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Abstract

Physical adversarial attacks can mislead detectors
in real-world scenarios and have attracted increas-
ing attention. However, most existing works ma-
nipulate the detectors final outputs as attack tar-
gets while ignoring the inherent characteristics of
objects. This can result in attacks being trapped in
model-specific local optima and reduced transfer-
ability. To address this issue, we propose a Multi-
layer Feature-aware Attack (MFA) that consid-
ers the importance of multi-layer features and dis-
rupts critical object-aware features that dominate
decision-making across different models. Specif-
ically, we leverage the location and category in-
formation of detector outputs to assign attribution
scores to different feature layers. Then, we weight
each feature according to their attribution results
and design a pixel-level loss function in the op-
posite optimized direction of object detection to
generate adversarial camouflages. We conduct ex-
tensive experiments in both digital and physical
worlds on ten outstanding detection models and
demonstrate the superior performance of MFA
in terms of attacking capability and transferabil-
ity. Our code is available at: https://github.
com/ChenWen1997/MFA.

1 INTRODUCTION

Deep neural networks (DNNs)have achieved impressive
performance in object detection [Ren et al., 2015, He et al.,
2017, Tian et al., 2019, Liu et al., 2021]. However, they are
found to be vulnerable to adversarial examples [Szegedy
et al., 2013],which are elaborately crafted to fool DNNs.
The effectiveness of adversarial examples has also been
proved in object detection [Lu et al., 2017].
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Figure 1: Attention maps on yolov3 obtained by perform-
ing feature attribution on the target object marked by the
red box [Redmon and Farhadi, 2018]. (a) and (b) show at-
tention maps of different feature layers when the detector
detects objects of different scales in the same picture. (c)
shows an attention map attributed with category informa-
tion. (d) shows an attention map attributed with both loca-
tion and category information.

Many adversarial attack methods have been proposed for
object detection, which can generally be divided into two
categories: 1) Digital attacks, which modify the pixels of
input images directly in the digital space [Xie et al., 2019,
Wang et al., 2021b, Zhang et al., 2022], and 2) Physical
attacks, which perform attacks on physical objects before
camera imaging [Athalye et al., 2018, Chen et al., 2019b,
Wang et al., 2022b]. Physical attacks typically generate ad-
versarial perturbations in the digital world and then apply
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them to real objects through painting or direct creation of
perturbed objects. In this paper, we focus on physical at-
tacks as they have more practical significance for deployed
deep learning applications.

However, existing works always ignore the inherent char-
acteristics of objects, resulting in subpar attack ability and
transferability. In particular, These limitations can be sum-
marized as follows: (1) Existing works have yet to attempt
to disrupt multi-layer features, which play a significant role
in object detection. As illustrated in Figures 1a and 1b, the
detection of different objects with significant scale differ-
ences on the same image is performed on different feature
layers. (2) Most current methods directly take the final out-
puts of the model as attack targets[Thys et al., 2019, Wang
et al., 2022b, Du et al., 2022], which can easily overfit
the source model and reduce transferability. The Dual At-
tention Suppression (DAS) Attack[Wang et al., 2021a] ex-
ploits attention maps to generate perturbations but has cer-
tain limitations. Firstly, DAS only utilizes category infor-
mation to attack a detector, which cannot accurately assign
attribution scores to non-target regions, especially when the
target is relatively small in the image. As shown in Fig-
ure 1c, the non-target regions of the attention map have
a relatively strong response. Secondly, DAS will compro-
mise the accuracy of importance estimation since using a
method similar to Grad-CAM[Selvaraju et al., 2017] to av-
erage each channel as weight will not be able to distinguish
the attribution scores within each channel.

