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Abstract

Large Multimodal Models (LMMs) have made significant breakthroughs with the
advancement of instruction tuning. However, while existing models can under-
stand images and videos at a holistic level, they still struggle with instance-level
understanding that requires a more fine-grained comprehension and alignment.
Instance-level understanding is crucial for LMMs, as it focuses on the specific
elements that we are most interested in. Excitingly, existing works find that the
state-of-the-art LMMs exhibit strong instance understanding capabilities when pro-
vided with explicit visual cues. Motivated by this, we proposed INST-IT, a solution
to enhance LMMs in Instance understanding via explicit visual prompt Instruction
Tuning for instance guidance. INST-IT consists of a benchmark to diagnose multi-
modal instance-level understanding, a large-scale instruction-tuning dataset, and
a continuous instruction-tuning training paradigm to effectively enhance spatial-
temporal instance understanding capabilities of existing LMMs. Experimental
results show that, enhanced by INST-IT, our models not only achieve outstanding
performance on INST-IT Bench and other instance understanding benchmarks,
but also demonstrate significant improvements across various generic image and
video understanding benchmarks. This highlights that our method not only boosts
instance-level understanding but also strengthens the overall capabilities of generic
image and video comprehension.

1 Introduction

Recently, Large Multimodal Models (LMMs) have seen remarkable advancements. A key break-
through is visual instruction tuning [45, 17], enabling models to follow any type of user instructions.
This paves the way to building general-purpose multimodal assistants capable of handling a wide
range of real-world tasks [32]. Inspired by this initial work, numerous follow-up studies have
emerged in both image-language [43, 60, 106, 9, 13] and video-language [51, 22, 99, 84, 82] model-
ing. However, although they can understand images or videos at a holistic level, they still struggle to
comprehend instance-specific content that the users are most interested in, as illustrated in Fig. 1 (a).

Instance-level understanding involves comprehending the attributes of individual instances within an
image or video, as well as the relationships and interactions between them. This requires models to
exhibit nuanced comprehension and fine-grained alignment. Instance understanding has been a long-
standing pursuit of the community with extensive efforts devoted to object detection [73, 71, 23, 58],
instance segmentation [74, 29, 59], and object tracking [19, 76]. This capability is essential for
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Figure 1: (a) LMMs struggle with instance understanding, failing to capture the nuanced details
of instances specified in user queries. (b) Our instance-centric data annotation pipeline, providing
multi-level annotations for individual instances in images and videos.

real-world applications, where users pay more attention to the instances that they are interested
in. In the era of LMMs, although there have been some attempts in exploring multimodal instance
understanding [24, 5, 101, 105, 102], they are primarily limited in the image domain, leaving the
videos under-explored. Compared to images, understanding instances in videos is considerably more
challenging, as it requires not only capturing their spatial information but also temporal dynamics.
Driven by this, we aim to advance the multimodal instance understanding in both images and
videos. To this end, we focus on three aspects: instruction-tuning dataset, evaluation benchmark, and
training recipe.

Existing multimodal benchmarks and datasets primarily provide coarse-grained knowledge for images
and videos, lacking fine-grained annotations for individual instances. To address this, we introduce
an automated pipeline to generate detailed instance-specific annotations. As illustrated in Fig. 1 (b),
we leverage GPT-4o [61] to produce multi-level annotations, including instance-level descriptions,
image-level captions, temporal dynamics, video-level summaries, and open-ended question-answer
pairs. To fully unleash the capability of GPT-4o for more accurate annotations, we systematically
design task prompts and employ set-of-marks visual prompts [88] to highlight instances in the visual
inputs. Powered by this pipeline, we construct INST-IT Dataset, an instance-grounded multimodal
dataset comprising 51k images and 21k videos, 207k image-level captions, 135k temporal dynamics
descriptions, 21k video-level captions, and 335k open-ended question-answer pairs. Furthermore,
we carefully design the INST-IT Bench to diagnose the instance-level understanding capabilities of
LMMs, and perform rigorous manual verification and refinement to ensure its data quality.

Building on INST-IT Dataset, we propose a continuous instruction tuning recipe that effectively
integrates our instance understanding datasets with general instruction-tuning data. We augment
images and videos with visual prompts, and convert the fine-grained annotations from INST-IT Dataset
into instruction tuning format, emphasizing the model’s spatiotemporal understanding of individual
instances. Experimental results show that our enhanced models achieve strong instance understanding
performance not only on INST-IT Bench, but also demonstrate consistent improvements on other
instance understanding benchmarks e.g. RefCOCOg [53] and ViP-Bench [5]. We also investigate
the models’ general comprehension capabilities on widely used generic benchmarks. The results
reveal significant improvements over the baseline, achieving 4.4% and 13.5% gains on AI2D [28]
and ChartQA [54] image benchmarks, as well as 7.8% and 11.8% improvements on Egoschema [52]
and NExT-QA [85] video benchmarks, respectively. This highlights the effectiveness of INST-IT
in boosting instance understanding while strengthening general comprehension in both images and
videos. Our contributions are three-fold:

1. We construct the INST-IT Dataset, the first instance-grounded instruction-tuning dataset that
includes both images and videos, featuring explicit instance-level visual prompts and fine-grained
annotations grounded on individual instances.
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2. We introduce the INST-IT Bench, a human-verified benchmark specifically designed to evaluate
the instance-level understanding capabilities of LMMs on both images and videos.

3. We propose a continuous instruction tuning recipe, which leverages our instance-level dataset
alongside general data, effectively enhancing models in instance understanding while consistently
improving general comprehension in both images and videos.

2 INST-IT

To address the scarcity of instance-grounded data, we propose an automated pipeline to generate
detailed annotations for both images and videos, with a particular emphasis on instances of interest
(Sec. 2.1). Based on this, we build a large-scale instance-grounded multimodal dataset (Sec. 2.2), and
carefully design an instance-centric evaluation benchmark (Sec. 2.3). Furthermore, we propose a
continuous instruction-tuning recipe (Sec. 2.4) to enhance LMMs in instance understanding.

2.1 Instance-centric annotation pipeline

Overview. We propose an automated pipeline to generate annotations grounded on individual
instances. As in Fig. 1 (b), we annotate each frame sequentially, aggregate frame-level annotations
into a comprehensive video-level description, and generate open-ended question-answer pairs.

Visual prompting. Directly processing the raw visual inputs suffers from hallucinations and distrac-
tion. To mitigate this issue, we augment the images and videos with visual prompts to highlight the
instances. Specifically, we use set-of-marks (SoMs) visual prompt [88], which overlays a numerical
ID on each instance. We find this method highly effective in guiding GPT-4o to provide annotations
focused on individual instances. For more details, please refer to Sec. A.1.

Frame-level annotation. We annotate video frames sequentially. At timestamp t, we provide
GPT-4o with the current frame Xt, the previous frame Xt-1, and a tailored task prompt P f . We
then obtain a frame-level annotation Y f

t =(yinst , yimg
t , ydift ) encompassing three aspects, where yinst

represents the captions for individual instances, yimg
t is a caption for the entire image, and ydift

describes the temporal differences from the previous frame:

Y f
t = GPT (P f , Xt, Xt-1). (1)

Video-level summary. After obtaining annotations for each frame, we aggregate them into a caption
for the entire video Y vid, capturing detailed spatiotemporal information of individual instances:

Y vid = GPT (P vid, [Y f
1 , Y f

2 , · · · , Y f
N ]), (2)

where P vid is the task prompt designed for video-level summary and N is the total number of frames.

