to vary their properties and 232

examine calibration errors. 233

For this purpose, we construct a new evalua- 234

tion dataset derived from the YAGO knowledge 235

base (Suchanek et al., 2024). YAGO contains 236

triples of a subject, a relation, and an object, as 237

in ⟨Albert Einstein, Birth Date, 1879-03-14⟩. We 238

3



select three relations: Birth Date, Founder,239

and Composer. This choice is driven by the de-240

sire to cover different top-level classes (people,241

organizations, and creative works). Furthermore,242

these relations have few objects per subject, which243

makes it very likely that the KB contains the com-244

plete list of objects for a given subject (Galárraga245

et al., 2015). Finally, the relations cover both func-246

tional relations (with one object per subject) and247

non-functional ones (with potentially several ob-248

jects per subject). We collect around 10 thousand249

triples for each relation. Each triple comes with a250

natural language question that we generate with a251

template, as in “What is the birth date of the person252

Albert Einstein?”.253

In addition, our dataset contains some hand-254

picked facts about the subject of each triple such as255

nationality and gender. We also store the popularity256

of an entity, which we obtained by the Backlinks257

API1 and YAGO, respectively. Table 1 shows the258

statistics of our dataset.259

Since we need to learn decision tree classifiers260

and calibrators in the subsequent experiments, the261

dataset is split into training, validation, and test262

sets according to the ratio of 0.25:0.25:0.50. All263

the following reported scores are based on the test264

set.265

3.2 Experimental Settings266

267

LLMs. In this experiment, we focus on268

instruction-aligned LLMs (Ouyang et al., 2022),269

which are widely used in various applications.270

Also, we study open-source models since it is nec-271

essary for our method to access internal input rep-272

resentations when reconfidencing LLMs, which273

we will talk about later. We consider three open-274

source LLMs with different sizes: LLaMA (Tou-275

vron et al., 2023), Mistral (MistralAI, 2023), and276

Mixtral (Jiang et al., 2024), all downloaded from277

HuggingFace. Note that our method is model-278

agnostic and can be applied to other LLMs as well.279

Methods of Eliciting Confidence. We consider280

two Black-box methods for eliciting confidence281

scores: Just Ask for Calibration (Tian et al., 2023)282

and SelfCheckGPT (Manakul et al., 2023). Note283

that our framework is applicable to other confi-284

dence methods as well.285

1www.mediawiki.org/wiki/API:Backlinks. The backlink
number shows an entity appears how many times in other
Wikipedia pages

Just Ask for Calibration (JAFC) uses dedicated 286

prompts to elicit verbalized probabilities, which 287

can yield better calibrations than the model’s con- 288

ditional probabilities. We follow the Verb. 1S top-n 289

setting to extract numerical probabilities. It makes 290

the LLM produce n guesses with probabilities, and 291

the answer with the highest score is selected as 292

the final output. The prompt used is shown in Ap- 293

pendix A.1. 294

SelfCheckGPT detects hallucinations by com- 295

paring the consistency of multiple answers to the 296

same query. We use the version of Natural Lan- 297

guage Inference (NLI, also known as Textual En- 298

tailment) to compute the confidence score. NLI 299

determines whether a premise entails a hypothe- 300

sis, and classification labels belong to {entailment, 301

neutral, contradiction} (see, e.g., (Helwe et al., 302

2022) for a formal probabilistic definition). Given a 303

query q, we ask an LLM to obtain a main response, 304

which can be regarded as a hypothesis with m sen- 305

tences {s1, s2, ..., sm}. Then, we use the same 306

query again to ask the LLM n times for obtaining 307

the premise documents D = {d1, d2, ..., dn}. The 308

NLI contradiction score is computed as: 309

P (contradict|si, d) =
exp(zc)

exp(ze) + exp(zc)
(1) 310

where d is one premise document, ze and zc are 311

the logits of the “entailment” and “contradiction” 312

classes, respectively. This normalization ignores 313

the neutral class and ensures that the probability 314

is bounded between 0.0 and 1.0, where a higher 315

value means it is more likely to hallucinate. The 316

confidence score for each sentence in the main 317

response is then defined as: 318

CSelfCheckGPT(si) = 1− 1

m

m∑
j=1

P (contradict|si, dj)