To address the mentioned issues, we propose the Multi-
layer Feature-aware Attack (MFA) by distorting critical
object-aware features at different layers. Specifically, we
first attempt to attribute the location and category informa-
tion of outputs to different feature layers. As shown in Fig-
ure 1d, the attribution with location and category would as-
sign high attribution scores to the target regions but low
attribution scores to the non-target regions. The attribution
results can accurately reflect the attribution of each activa-
tion of the feature map to the outputs. Subsequently, we
take into consideration both the polarity and magnitude of
the attribution results and weight each feature accordingly.
Finally, we model the generation of the camouflage texture
as an optimization problem and optimize in the opposite
direction of object detection. Comprehensive experiments
confirm that our proposed MFA outperforms state-of-the-
art methods.

In summary, our main contributions list as follows.

1. We leverage the location and category information of
the detectors outputs to assign attribution scores to fea-
tures, capturing critical multi-layer object-aware fea-
tures of target objects.

2. We propose taking multi-layer features as attack ob-
ject and disrupt them at the pixel level, improving the
attacking ability and transferability of attacks.

3. Extensive experiments demonstrate the superior at-
tacking ability and transferability of adversarial ex-
amples generated by the proposed MFA compared to
state-of-the-art physical attack methods.

2 RELATED WORK

Physical Attacks on Object Detection Physical attack
aims to generate adversarial perturbations by modifying
the visual characteristics of the real object in the physical
world. A simple method is adversarial patch[Brown et al.,
2017], which is often stuck to a planar object. Chen et al.
[2019b] generated a planar adversarial stop sign to fool de-
tectors. Thys et al. [2019] trained a printable patch that can
successfully hide a person from a person detector. Huang
et al. [2020] adopted a set of transformations to generate
adversarial camouflage for non-rigid or non-flat objects.
However, these methods can only attack at certain viewing
angles. The more recent approaches involve manipulating
the color texture patterns of target 3D objects. Zhang et al.
[2019] proposed CAMOU to hide vehicles from detectors
by training a clone network that simulates applying camou-
flage to vehicles. Wu et al. [2020a] generated an adversarial
patch and then repeated and enlarged the patches until they
covered the vehicle surface. Besides, there is a rising trend
of leveraging differentiable neural renderers for adversar-
ial camouflage generation. Wang et al. [2021a] proposed
DAS to generate natural adversarial camouflage using a
neural renderer[Kato et al., 2018] by suppressing the model
and human attention. Suryanto et al. [2022] proposed DTA
to learn the expected transformation of a rendered object,
which can gain both the advantages of the various physical-
world transformations and white-box access. Wang et al.
[2022b] and Duan et al. [2022] achieved more robust at-
tacks in multi-view, long-distance, and partial occlusions
situations by utilizing a renderer to generate full-coverage
camouflage texture.

Feature-level Attacks Since the most critical features
are shared among different DNNs[Ganeshan et al., 2019,
Wu et al., 2020b], feature-level attacks have shown promise
in synthesizing more transferable adversarial samples.
Zhou et al. [2018] maximized the feature distance between
clean images and adversarial examples in the intermediate
layers. Huang et al. [2019] improved the transferability of
black-box attacks by increasing the perturbation strength of
the feature layer. Ganeshan et al. [2019] used the average
activation values to distinguish the positive and negative po-
larity of the feature. Wang et al. [2021b] introduced aggre-
gated gradients to suppress the model-specific features and
preserve important features. Zhang et al. [2022] weighed
neurons using neuron attribution, considering the impor-
tance of different neurons. The above feature-level attacks
are digital attacks for classification tasks and are difficult to
implement in the physical world.



Figure 2: Overview of MFA. Given a training set(X, Y, E) with corresponding binary mask m and a 3D vehicle model
(M, T). The camouflaged vehicle image I is the rendered result with environmental condition e from a renderer R. Next,
we use a physical transformation function Φ to transfer the camouflaged vehicle into the different physical scenarios
and feed it into the detector. Then, we can obtain the importance of multi-layer features by backpropagating the ultimate
outputs filtered by post-processing (NMS and comparison with ground truth). Finally, the adversarial camouflage is updated
through backpropagation with our devised loss function.