Open-ended question-answer pairs. We also prompt GPT-4o with the task prompt P qa to create M
open-ended QA pairs Y qa={(qi, ai)}Mi=1 focusing on instance understanding:

Y qa = GPT (P qa, [Y f
1 , Y f

2 , · · · , Y f
N ]). (3)

Following these steps, each video is enriched with multi-granularity annotations that incorporate
instance-specific information. As illustrated in Fig. 2, these annotations include the following aspects:

• N frame-level annotations, each contains detailed descriptions of individual instances, the entire
image, and the temporal dynamics between adjacent frames.

• A comprehensive description covering the entire video.
• M open-ended question-answer pairs that focused on individual instances or their relationships.

Additional information about the design of each task prompt is provided in Sec. A.2.

2.2 INST-IT Dataset

Instruction tuning plays a crucial role in multimodal training; however, the lack of instance-level
datasets hinders the advancement of instance understanding. Using the data annotation pipeline
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Figure 2: Visualization of data structure in INST-IT Dataset. For each video, we provide (a) N
frame-level annotations, (b) a video-level description, and (c) M open-ended question-answer pairs.
A complete example data can be found in Sec. C.3.

described in Sec. 2.1, we create a large-scale instruction-tuning dataset, the INST-IT Dataset. To
the best of our knowledge, this is the first instruction fine-tuning dataset that provides multi-level
fine-grained annotations centric on individual instances in both images and videos.

Data sources. We utilize five video instance segmentation datasets (BRUST [3, 18], UVO [83],
OVIS [65], LVVIS [79] and YoutubeVIS-2021 [89]) and two object tracking datasets (BenSMOT [38],
VidOR [75]) as our video sources, as they provide annotations of instance locations, which is useful
in SoM visual prompting [88]. For the image source, we select the SA-1B [29] dataset due to its
diversity and abundance of instance objects. In total, we collect 51k images and 21k videos. More
details can be found in Sec. C.1.

Statistics. On average, each video includes one video-level annotation, 7.3 frame-level annotations,
and 15.6 open-ended QA pairs. Images are regarded as single-frame videos without temporal changes.
In total, INST-IT Dataset includes 21k videos and 51k images, alongside 21k video-level captions,
207k frame-level captions, 836k instance-level captions, 135k temporal descriptions, and 335k
open-ended QA pairs. More statistical analyses are provided in Sec. C.2.

Data quality. We employ three strategies to ensure the data quality: (1) High-quality visual prompts,
we use manually annotated labels in segmentation and tracking tasks as SoMs to reduce noise. (2)
Specialized prompt design, we introduce multi-level prompt engineering at the instance, image,
two-frame, and video levels to mitigate long-term inconsistencies. (3) Diversity filtering, we filter out
samples with few instances to enhance diversity and domain coverage. We randomly select 500 data
samples and invite 3 volunteers to independently rate each sample with a score ranging from 1 to
5 (higher is better). The mean±std of scores and average time spent per sample are in Tab. 10. The
average score is 4.49±0.05, indicating the satisfactory quality of our data. We use the maximum score
difference (maxdiff) among volunteers to assess rating consistency. 49.8% of samples have maxdiff=0,
and 78.6% maxdiff ≤ 1, showing high agreements on the ratings of different volunteers.

Comparison with existing instruction tuning datasets. Tab. 1 (left) compares INST-IT Dataset
with other datasets. Prior video datasets, e.g. ShareGPT4Video [10] and LLaVA-Video [104], focus
on holistic understanding without instance-level annotations. While VIP-LLaVA [5] offers instance
annotations for images, it does not include any video data. In contrast, INST-IT Dataset encompasses
both images and videos with multi-level, fine-grained annotations grounded on individual instances.
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Table 1: Comparison of INST-IT with existing datasets and instance understanding benchmarks.
Left: Instruction tuning datasets. Right: Instance understanding benchmarks. IMG and VID indicate
whether the data contains images or videos, respectively. INST denotes the availability of instance-
level annotations. OE and MC indicate open-ended and multiple-choice QA.

IMG VID INST

ShareGPT4Video [10] ✓
LLaVA-Video [104] ✓
ViP-LLaVA-Data [5] ✓ ✓
INST-IT Dataset ✓ ✓ ✓

IMG VID TASK

RefCOCO [27] ✓ caption
RefCOCOg [53] ✓ caption
ViP-Bench [5] ✓ OE
INST-IT Bench ✓ ✓ OE&MC

2.3 INST-IT Bench

Existing benchmarks primarily focus on global understanding, failing to provide more in-depth
insights into the instance-level comprehension. We present the INST-IT Bench, specifically designed
to diagnose multimodal instance-level understanding in both images and videos.

Construction process. To prevent data leakage, we use videos from the test split, ensuring no overlap
with INST-IT Dataset. We apply the pipeline in Sec. 2.1 to generate 20 open-ended QA pairs for each
image and video. Then, we manually review these QA pairs to ensure their accuracy, diversity, and
difficulty. Overly simple questions are removed to ensure the remaining ones are instances-centric.
We also refine the questions and answers, making necessary rephrasing to ensure correctness. After
this rigorous checking process, each sample retains an average of 3.7 carefully polished QA pairs. In
addition, we generate three hard negative for each question to construct a multiple-choice QA data
with four options. More details are provided in Sec. B.1.

Statistics. INST-IT Bench comprises 1,000 QA pairs for 338 images and 1,000 QA pairs for 206
videos. Each QA pair supports two evaluation formats, i.e. open-ended and multiple-choice.

Metrics. For open-ended QAs, we leverage GPT-4o to evaluate the response from a model based on
its similarity to the ground-truth answer. For multiple-choice QAs, we calculate the average accuracy
across all samples. More details about the metric calculations can be found in Sec. B.2.

Comparison with existing instance understanding benchmarks. Tab. 1 (right) highlights the
main differences between INST-IT Bench and existing instance understanding benchmarks such as
RefCOCO [27], RefCOCOg [53] and ViP-Bench [5]: (1) its inclusion of evaluation data for both
images and videos, pioneered the evaluation in video LMMs; and (2) it supports both open-ended
and multiple-choice formats, enabling comprehensive evaluation.

2.4 Instruction tuning with explicit visual prompt

Architecture. We adopt the widely-used LLaVA-NeXT [44] architecture to evaluate the effectiveness
of our INST-IT. We train our model under an image-video joint training pipeline, where we mix our
INST-IT Dataset with the open-source LLaVA-NeXT-DATA [48]. For single-image samples, we
follow the original AnyRes paradigm [44] to split and encode sub-images according to the aspect
ratio. For video and multi-image data, we batch the samples together, encode them, and flatten them
into a sequence. Additionally, we apply 2× 2 spatial pooling to reduce the number of visual tokens
in the video inputs. More details are in Sec. 3.1.