(2) 319

Evaluation Protocol. Since the same entity can 320

have several names (Bill Gates, e.g., is called 321

“William Henry Gates III”), we cannot rely solely 322

on string matching to determine whether the an- 323

swer of the LLM is correct. Therefore, we use 324

an additional NLI model, as follows: The ground 325

truth in YAGO is converted to a natural sentence, 326

and we judge whether this premise entails the an- 327

swer by the LLM. Moreover, a relation can have 328

several objects per subject. For example, there 329

are two composers for the song “Rolling in the 330

Deep”. Therefore, we iterate through all objects 331
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Relation Size Head Tail Query Example Answer Example

Birth_Date 10,000 Person Date What is the birth year of the person Albert Einstein? 1879
Founder 10,000 Business Person Who founded the business Microsoft? Bill Gates
Composer 9,419 Music Person Who composed the song Rolling in the Deep? Adele

Table 1: Description of our evaluation dataset. Note that there might be multiple answers for the founder
and composer relations and we predict only the birth year for the Birth_Date relation.

Method Birth_Date Founder Composer
Brier ↓ CL ↓ GL ↓ Brier ↓ CL ↓ GL ↓ Brier ↓ CL ↓ GL ↓

LLaMA-7B-JAFC 84.38 60.4 1.61 105.55 79.34 0.88 86.78 56.83 2.1
Mistral-7B-JAFC 150.18 139.02 0.38 160.62 143.7 0.82 128.47 94.66 9.55

LLaMA-7B-SelfCheckGPT 54.08 33.56 0.28 49.99 26.47 0.55 58.67 25.56 4.67
Mistral-7B-SelfCheckGPT 11.43 1.34 0.21 21.72 9.65 0.03 24.17 3.84 0.95

Table 2: Evaluating calibration of various confidence methods. Here, we compare Just Asking for Calibration
(JAFC) (Tian et al., 2023) and SelfCheckGPT (Manakul et al., 2023). CL and GL mean calibration loss and
grouping loss, respectively. All values are scaled by a factor of 100 for better readability, and the best results
are bold.

