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Abstract. Knowledge workers’ personal and work related concepts (e.g.
persons, projects, topics) are usually not sufficiently covered by knowledge
graphs. Yet, already handmade classification schemes, prominently folder
structures, naturally mention several of their concepts in file names.
Thus, such data could be a promising source for constructing personal
knowledge graphs. However, this idea poses several challenges: file names
are usually noisy non-grammatical text snippets, while folder structures
do not clearly define how concepts relate to each other. To cope with
this semantic gap, we include knowledge workers as humans-in-the-loop
to guide the building process with their feedback. Our semi-automatic
personal knowledge graph construction approach consists of four major
stages: domain term extraction, ontology population, taxonomic and
non-taxonomic relation learning. We conduct a case study with four
expert interviews from different domains in an industrial scenario. Results
indicate that file systems are promising sources and, combined with our
approach, already yield useful personal knowledge graphs with moderate
effort spent.

Keywords: Knowledge Graph Construction · Personal Knowledge Graph
· Human-in-the-Loop · File System

1 Introduction

Knowledge graphs (KGs) have become a popular technology to support knowl-
edge workers in various applications (for a survey see [8]). Since such KGs are
constructed from domain-specific document corpora, personal concepts of knowl-
edge workers in these domains are usually not sufficiently covered. To fill this
gap, there is the emerging concept of Personal Knowledge Graphs (PKGs) which
focus on resources users are personally related to (also in their professional life).
The population and maintenance of such graphs is still an open research question
[1], especially, when knowledge is not modeled yet (cold start problem). Various
sources in a user’s personal information sphere may be worth considering to
kick-start a population [12].
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Fig. 1: A file system (left) with file names containing relevant words (green) and
irrelevant words (red). They form a personal knowledge graph (right) with non-
taxonomic and taxonomic relations. Due to readability, some edges are omitted.

When users self-organize diverse documents in daily business, they often
manage them in a form of classification schema, prominently in file systems
[4]. Here, documents are hierarchically arranged and freely named according to
aspects such as projects, organizations, persons, topics and task-related concepts.
In file and folder names such concepts are typically mentioned in order to let
users guess their contents. Because file systems allow to name them mostly free3,
users tend to label them with their own vocabulary which can contain technical
terms, made-up words or even puns [2]. Thus, we hypothesize that file names
could be a promising source for constructing PKG.

This idea poses several challenges due to the nature of the data source.
Literature already showed that users have a large variety of file naming strategies
[5,3]. File names are usually short ungrammatical (sometimes noisy) text snippets
and contain differently ordered and concatenated keywords. These circumstances
make it difficult to discover and extract relevant named entities from them.
Besides labeling, users can also assemble files in hierarchically structured folders
[14]. Yet, this “folder contains file” structure typically does not explicitly define
how named entities relate to each other.

To give a visual example, Figure 1 depicts a small file system (left) and a
possible personal knowledge graph (right). Because some keywords in the file
names are too general (images) or have a technical meaning (Thumbs), they may
be irrelevant for the user (underlined in red). Relevant keywords (green) become
resources in the PKG, while a foaf:topic property keeps track in which file
resource it is mentioned (only one is shown due to readability). Named individuals
(Zenphase, Parker, Mercurtainment) are assigned to their classes (Project, Per-
son, Organization) and are connected meaningfully (:hasProject, :worksFor).
The remaining ones are rather abstract ideas and thus become skos:Concepts
according to the Simple Knowledge Organization System (SKOS). A taxonomy
tree is formed (top-right side) by adding broader concepts (:DocumentType,
:DocumentState). Since WIP is an abbreviation, its skos:prefLabel contains

3 Restricted only by illegal characters and maximum file name length.
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the long form. Synonyms and other spellings are captured in skos:hiddenLabels:
for the user the term Drawing is synonym to treeDiagram and docs in file names
indicate the concept Document. Due to the lack of space, labels and some other
properties are not visualized.