Feature Attribution Methods Feature attribution meth-
ods are popular in interpretable machine learning[Zhou
et al., 2022]. These methods accept model inputs and assign
attribution scores to input features based on the feature’s
contribution to the model outputs. There is no consensus
on the definition of "attribution". In various works, the no-
tion of attribution has been defined as sensitivity[Simonyan
et al., 2013], relevance[Bach et al., 2015], local influ-
ence[Ribeiro et al., 2016], Shapley values[Lundberg and
Lee, 2017], or filter activations[Selvaraju et al., 2017].

3 APPROACH

3.1 PRELIMINARIES

Given a training set (X, Y, E), where X, Y, and E are the
sampled images, the ground truth and the sampling environ-
mental condition (e.g., transformation and location, etc.),
let (M, T) denote a 3D real object with a mesh tensor M
and a texture tensor T, The image I is the rendered result of
the real object (M, T) with environmental condition e ∈ E
from a renderer R by I = R((M,T), e). To perform phys-
ical attacks, we use a transformation function Φ to transfer
the rendered image to different environment scenarios. The
physical transformation will be discussed in depth in sec-
tion 3.3. Then, we generate the input image of the detector
Iadv = Φ(R((M,Tadv), e),m, x) by replacing the origi-
nal T with an adversarial texture tensor Tadv . Now we can

obtain the detector’s outputs O = F(Iadv; θf ), where F
is the detector with parameters θf . Take the yolov3 detec-
tor for example, each anchor point in the output grid con-
tains a vector [xoffset, yoffset, w, h, pobj, pcls1, · · · , pclsn]
with bounding boxes containing different aspect ratios.
xoffset and yoffset are the positions of the center of the
bounding box compared to the current anchor point, w and
h are the width and height of the bounding box, pobj is the
probability that this anchor point contains an object, and
pcls1 through pclsn is the class probability score of the ob-
ject.

Our attack object is to generate the adversarial camouflage
texture, which can be painted on the surface of the 3D ob-
ject and hide the object from being detected. We treat the
adversarial texture generation as an optimization problem,
and our objective function is expressed as follows

argmax
Tadv

J(F(Φ(R((M,Tadv), e); θf ),Y) (1)

where J(, ) measures the distance between ground truth
and predicted results of the model. We can obtain the adver-
sarial camouflage texture by solving the above optimization
problem.

3.2 MULTI-LAYER FEATURE-AWARE ATTACK

The key to craft feature-level attacks is to find a proper way
of measuring the importance of each feature. Let F denote



the source model with parameters θf . The feature map from
the k-th layer is expressed as Fk(Iadv; θf ) for the input im-
age Iadv . Since the attribution scores reflect how the fea-
tures contribute to the final decision, an intuitive strategy is
obtaining the gradient commonly used in feature attribution
methods[Selvaraju et al., 2017]. So the attribution scores as
written in the following.

∆Iadv

k =
∂P(O, y)

∂Fk(Iadv; θf )
(2)

where y is the ground truth and P(, ) is post-processing
which includes NMS[Neubeck and Van Gool, 2006] and
comparison with ground truth.

The original outputs O contain many more predicted bound-
ing boxes than the actual number of targets. Attributing
all predicted bounding boxes is not meaningful due to the
high redundancy between them and would result in ex-
tensive computation consumption. Therefore, we employ
NMS to eliminate redundant predicted bounding boxes and
then compare them with the ground truth to filter out the
attacked objects.

Utilizing the aforementioned attribution scores ∆Iadv

k as the
measurement to weight each feature, reflecting the feature
real influence on the output, we design the loss function to
guide the generation of the adversarial camouflage texture.
Intuitively, the essential features will yield relatively higher
intensity, indicating the efforts of correcting the features to
approach the true label, and the sign provides the correcting
direction. In the object detection task, the positive will be
corrected in the positive direction and the negative will be
corrected in the negative direction. The objective of gener-
ating transferable adversarial examples is exactly the oppo-
site of the correction direction of the object detection task.
In other words, we aim to guide the positive to be corrected
in the negative direction and the negative to be corrected
in the positive direction. Therefore, our objective function
should be designed to manipulate the features in the oppo-
site direction of the object detector’s correction direction.
Therefore, our attack loss function can be written as

Ladv =

Hk∑ Wk∑
|∆Iadv

k ⊙Fk(Iadv; θf )| (3)

Where ⊙ means pixel-wise multiplication, and Hk and Wk

denote the height and width of the k-th layer feature map.