Converting INST-IT Dataset into instruction tuning format. INST-IT Dataset provides annotations
at multiple levels of granularity. For the instance- and image-level captions in Fig. 2(a), we use a
single frame as input and structure the task as a two-turn dialogue: the model is first prompted to
describe all individual instances, followed by a holistic description of the entire scene. To capture
temporal dynamics, we use temporal captions from Fig. 2(a), asking the model to describe the
differences between two consecutive frames. The video-level description in Fig. 2(b) is treated as
a captioning task, where the model is instructed to generate a summary based on all video frames.
For the open-ended QA pairs in Fig. 2(c), we organize them into a multi-turn conversation, with the
model answering one question per turn. In total, we construct 243k instruction tuning samples in the
form of single-turn and multi-turn dialogues. All images and video frames are augmented with SoM
visual prompts to explicitly provide instance-level guidance.
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Table 2: Results on INST-IT Bench. We conduct evaluations on INST-IT Bench, including state-of-
the-art open-source image models, video models, and cutting-edge proprietary models. #IT indicates
the number of training samples used during the instruction-tuning stage. N/A indicates that the
number is unknown. OE and MC represent open-ended and multiple-choice evaluations, respectively.

Model LLM #IT Image Video
OE Q&A MC Q&A OE Q&A MC Q&A

Random Guess - N/A - 25.0 - 25.0
GPT-4o [61] - N/A 74.1 84.8 65.5 81.0
Gemini-1.5-flash [72] - N/A 65.3 79.5 57.9 75.8

Open-source image models
LLaVA-1.5 [43] Vicuna-7B 665K 41.6 32.1 - -
ViP-LLaVA [5] Vicuna-7B ∼1.2M 42.1 29.2 - -
SoM-LLaVA [86] Vicuna-7B 695K 45.1 40.0 - -
LLaVA-NeXT [44] Vicuna-7B 765K 46.0 42.4 - -

Open-source video models
LLaVA-NeXT-Video [103] Vicuna-7B 860K 46.5 39.5 25.8 24.8
ShareGPT4Video [10] Llama3-8B ∼1.0M 43.2 48.7 27.8 16.1
LLaVA-OV (SI) [31] Qwen2-7B ∼7.2M 60.3 61.8 31.4 36.4
LLaVA-OV [31] Qwen2-7B ∼8.8M 48.0 71.7 33.2 45.6
LLaVA-Video [104] Qwen2-7B ∼7.4M 45.1 67.0 34.1 53.2
InternVL2 [13] InternLM2.5-7B N/A 58.6 66.5 39.8 45.5
Qwen2-VL-Instruct [82] Qwen2-7B N/A 48.3 64.9 38.2 59.4
Qwen2-VL-Instruct [82] Qwen2-72B N/A 55.5 74.7 45.5 74.6

Our models
LLaVA-NeXT-INST-IT Vicuna-7B 920K 68.6 63.0 49.3 42.1
LLaVA-NeXT-INST-IT Qwen2-7B 920K 67.9 75.3 45.7 53.3

3 Experiments

3.1 Implementation details

We use LLaVA-NeXT [44] as our baseline due to its widespread adoption. In the default configuration,
Vicuna-1.5-7B [16] serves as the language model with CLIP-ViT-336 [67] as the vision encoder. We
utilize the AdamW [49] with a cosine learning rate schedule for optimization. During the vision-
language alignment stage, we use the LCS-558K dataset [43], and for the supervised fine-tuning
stage, we leverage the open-source LLaVA-NeXT-DATA [48]. For single images, we split the original
image into up to 4 sub-images based on its aspect ratio following the AnyRes [44] approach, and then
concatenate the global image with these sub-images. For multiple images and video inputs, we skip
the AnyRes procedure and encode every single image. Additionally, we apply 2× 2 spatial pooling
to reduce the number of visual tokens for video inputs. We limit the maximum number of frames to
32 and the context length of LLMs to 6K due to GPU memory constraints. To enhance instance-level
understanding with our INST-IT Dataset, we combine INST-IT Dataset with LLaVA-Next-DATA
in an additional continuous supervised fine-tuning stage. In this stage, we freeze the first 12 layers
of the vision encoder to mitigate potential distribution shifts caused by visually prompted images.
Furthermore, we use Qwen2-7B [87] with SigLIP-SO400M-384 [97] for improved performance in our
main experiment, and Qwen2-1.5B with CLIP-ViT-336 for efficiency in our ablation study. We use
8×H100 for all experiments. The image-video joint training stage takes approximately 20 hours when
using Vicuna-7B as the language model and 24 hours using Qwen2-7B with SigLIP-SO400M-384.

3.2 Main experiments

Results on INST-IT Bench. We conduct extensive evaluations on INST-IT Bench. The results in
Tab. 2 show that with instruction tuning using INST-IT Dataset, our models achieve a significant
improvement of nearly 20% on average score, validating the effectiveness of INST-IT. Moreover,
although ViP-LLaVA [5] utilizes visual prompts for instruction tuning, it shows minor improvement
over its baseline, i.e. LLaVA-1.5 [43], possibly due to overfitting to its training data. In contrast, our
model demonstrates consistent improvements on other instance understanding benchmarks, such as
ViP-Bench [5] and RefCOCOg [53] (Sec. 3.3), as well as on general-purpose evaluation sets like
AI2D and Egoschema (will be discussed in the following sections). This suggests that the model
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Table 3: Main results on image benchmarks.

Method LLM Vision Encoder AI2D[28] MMMU[95] POPE[37] GQA[26] ChartQA[54]
(test) (val) (test F1) (val) (test)

LLaVA-1.5 [43] Vicuna-7B CLIP-ViT-Large 54.8 35.3 85.9 62.0 18.2
DeepStack-L [60] Vicuna-7B CLIP-ViT-Large - 35.7 86.7 63.1 21.0
DeepStack-L-HD [60] Vicuna-7B CLIP-ViT-Large - 35.6 86.5 65.2 56.3
VILA [42] Vicuna-7B CLIP-ViT-Large - - 85.5 62.3 -
LLaVA-OV (SI) [31] Qwen2-7B SigLIP-SO400M 81.6 47.3 - - 78.8
LLaVA-OV [31] Qwen2-7B SigLIP-SO400M 81.4 48.8 - - 80.0
Qwen2-VL-Instruct [82] Qwen2-7B DFN-CLIP-H 83.0 54.1 - - 83.0
LLaVA-NeXT [44] (baseline) Vicuna-7B CLIP-ViT-Large 66.6 35.1 86.4 64.2 54.8
LLaVA-NeXT-INST-IT (ours) Vicuna-7B CLIP-ViT-Large 71.0 ↑4.4 37.4 ↑2.3 87.2 ↑0.8 65.9 ↑1.7 68.3 ↑13.5
LLaVA-NeXT-INST-IT (ours) Qwen2-7B SigLIP-SO400 78.7 ↑12.1 42.7 ↑7.6 87.6 ↑0.2 65.5 ↑1.3 72.8 ↑18.0

Table 4: Main results on video benchmarks. We report the average of MCQA, Y/N and CM in
TempCompass for determinism results. ∗ indicates results reproduced by us.

