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Abstract— Measuring and comparing facial expression have
several practical applications. One such application is to mea-
sure the facial expression embedding, and to compare distances
between those expressions embeddings in order to determine
the identity- and face swapping algorithms’ capabilities in
preserving the facial expression information. One useful aspect
is to present how well the expressions are preserved while
anonymizing facial data during privacy aware data collection.
We show that a weighted supervised contrastive learning is a
strong approach for learning facial expression representation
embeddings and dealing with the class imbalance bias. By
feeding a classifier-head with the learned embeddings we reach
competitive state-of-the-art results. Furthermore, we demon-
strate the use case of measuring the distance between the
expressions of a target face, a source face and the anonymized
target face in the facial anonymization context.

I. INTRODUCTION

Privacy-aware data collection is an emerging research area
within traffic safety. In this paper it concerns the task of
anonymizing image data without destroying information. In
the context of traffic video data collection where there are
plenty of people moving around in a frame one have to,
for instance, hide the identity to maintain high sequrity
of the data. One approach to achieve this is to use face
swapping algorithms like Face Swapping GAN (FSGAN)
[15] or FaceShifter [12] to hide the identity of the people
in a frame while at the same time trying to maintain facial
expression and eye gaze. Keeping those attributes makes it
possible to maintain a realistic behaviour of the road users,
also after anonymization. To either deploy these methods,
improve them or introduce new methods we need a way
to evaluate the anonymizaton process. This includes for
example how well the identity is obscured, how well the
eye gaze is preserved and finally how the facial expression
is preserved. In this work we will focus on the task of (a)
representing facial expressions and (b) measuring the facial
expression preservation after performing the anonymizaton
process. To achieve this we want to focus on providing strong
embeddings that then can be used to calculate distances
between expression embeddings.

Contrastive loss has shown great promise in extracting infor-
mation rich embeddings [10]. Supervised contrastive loss is
utilized as it allow us to deal with class imbalance in facial
expression recognition. Furthermore, it showed that it can
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deal with classes that have arguably sparse differences, in
this case all images being facial images with small changes
in the main facial area.

II. DATA

For all training and evaluation we used the AffectNet data
set [14]. The data set is extensive and contains 287,651 facial
images. The images are already cropped and aligned, along
with labels for 8 different emotions in addition to valence and
arousal values. Valence and arousal is a way of describing
emotion in a continuous manner with two values. Valence
describes the comfort of the emotion where a low value
describe emotions as anger and disgust, and a high value
describe emotions as happy. Arousal describes the excitation
of the emotion where a low value describe emotions as
sad and calm, and a high value describe emotions as anger
and happy. The different discrete emotions includes neutral,
happy, sad, surprise, fear, disgust, anger and contempt. The
whole data set extends to 440,000 facial images. For training
identity swaps, we used the FFHQ data set [9] and the
method of choice was the FaceShifter.

III. RELATED WORK AND CONTRIBUTION
A. Related Work

There are four main ways of approaching the expres-
sion recognition task. There is (1) end-to-end expression
classification [17], [16]. Then there is (2) representation
learning [17]. Finally there is the approach of (3) regressing
3D morphable models (3DMM) [1], [2] of the face and (4)
2D landmarks [15].

Previous work [17], [20], [23], [16], [21], [18], [22],
[19], [5] mostly focus on end-to-end classification and uses
arguably complex neural network schemes. Many of the
aforementioned approaches utilizes several datasets. Most
of which achieve impressive state-of-the-art results on Af-
fectNet [14]. We want to focus on addressing the complex
training schemes and provide information rich feature vectors
that can be used to make comparisons between faces that
take the continuous nature of facial expressions into account,
something which class labels cannot really address.

Some recent work for the 3DMM approach consist
of ExpNet [1] and [2]. The 3DMM approaches aim to
represent the face (along with expression and emotion)
with a 3D representation. Recent work to our knowledge,



and on the public leader boards, do not show any results
for the AffectNet data set. However for the context of
face swapping and anonymization, [2] has been used in
FaceShifter [12] for measuring the expression preservation
and [4] was used for the MegaFS [24] face swapping model.
FSGAN [15], which uses facial reenactment and blending
techniques for face swapping, describes using the euclidean
distance of 2D landmarks generated from dlib [11] directly
between target face and the changed target face. We argue
that 2D and 3D representation is not the best method for
this metric as the shape of the face is expected to change
when swapping identity.

