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Abstract

Recently, a large number of tuning strategies001
have been proposed to adapt pre-trained lan-002
guage models to downstream tasks. In this pa-003
per, we perform an extensive empirical evalu-004
ation of various tuning strategies for multilin-005
gual learning, particularly in the context of text006
summarization. Specifically, we explore the007
relative advantages of three families of multi-008
lingual tuning strategies (a total of five models)009
and empirically evaluate them for summariza-010
tion over 45 languages. Experimentally, we011
not only established a new state-of-the-art on012
the XL-Sum dataset but also derive a series of013
observations that hopefully can provide hints014
for future research on the design of multilin-015
gual tuning strategies.1016

1 Introduction017

Methods that perform fine-tuning of pre-trained lan-018

guage models (PLMs) now represent the state-of-019

the-art across a wide variety of NLP tasks (Howard020

and Ruder, 2018; Han et al., 2021). Because there021

are a myriad of methods for tackling this impor-022

tant task of fine-tuning LMs, there is an increas-023

ing body of research investigating the empirical024

strengths and weaknesses of different tuning strate-025

gies across several tasks (Peters et al., 2019; Ma-026

habadi et al., 2021; Karimi Mahabadi et al., 2021;027

Li and Liang, 2021; Mao et al., 2021; Hu et al.,028

2021; Min et al., 2021; He et al., 2021). One of the029

major design dimensions of these works revolves030

around which set of model parameters are updated;031

should fine-tuning only adjust a few additional pa-032

rameters that are not part of the initial LMs (e.g.,033

Adapters (Houlsby et al., 2019), or Prefix Tuning034

(Li and Liang, 2021; Xue et al., 2021)), update035

all parameters of the pre-trained models (Dai and036

Le, 2015; Devlin et al., 2019; Schick and Schütze,037

2021), or update only a subset of parameters (Guo038

et al., 2020)?039

1Code at https://github.com/anonymous-717/Multi-Sum
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Figure 1: Different frameworks for multilingual learn-
ing, where orange circles represent different languages
and blue circles denote pre-trained language models
(PLMs). Red boxes refer to additional learnable param-
eters, such as adapters or prefixes. Double sided arrows
represent that the parameters of PLMs are tunable.

At the same time, there has been much progress 040

in multilingual models based on pre-trained LMs 041

(Lample and Conneau, 2019; Conneau et al., 2020; 042

Liu et al., 2020) However, there is a notable gap 043

in the literature – to our knowledge, there are no 044

comprehensive comparative studies on how differ- 045

ent tuning strategies behave in multi-lingual sce- 046

narios – there is significant work on multilingual 047

adapters (Pfeiffer et al., 2020b; Ansell et al., 2021) 048

and parameter tying across languages (Sachan and 049

Neubig, 2018; Lin et al., 2021), but few studies 050

comparing different families of methods. 051

In this paper, we try to fill this gap by perform- 052

ing a comprehensive study of different parameter 053

tuning techniques in the context of text summa- 054

rization (Rush et al., 2015; Nallapati et al., 2016; 055

Chopra et al., 2016; Lewis et al., 2020; Zhang et al., 056

2020; Dou et al., 2021). We focus particularly 057

on summarization as previous work on parameter- 058

efficient tuning has noted that the differences be- 059

tween tuning techniques are particularly salient in 060

more complex generative tasks such as summariza- 061

tion, as opposed to text classification (He et al., 062

2021). We draw on the techniques examined in 063

the monolingual scenario and combine the unique 064

characteristics of the multilingual scenario (e.g., 065

shared features across languages) to derive differ- 066

ent architectures for multilingual learning. These 067
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frameworks encompass some existing works on068