Method LLM Vision Encoder ANetQA[94] EgoSchema[52] NExTQA[85] VideoMME[20] TempCompass[46]
(oe) (subset) (mc) (w/o subs) (3 avg)

DeepStack-L [60] Vicuna-7B CLIP-ViT-Large 49.3 38.4 61.0 - -
Video-ChatGPT [51] Vicuna-7B CLIP-ViT-Large 35.2 47.3 - - -
VideoLLaMA2 [14] Vicuna-7B CLIP-ViT-Large 50.2 - 51.7 - -
LLaVA-Next-Video [103] Vicuna-7B CLIP-ViT-Large 53.5 43.9 - 46.5 -
InternVL2 [13] InternLM-7B InternViT-300M - - - 54.0 -
LLaVA-OV [31] Qwen2-7B SigLIP-SO400M 56.6 60.1 79.4 58.2 69.4
LLaVA-Video [104] Qwen2-7B SigLIP-SO400M 56.5 57.3 83.2 63.3 -
Qwen2-VL-Instruct [82] Qwen2-7B DFN-CLIP-H - 66.7 - 63.3 72.9
LLaVA-NeXT [44] (baseline) Vicuna-7B CLIP-ViT-Large 53.8 50.0∗ 58.4∗ 36.2∗ 56.8∗

LLaVA-NeXT-INST-IT (ours) Vicuna-7B CLIP-ViT-Large 53.7 ↓0.1 57.8 ↑7.8 70.2 ↑11.8 44.3 ↑8.1 59.8 ↑3.0
LLaVA-NeXT-INST-IT (ours) Qwen2-7B SigLIP-SO400 55.2 ↑1.4 50.4 ↑0.4 73.0 ↑14.6 54.0 ↑17.8 63.9 ↑7.1

trained with INST-IT generalizes well to other tasks. Qwen2VL-72B does not show substantial
improvements over its smaller 7B model, indicating that simply scaling up the model size cannot
address the challenges in instance understanding. Similarly, by comparing the amount of instruction
tuning data used by each model, we observe that large-scale coarse-grained annotations do not lead
to essential improvements either. This highlights the importance of instance-specific annotated data.

Results on generic benchmarks. To evaluate general understanding capabilities, we assess our mod-
els on several widely used image and video benchmarks using the LMMs-Eval [100]. To ensure a fair
comparison with other models, we primarily report results from their original papers or reproduced
results in previous studies. On generic image benchmarks, as shown in Tab. 3, INST-IT consistently
outperforms our direct baseline model, i.e. LLaVA-NeXT. The improvement in AI2D, a benchmark
that requires grounding and referring understanding capability, is particularly clear. This suggests that
INST-IT effectively boosts the model in fine-grained understanding. Furthermore, when utilizing a
more advanced language model and vision encoder, our method achieves performance comparable to
large-scale SFT LMMs, such as LLaVA-OV and Qwen2-VL-Instruct, while requiring significantly
less computational and data cost. For video understanding benchmarks in Tab. 4, INST-IT signifi-
cantly outperforms both LLaVA-NeXT and LLaVA-NeXT-Video. These consistent improvements
demonstrate that enhancing instance-level understanding through explicit visual prompted instruction
tuning is an effective strategy for improving generic spatiotemporal understanding capabilities.

3.3 Evaluation on other instance-understanding benchmarks

To assess whether our model has learned generalizable instance understanding capability, we con-
ducted evaluations on out-of-domain instance understanding benchmarks in zero-shot manner.

ViP-Bench [5] is a region-level understanding benchmark that closely aligns with the objectives of
INST-IT. As shown in Tab. 5, our model exhibits strong generalization performance. In particular, our
INST-IT with Vicuna-7B achieves performance comparable to ViP-LLaVA when using rectangular
bounding boxes as visual prompts and even surpasses ViP-LLaVA when employing human-style
visual prompts. Notably, our model performs as a generalist under zero-shot evaluation, whereas
ViP-LLaVA benefits from in-domain tuning, since it is fine-tuned on the dataset of ViP-Bench.
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Table 5: Results on ViP-Bench. We perform evaluation with our INST-IT models without fine-tuning.

Model Synthesized visual prompts Visual prompts from human
Rec OCR Know Math Rel Lang All Rec OCR Know Math Rel Lang All

GPT-4V-turbo-detail:high [1] 58.1 69.8 59.5 71.0 61.4 51.9 60.7 56.9 69.7 63.7 80.6 61.1 45.6 59.9
GPT-4V-turbo-detail:low [1] 53.2 50.3 55.6 67.7 57.5 57.5 52.8 51.7 50.3 59.3 60.3 55.0 43.8 51.4
InstructBLIP-7B [17] 36.9 16.3 34.2 22.3 26.8 7.5 31.7 38.9 17 35.4 9.7 29.3 17.5 33.3
Shikra-7B [8] 40.2 10.0 28.0 3.5 18.9 20.6 33.7 – – – – – – –
GPT4ROI-7B [101] 35.6 16.7 29.7 9.7 32.5 13.8 35.1 – – – – – – –
Kosmos-2 [63] 29.5 14.2 18.5 9.7 7.5 21.9 26.9 – – – – – – –
LLaVA-1.5-7B [43] 50.8 12.4 49.2 6.5 51.8 23.8 41.6 49.1 13.0 42.9 9.7 50.0 27.5 40.2
Qwen-VL-Chat [4] 43.0 30.4 40.2 9.7 25.7 28.7 39.2 48.7 22.1 41.2 6.5 48.2 25.0 41.7
ViP-LLaVA-7B [5] 54.8 18.8 52.9 9.7 53.9 42.5 45.5 55.3 17.6 45.9 8.1 44.6 33.1 46.8
LLaVA-NeXT-INST-IT-Vicuna-7B 51.3 23.7 54.2 12.9 64.3 46.2 45.1 55.0 21.3 52.5 16.1 57.5 40.6 48.2
LLaVA-NeXT-INST-IT-Qwen2-7B 58.9 24.5 48.5 12.9 48.2 46.3 50.5 57.7 22.5 53.2 19.4 53.6 45.0 49.0

RefCOCOg [53] is a referring expression comprehension benchmark, with fewer labeling errors than
its counterpart RefCOCO [27]. We evaluate our LLaVA-NeXT-INST-IT-Vicuna-7B model on this
benchmark and observe a clear improvement of 10.8% over the baseline LLaVA-NeXT-Vicuna-7B
(63.0% vs. 52.2%). This further confirms that our approach effectively enhances the model in instance
understanding, rather than simply overfitting to our INST-IT data format.

3.4 Ablation study

We use Qwen2-1.5B [87] as the language model and CLIP-ViT-L-336 [68] as the vision encoder for
ablation experiments. We first conduct ablation on the training recipe to investigate how to effectively
integrate INST-IT Dataset with existing academic SFT datasets [48] for a balanced improvement.
Next, we perform a detailed analysis of the impact of each component in our INST-IT Dataset.

Effectiveness of our continuous instruction-tuning paradigm. As shown in Tab. 6, directly mixing
the video split of INST-IT Dataset with LLaVA-Next-DATA leads to significant improvements on
video benchmarks. However, the performance on generic image understanding slightly declines. We
believe this is due to two main reasons: (1) the increased ratio of video data may suppress image
understanding; (2) visually prompted images may introduce a distribution shift from natural images.
To address these issues, we propose a continuous SFT paradigm based on single-image models and
freeze the first 12 layers of the vision encoder to preserve realistic low-level features. Our model
achieves balanced performance across both image and video benchmarks with this training approach.

Detailed dataset combination. As illustrated in Fig. 2, INST-IT Dataset contains fine-grained
annotations at multi-level. To investigate the effectiveness of each component in INST-IT Dataset,
we conduct an extensive ablation by progressively adding data components. As shown in Tab. 7, the
instance-level and image-level frame captions are essential for improving instance understanding
in images. Meanwhile, temporal differences, along with video-level descriptions and QA, sig-
nificantly enhance video instance understanding. Finally, incorporating the image component of
INST-IT Dataset enables our model to achieve the most balanced performance across generic image
and video understanding benchmarks, as well as our INST-IT Bench.