in the ground truth and label the LLM answer as332

correct if it corresponds to any of these objects. We333

manually validated 50 randomly selected samples334

and all assessments were correct. We use the De-335

BERTa (He et al., 2021) model 2 fine-tuned on the336

NLI data set MNLI (Williams et al., 2018).337

Metrics. Given the observed binary labels Y , the338

true posterior probabilities Q, confidence scores C339

obtained from a model P (Y ), and the correspond-340

ing average true posterior probabilities A, the diver-341

gence of proper scoring rules can be decomposed342

as (Kull and Flach, 2015; Perez-Lebel et al., 2023):343

E [f(S, Y )] = E [f(C,A)]︸ ︷︷ ︸
Calibration Loss

+ E [f(A,Q)]︸ ︷︷ ︸
Grouping Loss

+E [f(Q,Y )]︸ ︷︷ ︸
Irreducible Loss

(3)344

where f is a function that measures the divergence345

between the two inputs. In this work, we consider346

three metrics: the Brier Score fBS(S, Y ) (Brier,347

1950), the Calibration Loss fCL(S,C), and the348

Grouping Loss fGL(Q,Y ) (Kull and Flach, 2015;349

Perez-Lebel et al., 2023). (1) The Brier score is350

the squared error between the observed binary la-351

bels Y –denoting correct/incorrect answers– and352

the associated confidence scores C. The appealing353

property of the Brier score is that it is minimum354

when C = P (y). (2) Calibration Loss (CL) mea-355

sures the error rate (average observed y) for a given356

confidence score C: E[y|C = c]; a calibration plot,357

as in Figure 2a plots this value for different values358

of c. When the confidence score C equals the prob-359

ability P (y), the calibration plot is on the diagonal,360

2cross-encoder/nli-deberta-v3-large

and the calibration error is zero. However, the con- 361

verse is not true: a calibration error can be zero and 362

yet the confidence score differs from from the prob- 363

ability P (y). The reason for this difference is that 364

within the observations with a predicted confidence 365

score of C, some have an actual probability above 366

C while others below: errors compensate (Perez- 367

Lebel et al., 2023). (3) Grouping Loss (GL) is the 368

term missing to the calibration to fully control how 369

the predicted confidence scores C relate to the true 370

probability P (y). We reuse the method by Perez- 371

Lebel et al. (2023) to estimate the lower bound of 372

the grouping loss by looking at the dispersion in 373

the error rate on sub-groups of observations for a 374

given score C. 375

3.3 Evaluating the Calibration of LLMs 376

377

The results of our evaluation are shown in Ta- 378

ble 2. We can see that Mistral-7B-SelfCheckGPT 379

performs the best across all tasks, indicating better 380

calibration performance compared to other con- 381

figurations. Notably, SelfCheckGPT consistently 382

outperforms JAFC, highlighting the inadequacy of 383

relying solely on prompt-based methods. Although 384

the three metrics for Mistral-7B-SelfCheckGPT ap- 385

pear relatively low, suggesting seemingly accept- 386

able confidence scores, it is crucial to note the 387

existence of sub-groups that are far from well- 388

calibrated. For example, sub-group analysis within 389

the birth date subset, based on entity popularity and 390

nationality, reveals the model’s poor performance 391

for groups with infrequent persons (Figure 2b) and 392

Asian nationalities (Figure 2c). This phenomenon 393

confirms that a model may have a low calibration 394
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(b) Mistral-7B-SCGPT

Figure 3: Grouping diagrams of latent sub-groups.
These groups are created from the leaves of a decision
tree. SCGPT is an abbreviation for SelfCheckGPT.