multilingual learning, but also allow us to propose069

new learning methods and perform comparisons070

between different frameworks.071

Figure 1 (a) shows a commonly-used frame-072

work (Hasan et al., 2021) in which one tunable073

pre-trained model is shared by different languages.074

Figure 1 (b) introduces a language-specific mod-075

ule with learnable parameters while keeping the076

PLM’s parameter frozen, i.e. parameter-efficient077

tuning (Mao et al., 2021; He et al., 2021). In prac-078

tice, the language-specific module could be instan-079

tiated as an adapter, prefix, or other variety of extra080

parameters. Notably, this kind of language-specific081

module is independent for each language and can-082

not share information, thus low-resource languages083

cannot benefit from other related languages. Fig-084

ure 1 (c) tries to alleviate this problem in two ways:085

making parameters of pre-trained models tunable086

or introducing additional modules whose parame-087

ters can be shared by different languages.088

Using this framework, we ask these questions:089

Q1: How well do different parameter-efficient090

tuning methods (Figure 1-b) perform compared091

to PLM fine-tuning models (Figure 1-a) in multi-092

lingual summarization? Q2: Will supervised trans-093

fer, a commonly used technique in multi-lingual094

learning, be helpful for parameter-efficient tuning?095

Q3: Could better results be achieved by enabling in-096

formation exchange between different languages?097

How do different choices of parameter-efficient098

tuning methods interact with this sharing?099

We explore these questions by performing exten-100

sive experiments over 45 different languages . Our101

quantitative and qualitative analyses find several102

observations, such as:103

(1) Compared to PLM fine-tuning, both parameter-104

efficient tuning methods (prefix- and adapter-105

tuning) are advantageous in low-resource scenar-106

ios. Particularly, prefix-tuning outperforms adapter-107

tuning with extremely few samples over different108

languages §3.1. (2) Parameter-efficient tuning is109

possible to fail in the supervised transfer setting110

(§3.2), where pre-trained language models are fine-111

tuned on the source languages whose scripts are112

distant from the target language’s. (3) Adding lan-113

guage specific adapters or prefixes while addition-114

ally tuning the PLM’s parameters, can maintain115

multi-lingual PLM fine-tuning’s advantage of shar-116

ing information among languages, as well as pre-117

serving private parameters for each language to118

reduce the negative effect of the limited capacity 119

of one LM shared by all languages. We achieve a 120

new state-of-the-art performance with such a multi- 121

lingual tuning strategy. 122

2 Preliminaries 123

2.1 Task Formulation 124

Abstractive summarization can be formulated as 125

a conditional generation task where the input D 126

is a document, and the output S is a short sum- 127

mary. The majority of state-of-the-art models 128

for abstractive summarization use encoder-decoder 129

models (Sutskever et al., 2014), where an encoder 130

generates representations for the source document 131

D = [d1, ...,dm], and a decoder outputs the sum- 132

mary S = [s1, ..., sn] one target token at a time. 133

The conditional probability of a single sample is 134

modeled as p(si|di; θ), and hence parameters θ are 135

obtained by maximum likelihood estimation 136

argmax
θ

∑
(di,si)∈(D,S)

log p(si|di; θ), (1) 137

where (D,S) is the parallel training corpus. For 138

multilingual text summarization, D and S can be 139

in any of a number of languages. 140

2.2 Tuning Strategy 141

Recently, applying pre-trained language mod- 142

els (PLMs) to abstractive summarization tasks 143

equipped with diverse tuning strategies has 144

achieved a great success, which can be formulated 145

as below: 146

hi = PLM(D, si, h<i; θplm, θadd) (2) 147

where PLM is a sequence to sequence pre-traiend 148

LMs (e.g., T5 (Raffel et al., 2019) or BART (Lewis 149

et al., 2020)), θplm represents the original PLM pa- 150

rameter and θadd denotes the additional parameters 151

added by different tuning strategies. 152

Based on whether and when parameters θplm and 153

θadd will be tuned, different tuning strategies as 154

illustrated in Fig. 2 have been explored, which we 155

will detail below for the better introduction of multi- 156

lingual tuning strategies. 157

PLM Fine-tuning This is one of the most com- 158

mon tuning strategies that aim to tune all of the pa- 159

rameters θplm. While PLM fine-tuning has achieved 160

strong performance on many benchmarks, one 161

major limitation lies in the requirement of large 162
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training samples, which is not feasible in the low-163