In this paper, we present a semi-automatic personal knowledge graph con-
struction approach which is able to build such a graph from a classification
schema, in this case, a file system and expert feedback. A graphical user interface
(GUI) assists a knowledge engineer (KE) in performing several tasks during
construction: the discovery of concepts in file names, ontology population of
concepts and learning of taxonomic as well as non-taxonomic relations. In an
interview setting an expert can describe his or her personal view on their files to
the KE who translates the explanations in suitable knowledge graph statements
using the GUI. To reduce the manual effort for the KE, we make use of machine
learning models which learn from feedback and predict new statements during
usage. This proposed method yields several research questions (RQs), for which
first answers are reported in this work.

– RQ1: Are file systems promising sources for knowledge graph construction?
– RQ2: Can our system suggest helpful statements during usage?
– RQ3: How efficient is the construction in our approach?

The rest of this paper is structured as follows: related approaches are covered in
the next section (Sec. 2). This is followed by the presentation of our approach in
Section 3 and a prototypical implementation in Section 3.6. The above research
questions are then addressed in a case study with expert interviews in Section 4.
Section 5 closes the paper with a conclusion and future work.

2 Related Work

To personally assist knowledge workers in their tasks, knowledge services benefit
from personal information models about users [12]. For building such a model,
personal concepts can be acquired from various texts in a user’s personal infor-
mation sphere [13]. Thus, folder structures could be useful for this purpose which
is also investigated by other related works.

Magnini et al. [10] as well consider hierarchical classifications and analyze
the implicit knowledge hidden in the labeled nodes. They use logic formulas
expressed in description logic and word senses discovered and disambiguated in
labels to make knowledge explicit. Contextual interpretations such as implicit
disjunctions and negations are performed by exploiting the hierarchy. In contrast
to our work, their goal is the definition of an ontology with classes and properties
(TBox) by relying on external language repositories containing word senses. For
us the usage of such resources is limited, since word senses of personal concepts
(like projects) are usually not contained. Moreover, they present a fully automatic
approach without integrating domain experts in cases where labels do not match
with any entry in dictionaries.
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More closely related is the work about knowledge extraction from classification
schemes by Lamparter et al. [9]. Following the same motivation, the authors
would like to acquire explicit semantic descriptions from legacy information
such as local folder structures. To archive this, their processing pipeline include
the identification of concept candidates, word sense disambiguation, taxonomy
construction and identification of non-taxonomic relations. They distinguish
ontology and instance layer by checking with dictionaries if terms are rather
general (concepts) or specific (instances). In our approach, we only consider
instances, but classify general ideas as skos:Concepts (e.g. Diagram). They also
build a taxonomy by utilizing hyponym and hyperonym information. In case of
non-taxonomic relations, the work reuses domain-specific ontologies, while the
classification hierarchy as well as its labels are consulted to guess appropriate
relations. Our procedure is similar, but additionally considers user feedback to
train machine learning models in order to predict such relations.

In conclusion, to the best of our knowledge, there is no approach like ours
that constructs personal knowledge graphs from folder structures and at the
same time includes experts with their feedback.

3 Approach

Domain Terminology 
Extraction

Unification Ontology Population Taxonomy Creation Non-Taxonomic 
Relation Learning

Rules Rules

Management of Named Individuals

Random Forest Language Resource Link Prediction

Manually edit
  skos:prefLabel
  skos:hiddenLabel(s)

Fig. 2: Components of our approach from left to right.

Our approach enables knowledge engineers (KEs) to construct personal knowl-
edge graphs from a classification schema, for example, a folder structure as
shown in Figure 1. In this process, we support them in four tasks which are
depicted in Figure 2 and explained in individual sections: Domain Terminology
Extraction (Section 3.2), Management of Named Individuals (Section 3.3), Tax-
onomy Creation (Section 3.4) and Non-Taxonomic Relation Learning (Section
3.5). During modeling using a dedicated GUI (Section 3.6) the KE is assisted
by an artificial intelligence (AI) system which proactively makes statements on
its own. For ontology population and non-taxonomic relations, machine learning
models predict statements. To correctly store and distinguish these assertions,
we first designed an appropriate data model.