4 Related Work

Large multimodal models. Recently, significant progress has been witnessed in LMMs [91]. BLIP-
2 [34] and Flamingo [2] leverage visual re-samplers to integrate image features as language inputs by
extracting a fixed number of visual tokens. LLaVA [45] and its follow-ups [43, 31, 42, 57, 98, 60, 11]
achieve remarkable success by connecting vision and language through a simple projection module.
Additionally, researchers are extending LMMs’ capabilities to temporal understanding by incorporat-
ing multi-frame inputs [41, 82, 104] or explicit temporal modules [39, 25] However, existing LMMs
struggle with instance-level understanding and often fail to accurately follow instructions to ground
specific instances. We emphasize the importance of instance understanding and enhance it through
instruction fine-tuning with explicit visual prompts.
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Table 6: Ablation on data training recipe. L.N. denotes LLaVA-NeXT-Data, while INST-IT img

and INST-IT vid refer to the image and video subsets of INST-IT. INST-IT-I and INST-IT-V indicate
the multi-choice splits of the image and video part of our INST-IT Bench, respectively.

CL Tune Enc Data Combination AI2D POPE GQA INST-IT-I Next-QA VideoMME INST-IT-V
(test) (test F1) (val) (mc) (mc) (w/o subt) (mc)

All L.N. 61.1 86.9 61.4 45.3 56.6 45.7 31.3
All L.N. & INST-IT vid 60.7 86.1 61.2 60.7 59.7 47.1 43.0

✓ All L.N. & INST-IT vid 62.3 86.7 62.9 61.8 62.4 46.7 44.4
✓ None L.N. & INST-IT vid 63.1 86.9 62.5 60.2 63.2 47.2 44.3
✓ Last 12 L.N. & INST-IT vid 63.2 87.0 62.5 60.1 63.3 47.2 44.0
✓ None L.N. & INST-ITimg+vid 63.0 87.0 62.7 58.6 59.8 46.7 41.6
✓ Last 12 L.N. & INST-ITimg+vid 63.0 87.2 62.7 59.6 64.3 46.6 43.7

Table 7: Ablation on detailed data combination. The dataset combination in line #3 corresponds
to the video part of INST-IT Dataset, while line #4 represents the complete INST-IT Dataset by
incorporating the image part into line #3.

# Data Combination AI2D MMMU POPE GQA INST-IT-I Next-QA VideoMME INST-IT-V
(test) (val) (F1) (val) (mc) (mc) (w/o subt) (mc)

0 LLaVA-NeXT 61.1 35.9 86.9 61.4 45.3 56.6 45.7 31.3
1 + inst-cap & img-cap 63.0 35.1 86.1 62.7 58.9 62.4 46.0 33.8
2 + temporal diff 63.0 35.6 87.1 62.7 59.6 64.2 45.6 36.9
3 + video-description & qa 63.2 34.9 87.0 62.5 60.1 63.3 47.2 44.0
4 + INST-IT Dataset img 63.0 36.1 87.2 62.7 59.6 64.3 46.6 43.7

Multimodal datasets and benchmarks. With the rapid progress in LMMs, numerous instruction-
tuning datasets have been developed. LLaVA-Instruct [45] leverages object categories, bounding
boxes, and image-level captions to generate diverse visual instruction tuning data. Follow-up
studies use more powerful models to generate synthetic data [9, 81, 7] and improve the annotation
pipeline [36, 10, 104]. Simultaneously, various benchmarks are proposed to evaluate LMMs across
different aspects [21, 35, 40], such as comprehensive understanding [30], OCR [54, 56, 55, 78],
temporal understanding [20, 52, 85, 6, 46, 47], and instruction-following [66]. However, they focus
more on image or video-level understanding and lack fine-grained emphasis on specific instances.
We emphasize the importance of instance understanding in both images and videos, and propose the
INST-IT Bench to evaluate the instance understanding of LMMs and create the INST-IT Dataset,
providing detailed instance-level annotations to enhance instance understanding.

Multimodal instance understanding. Understanding individual instances is a central focus in
computer vision community, with key tasks like object detection [73, 71, 12], instance segmenta-
tion [74, 29], and object tracking [19, 50, 90]. In the era of LMMs, instance understanding gains
increasing attention. SPEC [62], ARO[96], and Winoground [77] reveal that CLIP [68] struggle to
understand instances. To address this, KOSMOS-2 [64], Ferret [92], GLaMM [69] and Shikra [8]
encode instance information in textual form. In parallel, SoM-LLaVA [86], RegionGPT [24],
GPT4ROI [101], MG-LLaVA [105], OMG-LLaVA [102], and ViP-LLaVA [5], explores the use
of visual prompting to guide models in focusing on specific instances. SoM-LLaVA [86] and Ely-
sium [80] are closely related to ours. SoM-LLaVA [86] asks models to list the instances in images,
finding this effective in enhancing model comprehension. However, it is limited to the image domain.
Elysium [80] focuses on object understanding in videos but employs relatively simplistic instance
annotations. In contrast, we focus on both images and videos and provide multi-level fine-grained
annotations for instances, aiming to advance multimodal models in understanding the spatiotemporal
dynamics of individual instances.

5 Conclusion

Instance understanding that detects, segments, and reasons nuanced relationships among objects has
long been the goal of computer vision research, yet limited effort has been made to equip LMMs
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with such capabilities. We introduced INST-IT Bench, a carefully curated benchmark for evaluating
multimodal instance understanding abilities. Extensive evaluations for a wide range of models
demonstrate the limitations of current models for understanding at the instance level. To mitigate this
issue, we collected INST-IT Dataset, the first instruction-tuning dataset with explicit instance-level
visual prompts and annotations. Based on INST-IT Dataset, we proposed INST-IT, a continuous
finetuning framework that excels in instance understanding and general comprehension.
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Appendix
• In Sec. A, we outline additional implementation details of the GPT-4o-assisted data annotation

pipeline.
• In Sec. B, we present further information about the instance understanding benchmark, INST-

IT Bench.
• In Sec. C, we share more details about the instruction fine-tuning dataset, INST-IT Dataset.
• In Sec. D, we provide more discussions on failure cases and real-world applications.

A Data Annotation Pipeline

A.1 Set-of-Marks Visual Prompting

Performing instance-level annotations is challenging, and we adopt the SoM visual prompting
technique [88] to address this. Specifically, as illustrated in Fig. 3, we overlay a numeric ID at
the center of each instance and maintain the same ID for a given instance across all frames. This
simple augmentation can explicitly guide GPT-4o to focus more effectively on the instances of
interest, enabling finer-grained and more accurate annotations. Furthermore, segmentation masks
are necessary to calculate the center coordinates of each instance. Details on how these masks are
obtained are provided in Sec. C.1.

Figure 3: Set-of-Marks visual prompting on the original videos. Each instance is assigned a
unique numeric ID, which remains consistent across all frames.

A.2 Prompting GPT-4o

Task prompt templates. Prompt engineering is crucial for enabling GPT-4o to accomplish specific
tasks. In this section, we present the task prompts that we designed to prompt GPT-4o for data
annotation:

• The task prompt P f for frame-level annotation, Fig. 5.
• The task prompt P vid for video-level annotation, Fig. 6.
• The task prompt P qa for open-ended question-answer pairs generating, Fig. 7.

GPT-4o API version. During the annotation process, we use the GPT-4o-2024-08-06 API and
leverage its structured output functionality to facilitate output parsing, enabling the model to respond
in a predefined JSON format.