resource scenario.164

To alleviate this issue, parameter-efficient tun-165

ing has been extensively explored recently, among166

which we select two representative methods which167

are initially designed for generation tasks, consis-168

tent with our goal.169

Adapter-tuning Adapter-tuning adds additional170

lightweight layers between the layers of an existing171

PLM. Although there is a variety of ways to define172

“adapter”, we adopt the definition of (Bapna et al.,173

2019). Specifically, the adapter block consists of174

(1) a layer normalization LN(·) for the input of the175

adapters, (2) an autoencoder whose inner dimen-176

sion can be adjusted according to the complexity177

of the target task with a down projection layer, an178

up projection layer, and a nonlinear activation func-179

tion between them, and (3) a residual connection.180

Formally, given hi ∈ Rd be the output of i-th layer,181

the adapter is formulated:182

ADAPTER(hi) = (ReLU(LN(hi)W
db
i ))Wbd

i +hi,183

where b is the inner dimension, Wdb
i ∈ Rd×b is the184

weight of down projection layer and Wbd
i ∈ Rb×d185

is the weight of up projection layer.186

Prefix-tuning Prefix-tuning (Li and Liang, 2021)187

prepends a prefix for every layer of a LM. Let188

HLM
i ∈ Rt×d, where d is the hidden dimension189

of LM, t is the input sequence length, denote190

the hidden representation of the i-th layer. We191

prepend prefixes at each layer to obtain Hi =192

[Prefixi;H
LM
i ] ∈ R(t+l)×d, where l is the prefix193

length, Prefixi ∈ Rl×d is prepended prefix.194

We can look up trainable matrix Pθ ∈ Rl×(d×n),195

where n is the number of layers of the LM, to196

get Prefixi. However, according to (Li and Liang,197

2021), reparameterization has better performance198

than directly updating Pθ in practice. So we199

reparametrize the matrix Pθ = MLP(P′θ), where200

MLP(·) has the structure of an autoencoder with a201

tunable middle dimension size, and P′θ is a smaller202

matrix with dimension l × d.203

2.3 Multilingual Tuning Methods204

Based on the above-mentioned tuning strategies205

in single language scenarios, we investigate three206

different multilingual learning frameworks and ex-207

plore their applicable scenarios in detail.208

Multilingual PLM Fine-tuning (MPF) This is209

a commonly-used setting (Hasan et al., 2021) when210

training samples from different languages are pro- 211

vided. Summarization systems share one multilin- 212

gual pre-trained language model whose parameters 213

can be updated by any system. 214

Multilingual Parameter-efficient Tuning (MPE) 215

In this framework, additional private parameterized 216

modules such as prefix or adapter are introduced for 217

each system besides one shared multilingual pre- 218

trained language model, whose parameters keep 219

frozen. Some existing works (Bapna et al., 2019) 220

follow this framework but mainly focus on the use 221

of adapters. 222

Multilingual Private-shared Tuning (MPS) In 223

the above method, although systems of different 224

languages share one pre-training model, their pa- 225

rameters cannot be modified, which results in the 226

lack of information interaction across languages 227

and the difficulty in mining the shared knowledge. 228

In this framework, parameters from both additional 229

modules and pre-trained models can be updated. 230

3 Experiments 231

Dataset As our evaluation testbed, we use the 232

XL-Sum corpus (Hasan et al., 2021),2 which 233

is a news dataset containing 1.1 million article- 234

summary pairs in 45 languages. The dataset is 235

collected from the British Broadcasting Corpora- 236

tion (BBC) website, using a bold paragraph at the 237

beginning of each article as the summary and the 238

rest of the article as the input text. We choose XL- 239

sum for its: (1) high language coverage, including 240

low resource, medium resource, and high resource 241

languages, (2) similar intrinsic characteristics, e.g. 242

novel n-gram ratio, abstractivity, and compression 243

among all samples, allowing our analysis to fo- 244

cus on the differences across languages, other than 245

different intrinsic features across samples. 246

Evaluation Metric As is standard in summariza- 247

tion, we use ROUGE (Lin, 2004) as our evaluation 248

metric, which computes the n-gram similarity be- 249

tween the gold and the generated summary.3 250

3.1 Exp-I 251

To answer the question (Q1) of how well different 252

parameter-efficient tuning methods behave com- 253

pared to standard LM fine-tuning in the multilin- 254

gual setting, we study the performance of three 255

2License: CC BY-NC-SA 4.0.
3We use the rouge package provided by XL-Sum(Hasan

et al., 2021) to support multiple languages.
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(a) PLM Fine-tuning (b) Adapter-tuning (c) Prefix-tuning

Figure 2: Different tuning methods. Red indicates trainable parameters; blue indicates frozen parameters.

tuning methods: prefix-tuning, adapter-tuning and256

PLM fine-tuning on different languages.257

3.1.1 Experiment Details258

Settings and Hyper-parameters We use the259

base version of multilingual T5 (Xue et al., 2021)260

as a backbone, which covers most languages261

in XL-Sum dataset and is the same as (Hasan262

et al., 2021), allowing us to make a fair compar-263

ison. In our experiment, MLP of prefix-tuning264

is two linear layers with an inner dimension as265

a hyper-parameter. For prefix-tuning, the hyper-266

parameters we tune4 are the same as (Li and267

Liang, 2021). For adapter-tuning, the hyper-268

parameters remain the same as prefix-tuning except269

the prefix length that is not needed for adapter-270

tuning. More details are in the appendix. For271

both adapter-tuning and prefix-tuning, these hyper-272

parameters lead to about 8% additional parame-273

ters compared to the LM’s total parameters, which274

are tuned during training while the LM’s parame-275

ters are frozen. To study whether language fea-276

tures will influence the choice of tuning meth-277

ods, we choose five languages from different lan-278

guage families: English (Germanic), Chinese279

simplified (Sino Tibetan), Spanish (Ro-280

mance) , Ukrainian (Balto Slavic) and Urdu281

(Indo Iranian).282

We subsample the full dataset of each language283

to obtain sub-datasets of various sizes,5 and sub-284

datasets of size ≤ 500 are considered “few-shot”285

experiments. For each few-shot experiment, we286

randomly sample 3 different training sets and devel-287

opment set (with dev size = 20% training set size).288

The reported result is the average of 3 experiments289

4Specifically, the number of epochs, batch size, learning
rate, prefix length and inner dimension during training, beam
search size and length penalty during inference.

5Concretely, {5, 10, 20, 50, 100, 200, 500, 3000, 6000,
10000, 20000, 30000}. For English, which has far more
training samples than other languages, we add two training set
size 100000 and 300000.