Additionally, empirical studies from most DNN-based de-
tectors have shown that low-level features have high res-
olution and contain more location and detail information,
and high-level features have a lower resolution but more
robust semantic information[Lin et al., 2017]. Detectors of-
ten use multi-scale features to achieve better performance.
Therefore, adversarial attacks should also consider the de-
struction of multi-scale features. To sum up, the Eq. 3 can

be rewritten as

Ladv =
∑
k∈K

Hk∑ Wk∑
|∆Iadv

k ⊙Fk(Iadv; θf )| (4)

Where K is the set of target feature layers to attack.

To suppress high-frequency noise to ensure the smooth-
ness of the the generated adversarial camouflage, we uti-
lize the smooth loss[Mahendran and Vedaldi, 2015] to re-
duce the the difference square between adjacent pixels. For
a rendered vehicle image I, the calculation of smooth loss
Lsmooth can be written as

Lsmooth =
∑
i,j

(xi,j − xi+1,j)
2 + (xi,j − xi,j+1)

2 (5)

where xi,j is the pixel value of image at coordinate (i, j).

3.3 PHYSICAL TRANSFORMATION

To bridge the gap between the digital and physical world,
we follow the transformation function Φ of [Wang et al.,
2022b] to transfer the rendered vehicle to different envi-
ronment scenarios. However, we discovered that despite
preserving the location and rotation information during the
sampling stage of the photo-realistic images, the rendered
vehicle cannot fully cover the vehicle in the sampled image,
resulting in an unnatural appearance. As shown in Figure
3a, the upper outline of the vehicle has a unnatural black
edge, and the lower outline is not fully displayed. To ad-
dress this issue, we introduce a simple but effective method.
Specifically, the binary mask is obtained by segmentation
from the original photo-realistic image, so we extract the
outline of the vehicle in the mask and rendered image, scale
and shift the rendered images to align the car’s outline, and
then feather the binary mask for softer boundaries and more
realistic transformation. The visualization of our physical
transformation can be seen in Figure 3b.

Iadv = Φ (I,m, x) = m · T (I) + (1−m) · x (6)

where T represents the scaling, translation and other oper-
ations performed on the rendered image.

(a) FCA (b) Ours

Figure 3: The result of different physical transformation.



Algorithm 1 Multi-layer Feature-aware Attack (MFA)

Input: training set(X, Y, E) with corresponding binary
mask m, 3D object model(M, T), neural renderer R,
physical transformation function Φ, object detector F

Output: adversarial texture Tadv

1: Initial Tadv with random noise T0 ∼ U(0, 1)
2: for i = 1 to maxiteration do
3: select minibatch sample (x, y, e) from training

set(X, Y, E)
4: I←R((M,Tadv), e)
5: Iadv ← Φ (I,m, x)
6: O ← F(Iadv; θf )
7: calculate ∆Iadv

k by Eq. 2
8: calculate Lsmooth and Ladv by Eq. 4, 5
9: optimize the Tadv by Eq. 7

10: end for

3.4 OVERALL OPTIMIZATION PROCESS

Overall, we generate the adversarial camouflage by jointly
optimizing the multi-layer feature attack loss Ladv and
smooth loss Lsmooth. substitute the Eq. 4 and Eq. 5 into
Eq. 1, we get the proposed objective for MFA.

argmin
Tadv

Ladv + λLsmooth (7)

where λ controls the contribution of the term Lsmooth. The
overall training algorithm for the generation of adversarial
camouflage can be described as Algorithm 1.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets To compare with previous works, we use the
same dataset provided by Wang et al. [2021a], which were
sampled from CARLA[Dosovitskiy et al., 2017], a preva-
lent opensource simulator for autonomous driving research.
The CARLA simulator provides a variety of high-fidelity
digital scenarios (e.g., modern urban) based on Unreal En-
gine 4. The training set consists of 12,500 high-resolution
images, and the testing set has 3,000 high-resolution im-
ages sampled from different angles and distances. The
dataset also provides corresponding masks of the vehicle
targets for the training and testing set.