B More Details about INST-IT Bench

B.1 Negative Options Generation

We use the ground-truth from open-ended QA as the positive option and additionally craft three
negative options, forming a multiple-choice question with four options. To create hard negatives, we
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# Task Description :
You are an expert evaluator tasked with scoring the accuracy of 
responses to open-ended questions. You will be provided with a set 
of questions, each with a corresponding ground-truth answer, as 
well as responses from a tester. Your job is to assess the accuracy of 
each response and provide a score between 0 and 1.

# Guidelines:
- Score Range: Your score for each test item must be between 0 and 
1. A higher score means more correctness. Choose from the 
following: 
0 (completely incorrect), 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 
(completely correct)
- For each test item, consider the question, the ground-truth answer, 
and the tester’s response together to determine correctness.
- Objects in questions and answers may be referenced using the 
format [ID] (e.g., [1], [2]). Ensure that any objects referenced in the 
tester’s response match correctly with the ground-truth answer.
- Time points may be indicated with <timestamp> (e.g., <1>), and 
time intervals with <start_timestamp>-<end_timestamp> (e.g., 
<3>-<5>). Verify that the tester’s response includes accurate time 
expressions.
# Input Format:
The input is a set of test items to be scored, where each item 
includes: 
- id: the unique identifier for the test item; 
- question; 
- ground-truth answer for the question; 
- response from the tester.
Now, let's begin the evaluation, here are the input test items: 
<samples to be scored> …

Figure 4: GPT-4o-based open-ended question answering correctness assessment. The underlined
parts in the figure are included only when evaluating the video split, while the italicized parts will be
replaced by the actual sample for scoring.

# Task Description:
You are an expert in video analysis, skilled at detecting dynamic changes between consecutive video frames. In this task, you are given two 
consecutive frames. Each image contains objects with unique numeric IDs (referred to as "marked objects"). Your task is to:
- Provide object-level descriptions for each marked objects in the current frame.
- Provide a dense and detailed image-level description for the entire current frame.
- Identify any dynamic changes or differences between the current frame and the previous frame.

# Guidelines for Object-level Descriptions:
- Describe each marked object’s appearance in the current frame, focus on attributes like color, shape, textual, size. 
- If you are confident, specify the category to which the object belongs in the description, i.e., answer what the object is. 
# Guidelines for Image-level Descriptions:
- Mention all the marked objects in the current frame, focusing on the behaviors, movements, states, positions, and other dynamic information.
- Describe the interactions between the objects, as well as the background, environment, perspective, and angle of the shot.

# Guidelines for Describe the Temporal Changes:
- Highlight changes in each marked object, such as movements, actions, status, position, as well as object interactions or relationships.
- Note any changes in the background , environment, camera angles and scene transitions. 
- Reasonably infer the causes of the changes, trends, and possible impacts.
# Constraints:
- Accuracy is critical: If a marked object is too small or obscured, and you cannot confidently identify it, skip it without attempting to describe it.
- Frame of reference: Describe movement direction, or object position from the camera's point of view.
- Specify what the interaction is, do not simply saying "[1] is interacting with [2]", you should say "[1] is catching [2]" .
- Object Referring Format: When refer to a single object, use the format: [1]; when listing multiple objects, use the format: "[1] [2] [3]".

# Structured Output:
Your output should have three sections:
- Object-level Descriptions: For each marked objects in the current frame, provide a comprehensive description of its appearance.
- Image-level Description: Provide a dense and comprehensive description of the entire image, capturing as many details as possible.
- Temporal Changes: Outline any changes and differences compared to the previous frame, highlighting important transitions or events. 

# Input:
You will receive two consecutive images: <the previous frame image> <the current frame image>

Frame-level Annotation Task Prompt

Figure 5: Frame-level annotation task prompt, the italicized part are placeholders for the actual
inputs.
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# Task Description:
You are an expert in summarizing video content. Given a sequence of frame-by-frame text descriptions of a video. Your task is to aggregate 
these descriptions into an accurate, cohesive summary of the entire video.
# Guidelines and Rules:
- Base your description solely on the input to ensure accuracy; avoid inferring any unmentioned content. 
- Please note that the description of a single frame may contain some inaccuracies. You need to use the overall context to further correct these 

errors, ensuring accuracy and consistency.
- Use chronological order: organize your summary according to the timestamps of the frames, follow these conventions: for specific moments,

write <timestamp>, e.g., at <3>; for time intervals: write <start_timestamp>-<end_timestamp>, e.g., during <5>-<7>
- Referencing objects by ID: in your response, use the same [ID] format provided in the input to reference objects: for one object: [ID] (e.g., [8] 

a white dog); for multiple objects: [ID1] [ID2] ... (e.g., [3] [4] [5]).

# Output Requirements:
Your output should be a dense, detailed, and accurate description of the entire video, summarizing main objects, key events, and various 
spatial and event-related details.

# Input Format:
Each frame’s description includes four parts:
1. Timestamp: marks the chronological position of the frame in the video. 
2. Instance-level description: lists the primary objects in the frame using the format “[object ID]: object description”
3. Frame-level description: offers a comprehensive view of the frame’s content, covering main objects, object relationships, and the

background or environment details.
4. Temporal change description: highlights key changes or movements since the previous frame, capturing dynamic information essential for

understanding the video’s progression.
# Input Frame-level Annotations:
Timestamp: <1>; Instance-level description: … ; Frame-level description: … ; Temporal changes: None, as this is the first frame.
Timestamp: <2>; Instance-level description: … ; Frame-level description: … ; Temporal changes: ...

…

Video-level Annotation Task Prompt

Figure 6: Video-level annotation task prompt, the italicized part are placeholders for the actual
inputs.

# Task Description :
You are an expert in video content analysis. In this task, you will receive textual descriptions of individual video frames. Your task is to generate 
high-quality and contextually coherent questions and accurate answers based on the content of the video.
# Guidelines:
- Avoid speculative questions; ensure all questions can be answered from the frame descriptions.
- Diversify the types of questions (who, what, where, when, how, why) to cover different aspects of the video.
- The number of question-answer pairs should between 10 to 20, this depends on how much valuable information contained in the video.
- Be creative and flexible in forming questions and answers, and avoid redundant or overly simple questions.
- Use the frame timestamps to express time in the video: for a specific moment, use <timestamp> , e.g., at <3>; for a time interval, use

<start_timestamp>-<end_timestamp>, e.g., during <5>-<7>. Don't forget to enclose the timestamps in <>.
- In the input, ID is used to refer to a specific object; you can use the same format in your output to refer to specific objects:

for a single object, write [ID] (e.g., "[8]"); for multiple objects, use "[ID1] [ID2] ...", such as "[3] [4] [5]". 

# Output:
The output is a list of 10 to 20 high-quality, context-aware question-answer pairs about the video's content.

# Input Format:
The input consists of frame-by-frame descriptions, where each frame includes:
1. Timestamp: marks the chronological position of the frame in the video. 
2. Frame-level description: offers a comprehensive view of the frame’s content, covering main objects, object relationships, and the background 

or environment details.
3. Temporal change description: highlights key changes or movements since the previous frame, capturing dynamic information essential for

understanding the video’s progression.

# Input Frame-level Annotations:
Timestamp: <1>; Frame-level description: … ; Temporal changes: None, as this is the first frame.
Timestamp: <2>; Frame-level description: … ; Temporal changes: ...