on the full test set of the chosen language. The 290

performance of few shot experiments is influenced 291

by the training samples chosen (Zhao et al., 2021), 292

so we keep the sampled training set and develop- 293

ment set the same for the three tuning methods to 294

have a fair comparison. For non-few shot experi- 295

ments, each size has one experiment and is tested 296

on the full test set of the chosen language. The 297

hyperparameters are chosen from a single language 298

(Japanese) for each tuning method and applied as is 299

to all languages. We use the result from the check- 300

point with the best validation set performance over 301

all training epochs. 302

3.1.2 Results and Analysis 303

Results Fig.3 illustrates the performance of three 304

different tuning methods with respect to the avail- 305

able training samples, observations are: 306

(1) In general when the sample number is less than 307

200 prefix-tuning achieves the best performance. 308

Between 200 and 10k adapter-tuning is superior, 309

and greater than 10k PLM fine-tuning surpasses the 310

other two. This indicates that regarding both the 311

performance and parameter efficiency (only tune 312

8% of the parameters of PLM fine-tuning), prefix- 313

tuning is the best choice when we have extremely 314

few samples, while adapter-tuning is the winner in 315

medium resource settings. (2) As the training set 316

size increases from few shot to high resource, PLM 317

fine-tuning has the largest performance improve- 318

ment, while prefix-tuning has the least performance 319

improvement and adapter-tuning is the middle. (3) 320

Compared to PLM fine-tuning, which is almost 321

monotonically increasing with the training set size, 322

both adapter-tuning and prefix-tuning have some 323

fluctuations. From preliminary experiments, we 324

find that adapter-tuning and prefix-tuning are more 325

sensitive to learning rate than PLM fine-tuning. Fix- 326

ing two separate learning rates for few shot and 327

non-few shot experiments for all languages, a sim- 328

plification of the normal training process to find 329

4



(a) English (b) Chinese Simplified (c) Spanish

(d) Ukrainian (e) Urdu (f) Average

Figure 3: Performance of prefix-tuning, adapter-tuning and PLM fine-tuning on five languages over training set
sizes. The x axis is the number of training samples at log scale, the y axis is the ROUGE-2 score.

an optimal learning rate for each training set size330

and each language on the development set, might331

cause the unstable performance of the tuning meth-332

ods that are more sensitive to learning rate. (4)333

All above observations are roughly true for every334

language and is especially clear in the average plot.335

Discussion & Takeaways The possible explana-336

tion of the different behavior of adapter-tuning337

and prefix-tuning is their structural discrepancy,338

in which adapter-tuning adds parameters between339

two transformer layers, while prefix-tuning uses340

these parameters to generate prefixes and append341

the prefixes at the front of each transformer layer.342

Similar to prolong the input, prefix-tuning does343

not touch the PLM’s architecture, preserving the344

knowledge in PLM. Thus, by utilizing the PLM345

better, prefix-tuning has better performance at few346

shot when there are not enough samples to learn347

new knowledge. However, while the training set348

size becomes larger, more flexible structures are349

needed to learn from these samples, leading to bet-350

ter performance of adapter-tuning. The possible351

reason why both prefix-tuning and adapter-tuning352

outperform PLM fine-tuning at the left side is that353

prefix-tuning and adapter have only 8% parameters354

to tune, which avoid overfitting when the training355

samples are not enough.356

From this experiment, we can see that prefix-357

tuning has both advantages of utilizing the knowl- 358

edge of PLM better and fewer parameters to tune, 359

while adapter-tuning only benefits from the latter. 360

This reminds us that while designing a prompt, one 361

important thing is to keep the PLM’s architecture 362

and make the prompt as natural as possible to better 363

extract knowledge from PLM. 364

3.2 Exp-II 365

When designing models in multi-lingual scenarios, 366

one crucial question is how to make modules of 367

different languages communicate efficiently so that 368

shared knowledge can be fully utilized. There are 369

two ways to do this: (1) by transferring: first fine- 370

tune PLMs on multiple languages except the one 371

we concerned about (a.k.a target language), and 372

then adapt the fine-tuned multi-lingual model to the 373

target language; (2) by multitask learning: jointly 374

train all languages together. In this experiment, we 375

study method 1 and try to answer the Q2: will su- 376

pervised transfer be helpful for parameter-efficient 377

tuning. In Exp.3.3, we study method 2. 378

3.2.1 Experiment Details 379

Settings and Hyper-parameters We first divide 380

XL-Sum dataset into two parts, one of which in- 381

cluding 34 languages (75% of total languages) is 382

used to fine-tune PLM jointly on multiple lan- 383

guages to obtain a single multi-lingual model, 384
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Language Script
mt5-base mt5-base34

prefix-tuing adapter-tuing prefix-tuing adapter-tuing

R1 R2 RL R1 R2 RL R1 R2 RL R1 R2 RL

amharic Geez 15.33 5.42 13.8 16.58 5.88 14.88 16.97 5.88 15.12 17.85 6.2 16.01
azerbaijani Cyrillic 15.72 6.3 14.47 17.81 7.34 16.13 11.9 3.4 10.93 12.16 3.37 10.96
bengali Brahmic 23.76 9.11 20.66 25.99 10.07 22.21 0 0 0 0 0 0
burmese Brahmic 12.74 3.46 11.51 14.07 4.09 12.54 1.57 0.38 1.51 1.14 0.22 1.08
igbo Latin 23.27 5.25 17.36 25.22 7.08 19.38 28.1 7.98 21.19 28.33 7.93 21.72
japanese Kan,Hi,Kat 41.23 18.89 32.42 45.6 21.87 35.02 11.39 2.82 9.05 11.84 3.15 9.12
scottish gaelic Latin 24.05 7.73 19.45 20.42 4.31 17.02 24.36 7.16 18.87 26.37 8.09 20.22
spanish Latin 28.09 9.05 21.14 29.28 10.3 22.23 29.75 9.48 22.18 30.26 9.83 22.42
tamil Brahmic 16.45 6.58 15 19.81 8.83 18.12 0.42 0.02 0.42 0.44 0.02 0.43
ukrainian Cyrillic 18.73 7.07 16.43 21.84 8.92 19.08 16.46 4.41 13.99 16.96 4.61 14.32
urdu Arabic 35.05 14.5 28.76 38.81 17.69 32.08 20.19 4.48 15.66 19.57 4.58 15.08

Table 1: R1, R2, and RL scores of prefix-tuning, adapter-tuning of mt5-base and mt5-base34 for 11 languages.
“Kan, Hi, Kat” is the abbreviation of Kanji, Hiragana, and Katakana.