error but there might be sub-groups whose con-395

fidence scores deviate dramatically from the true396

probabilities.397

3.4 Identifying the Grouping Loss in LLMs398

399

Table 2 has already shown the concrete values of400

grouping loss for different methods. However, it is401

not very clear where the grouping loss originated.402

To answer this question, we visualize the behaviors403

of sub-groups in each method.404

Sub-group Definitions. We study two types405

of sub-groups: user-defined and latent sub-groups.406

For user-defined groups, we look at explicit fea-407

tures such as popularity, nationality, and gender.408

We split all samples into different groups based on409

the entity feature of queries. User-defined groups410

may not be adapted to the actual sources of het-411

erogeneity in the confidence score. Therefore, we412

also use optimized groups that give a tight bound413

on the grouping loss. For these latent groups, we414

follow Perez-Lebel et al. (2023) to employ a deci-415

sion tree, using a loss related to the squared loss416

for the Brier score on labels (Y ). This tree defines417

sub-groups that minimize the loss on a given set of418

predicted confidence scores. To prevent overfitting,419

a train-test split is applied: a feature space parti-420

tion is created using the leaves of the tree fitted on421

one portion. The input for the decision tree is the422

embedding of the top layer of an LLM for a partic-423

ular query. In this way, samples with similar over-424

confidence / under-confidence can be grouped to-425

gether. For example, queries featuring well-known426

entities may be grouped together because an LLM427

excels at handling them, while queries involving428

long-tail entities could form a separate group. In429

practice, groups are defined over multiple different430

features of queries and are thus much more subtle.431

Grouping Diagrams. In a binary setting, cali- 432

bration curves display the calibrated scores versus 433

the confidence scores of the positive class, as de- 434

picted in Figure 2a. To visualize the heterogeneity 435

among distinct sub-groups within a specific bin, we 436

enrich this representation by including estimated 437

scores for each sub-group, indicating the fraction 438

of positives in each. As shown in Figure 3, a larger 439

separation among sub-groups means that the group- 440

ing loss is more significant. In this diagram, we use 441

quantile binning with 15 bins. 442

Based on the above setting, we visualize group- 443

ing diagrams across different confidence methods 444

for both user-defined and latent sub-groups. We 445

aggregate the scores of three relations in this exper- 446

iment. The results of latent groups are shown in 447

Figure 3, while the results of user-defined groups 448

are shown in Figure A1 in the appendix. 449

LLMs tend to be overconfident. Ideally, well- 450

calibrated LLMs should produce confidence scores 451

that align closely with true probabilities. However, 452

upon examination, it becomes evident that both 453

LLaMA and Mistral tend toward overconfidence. 454

Even in the case of Mistral-7B-SCGPT (Figure 3b), 455

which demonstrates the best performance among 456

other methods, the estimated confidence scores sur- 457

pass the actual probabilities. For instance, when 458

considering the fraction of true positives at 0.20, 459

the associated confidence score is around 0.50. 460

The grouping loss is significant. If there is a 461

large number of deviating sub-groups in the group- 462

ing diagrams, this indicates a higher level of vari- 463

ance and, consequently, a greater grouping loss. 464

Sub-groups positioned above the diagonal show 465

underconfidence, while those below the diagonal 466

demonstrate overconfidence. Our results reveal 467

a substantial grouping loss for both user-defined 468

and latent groups. Regarding user-defined groups 469

(Figure A1), we see distinct behaviors among sub- 470

groups based on popularity. If we take a look at the 471

individual samples of each sub-group, we find that 472

samples associated with more popular entities tend 473

to appear above the calibration curve, while the 474

opposite is observed for sub-groups with long-tail 475

entities. This suggests that LLMs exhibit a greater 476

tendency toward overconfidence when dealing with 477

long-tail entities. 478

In the case of latent groups, which are automat- 479

ically identified, diverse partitions with varied be- 480

haviors can be obtained. Figure 3 illustrates a more 481
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Method Birth_Date Founder Composer

Brier ↓ CL ↓ GL ↓ Brier ↓ CL ↓ GL ↓ Brier ↓ CL ↓ GL ↓

LLaMA-7B-JAFC

Before 84.38 60.4 1.61 105.55 79.34 0.88 86.78 56.83 2.1
Calibration 23.79 0.02 1.52 26.39 0.05 0.89 30.06 0.2 2.1

Ours 22.24 0.03 0.89 26.12 0.14 0.44 28.81 0.37 1.36

Mistral-7B-JAFC

Before 150.18 139.02 0.38 160.62 143.7 0.82 128.47 94.66 9.55
Calibration 11.14 0.01 0.36 17.24 0.14 0.85 34.1 0.04 9.13

Ours 10.95 0.05 0.14 16.97 0.15 0.34 26.61 0.17 0.89

LLaMA-7B-SelfCheckGPT

Before 54.08 33.56 0.28 49.99 26.47 0.55 58.67 25.56 4.67
Calibration 20.59 0.45 0.76 23.83 0.17 0.74 33.94 0.16 8.83

Ours 19.64 0.24 0.21 23.13 0.4 0.51 27.06 0.45 0.93

Mistral-7B-SelfCheckGPT

Before 11.43 1.34 0.21 21.72 9.65 0.03 24.17 3.84 0.95
Calibration 10.25 0.05 0.01 12.21 0.14 0.0 20.27 0.18 1.14

Ours 10.21 0.08 0.0 12.01 0.15 0.0 18.98 0.13 0.0

LLaMA-13B-SelfCheckGPT

Before 64.48 33.93 3.01 70.47 40.71 0.23 70.26 32.83 1.34
Calibration 30.96 0.4 4.02 30.22 0.1 1.31 37.36 0.57 1.48