3.1 Knowledge Graph Model

Our knowledge graph model is an RDF graph consisting of statements in the
form of subject-predicate-object triples. However, in our scenario, we have to
store additional feedback information for each statement. We consider exactly
two agents in our system who are able to give feedback about statements: a
knowledge engineer (KE) and an artificial intelligence (AI). Both contribute to
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the same personal knowledge graph with assertions which can be true, but also
false (negative statement). To keep track about the provenance, we store the
following meta data for each statement: (a) which agent stated it, (b) the date
and time it was stated, (c) how is the statement rated (true, false or undecided)
and (d) how confident is the agent (a real value between 0 and 1). Additionally, we
use foaf:topic-statements to state that a classification schema node (subject)
mentions a certain knowledge graph resource (object) (see an example in Figure
1). Regarding the rating, since natural intelligence is usually more reliable than
an artificial one, the KE always outvotes suggestions from the AI. Yet, assertions
of the AI are assumed to be true as long as the KE does not disagree.

3.2 Domain Terminology Extraction

Our extraction method uses heuristics to make a first guess for relevant terms in
the user’s domain. Since word boundaries are often not evident in rather messy
file names, we tokenize their basenames (without considering file extensions) by
character type and camel case. In addition, the acquired tokens are rated based on
some simple rules: stop words and tokens containing a single letter or only symbols
are negatively rated. This also applies for tokens which only contain digits, except
they look like years (e.g. n P r1980, 2030s). Applying these rules, the following
example is tokenized (indicated by a pipe symbol ‘|’) and rated (indicated by color)
in the following way: WIP| |for|2007|-|tree|Diagram|!|(|28|)|A|.jpg. Thus, the
rules let us assume that the tokens WIP, 2007, tree and Diagram are relevant. In
case of multi-word terms, the KE is able to merge separated tokens to a single
term again, like for the latter two (i.e. Tree Diagram).

After adjusting the rating according to feedback from a domain expert, other
occurrences of accepted terms are automatically searched using a regular expres-
sion, since they may occur in a classification scheme more than once. If the term
contains multiple words, we also search for all possible word concatenations using
the separators “-” (minus), “ ” (underscore), “ ” (space) and also no separator at
all. To give an example, for the term treeDiagram our system also checks the vari-
ations tree-Diagram, tree Diagram and tree Diagram. Finally, the collected term
variations are associated with a named individual (i.e. owl:NamedIndividual
according to OWL).

3.3 Management of Named Individuals

After retrieving all found term variations T , we have to decide if they (a) resemble
an already existing named individual or (b) define a new one. Regarding the first
case, each newly discovered term may be a variation that refers to an already
created named individual. Thus, we calculate the Jaccard similarity coefficient [7]
between the terms T and the candidates’ labels L. A named individual is picked
which has the highest overlap between its labels and the given terms. If we cannot
find such a resource above a sufficient similarity threshold, a new one is created.
The longest term is used to give the resource a preferred label (skos:prefLabel)
after some conversions are performed: German umlaut spellings are corrected (e.g.
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“ae” Ñ “ä”), underscores are replaced with spaces, if available a lemma version
is used (diagrams Ñ diagram) and proper case is applied (Tree Diagram). The
remaining terms form the named individual’s synonym and differently spelled
labels (skos:hiddenLabel). In both cases, we keep track in which file resource
the named individuals are mentioned by using a foaf:topic-relation.