while another part including 11 languages (25%385

of total languages) is used to investigate the fine-386

tuned PLM’s ability to generalize to new languages.387

The 11 left-out languages that do not participate in388

fine-tuning are chosen according the principle that389

they are from different language family and have390

different training set size.6 The hyper parameters391

used to fine-tune PLM is the same as the Multilin-392

gual training of XL-Sum (Hasan et al., 2021).393

We refer to mt5-base as the original PLM without394

fine-tuning and mt5-base34 as the fine-tuned ver-395

sion on 34 languages. We then performed prefix-396

tuning and adapter-tuning on mt5-base and mt5-397

base34 for 11 left-out languages. Hyper parameters398

used for these tuning methods remain the same as399

those in non-few shot experiments of Sec.(3.1).400

3.2.2 Results and Analysis401

Results Table.1 illustrates the performance of402

multi-lingual models mt5-base and mt5-base34 to403

adapt to 11 new languages by prefix-tuning and404

adapter-tuning. The main observations in Table.1405

are as follows:406

(1) For four languages, Amharic, Igbo, Scottish407

Gaelic, and Spanish, mt5-base34 will bring gains408

against their counterparts by 0.3 to 6.0 R1 score.409

(2) Fine-tuning mt5-base on 34 languages of410

XL-Sum dataset jeopardizes the performance of411

seven languages, among which Bengali, Burmese,412

Tamil’s R1 score becomes near zero.413

(3) Three of the four languages with performance414

improvement adapted from fine-tuned PLM are415

of Latin script, while all three languages with416

dramatic performance drop down are of Brahmic417

6Concretely, 7 languages (Amharic, Azerbaijani, Bengali,
Burmese, Igbo, Japanese, Scottish Gaelic, Spanish, Tami) are
low resource (< 15, 000 training samples), 2 languages (Span-
ish, Tamil) are medium resource (15, 000 ∼ 40, 000) and 2
languages (Ukrainian, Urdu) are high resource (> 40, 000).

script, indicating the important role script plays to 418

determine whether supervised transfer is helpful 419

for parameter-efficient tuning. 420

421

Discussion & Takeaways Although intuitively 422

new languages will benefit from PLM fine-tuned 423

on XL-Sum dataset, the practical results shows that 424

not all languages will obtain improvements. Trans- 425

fer learning in such a way might cause catastrophic 426

forgetting of the previously acquired knowledge in 427

PLM (McCloskey and Cohen, 1989; Santoro et al., 428

2016). If there are not enough training samples of 429

a certain script during PLM fine-tuning, the PLM 430

might lose the ability generalizing to languages of 431

this script by parameter-efficient tuning methods 432

and freezing PLM. This indicates that the effective- 433

ness of parameter-efficient tuning methods under 434

multi-lingual scenarios is highly dependent on the 435

multi-lingual model we use and under some situ- 436

ations, parameter-efficient tuning might lose their 437

adaptivity. We leave how to alleviate this problem 438

for future work. 439

3.3 Exp-III 440

In this experiment, we study jointly multi-lingual 441

training to see if different languages can benefit 442

from each other and how does adding private pa- 443

rameters for each language influence the perfor- 444

mance of multi-lingual training (Q3). 445

3.3.1 Experiment Details 446

With respect to Fig.1, we have 6 different settings 447

to compare single language training with multi- 448

lingual training. 449

PLM Fine-tuning (PLF): mt5-base is fine-tuned 450

on all languages to obtain separate models for 451

each language as the baseline. Multi-lingual 452
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Figure 4: Trend-lines depicting performance improvement. X-axis is the languages, which are arranged in increas-
ing order of available training data from left to right. Y-axis depicts the R2 score relative to the singular language
PLM fine-tuning baseline.

Parameter-efficient (Adapter/Prefix) Tun-453

ing (MPE adapter/MPE prefix): We add454

adapters/prefixes (with parameters = 8% pa-455

rameters of LM) for each language and tune456

adapters/prefixes separately for each language457

while freezing mt5-base which is shared by all458

languages. Multi-lingual PLM Fine-tuning459

(MPF): A single model is trained with training460

samples from multiple languages. The training461

strategy proposed by (Lample and Conneau,462

2019) to use a smoothing factor (alpha) of463

0.5 to balance the sampling rate of low re-464

source languages and high resource languages465

is followed by every multilingual setting.7466

Multi-lingual Private-shared (Adapter/Prefix)467

Tuning (MPS adapter/MPS prefix): Private468

adapters/prefixes (with parameters = 2% pa-469

rameters of LM) for each language (in total 45470

languages in XL-Sum dataset × 2% parameters471

for each languages = 90% additional parameters)472

are added to a single LM. The LM is tuned jointly473

for multiple languages, while the adapters/prefixes474

are tuned separately for each language. 8475

7We use the results of XL-Sum(Hasan et al., 2021). In
order to have a fair comparison and remove the influence
of different rouge packages, we use their model-generated
outputs on test set to calculate the rouge score, instead of
using their reported rouge score directly.

8One thing to notice is that during training, in each iteration
we sample from one language with a certain probability. The
LM shared by all languages is tuned every iteration, while the
private parameters for each language are tuned whenever the
language is sampled.