Khosla et al. [10] introduced the supervised contrastive loss.
They point out that modern batch-based contrastive loss
functions outperforms traditional contrastive losses such as
triplet loss and n-pair loss. They extend the self-supervised
version to a supervised setting to exploit label information.
Supervised contrastive loss showed effectiveness in pulling
clusters of the same class together and pushing clusters of
different classes apart.

B. Contribution

We propose a simple pre-training scheme that both learns
to represent the facial expressions well and take class im-
balance into account. Our work utilizes a weighted super-
vised contrastive representation learning [10] to train an
EfficientNetBO network [19]. Furthermore, we strengthen
the performance with a multi-task approach by forcing the
network to predict valence and arousal from the extracted
features during pre-training. This pre-trained network can
then be used to perform facial expression classification by
quickly training a classification head or to be used as a facial
expression embedder. We demonstrate how measuring facial
expression can be used both as a metric for determining how
well face swapping algorithms preserve facial expression.

IV. PROPOSED METHOD

A. Weighted Supervised Contrastive Representation Learn-
ing

We adapt the methodology from [10] with a weighting
modification. We use a weighted version of the contrastive
loss due to the data set being imbalanced. The non-weighted
loss function L. is described below in part:

L. = CE(softmax(y;), softmazx(z)), (1)

where the cross entropy C'E is calculated between the
logits z; and truth logits y; both passed through a softmax
function (softmax). The logits z; is calculated with
(<E5) X (LT)
q= -t sl 2)

where z is the embedding vector produced from the neural
network and 7 is a temperature parameter in (2). 7 is set
to 0.05 and is chosen with intuition regards to a lower

7 punishes hard negatives further. The truth logits y; is
calculated with A
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where A in (3) is calculated with an equality tensor operation
that compares two tensors element-wise and returns a tensor
of zeros and ones. The resulting tensor has ones where the
equality is satisfied. In our case we obtain A by calculating
equality between y and transposed y (y '), where y is the
labels.

For the weighted loss function, we calculate the weight for
each class W before training:
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where ng is the number of samples, n. is the number
of classes and v, is an occurrence vector of the labels in
(4). Equation (4) assigns higher weights to labels of low
frequency like contempt and disgust, and small weights to
common labels like neutral and happy. W is then used as
a lookup table for the labels to assign the correct weight
to each sample in the batch. The weighted contrastive loss
function is then finally defined as:

Lye = CE(softmax(y;), softmazx(z)) - W(y), (5)

where y denotes the labels, and is used to retrieve a class
weight vector from the class weight look up table W.
This loss function severely punishes the neural network for
classifying the uncommon labels wrong.

Using the above weighted loss function, we train the
EfficientNetBO network from scratch, adding a projection
head of dimension size 128 and two linear layers for
continuously predicting the arousal and valence values.
Arousal and valence loss is calculated with mean squared
error. In Fig. 1 the entire training scheme is illustrated for
the weighted contrastive representation learning process.
The total loss used is:

Ewtot = ‘ch + MSEaro + MSEvalv (6)

where M SFE,,, denotes the mean squared error for the
arousal value and M SE,,; denotes the mean squared error
for the valence value. We compare the weighted loss function
with the non-weighted version:

ﬁtot = Lc + MSEaro + MSEval7 (7)

The entire pretraining process for the weighted contrastive
representation learning is shown in Fig. 1. For data aug-
mentation horizontal flip and random crop was used. The
random crop augmentation crops a 200x200 image from the
224x224 input data and then resizes it back to 224x224. For
training parameters a learning rate of 0.001 was used for the
representation learning. Exponential decay of the learning
rate was used, decaying the learning rate with a factor of 0.9
every 15000 steps. Batch size of 128. Global average pooling
is used in the end of the EfficientNetBO encoder, before the
projection layer. Finally we used an early stopping callback
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Fig. 1. The training scheme for the pretraining representation learning
step. b represents the batch size. Multi-colored boxes illustrates embeddings
of different classes in a batch. Dotted branch illustrates the classification
training step.

to retrace the weights with lowest loss. The representation
network trained for 50 epochs and the classification for 25
epochs.