Ours 26.63 0.33 0.23 29.32 0.56 0.21 33.78 1.18 0.58

Mixtral-8x7B-SelfCheckGPT

Before NA NA NA 49.96 27.4 0.1 54.02 23.74 1.27
Calibration NA NA NA 23.82 0.98 0.48 31.42 0.91 0.66

Ours NA NA NA 23.61 0.61 0.0 29.26 1.28 0.0

Table 3: Comparing methods of after Calibration and our reconfidencing. Blue colors indicate improved
performances, while red colors indicate decreased performances. All values are scaled by a factor of 100 for
better readability. Note that Mixtral refuses to answer birth date questions due to privacy protection.

scattered distribution of sub-groups, including in-482

stances of underconfidence not visible through the483

user-defined groups.484

In summary, our analysis indicates a prevalent485

tendency of overconfidence in LLMs. Additionally,486

we reveal the impact of grouping loss on confidence487

scores. When contrasting user-defined sub-groups488

with autonomously identified latent sub-groups, the489

latter exhibit greater flexibility and diversity.490

4 Reconfidencing LLMs491

In this section, we present a simple yet effective492

solution to reconfidence LLMs. The core idea is to493

calibrate each sub-group separately.494

Standard Calibration Following standard cali-495

bration procedures, we train a regressor, commonly496

known as a calibrator, to conduct the calibration497

of a model (Niculescu-Mizil and Caruana, 2005)498

This calibrator works by mapping the model’s out-499

put to a refined probability within the interval [0,500

1], with the aim of aligning closely with the true501

probability. Concretely, we train an isotonic regres-502

sor using our constructed training and validation503

sets for calibration purposes (Zadrozny and Elkan, 504

2002). Subsequently, we apply this trained regres- 505

sor to calibrate the confidence scores on the test 506

set. 507

Reconfidencing The standard calibration ap- 508

proaches are marginal: they control average error 509

on confidence and overlook the nuances of sub- 510

groups, where confidence errors can be especially 511

marked. Inspired by this, we propose a more re- 512

fined method to calibrate LLMs from the sub-group 513

perspective. Adapting Perez-Lebel et al. (2023), a 514

tree classifier is trained to know how to partition 515

samples (see details in Section 3.4). We employ 516

a loss function derived from the squared loss for 517

the Brier score on labels (Y ) to optimize the pre- 518

dicted confidence scores. This decision tree algo- 519

rithm partitions the data into sub-groups that min- 520

imize the specified loss. The tree’s input consists 521

of embeddings from the top layer of a LLM for 522

a given query, which can effectively cluster sam- 523

ples exhibiting similar levels of over-confidence or 524

under-confidence. This, in contrast to user-defined 525

sub-groups, does not need background knowledge 526

and thus applies to queries that are not matched to 527
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Figure 4: Comparing calibrations across different popularity groups for the Mistral-7B. We use merged results of
three regions. The confidence method here is SelfCheckGPT. More ⋆ symbols mean a sub-group with more popular
samples.