Evaluation Metrics To evaluate the performance of our
proposed method, we select the commonly used Attack
Success Rate (ASR)[Wu et al., 2020c] as our first evalua-
tion metric, which is defined as the percentage of the tar-
get vehicles detected before perturbation and not detected
or falsely detected after perturbation. Further, we average
the attack success rate of multiple models and called it
the mean Attack Success Rate (mASR) to better evaluate

the cross-model transferability. In addition, we adopt the
P@0.5 following [Duan et al., 2022, Wang et al., 2022b] as
our second evaluation metric, which is defined as the per-
centage of the correctly detected when the detection IoU
threshold is set to 0.5.

Compared methods We choose several state-of-the-art
works in the 3D attack and physical attack literature,
including CAMOU[Zhang et al., 2019], ER[Wu et al.,
2020a], UPC[Huang et al., 2020], DAS[Wang et al., 2021a],
FCA[Wang et al., 2022b], and DTA[Suryanto et al., 2022].
Note that UPC and DAS paint the adversarial camouflage
only on the part of the vehicle model. In order to fairly com-
pare, we reimplement them with full-coverage camouflage.
The adversarial examples of different methods as shown in
Figure 4

(a) CAMOU (b) ER (c) UPC (d) DAS

(e) FCA (f) DTA (g) MFA

Figure 4: Adversarial examples of different methods

Target models We select ten different commonly used
model architectures for experiments. Specifically, SSD[Liu
et al., 2016], Faster RCNN[Ren et al., 2015], Mask
RCNN[He et al., 2017], Cornernet[Law and Deng, 2018],
FCOS[Tian et al., 2019], Swin Transformer[Liu et al.,
2021], TOOD[Feng et al., 2021], VFNet[Zhang et al.,
2021], yolov51 and yolov7[Wang et al., 2022a]. In our
experiments, all models are the official implementation
version of MMDetection[Chen et al., 2019a], except for
yolov5 1 and yolov72.

Implementation details We train adversarial camou-
flage texture on the yolov3[Redmon and Farhadi, 2018].
All experiments are under black-box settings. We adopt an
Adam optimizer with a learning rate of 0.01. We empiri-
cally set the λ = 10−4 and a maximum of 5 epochs. The
other hyperparameters are set as provided by the yolov3 im-
plementation. We conduct the experiment on an NVIDIA
RTX 1080Ti 12GB GPU, and all codes are implemented in
PyTorch. For all the models, we use the pre-trained version
on COCO.

1https://github.com/ultralytics/yolov5
2https://github.com/WongKinYiu/yolov7



Table 1: The comparison result of adversarial attacks in the digital space.

Method ASR(%)
SSD Faster Mask Corner FCOS Swin TOOD VFNet yolov5 yolov7 mASR

UPC 49.11 71.93 56.77 42.88 63.11 42.76 55.67 45.60 40.91 26.40 49.51
DTA 44.32 82.08 72.21 42.20 71.16 47.84 69.48 52.65 37.91 31.09 55.09
ER 45.68 88.18 63.92 48.39 60.89 43.84 74.89 65.03 44.17 43.06 57.81

CAMOU 49.76 81.72 76.02 47.61 72.45 49.75 70.51 60.81 49.10 38.88 59.66
DAS 90.89 87.00 78.26 61.01 82.35 64.56 81.23 81.60 46.19 51.36 72.45
FCA 86.98 75.77 81.13 62.77 88.29 71.71 73.37 64.28 75.30 72.29 75.19
MFA 96.39 92.69 92.98 85.62 98.86 87.81 94.01 82.64 95.99 89.96 91.7

Table 2: The comparison result of adversarial attacks in the physical space.