Unification. If two or more named individuals have the same meaning, we
can unify them to one resource. This is done by correctly substituting URIs and at
the same time removing the source triples. The AI automatically detects potential
individuals with the same meaning by looking at their labels and applying some
rules: it checks for hidden labels if they overlap or if there is a prefix or postfix
dependency, while preferred labels are compared with the Levenshtein distance
and token-based equality. For example, for the following label pairs our procedure
would suggest that their individuals are equal: (“Peter Parker”, “Parker Peter”);
(“Tree Diagram”, “Diagram”) and (“diagram”, “diagramm”).

Ontology Population. The KE manually create ontology classes and type
named individuals with them. To support the KE in this assignment, a random
forest model [6] is trained with positive examples from feedback to be able
to predict classes for individuals without a type. In order to acquire training
features, we follow a gazetteer-based embedding technique by looking up words
from several gazetteer lists in preferred labels of named individuals. Remaining
characters are counted per character class such as spaces, quotes and digits.
The coverage proportions of words and characters in the label serve as the
final feature vector. To give some examples, “Tree Diagram 27” receives the
vector v1 “ pEnglish Noun “ 0.73,Space “ 0.13,Digit “ 0.13q, while “WIP” has
v2 “ pUppercase Letter “ 1.0q. Having such feature vectors, the random forest
model is able to learn decision trees which predict the same type for named
individuals having preferred labels very similar in content. For instance, since the
individual Tree Diagram 27 is assigned to skos:Concept and another individual
Diagram 3 has a similar feature vector, our model predicts the same class for it.

3.4 Taxonomy Creation

Our intended taxonomy uses broader and narrower relations to structure con-
cepts (skos:Concept) found in file names according to the Simple Knowledge
Organization System (SKOS). Since we see these concepts as leafs in a taxonomy
tree, our motivation is to find broader concepts for them. For this, our approach
utilizes a language resource of synsets and hypernym relations. The concepts in
the PKG are mapped via their labels to synsets of the lexical-semantic net. By
traversing hypernym relations for all found synsets, two or more of them may
share the same ancestor along their hypernym paths. If the average distance from
synsets to ancestor is below a configurable threshold, it is suggested as a broader
concept for them. This constraint avoids the recommendation of too general
concepts (e.g. near the root node). To give an example, given the hypernym paths
diagram Ñ depiction and timetable Ñ overview Ñ depiction, our procedure
would suggest the broader concept depiction for both leafs. Of course the KE
may at any time create concepts manually and link them accordingly. Besides
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such taxonomic relations, our system also considers non-taxonomic ones between
instances.

3.5 Non-Taxonomic Relation Learning

To predict non-taxonomic relations, we perform link prediction by training a
model on positive examples from feedback and by exploiting the structure of the
classification schema (CS). Our idea is that the same non-taxonomic predicate
could be suggested between other resources (subjects and objects) which have
a similar neighborhood in the CS. For this, we only consider class instances
which are named individuals that have been assigned to an ontology class. Since
instances are annotated on files via a foaf:topic-relation, we know in which
places of the CS they are mentioned. This annotated CS needs to be transformed
into an undirected graph of connected instances to perform link prediction on
it. We make an edge from an instance i mentioned in a given node to another
instance j, whenever j is mentioned in the (a) node itself, (b) the node’s parent,
(c) one of the node’s children or (d) one of the node’s siblings (i.e. children
of parent). In other words, instances are connected in the graph if they are
closely mentioned in the CS. With the given graph, we are able to calculate
local similarity measures for links (for a survey see [11, Table 1]). Values of
the calculated measures form feature vectors in a training set. The test set is
acquired by iterating over all possible combinations of instances and properties
by using their domain and range information as a filter. A promising triple in
the test set is expected when we calculate a small euclidean distance (below a
given threshold) between its test vector and a training vector.