3.3.2 Results and Analysis 476

The summarization performance on different lan- 477

guages with different settings is plotted in Figure 4. 478

With combinations of different experiment settings, 479

we have the following results: 480

PLF v.s. MPE prefix v.s. MPE adapter: PLF 481

outperforms MPE prefix and MPE adapter overall, 482

with a gap larger for more available training 483

samples. MPE adapter outperforms MPE prefix 484

for almost every language, except a few languages 485

with few samples. This conforms to the result in 486

Sec.3.1 that fine-tuning has the advantage with 487

large training set size, while prefix-tuning has the 488

advantage with small training set size. One thing 489

to notice is that adapter-tuning has comparable 490

or even higher performance when the training set 491

size is smaller than 10k, consistent with the result 492

in Sec.3.1 and adapter’s sensitivity to training set 493

size is not as high as prefix-tuning. The latter 494

is reflected in that the adapter’s performance 495

does not drop down dramatically as the training 496

set size increases and keeps within -2 R2 of 497

the baseline for almost all languages, which is 498

even true for English with the highest training 499

set size of 300,000. This means the parameter 500

efficient adapter is a reasonable substitute of PLM 501

fine-tuning regardless of the training set size. 502

503

MPF v.s. PLF: Multi-lingual model MPF 504

significantly outperforms the baseline PLF in the 505

low and medium resource languages with the gain 506
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decreases as the training set size becomes larger.507

This is expected because low and medium resource508

languages can benefit from joint training by509

positive transfer between sister languages (Lample510

and Conneau, 2019). A deterioration is also511

observed in the high resource languages. However,512

the multilingual model within -1 R2 drop down for513

6 high resource languages and -3 R2 drop down for514

English, does not trail a lot. It is a good indication515

that by training a single multilingual model, the516

low and medium resource languages have been517

significantly improved without too much sacrifice518

of high resource languages. Similar to the low519

resource experiment of (Hasan et al., 2021), our520

result is stronger than theirs, which only selects 5521

low resource languages to fine-tune individual LM.522

523

MPF v.s. MPS adapter v.s. MPS prefix: By524

adding language-specific parameters under multi-525

lingual scenarios, compared to MPF, MPS adapter526

and MPS prefix have performance improvements527

R1:0.73, R2:0.46, RL:0.45 and R1:0.67, R2:0.47,528

RL:0.46 respectively for 45 languages on average.529

From each language performance, we can see that530

all high resource languages have performance im-531

provements at the cost of jeopardizing the perfor-532

mance of a few low resource languages a little.533

This indicates that sharing LM as well as adding534

private language-specific parameters will maintain535

the jointly multi-lingual training’s advantage of536

sharing information among languages, while re-537

ducing the harm of sharing all parameters to high538

resource languages due to the limit model capacity.539

Besides, the two ways to add additional parameters:540

private adapter, private prefix for each language541

have roughly the same overall performance on the542

whole dataset and the same trend lines depicted in543

Fig.4, despite their differences we have discussed544

in Sec.3.1. The possible explanation is that the dis-545

advantage of prefix-tuning lacking the flexibility to546

modify freeze LM addressed in Sec.3.1, is allevi-547

ated or removed by tuning shared LM. Both prefix548

and adapter’s advantage comes from adding private549

parameters, so they have similar behavior.550

4 Related Work551

4.1 Multilingual Tasks552

With rapid development of pre-trained LMs, multi-553

lingual LMs have emerged to leverage the power554

of pre-training on a large number of languages,555

exemplified by mBERT (Devlin et al., 2019),556

XLM-R (Conneau et al., 2020), XLM-R (Conneau 557

et al., 2020), which adopt masked language model 558

paradigm, and mBART (Liu et al., 2020), mT5 559

(Xue et al., 2021), which utilize a sequence-to- 560

sequence framework. However, a few works have 561

focused on multilingual summarization given the 562

lack of benchmark datasets for other languages ex- 563

cept English. (Giannakopoulos et al., 2015) bench- 564

marked summarization systems over 40 languages, 565

with limitation of dataset scale having 10k samples 566

in total. (Scialom et al., 2020) released the multilin- 567

gual summarization dataset spanning 5 languages 568

with 1.5M article-summary pairs. (Cao et al., 2020) 569

created a new dataset for two languages with 400k 570

samples. (Hasan et al., 2021) introduced XL-Sum 571

spanning 45 languages containing 1.1M article- 572

summary pairs. More recently, (Varab and Schluter, 573

2021) released MassiveSumm containing 28.8 mil- 574

lion articles across 92 languages. 575

4.2 Parameter Efficient Tuning 576

Parameter-efficient tuning methods only tune a 577

small number parameters to achieve comparable 578

results. It can be roughly divided into two cate- 579

gories, methods without additional parameters and 580

methods with additional parameters. The former 581

tune part of the pre-trained LM. (Lee et al., 2019) 582

fine-tunes a few of the final layers, while (Min 583

et al., 2021) only fine-tunes the bias terms of the 584

LM. The latter introduces extra parameters while 585

fixing the pre-trained LM. Popular methods include 586

adapter-tuning (Houlsby et al., 2019; Bapna et al., 587

2019; Pfeiffer et al., 2020a) prefix-tuning (Li and 588

Liang, 2021) prompt-tuning (Lester et al., 2021), 589

and others (Mao et al., 2021; Hu et al., 2021; Guo 590

et al., 2020). Among these works, a comprehensive 591

discussion in the context of multilingual summa- 592

rization is relatively missing. 593

5 Discussion 594

In this paper, we investigate the applicable scope 595

of different families of tuning strategies for multi- 596

lingual learning. We specifically ask three research 597

questions, and by extensive experiments on sum- 598

marization datasets with 45 languages we obtain 599

diverse observations which, hopefully, would pro- 600

vide a useful instruction for future designing of 601

multilingual tuning strategies. One limitation of 602

our work is that we only conduct experiments on 603

one summarization dataset, and more other NLP 604

tasks could be explored as future work. 605
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learning rate epoch batch size grad acc prefix length inner dim beam size length penalty