Method P@0.5(%)
SSD Faster Mask Corner FCOS Swin TOOD VFNet yolov5 yolov7 Average

RAW 90.28 99.31 100.00 92.36 98.61 97.22 97.92 100.00 93.75 99.31 96.88
CAMOU 70.14 33.33 69.44 68.06 31.94 70.83 72.22 77.78 56.25 71.53 62.15

DAS 47.22 48.61 54.86 34.72 32.64 70.14 66.67 61.11 57.64 65.28 53.89
FCA 45.14 47.92 56.94 36.11 22.22 54.86 71.53 64.58 48.61 57.64 50.56
MFA 22.92 24.31 36.81 22.22 9.03 40.28 46.53 47.92 34.72 43.06 32.78

4.2 DIGITAL WORLD ATTACK

In this section, we evaluate the performance of our gener-
ated adversarial camouflages on the vehicle in the digital
world under black-box settings. We report the ASR for the
detection of the target vehicle. More experimental results
can be found in the Supplementary Material.

The comparison results are outlined in Table 1. Our adver-
sarial camouflage outperforms other methods across all the
detectors. Specifically, our adversarial camouflage achieves
the highest mASR at 91.7%, and the ASR of each detec-
tor exceeds 80%. Six detectors (SSD, Faster-RCNN, Mask-
RCNN, FCOS, TOOD and yolov5) are easily vulnerable by
our proposed MFA with ASR surpassing 90%. The ASRs
of the other four detectors (Cornernet, Swin Transformer,
VFNet and yolov7) range between 80% and 90%, which
may be due to the special design that makes it more robust
against adversarial attacks on object detection. For exam-
ple, the backbone of Cornernet comes from the Hourglass
Network of pose estimation, and the backbone of Swin
Transformer is a novel vision Transformer.

In addition, our proposed MFA improves the mASR by
19.25% against DAS, indicating that our attack can more
accurately capture inherent conducive characteristics of ob-
jects and successfully paralyze the vehicle detection sys-
tem. The mASR of MFA is 16.51% higher than that of
FCA, which suggests that attacking intermediate features
is more transferable than directly attacking the final output
layer.

We provide some adversarial camouflage vehicle examples

Figure 5: The detection result of the vehicle before and after
our attack in the digital world.

in different scenarios. As illustrated in Figure 5, we select
yolov7 as the detector, the vehicle before painted with ad-
versarial camouflage is correctly detected as a car with high
detection confidence. However, after being painted with our
adversarial camouflage texture, the target vehicle turns out
to be incorrectly detected or undetected, while the vehicles
not painted with our adversarial camouflage texture are cor-
rectly detected.

4.3 PHYSICAL WORLD ATTACK

As for the physical world attack, we conduct several exper-
iments to validate the practical effectiveness of our gener-
ated adversarial camouflage. Because it is difficult to guar-
antee that all other elements except the adversarial camou-
flages are preserved consistently before and after the attack,
We report the P@0.5 for the detection of the target vehicle.



Figure 6: The detection result of the toy cars before and
after our attack in the physical world.

For simplicity, we compare three attack methods that are
more robust in digital adversarial attacks (i.e., CAMOU,
DAS, FCA). Due to the limitation of funds and conditions,
we follow Wang et al. [2021a] and Wang et al. [2022b] to
print adversarial camouflages by a Xerox Color 550 printer
and crop the camouflage parts, then stick them on a 1:32
scale model of an Audi Q5 with different backgrounds to
mimic the real car painting in the physical world. To show
the efficiency of our adversarial camouflage under various
scenarios, we captured 144 pictures of the painted car in
different settings (i.e., 8 directions {left, right, front, back
and their corresponding intersection directions}, 2 angles
{0ř and 45ř}, 3 distances {long, middle, and short distance}
and 3 surroundings) with a Xiaomi 12S phone. The visu-
alization of our generated adversarial camouflages can be
found in Figure 6.