3.6 Prototypical Implementation

To test our approach in a case study, we implemented a prototype. A demo
video4 and its source code5 are publicly available. To assist the KE in entering
feedback and constructing the PKG, a graphical user interface (GUI) in form
of a web application is provided (see Figure 3). Throughout the interface, we
make heavily use of thumbs-up and thumbs-down buttons as well as green and
red colored elements to visualize positive and negative feedback (true and false
assertions). The three-column layout presents tabs for individual components
which give dedicated views for the tasks we have discussed.

A typical Explorer view (top left) lists containing files of a currently browsed
folder (/User/Downloads). The view presents for each file (from top to bottom)
its file name, rated terms from the file name and annotated named individuals.
To distinguish individuals from terms the well-known hashtag symbol is added
to their preferred labels. In a separate Named Individuals view in the top
middle, we itemize them together with their type. Two side-by-side views enable a
Drag&Drop mechanism on individuals to let the KE define triples with a selected

4 https://www.dfki.uni-kl.de/~mschroeder/demo/kecs
5 https://github.com/mschroeder-github/kecs

https://www.dfki.uni-kl.de/~mschroeder/demo/kecs
https://github.com/mschroeder-github/kecs
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Fig. 3: Our graphical user interface in a three-column layout with many feedback
possibilities and components (top). Dedicated components are provided to preform
certain tasks (bottom).

predicate (drop-down list in the middle). On the top right, classes and properties
can be manually created, renamed and rated in an Ontology view. For each
property, domain and range classes can be defined too. In separate tabs (bottom
left) our GUI also presents suggestions for Unification, Typing, Taxonomic
and Non-Taxonomic Relations (the screenshot shows an opened Typing tab).
A list of proposals from the AI can be reviewed by the KE, who can accept or
reject them individually or in bulk. Decisions are shown below and can always be
undone in either way. In a detail view (bottom middle), the KE is able to change
a selected individual’s preferred label, type, hidden labels and file attachment.
A Status view (bottom right) visualizes the current PKG construction state in
four sections: the progress in tagging, typing, taxonomy tree and non-taxonomic
graph as well as an overall assessment score. These estimations give hints to the
KE where more feedback from the expert is necessary.

4 Case Study: Expert Interviews

A case study was conducted with expert interviews in which personal knowledge
graphs (PKGs) were built with their feedback. The setup for these interviews is
covered in Section 4.1. This is followed by a detailed description of all collected
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Table 1: Four datasets with their meta data which are used in interviews with
four experts.

Dataset Expert Branches Leafs Max. Depth Avg. Depth Avg. Name Length

SS1 E1 103 198 3 2.98 ˘ 0.16 8.84 ˘ 9.86

FS1 E2 25, 988 95, 760 17 9.49 ˘ 1.93 23.30 ˘ 16.88

FS2 E3 8, 939 64, 571 17 9.18 ˘ 1.68 32.43 ˘ 16.77

FS3 E4 54, 933 325, 476 22 10.08 ˘ 2.22 24.24 ˘ 14.57

results (Section 4.2) which are then discussed with regard to our stated research
questions (Section 4.3).

4.1 Expert Interview Setup

Since our institute has industry projects with several departments of a large
power supply company, we had the great opportunity to get in contact with
four individual experts from four departments (guideline management, property
management, license management and accounting). Three of them work sepa-
rately on individual shared drive file systems (FS), while one primarily manages
spreadsheet (SS) data. Before the interviews, we received dumps of their data
which are listed in Table 1. For each dataset an expert (E) is assigned and meta
data about the asset is presented.

Since spreadsheets may also contain work related concepts, but are not a form
of classification schema, we had to convert the SS1 dataset to a tree structure
in the following way. Table names become root folders, while column names are
added as their subfolders. In the subfolders, we add files with distinct names from
the column’s rather short cell values. This way, potential work related concepts
could be contained in this generated classification schema.