prefix-tuning
few shot setting 3.00e-4 20 2 1 20 800 4 0.6
not few shot setting, low resource 2.00e-4 15 8 1 200 800 4 0.6
not few shot setting, not low resource 2.00e-4 15 16 4 200 800 4 0.6

adapter-tuning
few shot setting 1.00e-3 20 2 1 - 1200 4 0.6
not few shot setting, low resource 1.00e-3 15 8 1 - 1200 4 0.6
not few shot setting, not low resource 1.00e-3 15 16 4 - 1200 4 0.6

PLM fine-tuning
few shot setting 5.00e-4 20 2 1 - - 4 0.6
not few shot setting, low resource 5.00e-4 15 8 1 - - 4 0.6
not few shot setting, not low resource 5.00e-4 15 16 4 - - 4 0.6

Table 2: Hyper-parameter settings for Sec.3.1. Grad acc is the abbreviation of gradient accumulation size, inner
dim is the abbreviation of inner dimension.

language PLF MPE adapter MPE prefix MPF MPS adapter MPS prefix

amharic 17.46/6.64/16 16.58/5.88/14.88 15.33/5.42/13.8 20.08/7.41/18.05 20.6/7.61/18.5 20.33/7.48/18.34
arabic 34.82/15.13/29.22 32.29/12.85/26.43 29.02/10.94/24.14 34.89/14.76/29.15 35.16/14.96/29.27 35.36/15.11/29.49
azerbaijani 16.93/7.04/15.36 17.81/7.34/16.13 15.72/6.3/14.47 21.4/9.55/19.37 21.77/9.85/19.62 21.58/9.83/19.76
bengali 25.9/9.73/22.12 25.99/10.07/22.21 23.76/9.11/20.66 29.46/12.02/25.1 29.11/11.61/24.64 29.57/11.88/24.89
burmese 14.35/4.51/13.08 14.07/4.09/12.54 12.74/3.46/11.51 16.17/5.17/14.42 15.84/4.7/14.08 16.12/5.07/14.39
chinese simplified 40.87/25.97/34.09 39.81/24.98/33 36.3/22.34/30.22 43.8/28.76/36.9 44.95/29.66/37.79 44.37/29.1/37.18
chinese traditional 40.04/25.11/33.31 39.16/24.17/32.3 35.99/21.79/29.7 43.21/28.03/36.17 44.26/28.75/37.01 43.83/28.33/36.66
english 40.67/18.04/32.72 38.96/16.52/31.06 34.6/12.93/27.38 37.61/15.15/29.88 38.29/15.71/30.41 38.29/15.63/30.39
french 32.02/13.47/25.29 31.85/13.34/25.13 30.63/12.97/24.49 35.33/16.19/28.2 36.06/16.22/28.4 35.69/16.15/28.16
gujarati 19.38/6.49/17.6 19.31/6.23/17.62 18.03/5.65/16.45 21.96/7.72/19.9 22.45/7.97/20.21 22.38/8.14/20.31
hausa 36.16/15.43/29.13 35.75/14.84/28.21 34.08/13.82/27.07 39.41/17.72/31.64 39.75/17.64/31.85 39.63/17.8/31.96
hindi 38.64/17.33/32.38 37.57/16.09/31.1 34.32/13.23/28.23 38.57/16.87/32.03 39.18/17.37/32.49 39.02/17.3/32.35
igbo 27.16/8.76/21.37 25.22/7.08/19.38 23.27/5.25/17.36 31.64/10.2/24.51 30.17/9.2/22.98 30.11/9.5/23.1
indonesian 35.69/16.23/29.92 34.86/15.51/28.85 30.96/12.87/25.72 37.01/17.02/30.75 37.83/17.55/31.37 37.69/17.57/31.46
japanese 45.86/22.01/35.39 45.6/21.87/35.02 41.23/18.89/32.42 48.08/23.8/37.32 48.65/24.26/37.33 48.41/24.16/37.39
kirundi 28.97/12.84/23.6 28.94/12.23/23.06 26.18/10.18/20.51 32/14.41/25.82 32.65/14.98/26.22 32.65/14.91/26.26
korean 19.04/9.42/18.06 19.92/9.93/18.59 18.07/8.95/17.08 23.7/11.49/22.34 23.57/11.31/21.78 23.11/11.27/21.6
kyrgyz 13.66/5.58/12.43 13.89/5.62/12.69 11.77/4.88/10.87 18.34/8.01/16.5 18.4/7.72/16.0 18.3/7.8/16.11
marathi 20.21/8.94/18.31 20.03/8.49/18.19 18.3/7.55/16.83 22.06/9.57/20.01 23.13/10.32/20.8 22.82/10.02/20.54
nepali 23.16/9.06/21.14 23.63/8.69/21.51 20.91/7.37/19.25 26.57/10.2/24.22 26.5/10.05/24.06 26.59/10.2/24.21