The experiment results are shown in Table 2. Each detector
correctly detects almost all raw toy cars, with their P@0.5
over 90%. Compared with other methods, the MFA shows
competitively transferable attacking ability in the physical
world. Its average P@0.5 is the lowest at 32.78%, signif-
icantly better than the compared baselines (e.g., 62.15%
on CAMOU, 53.89% on DAS, and 50.56% on FCA, re-
spectively). VFNet is the most robust against adversarial
attacks, and Swin Transformer, TOOD and yolov7 also ex-
hibit strong robustness. The conclusion is consistent with
the results for digital attacks except for TOOD. TOOD is
more robust in the physical world than in the digital world
which is worth further study. Besides, FCOS is the most
vulnerable with a maximum drop of 89.58%. This may be
because FCOS is an anchor-free, one-stage model with a
relatively simple structure.

We provide some detection result examples of attacking toy
cars in the physical world on yolov7. As shown in Figure 6,
the toy cars painted with our adversarial camouflage texture
are hidden and undetected.

To sum up, the experimental results demonstrate that our
adversarial camouflages have strong transferable attacking
ability in the physical world.

4.4 EFFECT OF DIFFERENT LAYER FEATURE
TO ATTACK

We take different feature layers as attack objects and ob-
serve the attack effect of various layer features. The source

model yolov3 has three detection layers, which are called
low layer, medium layer and high layer in this paper for
convenience.

First, we compare the impact of the attack detection layer
and the non-detection layer. We take the previous layer of
the yolov3’s detection layers as the non-detection layer to
carry out comparative experiments. The results are shown
in Table 3. For the adjacent detection layer and non-
detection layer, the mASR of detection layer is higher than
that of non-detection layer. The main reason may be that
the detection layers fuse different features, which is more
conducive to object detection. So we select the detection
layers as the attack target in the rest of this paper.

Furthermore, we evaluate single-layer and multi-layer fea-
ture attacks. As shown in Figure 7, multi-layer attacks sig-
nificantly outperform single-layer attacks (e.g., For the av-
erage mASR, 76.24% on a single layer, 84.98% on two
layers and 91.7% on three layers, respectively). On the
other hand, The attack on the middle layer is better than on
the low or high layer. The same conclusion can be drawn
from Table 3. The reason might be that low layers have not
learned salient features and semantic concepts, and high
layers are model-specific and it is easily to get trapped
in soure model local optimum. By contrast, middle layers
have well-separated representations and they are not highly
correlated to the model architecture.

Table 3: The mASR performance of MFA under different
target layer settings.

low middle high

non-Det Det non-Det Det non-Det Det

57.07 79.78 75.28 84.06 63.65 64.88

Figure 7: The mASR performance for attacks at different
layer features.



4.5 EFFECT OF DIFFERENT OUTPUTS FOR
ATTRIBUTION

Object detection is a multi-output task, and we investigate
the influence of using different outputs of the object de-
tection model for attribution in this part. As mentioned in
Section 3.1, there are two scores for each anchor point in
yolov3: the object score, which can reflect the location in-
formation, and the class score, which is the probability of
the most likely category of the object.

Figure 8 shows the results of attribution using different out-
puts. The OBJ-CLS approach utilizes the product of object
and class scores for attribution, while OBJ only uses the
object score and CLS only the class score. The MFA us-
ing both object and class scores for attribution yields bet-
ter results than using either object or class score alone for
each model. Specifically, the ASR of OBJ-CLS is higher
than that of CLS or OBJ for almost every detector, and
the mASR is 91.7% for OBJ-CLS, 83.92% for CLS, and
84.64% for OBJ. This confirms our earlier analysis that
only using category information to attribute will cannot ac-
curately assign attribution scores to features. The object-
aware/important features can be captured by using category
and location information to attribute, guiding the genera-
tion of more transferable adversarial camouflage.