…

Open-Ended QA Generation Task Prompt

Figure 7: Open-ended question-answer pairs generation task prompt, the italicized part are
placeholders for the actual inputs.
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Q: Which individuals are no longer visible in the later frames of the 
video?

A: [8] disappears from the frame at <5>, and [5] disappears from the 
frame at <7>.

Q: Which individuals are no longer visible in the later frames of the 
video?

A.  The individuals who were no longer visible in the later frames of the 
video were the man and the woman who were standing next to the 
horse.

B. The individuals no longer visible in the later frames of the video are 
those labeled as [3] and [5].

C.

D. [3]

Open-Ended QA

Multiple-Choice QA

Q: What action does [2] take at the scene captured at <10>?

A: At <10>, [2] bends over, reaching toward the ground, indicating 
they are searching for or picking up something.

Q: What action does [2] take at the scene captured at <10>?

A. At the scene captured at <10>, [2] is petting the horse.

B. [2] is seen holding a white cloth at the scene captured at <10>.

C. Petting the horse

D. At <10>, [2] bends over, reaching toward the ground, indicating 

they are searching for or picking up something.

timestamp <4> timestamp <5>

Open-Ended QA

Multiple-Choice QA

[8] disappears from the frame at <5>, and [5] disappears from 
the frame at <7>.

timestamp <10>

At <10>, [2] bends over, reaching toward the ground, indicating 
they are searching for or picking up something.

timestamp <7>

……… …
8
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4

4 4
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Figure 8: A data example from INST-IT Bench. Each test sample includes both open-ended QA
and multiple-choice QA, focusing on specific instances or the relationships and interactions between
instances.

first have the model answer the open-ended questions and use GPT-4o to score the correctness of the
responses. If the score is lower than 0.4, we consider it a difficult negative answer and include it as
one of the negative options. Finally, we randomly shuffle the four options to ensure that the correct
one appears in each position with equal probability.

B.2 LLM-based Evaluator for Open-Ended QA

Recent studies [93, 15] suggest that LLMs can serve as effective evaluators. Building on this, we
use GPT-4o to assess the accuracy of open-ended question answering. Specifically, GPT-4o assigns
a score between 0 and 1 based on three key factors: the question, the ground-truth answer, and the
model prediction. Given that INST-IT Bench prioritizes instance-level understanding, we pay special
attention to the accuracy of instance ID references. Furthermore, for the video split of INST-IT Bench,
we emphasize the correctness of timestamps to ensure temporal correctness. The task prompt for
GPT-4o is illustrated in Fig. 4.

B.3 Data Example

To provide a clearer understanding of INST-IT Bench, we present a data example in Fig. 8. Each
question includes both open-ended and multiple-choice formats, focusing on specific instances or
exploring the relationships and interactions between multiple instances. This design highlights the
significant distinction from other benchmarks, emphasizing fine-grained understanding at the instance
level.

C More Details about INST-IT Dataset

C.1 Data Collection and Processing

Collection. We select five instance segmentation datasets and two multi-object tracking datasets as
sources of video data. To prevent data leakage, we only used the training splits of these datasets,
leaving their test and validation splits untouched. Additionally, we use the SA-1B [29] dataset as a
source of image data and only utilize the first ten officially provided data splits. For each split, we
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Table 8: Data sources. We use seven video datasets and one image dataset as our data sources. We
show their annotation formats, the splits we used, and the number of samples from each dataset.

Dataset Name Ann. Type Split Sample Num.

Video Instance Segmentation
BRUST [3] mask training 500
UVO [83] mask training 5,135
OVIS [65] mask training 599
LVVIS [79] mask training 3,057
YoutubeVIS [89] mask training 2,897

Video Object Tracking
BenSMOT [38] box training 2,261
VidOR [75] box training 6,969

Image
SA-1B [65] none 1-10 51,101

only use the first 50% of its images. In total, we collect 21,418 videos and 51,101 images. Tab. 8
provides detailed statistics on our data sources.

Processing. When constructing SoM [88] visual prompts, we need to obtain the mask annotations
for each instance to determine the location of the numeric IDs. For the video instance segmentation
datasets [3, 83, 65, 79, 89], the instance masks are already provided and can be used directly. For
multi-object tracking datasets [38, 75], we prompt SAM [29] with their bounding box annotations to
generate instance masks. For images in the SA-1B dataset [29], we employ Semantic-SAM [33] to
segment the instances and obtain their masks.

C.2 Statistics Analysis.

Number of instances. The key characteristic of INST-IT Dataset is its specific focus on individual
instances in images and videos, which provides a more fine-grained description of the visual inputs.
We visualize the distribution of the number of instances in each sample in Fig. 9. For the video
split, each sample has an average of 3.7 instances, with a total of 79,709 instances. For the image
split, each sample contains an average of 6.9 instances, totaling 351,495 instances. Across the entire
dataset, each sample includes an average of 5.9 instances, adding up to 431,204 instances in total.
We measure the scene complicity by the number of instances in each sample. Specifically, 31% of
the samples contain ≤ 3 instances (simple), 39% have between 3 to 8 instances (medium), and the
remaining 30% contain ≥ 8 instances (hard).

Dataset diversity. We visualize the object categories in INST-IT Dataset in Fig. 10, highlighting
its diverse range. The objects include humans, animals, plants, vehicles, landmarks, etc. , covering
domains like daily life, egocentric perspectives, sports, transportation, etc. . The rich diversity of
INST-IT Dataset ensures its applicability to real-world scenarios and enhances its transferability to
different domains.

Text captions. INST-IT Dataset contains multi-level textual descriptions of visual content, covering
instances, frames, temporal changes, and video-level annotations. We conduct statistical analysis on
these text annotations, including the number of each type of text, and their average length. As shown
in Tab. 9, the average length of INST-IT Dataset is 49.1 words per caption, with video-level averaging
323.2 words, highlighting its richness of details. We also present the results of lexical analysis
in Tab. 9. The instance-level captions contain a rich variety of nouns and adjectives, indicating that
they primarily describe the objects’ categories and attributes. The captions of temporal changes
include a high volume of verbs and adverbs, suggesting that they capture dynamic information.

Human evaluation of data quality We invited three volunteers to rate each sample on a scale
from 1 to 5, with higher scores indicating better quality. Tab. 10 presents the scores of different
types of annotations, along with the average time spent by each volunteer to evaluate each sample.
The average score across all types is 4.49±0.05, indicating that the data in INST-IT Dataset is of
satisfactory quality.
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Figure 9: The distribution of the number of
instances per sample in INST-IT Dataset. We
separately present the distribution for the video
split, image split, and the entire dataset.

Figure 10: Analysis of object categories in
INST-IT Dataset, which shows a diverse range
of types spanning multiple domains.

Table 9: Statistical and lexical analysis of INST-IT Dataset. We present the results for each
annotation level as well as the entire dataset.

Caption Type #Caption #Char./Cap. #Word/Cap. #Sen./Cap. Nouns Adj. Adv. Verb. Prep.

Instance-level 836,524 102.1 24.3 1.5 26.5% 13.3% 2.3% 12.3% 10.7%
Frame-level 207,662 458.0 106.5 5.7 25.2% 10.5% 2.6% 14.9% 11.5%
Temporal-change 135,143 306.6 67.7 3.7 21.2% 10.0% 6.0% 16.4% 10.8%
Video-level 21,372 1441.8 342.2 14.3 24.8% 10.6% 3.6% 13.2% 11.8%
All 1,200,701 210.5 49.1 2.7 25.0% 11.4% 3.1% 14.0% 11.1%

C.3 Data example.