B. Expression Classification

When the network is pretrained with the total loss function
in (6) we use it for measuring the accuracy and representation
capabilities. For this task we remove the projection head and
add one layer with 512 units along with a linear classification
layer. Dropout rate of 0.5 was used before and after the
hidden layer in aforementioned classification head. While
keeping the entire representation network frozen, we train the
network to classify expressions. We deploy the cross entropy
loss together with the same weight scaling as in (5) for this
task. The performance is compared to other methods along
with a ResNet50V2 baseline and a EfficientNetB0 baseline.
The same augmentation process as the pretraining step is
used. The accuracy of the classification also represents the
performance of the representation learning performed in the
pretraining.

C. Measuring Expression Preservation

For measuring the distance in representation space we look
into the euclidean distance as this was used for the 2D land-
mark approach of measuring expression preservation [15].
The idea is to compare the distances between a target face, a
source face and the changed target face for demonstrating
the use as a metric when face swapping. By target face
we mean the face of which we want to change identity,
by source face we mean the face whose identity we want
to use to impose on the target face and by changed target
face we mean the manipulated face of the target face. The
identity swapping used for demonstration is a FaceShifter
implemented to generate 128x128 face swaps [12]. To assure
fair comparisons we qualitative judge the identity swaps
whether FaceShifter is able to maintain the facial expression
s0 one can compare expression distance between target face,
source face and the changed target face.

V. RESULTS

A. Representation Learning

1) Quantitative Results: To investigate the representa-
tional power of using supervised contrastive representation
learning as pretraining, we report top achieved accuracy

TABLE I
ACCURACY ON AFFECTNET VALIDATION DATA SET FOR 8 EMOTIONS.

Methods Accuracy | Extra data
Schoneveld et. al (Multimodial) [17] 61.60% yes
Savchenko et. al (Multi-task) [16] 61.32% yes
Vo et. al (PSR) [21] 60.68% yes
Shi et. al (ARM) [18] 59.75% yes
Wang et. al (RAN) [22] 59.50% yes
Ours (EfficientNetB0) + Lt0t 59.58% no
Ours (ResNet50V2) + Lotot 58.51% no
Ours (ResNet50V2) + Lot 57.76% no
Ours (ResNet50V2) + Lo 48.96% no
Siqueira et. al [19] 59.30% no
Mollahosseini et. al [14] 58.00% no
End-to-end classification (EfficientNetB0)* 15.15% no
SimSiam (EfficientNetB0)* 12.50% no
Autoencoder (EfficientNetB0)* 12.50% no

* Trained with the same configuration and hyper-parameters as our best method.

when training with weighted cross entropy, with a classi-
fication head instead of a projection head. As seen in Table
I we achieve a top 59.58% accuracy with a completely
frozen EfficientNetBO encoder pretrained with the weighted
contrastive loss. EfficientNetB0 is shown to be a lot more
effective for this task compared to a ResNet50V2 baseline,
boosting performance by 1.07% percent units compared to
the baseline. As shown in Table I, when comparing to recent
work that do not uses extra training data beyond AffectNet,
our approach boost the performance slightly compared to
the previous best method. We also tried training the classifi-
cation network end-to-end with the same configuration, only
adjusting the learning rate, and was not able to learn anything
i.e. it only managed to reach 15.15% accuracy. Furthermore,
in the same setting and configuration as the EfficientNetBO
+ Lytor (Table 1) tried semi-supervised contrastive learning
using siamese representation learning (SimSiam) [3] and a
simple autoencoder [8] built on top of the original encoder.
Both these methods yielded poor performance, not capable of
learning anything. We suspect that the siamese representation
learning fails due to that it relies on heavy augmentation
threshold for augmentations like random crop, zoom and
translation. It is often preferred for both facial recognition
and facial expression recognition to utilize aligned images.
The heavy augmentation would break the alignment prepro-
cessing completely.

2) Ablation Study: Ablation is done in a few step. First
we ‘downgrade’ the backbone from EfficientNetBO to a
ResNetV2. Then removal of the weighting of the contrastive
loss and finally removal of the multi-task prediction head
for arousal and valence. The accuracy is displayed in Table
I. The added components in total boost performance from
48.96% to 59.58%, with the multi-task component yielding
the biggest boost. In Fig. 2 we display a confusion matrix
between classes. Shi et. al reports a confusion matrix as well
[18]. Even if they used extra training data from the RAF-DB
dataset [13] and obtain an overall better accuracy, the per
class accuracy is more uneven. For instance ours maintain a
57.11% accuracy for the contempt expression while Shi et.