the knowledge base. Following this step, a distinct528

isotonic regressor is trained for each identified sub-529

group. The final step is to apply this refined method530

to reconfidence the test set The reconfidencing can531

effectively reduce the grouping loss thus yielding532

improved calibration results.533

To validate our proposed solution, we conduct534

a comparative analysis of calibration performance535

between the standard calibration and our reconfi-536

dencing approach. The partition number of the537

decision tree is eight in this experiment (check538

Section A.5 to see how we select the leaf num-539

ber). Table 3 presents the calibration performances540

of various methods across different relations and541

LLMs. While calibration is successful in reduc-542

ing the Brier score and calibration loss, it does not543

guarantee mitigation of the grouping loss. For in-544

stance, in the case of Mistral-7B-SelfCheckGPT on545

the composer relation, the calibration significantly546

improves the Brier score (24.1 → 20.27) and cali-547

bration loss (3.84 → 0.18). However, it is notewor-548

thy that the grouping loss increases (0.95 → 1.14).549

Conversely, our proposed reconfidencing approach550

not only consistently achieves a better Brier score551

but also shows a significant reduction in grouping552

loss. Using the same example, our method attains a553

lower Brier score (20.27 → 18.98) and effectively554

eliminates grouping loss (1.14 → 0.0) compared555

to the calibration method.556

Since our reconfidencing works on the latent557

group loss, it does not specifically target the issues558

shown in the examples of popularity (Figure 2b)559

and nationality (Figure 2c). To answer whether560

it improves the situation for these user-defined561

groups, we analyze calibration curves across sam-562

ples after calibration and reconfidencing. The re-563

sults for popularity and nationality sub-groups are564

shown in Figure 4 and Figure A3 respectively.565

Compared to the standard calibration , our pro- 566

posed method can consistently yield more diagonal 567

calibration curves across sub-groups. 568

To show the scalability of our method on 569

other relations and other types of groups, we 570

conduct experiments on Birth_Place and 571

LocationCreated. Experimental results con- 572

firm again that our model can reduce biased in- 573

formation on gender group (Figure A5) and the 574

location relation (Figure A6). The same observed 575

improvements can also be extended to different 576

sizes of LLaMA (Figure A4). 577

5 Conclusion 578

In this work, we analyzed how trustworthy current 579

methods are when they give confidence scores to 580

LLM answers. We create a novel dataset derived 581

from the ground truth within the YAGO knowledge 582

base, providing a framework for evaluating the cal- 583

ibration of confidence scores for different groups. 584

Subsequent evaluations of different sizes of LLMs 585

reveal a consistent discrimination towards particu- 586

lar minority groups. Leveraging estimators and vi- 587

sualizations, we show grouping loss in LLMs, such 588

as those associated with long-tail entities and indi- 589

viduals of Asian origin. These findings emphasize 590

that we should pay particular attention to minor- 591

ity groups when calibrating LLMs. Building upon 592

these insights, we introduce a novel approach for 593

reconfidencing LLMs based on latent sub-groups, 594

resulting in improved calibrations. This new ap- 595

proach can mitigate the problem of hallucinations 596

by generating alerts in response to LLM answers. 597

Meanwhile, our findings can reduce biased infor- 598

mation against groups such as race and gender, 599

which is useful for the fairness of LLMs. 600
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Limitations601

One limitation of our proposed method is that it602

targets entity-related questions, and not long-form603

open-ended tasks, as shown in Section A.3 in the604

appendix. For example, there is no obvious ben-605

efit of our method for this very common ques-606

tion: “why is the sky blue?” from the TruthfulQA607

dataset (Lin et al., 2022b). We aspire for this study608

to highlight the importance of considering minority609

groups in the calibration of LLMs. Additionally,610

we anticipate that future research can build upon611

our methodology to encompass open-ended gener-612

ation tasks.613
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A Appendix789

A.1 Prompts790

The prompt used for SelfCheckGPT to elicit confi-791

dence scores (Manakul et al., 2023) is shown below:792

Provide your best guess and the probability
that it is correct (0.0 to 1.0) for the follow-
ing question. Give ONLY the guess and prob-
ability, no other words or explanation. For
example:\n\n Guess: <most likely guess, as
short as possible; not a complete sentence, just
the guess!>\n Probability: <the probability
between 0.0 and 1.0 that your guess is cor-
rect, without any extra commentary whatso-
ever; just the probability!>\n\n The question is:
${THE_QUESTION}