Figure 8: The mASR performance of attribution using dif-
ferent outputs.

4.6 EFFECT OF HYPERPARAMETERS

In this section, we conduct several experiments to further
investigate the effect of loss function items and the confi-
dence thresholds of NMS.

The effect of hyper-parameter λ The hyper-parameter
λ controls the contribution of the term Lsmooth. As we can
observe from Table 4, When λ is between 0 and 10−4, Ladv

dominates the optimization direction and and Lsmooth is

Table 4: The mASR performance for hyper-parameter λ

λ 0 10−5 10−4 10−3 10−2

mASR 90.98 91.83 91.70 78.64 53.27

Table 5: The mASR performance for thresholds of NMS

threshold 0.05 0.15 0.25 0.35 0.45

mASR 90.46 89.21 91.70 86.53 85.70

negligible, resulting in strong attack ability. In particular,
the highest mASR is achieved 91.83% when λ = 10−5,
but the adversarial camouflage appears unnatural. As λ con-
tinues to increase, Lsmooth will dominate the optimization
direction , thus reducing the attacking ability(e.g., 78.64%
when λ = 10−3, 53.27% when λ = 10−2, respectively).

The effect of NMS confidence thresholds As mentioned
in Section 3.2, the NMS will be used to filter the outputs to
remove redundant predicted bounding boxes. We compare
the effect of different confidence thresholds of NMS on at-
tacks in this part. As we can observe from Table 4, The
mASR performance is optimal when the threshold is 0.25,
which is the default threshold of yolov3. When the thresh-
old increases, the mASR will decrease, primarily due to the
exclusion of certain targets. For instance, when the thresh-
old is set to 0.35, targets with confidence scores between
0.25 and 0.35 are discarded, even though they are mean-
ingful positive targets. Conversely, when the threshold de-
creases, the mASR decreases slightly, possibly due to the
introduction of negative targets that disrupt the optimiza-
tion direction.

4.7 INTERPRETABILITY OF THE
ADVERSARIAL CAMOUFLAGE

In this part, we adopt model attention visualization to con-
duct qualitative analysis to further validate our MFA at-
tack’s effectiveness. The regions the models pay attention
to can be deemed discriminative. Because the vehicle with
adversarial camouflage texture will not be detected cor-
rectly when it is sent to the detector, which leads to the
attention maps of the vehicle cannot be obtained, we follow
[Wang et al., 2021a] and [Wang et al., 2022b] to generate
the attention maps of the vehicle with different viewpoints
on ResNet50[He et al., 2016] model by the commonly used
model-agnostic attention maps technique[Selvaraju et al.,
2017]. Figure 9 shows the original vehicle, virtual adver-
sarial vehicle, and their attention maps for the "car" class
label. We can observe that the MFA attack distracts the at-
tention maps from the vehicle body to other uncamouflaged
regions, suggesting that the model’s decision evidence has
been changed.



Figure 9: The detection result of the vehicle under different
view angles before and after our attack in the digital space.

5 CONCLUSION AND FUTURE WORK

In this paper, we investigate the problem of generating ro-
bust adversarial examples in the physical world for object
detectors. We propose the Multi-layer Feature-aware At-
tack(MFA) method, which improves the attacking ability
and transferability of adversarial attacks by distorting im-
portant features at different layers. Specifically, we first
use location and category information to assign attribution
scores to different feature layers and utilize their amplitude
and polarity to weight each feature. Finally, we optimize
the generation problem of the camouflage texture in the op-
posite direction of the object detection. Comprehensive ex-
periments confirm the superiority of our method.

In the future, we are interested in investigating the attack
abilities of our adversarial camouflage using a real vehicle
in a real-world scenario, we could paint our camouflage on
a real-world vehicle by projection or 3D printing. Addition-
ally, we would also like to investigate the appearance of our
generated camouflage to be more visually unsuspicious and
natural.
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