TABLE I
COMPARISON BETWEEN OUR APPROACH AND 2D LANDMARK
APPROACH FOR COMPARING EXPRESSION FOR FACE SWAPS. LEFT TO
RIGHT COLUMN: METHOD, EUCLIDEAN DISTANCE ERROR BETWEEN
TARGET FACE TO SOURCE FACE AND TARGET FACE TO CHANGED FACE,
MEAN EUCLIDEAN DISTANCE FOR TARGET FACE TO CHANGED FACE AND
RATIO OF t2¢ < s2c.

Method L2 error | | Mean t2c L2 | | Ratio 1

Ours* 0.07 0.17 0.73
68 2D landmarks™* 0.29 0.32 0.39
51 2D landmarks* 0.28 0.31 0.49

Ours* 0.07 0.17 0.70
68 2D landmarks™* 0.31 0.38 0.39
51 2D landmarks* 0.35 0.35 0.47

# Different class comparison. T Same class comparison.

al achieved a 39.00% accuracy for contempt. Contempt is
usually omitted and deemed a hard expression to examine.

Fig. 2. Normalized confusion matrix.

3) Qualitative Results: We investigate the representation
learnt by plotting the AffectNet validation set using t-SNE
[6]. In Fig. 3 one can see clear and even clusters for each
class. Arguably the fact that neutral facial expression lies
in between all other facial expression is a sign of good
representation.

@ Neutral
@ Happy
@ surprise
@ Anger
@ sad

@ Fear

@ pisgust

@ contempt

Fig. 3. T-SNE plot of embeddings (EfficientNetB0) of the AffectNet
validation data set.

B. Identity Swap Metric

As suggested, the representation network can be used
to determine how well face/identity swapping methods can
maintain facial expressions by operating on the embedding
vectors. We compare our approach with a 2D landmark
baseline approach used to measuring expression preservation

for FSGAN [15]. Comparison is done with all 68 landmarks
from dlib [11] and 51 landmarks when omitting the points
around the face. The comparison is made by looking at
the normalized euclidean distance (L2) error between source
face to target face (s2t) and source face to the changed face
(s2c). We also report the mean distance from target face to
the changed face (t2c) and the ratio of ¢2¢ being less than the
distance between the source face to the changed face (s2c¢).
The values were generated by using a pretrained FaceShifter
[12] to swap faces between different expression classes in
the AffectNet validation set. 3000 samples were generated,
out of which half has randomly different expression labels
and half have the same. Results can be seen in Table II
for the same expression class and different expression class
comparison.

VI. CONCLUSIONS AND FUTURE WORKS

Using weighted supervised contrastive representation

learning for pretraining and training embedding networks
is a promising approach for facial expression recognition
and possibly other similar tasks. Our method beats previous
methods that do not use extra training data (see III-A) and
reach competitive accuracy to state-of-the-art on AffectNet.
The method is straight forward and easy to implement. Our
approach also maintains an even class accuracy instead
of completely favoring the common classes. Predicting
expressions is arguably not a discrete classification task, as
facial expressions are continuous in between each other and
some overlap. For instance a surprised facial expression can
be of happiness or fear. The t-SNE plot seems to suggest
that our approach learns this overlap to an extent as surprise
lies between happy and fear, and neutral being positioned
in the middle (Fig. 3). We showed that for measuring facial
expression preservation after face swaps, our approach is
superior to a 2D landmark approach and is valid to have an
idea of how well the expression is preserved. This is under
assumption that the face swapping method (FaceShifter)
preserves facial attributes well to make the comparison valid,
which we qualitative deemed it was. Our conclusion is that
our facial expression embeddings contains rich information
as one is able to reach competitive state-of-the-art accuracy
with simply the encoder feature maps, a linear layer and a
classification layer.
For future work it would be interesting to utilize knowledge
distillation by including more data points and distill
the representation learning network [7], [23]. During
experimentation we only had access to 287,651 of the
440,000 human labeled images in AffectNet. There is a
great potential in our approach to reach even better accuracy
if more data was accessed. For our proposed distance
metric for face swapping algorithms using the embeddings,
we are considering making more extensive experiments
and comparisons to accurately determine what kind of
failure was produced by the face swapping algorithm. One
aspect that should be addressed is the need to compare our
representation vectors to 3DMM expression coefficients.
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