Our system automatically captures several data points during usage. To
reproduce the construction process, we keep a history of all stated assertions with
their meta data as described in Section 3.1. By observing GUI inputs including
mouse clicks, Drag&Drop operations and certain keystrokes, we quantify the
KE’s effort with the system. In a fixed interval (every 10 inputs) snapshots of
the construction metrics (Status view) are saved to record the PKGs evolution
over time. Additionally, memory consumption and time performance of certain
system modules are monitored.

Each one-hour long interview between the knowledge engineer (KE) and an
expert had the same setting. One fixed author of this paper took over the role
of KE and met the expert in a virtual telephone conference. The KE shared
the screen and presented the GUI of our system (see Section 3.6) where the
expert’s data was already loaded. After a brief introduction, the KE started to
ask questions about files and folders by traversing through the file system. The
explanations of the participant enabled the KE to model the expert’s personal
knowledge as discussed in our approach (Section 3). Whenever the AI made
predictions, the expert was asked if they are correct or not and feedback was
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Table 2: The seven questions from the questionnaire with the answers of the four
experts and their average values.
Question E1 E2 E3 E4 Avg. & SD

Q1: How many years have you been working with the
data?

13 7 4 0 6 ˘ 5.48

Q2: How much do words in the file names reflect your
language use (vocabulary) at work (scale: 1 ´ 10)?

9 8 9 9 8.75 ˘ 0.50

Q3: Estimate how much your language use (vocabulary)
at work is represented by the established tags (percentage).

50 15 10 10 21.25 ˘ 19.3

Q4: The established tags meaningfully reflect the language
use (vocabulary) at your work (scale: 1 ´ 7).

7 6 4 6 5.75 ˘ 1.26

Q5: The established tags are assigned to meaningful classes
(scale: 1 ´ 7).

6 7 6 7 6.50 ˘ 0.58

Q6: The established tags are meaningfully structured in a
taxonomy (scale: 1 ´ 7).

7 6 5 4 5.50 ˘ 1.29

Q7: The established tags meaningfully relate to each other
(scale: 1 ´ 7).

5 7 6 7 6.25 ˘ 0.96

entered accordingly. Every 10 minutes the KE reviewed the current construction
state by opening the Status view and changed the focus on parts which needed
more attention. After about 50 minutes the session ended and the remaining time
was used to let the expert complete a questionnaire about the data source and
the modeled knowledge graph. In the next section, we present the questionnaire
and the results in detail as well as the data which was logged by our prototype
during the interviews.

4.2 Interview Results

The questionnaire at the interview’s end consists of seven questions (Q) which are
presented in Table 2 together with the experts’ answers (E), their average value
and standard deviation (Avg. & SD). We stated the first question (Q1) to check
how familiar the participants are with the data. The second question (Q2) was
asked to figure out if the experts think that the given data actually contains work
related words. While Q3 tries to give a rough estimation on the PKG’s recall
in percentage, Q4 gives an approximate measurement about its precision with
regard to created named individuals6 in the PKG. From the third question on,
we are interested in the experts’ opinions about the final result that was modeled
during the interview. A seven-point Likert scale is used for our opinion-based
questions ranging from 1 (“fully disagree”) to 7 (“fully agree”). The remaining
questions aim at the estimation of meaningfulness in the populated ontology (Q5)
and taxonomic (Q6) as well as non-taxonomic relations (Q7).

6 The questions refer to “established tags”, since we presented tags in the GUI for the
named individuals in the personal knowledge graph (PKG).
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Besides qualitative data, we also captured quantitative data points during
the interview which are presented in Table 3. Measurements are listed per row,
while dataset-expert pairs are ordered in columns. After the number of resources
in the PKG (#Resources) and the counts regarding the knowledge engineer’s
(KE) effort in the GUI, we list the number of true and false assertions7 made
by KE and AI in individual construction phases. Furthermore, we calculate the
AI’s accuracy by counting how often the expert agrees (true positive and true
negative) with reviewed predictions. The section about Management of Named
Individuals is further split into Unification and Ontology Population. While
the management includes assertions about types, preferred/hidden labels and
foaf:topic-relations, the latter two only consider owl:sameAs and ontology
related assertions. Due to a software error in the taxonomy-module during the
first two interviews, unfortunately, no broader concepts could be predicted. On
the table’s bottom all assertions by the KE (whether true or false) and all
inputs (clicks, enter keys, drag&drop operations) are aggregated to calculate a
assertions per inputs ratio. The Management of Named Individuals does not
have an accuracy value (N/A), since each term automatically turns into a named
individual and no suggestions for preferred and hidden label are made.