793

A.2 Reconfidencing Sub-groups794

In this section, we conduct a comparative analysis795

of the performance between calibration and our796

proposed reconfidencing. This evaluation is carried797

out through the examination of calibration curves798

and grouping diagrams.799

Calibration Curves. We present the calibration800

curves for the birth date relation, with samples cat-801

egorized into five sub-groups based on their nation-802

alities. In Figure A3a, it is evident that LLaMA ex-803

hibits overconfidence across all nationalities. Fol-804

lowing calibration A3b, there is an improvement805

for samples with predicted confidence scores less806

than 0.5, but challenges persist for samples with807

higher confidences. However, after reconfidenc-808

ing, as illustrated in Figure A3c, the calibration809

curves demonstrate substantial enhancement, al-810

though perfection is not achieved. This observation811

aligns with similar trends observed in the Mistral812

model (Figure A3f).813

Grouping Diagrams. We illustrate the group-814

ing diagrams for popularity sub-groups, where all815

samples are evenly distributed into eight partitions816

based on the number of backlinks. Subsequently,817

we depict diagrams following calibration and recon-818

fidencing in Figure A7. In general, when compar-819

ing the calibration method to reconfidencing, the820

latter exhibits superior calibration of confidence821

scores. For instance, in Figure A7h, the calibra-822

tion curve appears more diagonal compared to Fig-823

ure A7g, indicating improved calibration through824

reconfidencing.825

Overall, these findings confirm again that our826

reconfidencing can yield better calibrations.827

A.3 Experiments on Open-ended QA Tasks 828

Since our method reduce the grouping loss for 829

entity-based queries, one may ask can our recon- 830

fidencing method be applied for other datasets or 831

open-ended generation tasks. To answer this ques- 832

tion, we conducted additional experiments from 833

existing benchmarks. We follow the setting in this 834

Manakul et al. (2023) to conduct experiments on 835

three QA datasets: SciQ (Welbl et al., 2017), Triv- 836

iaQ (Joshi et al., 2017) and Truthful QA (Lin et al., 837

2022b). Besides, we include another open-ended 838

generation task from the medical domain, Medi- 839

cal QA3. Some details of the four QA datasets are 840

shown in the Table A2. As for evaluation, we use 841

the API of GPT-3.5-Turbo to determine whether 842

the generated answers and ground truth are seman- 843

tically equivalent. The LLM to generate confidence 844

scores here is LLaMA-13B. 845

The experimental results are shown in Table A3. 846

We first observe that our method still take a lead on 847

entity-based QA (the first two columns). However, 848

we find that our method no longer has an advantage 849

on open-ended QA tasks (the last two columns). 850

In summary, our proposed method brings value 851

to entity-related questions while it is not targeted 852

at long-form open-ended tasks. 853

A.4 Experiments on Other Relations 854

To show the scalability of our reconfidenc- 855

ing method, we conduct experiments on 856

another two relations: Birth_Place and 857

LocationCreated. To study the fairness of 858

LLMs better, we introduce gender groups in the 859

Birth_Place dataset. In Figure A5, we draw 860

curves of Birth_Place for both male and 861

female sub-groups. We find that LLMs work 862

better for the male group than the female one (the 863

left figure). Our method not only achieves better 864

performance than the calibration method but also 865

makes LLMs generate fair predictions for both 866

males and females. In figure A6, we also draw the 867

calibration curves for the LocationCreated 868

relation (a film is created in which country). These 869

files are divided into groups by their popularities 870

and we get consistent conclusions. 871

A.5 The Impact of Partition Numbers 872

To study the impact of the granularity of partition, 873

we vary the number of partitions for LLaMA-13B 874

3https://huggingface.co/datasets/
medalpaca/medical_meadow_medical_
flashcards
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(d) Mistral-7B-SCGPT

Figure A1: Grouping diagrams of user-defined sub-groups. We divide each bin into eight groups by the popularity
of entities. SCGPT is an abbreviation for SelfCheckGPT.
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(d) Mistral-7B-SCGPT

Figure A2: Grouping diagrams of latent sub-groups. These groups are created from the leaves of a decision tree.
SCGPT is an abbreviation for SelfCheckGPT.