oromo 16.55/5.35/14.61 16.2/5.14/14.13 13.7/4.14/12 18.74/6.21/16.19 19.68/6.45/16.91 19.49/6.71/16.88
pashto 37.69/15.38/31.19 36.74/14.02/29.85 33.85/12.14/27.88 38.28/15.49/31.77 38.85/15.85/32.05 38.92/16.05/32.16
persian 37.08/16.78/30.44 35.72/15.34/28.81 32.98/12.89/26.27 35.71/15.06/29.1 37.25/16.58/30.42 37.32/16.43/30.3
pidgin 34.55/12.67/27.03 35.11/13.14/27.41 32.85/11.57/25.79 37.97/15.13/29.86 38.56/15.6/30.14 38.89/15.88/30.47
portuguese 37.04/16.25/28.82 36.3/15.18/27.7 32.99/12.57/25.07 37.15/15.89/28.53 37.71/16.33/28.97 37.59/16.21/28.91
punjabi 26.18/9.61/21.95 25.75/8.58/20.97 25.94/8.49/21.43 30.77/12.15/25.57 31.14/12.3/25.33 30.77/12.27/25.29
russian 32.18/13.83/26.11 30.56/12.67/24.73 26.5/9.79/21.44 32.21/13.64/26.16 32.82/13.97/26.44 32.61/13.92/26.39
scottish gaelic 23.16/7.04/19.25 20.42/4.31/17.02 24.05/7.73/19.45 29.01/10.96/22.87 28.85/10.55/22.65 30.08/11.2/23.83
serbian cyrillic 18.64/4.83/15.51 17.83/4.26/14.49 18.52/4.89/15.58 23.79/7.99/20.13 24.5/8.42/20.73 24.4/8.35/20.62
serbian latin 17.13/4.19/14.24 18.09/4.31/14.82 18.04/4.21/14.9 21.64/6.68/18.23 22.91/7.18/19.26 22.57/7.11/19.02
sinhala 23.78/11.87/21.27 23.29/11.16/19.81 21.86/10.48/19.06 21.51/8.07/18.9 27.7/13.8/23.61 27.43/13.41/23.7
somali 29.08/10.21/22.45 29.06/9.97/22.13 28.09/8.88/21.45 31.54/11.55/24.22 32.1/11.38/24.42 32.48/11.72/24.55
spanish 30.05/10.98/23.13 29.28/10.3/22.23 28.09/9.05/21.14 31.51/11.87/24.07 31.63/11.9/24.11 31.59/11.92/24.07
swahili 33.82/14.82/27.78 34.79/15.52/28.24 33.43/14.91/27.19 37.68/17.86/30.92 38.24/17.82/31.16 37.74/17.65/30.8
tamil 22.47/10.33/20.58 19.81/8.83/18.12 16.45/6.58/15 24.31/11.04/22.07 24.58/11.11/22.3 24.48/11.08/22.11
telugu 16.66/5.84/15.1 17.02/5.91/15.24 15.14/4.99/13.77 17.73/5.73/15.84 20.09/7.1/17.78 20.1/7.26/17.85
thai 35.17/15.18/26.85 36.08/14.06/25.7 33.47/14.12/25.7 36.43/16.28/28.22 37.84/17.34/28.81 37.99/17.65/29.07
tigrinya 22.3/7.19/19.04 21.37/6.14/17.89 19.97/5.65/16.51 25.26/7.99/21.1 25.85/8.51/21.6 25.48/8.55/21.78
turkish 31.41/15.07/28 30.53/14.04/26.97 26.12/11/23.29 32.92/15.57/29.28 33.63/16.17/29.95 33.58/16.1/29.81
ukrainian 23.58/10.2/20.59 21.84/8.92/19.08 18.73/7.07/16.43 23.99/10.14/20.92 24.73/10.7/21.58 24.75/10.62/21.57
urdu 40.19/19.34/33.6 38.81/17.69/32.08 35.05/14.5/28.76 39.49/18.33/32.83 40.04/18.71/33.15 40.12/18.71/33.21
uzbek 13.48/4.84/12.32 14.44/5.21/13.1 11.77/3.98/10.88 16.82/6.35/15.38 17.45/6.74/15.73 17.63/6.71/15.87
vietnamese 32.53/16.45/25.94 30.78/14.57/23.78 27.33/12.34/21.27 30.24/14.39/24.13 33.62/16.43/26.46 33.49/16.57/26.38
welsh 31.58/11.46/25.6 30.19/9.97/24.17 27.92/8.06/22.24 32.64/11.59/26.12 33.09/12.03/26.41 33.13/11.88/26.35
yoruba 29.06/10.96/23.3 29.94/10.43/23.31 26.77/8.84/20.85 31.62/11.66/25.06 31.95/11.92/25.24 31.71/11.61/24.91
average 28.14/11.96/23.45 27.58/11.23/22.66 25.35/9.84/20.92 30.23/12.93/25.11 30.96/13.39/25.56 30.89/13.4/25.57

Table 3: R1/R2/RL of six models on 45 languages and the average score of all languages.
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