Since we continuously recorded measurements, we are able to examine the
evolution of the PKG with respect to the inputs performed in the GUI. The devel-
opment of the taxonomic and non-taxonomic part of the PKG is presented through
several plots in Figure 4. We consider named individuals of type skos:Concept as
taxonomy concepts (Figure 4a) and the remaining typed ones as non-taxonomic
instances (Figure 4d). By looking at the number of graph components (Fig. 4b
and 4e), one gets an idea of the connectedness over time. In addition, Figure
4c plots the number of concepts which are connected to at least one broader
concept. Similarly, Figure 4f shows the average diameter (the greatest distance
between any pair of instances) of non-taxonomic components to visualize the
closeness among them.

The next section will discuss the results with regard to our research questions.

4.3 Discussion

Since file names are rather unusual sources to build PKGs from, we ask at the
beginning of the paper the following question (RQ1): Are file systems promising
sources for knowledge graph construction? Our experts agree that words they
saw in the file names reflect their language use at work with an average value of
8.75 out of 10 (Q2 in Table 2). Having a higher-level management background,
expert E4 came in daily work not in touch with file system F3 (see Q1 in Table
2), but was still able to recognize and explain the terms. Answers to questions
Q4 to Q7 in our questionnaire (Table 2) indicate that we modeled all individual
PKGs in a meaningful way for the experts. For these reasons, we conclude that
file systems are promising sources for building PKGs.

7 False assertions by AI mean that it later rejected initially true ones because of human
feedback.
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Table 3: Quantity of true and false assertions stated by the knowledge engineer
(KE) and the AI for individual construction tasks. Additionally, the KE’s GUI
effort and the AI’s accuracy is given.

Measurement SS1 (E1) FS1 (E2) FS2 (E3) FS3 (E4)

#Resources 88 50 39 32

KE Clicks 599 602 359 356

KE Enter-Key 60 56 30 47

KE Drag&Drop 26 34 21 18

Domain Terminology Extraction (Section 3.2)

KE True 82 50 33 26

KE False 48 44 14 72

AI True 400 270168 242149 948405

AI False 286 220285 106573 617366

AI Accuracy 0.67 “ 45{67 0.72 “ 59{82 0.83 “ 35{42 0.31 “ 25{80

Management of Named Individuals* (Section 3.3)

KE True 102 68 39 58

KE False 30 24 15 25

AI True 462 32161 8223 37159

AI False 4 1 23 155

AI Accuracy N/A N/A N/A N/A

Unification* (Section 3.3)

KE True 10 2 2 0

KE False 6 18 12 4

AI True 8 10 7 2

AI False 0 0 0 2

AI Accuracy 0.57 “ 4{7 0.10 “ 1{10 0.14 “ 1{7 0.00 “ 0{2

Ontology Population* (Section 3.3)

KE True 105 78 61 55

KE False 73 29 22 19

AI True 134 102 92 85

AI False 1 8 6 2

AI Accuracy 0.23 “ 18{78 0.65 “ 30{46 0.66 “ 23{35 0.48 “ 12{25

Taxonomy Creation (Section 3.4)

KE True 21 19 14 12

KE False 0 0 4 8

AI True N/A N/A 9 10

AI False N/A N/A 0 0

AI Accuracy N/A N/A 0.56 “ 5{9 0.20 “ 2{10

Non-Taxonomic Relation Learning (Section 3.5)