Method Composer
Brier ↓ CL ↓ GL ↓

Before 68.16 37.89 3.05
Calibration 30.62 0.31 3.6
Ours (p=2) 26.52 0.76 1.04
Ours (p=4) 26.12 0.62 0.0
Ours (p=8) 26.01 0.54 0.0
Ours (p=16) 25.87 0.56 0.37
Ours (p=32) 25.44 0.72 0.0
Ours (p=64) 25.9 1.32 0.0

Table A1: Evaluating calibration of various con-
fidence methods. Here, we compare Just Asking
for Calibration (JAFC) (Tian et al., 2023) and Self-
CheckGPT (Manakul et al., 2023). CL and GL
mean calibration loss and grouping loss, respec-
tively. All values are scaled by a factor of 100 for
better readability, and the best results are bold.

and check the performances. The results are shown875

in Table A1. If there are too few partitions (p ≤ 4),876

it will decrease the performance of our method.877

When we gradually increase the partitions, there is878

no significant gain after 8 partitions. In our paper,879

the partition number is 8 for all datasets.880
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Figure A3: Comparing calibrations across different nationality groups for the Mistral-7B and LLaMA-7B. We use
merged results of three regions. The confidence method here is SelfCheckGPT.

Relation Size Head Query Example Answer Example

SciQ 1,000 Scientific entity-
based QA

What tells you how much of the food you
should eat to get the nutrients listed on
the label?

serving size

TriviaQ 1,000 General entity-
based QA

Which American-born Sinclair won the
Nobel Prize for Literature in 1930?

Sinclair Lewis

Truthful QA 817 Commonsense
open-ended QA

What happens to you if you eat water-
melon seeds?

The watermelon seeds pass through your
digestive system

Medical QA 1,000 Medical open-
ended QA

What is the relationship between very
low Mg2+ levels, PTH levels, and Ca2+
levels?

Very low Mg2+ levels correspond to low
PTH levels which in turn results in low
Ca2+ levels.

Table A2: Description of four QA evaluation dataset. We follow the setting in this paper
(https://aclanthology.org/2023.emnlp-main.330/) to run experiments. Medical QA is adapted from the
medical_meadow_medical_flashcards on HuggingFace Datasets. As for evaluation, we use the API of
GPT-3.5-Turbo to determine whether the generated answers and ground truth are semantically equivalent. The LLM
here is LLaMA-13B.

Method SciQ TriviaQ Truthful_QA Medical_QA
Brier ↓ CL ↓ GL ↓ Brier ↓ CL ↓ GL ↓ Brier ↓ CL ↓ GL ↓ Brier ↓ CL ↓ GL ↓

LLaMA-13B-SelfCheckGPT
Before 94.83 52.53 5.19 64.96 17.91 0.0 95.14 61.07 1.17 99.44 70.21 0.0

Calibration 50.16 3.3 2.74 51.43 4.47 0.0 38.9 3.27 0.0 29.62 1.39 0.0
Ours 48.65 5.15 0.0 51.0 6.92 0.0 41.36 7.06 0.0 32.58 3.52 0.32

Table A3: Comparing methods on four QA tasks of after calibration and our reconfidencing. Blue colors indicate
improved performances, while red colors signify decreased performances. All values are scaled by a factor of 100
for better readability.
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Figure A4: Comparing calibrations across different popularity groups of the Birth Date relation for the LLaMA-
13B. The confidence method here is SelfCheckGPT.
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Figure A5: Comparing calibrations across different gender groups of the Birth Place relation for the Mistral-7B.
The confidence method here is SelfCheckGPT.
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Figure A6: Comparing calibrations across different popularity groups of the LocationCreated relation for the
Mistral-7B. The confidence method here is SelfCheckGPT.
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(e) Recal-LLaMA-SCGPT
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(g) Recal-Mistral-SCGPT
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(h) Ours-Mistral-SCGPT

Figure A7: Comparing calibrations on popularity groups. Each bin is divided into 8 groups. "Recal" means the
Calibration method.
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