KE True 5 23 33 7

KE False 0 42 20 0

AI True 0 52 42 0

AI False 4 11 5 0

AI Accuracy 0{0 0.19 “ 10{52 0.52 “ 22{42 0{0

Aggregated

All KE Assertions 482 397 269 286

All KE Inputs 685 692 410 421

KE Assertions/Inputs 0.70 0.57 0.66 0.68
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(a) Taxonomy Concepts
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(b) Taxonomy Components
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(c) Generalized Concepts
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(d) Non-Taxonomic
Instances
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(e) Non-Taxonomic
Components
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Fig. 4: Plots about the taxonomic and non-taxonomic parts of the PKG with
respect to the number of inputs made in the GUI. For each dataset a symbol is
assigned to recognize them: SS1 (˝), FS1 (˝), FS2 (ˆ) and FS3 (△).

Because a completely manual construction can be time-consuming and thus
AI could help in this process, we asked the next question (RQ2): Can our system
suggest helpful statements during usage? In our approach, we consider the appli-
cation of AI in several tasks ranging from (a) initial selection of domain relevant
terms, (b) unification suggestions, (c) recommendation of class memberships, (d)
suggestion of broader concepts and (e) prediction of non-taxonomic relations.
How they performed can be obtained from Table 3 in form of accuracy values
which calculate how often an expert agreed to suggestions stated by AI. (a) Since
we do not consider multi-word terms in the extraction of domain relevant words,
such terms had to be corrected frequently, which leads to a drop in performance.
(b) Our unification rules tend to suggest more false positives leading to low
accuracy scores, since they are designed with a high recall in mind. (c) The
prediction of class assignments show mediocre results, since only preferred labels
in combination with gazetteer lists are used to extract features. (d) For the tax-
onomy creation, our language resource GermaNet tended to suggest too general
concepts which is why they were often considered unsuitable by our experts. (e)
Regarding non-taxonomic relation learning, far to little examples were provided
in case of SS1 and FS3 to be able to predict similar relations. All in all, there is a
tendency that in certain cases helpful statements can be automatically suggested,
but more research has to be done to further improve AI.
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Concerned about the approach’s practicability, we stated the third question
(RQ3): How efficient is the construction in our approach? Effort measurements
in Table 3 indicate that one input operation results in 0.6 to 0.7 assertions, thus
already two inputs lead to a true or false statement. We assume that a value
below 1.0 comes from not negligible GUI navigation and search efforts. Still, many
clickable (bulk) feedback buttons combined with suggestions from the AI seem
to yield to this positive outcome. Especially the Drag&Drop feature turns out to
be a simple and fast way to relate resources to each other. Figure 4 visualizes
how taxonomies and graphs evolve over entered inputs8. In comparison, the
maintenance of taxonomies seem to require less effort than the non-taxonomic
graphs, probably because only skos:Concepts and the skos:broader-relation
need to be considered. The high diameter values of non-taxonomic graphs further
indicate that resources in subgraphs are rather loosely connected. In summary,
with moderately spent effort our KE was able to create, accept and also reject
many assertions that eventually formed a meaningful personal knowledge graph.
Still, efficiency could be further improved by better supporting the construction
of the graph’s non-taxonomic part.

5 Conclusion and Outlook

In this paper, we investigated the construction of personal knowledge graphs
from file names with a human-in-the-loop approach. A case study with four
independent expert interviews showed that the file system is a promising source,
while suggestions by AI help to build such graphs with moderate effort.

Since we could not examine all of the aspects in detail, future work may further
investigate in the challenges. For instance, there is potential for improvements
in machine learning models, especially for the prediction of non-taxonomic
relations. More sophisticated solutions could be applied in the extraction of
domain terminology, including disambiguation and the discovery of multi-word
terms.

Acknowledgements This work was funded by the BMBF project SensAI (grant
no. 01IW20007).
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