In this section, we provide a complete video data sample from INST-IT Dataset to offer a clearer
understanding of its content and format. In all annotations, we use the format [ID] to refer to instances
and <timestamp> to refer to timestamps. We present the frame-level annotations in Tab. 11. We
can see that each frame-level annotation Y f consists of three parts: instance-level descriptions
yins, image-level descriptions yimg, and temporal differences ydif . Additionally, each video is
accompanied by a series of open-ended question-answer pairs Y qa, most of which center on specific
instances or their relationships, as illustrated in Tab. 12. Furthermore, we generate a dense video-level
caption Y vid summarizing the entire video in chronological order, as shown in Tab. 13.

D More discussions.

D.1 Failure cases.

We manually inspect the dataset and model to identify the failure cases. We find that occasional
failures occur in scenarios where instances are severely occluded, the image is blurry, or instances are
excessively small or crowded. These challenges are common among LMMs, and future research can
further investigate them.

D.2 Real-world applications.

In real-world applications, users can interactively prompt models like SAM2 [70] to automatically
track instances of interest and generate SoMs. Additionally, our model also supports inputs without
SoMs, allowing users to specify particular instances using textual descriptions. In the first scenario,
our INST-IT introduces only a marginal overhead for generating SoMs, while in the second case, it
incurs no extra cost compared to the base model.

E Limitations and broader impacts.

Limitations. Our current experiments are conducted on 7B and 1.5B models due to the computation
cost. Moreover, our current data pipeline is automated but constrained by the overhead of GPT-4o.
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Table 10: Human evaluation on the quality of INST-IT Dataset.

Instance Caption Image Caption Temporal Caption Video Caption QA Pairs

Score (↑) 4.66±0.12 4.68±0.02 4.48±0.05 4.34±0.18 4.31±0.11

Time (s) 7.3 12.4 11.9 31.0 10.6

We can further scale the model size and scale the dataset using a model-in-the-loop approach and
improve the model through multi-round instruction tuning with self-synthesized data. We leave this
direction for future work.

Broader impacts. This paper proposes an enhancement of instance-level understanding capabilities
in large multimodal models, enabling them to better assist users by answering questions about the
content of interest. However, similar to existing large multimodal models, this approach also faces
potential risks, such as issues related to fairness and bias. Future work can address this issue through
approaches such as data filtering and validation.
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Table 11: INST-IT Dataset frame-level annotations. For the ease of visualization, we only
demonstrate the first three frames. Please zoom in to view the instance ID labels.

Frame Instance-level captions Image-level captions Temporal differences

timestamp<1>

1: Wearing a light gray
suit with a white shirt,
standing indoors. 2: Wear-
ing a sleeveless white lace
dress, holding an object in
the hand. 3: Wearing a
dark floral-patterned dress
with long wavy hair.

[1] [2] [3] are standing closely to-
gether in an indoor setting. [1] is
on the left side wearing a formal,
light gray suit with a white shirt.
[2], in the middle, is wearing a
sleeveless white lace dress, hold-
ing something in their hand. [3] is
on the right side in a dark floral-
patterned dress with long, wavy
hair. They appear to be in a room
with wooden paneling and some
framed art on the wall. null

timestamp<2>

1: A person wearing a
gray suit with a white
shirt, short hair. 2: A per-
son in a white, sleeveless
dress with long dark hair.
3: A person wearing a
dark floral dress with long
dark hair. 5: A person
wearing red, partially vis-
ible in the background. 6:
A small black cellphone
held in a hand.

The scene appears to be in an of-
fice setting with a wooden table at
the foreground. [1] is standing to
the left, facing [2], and appears to
be holding [2]’s finger or hand. [2]
stands slightly to the right, return-
ing focus with [1]. [3] is to the
right of [2], slightly in the back-
ground, smiling and looking for-
ward. A bouquet of white flowers
lies on the table near [2]. [5] is
partially visible in the background
on the right, seated and wearing
red. [6] is a cellphone held by [5].
Background shows a wooden wall
and a reflection in a window.

[1] has moved closer to
[2] and is now in contact
with [2]’s hand. [2] has
turned slightly towards [1]
compared to the previ-
ous frame. [3] remains
in a similar position, but
the expression suggests
more engagement with
the scene. [5] and [6] have
appeared in the frame;
[5] is visible in the back-
ground holding [6]. The
table with a bouquet of
flowers is now visible, in-
dicating a shift in camera
angle slightly to include
more of the right side of
the room.

timestamp<3>

1: Wearing a grey suit,
standing beside [2] and
slightly turned towards
them. 2: Wearing a white,
sleeveless dress with flo-
ral textures. Holding a
bouquet of white flow-
ers. 3: Wearing a dark
patterned dress, standing
slightly behind [2]. 4:
Partially visible, wearing
dark clothing, located at
the edge of the left side
of the frame. 5: Seated,
wearing a red outfit. Hold-
ing a white object above
their head, possibly ob-
scuring their face.

The scene shows [1] [2] [3] near a
wooden conference table in a pro-
fessional setting, possibly an office.
[1] wears a grey suit and is stand-
ing to the left, engaged with [2]
who is wearing a white dress and
holding flowers. [3], who is in a
patterned dress, stands closely be-
hind [2]. The newly appeared [4] is
seated to the far left, partially visi-
ble at the edge of the frame. [5] is
seated on the right side, holding an
object above their head, possibly
obscuring their face. The room has
wooden walls and a framed picture
hanging on the wall.

Object [5] has lifted an
object above their head,
possibly a piece of paper.
Object [4] has appeared
in the scene, seated on
the left side of the frame,
which was not visible ear-
lier. The positions of ob-
jects [1], [2], and [3] re-
main unchanged, as does
the background and set-
ting of the room. Overall,
no significant movement
is noticed in terms of cam-
era angle or position for
objects [1] [2] [3].
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Table 12: INST-IT Dataset Open-ended question-answer pairs.

Question Answer

What change occurs with [1]’s expression be-
tween <10> and the previous frame?

[1] changes from smiling to a neutral expres-
sion.

What activity are [1] and [2] involved in at
<11>?

[1] and [2] are engaged in a kiss.

What is the overall mood during <11> as
suggested by [3]’s actions?

A celebratory or joyous event.

What interaction occurs between [1] and [2]
at <5>?

[1] holds [2]’s hand, suggesting an intimate
gesture or exchange, likely a ring.

Who joins [1] and [2] in the frame at <7>? [4] appears in the frame, joining [1] and [2].

What changes in the group’s composition be-
tween <7> and <8>?

[3] reappears, and [4] is no longer visible.

What element is seen throughout the frames
<1> to <12>?

The scene is in an indoor setting with wooden
paneling and framed art.

What type of event is likely taking place based
on the atmosphere in <4> and <6>?

A formal event, possibly a wedding or official
gathering.

What new elements are introduced in the
scene at <2>?

[5] holds a cellphone in the background, par-
tially visible.

What is the mood and lighting like at <6>? The mood is formal and celebratory, with
bright lighting enhancing this atmosphere.

What new background element appears at
<7>?

There is a map or blueprint on the wall.

What is notable about [5]’s actions at <3>? [5] is lifting an object above their head, possi-
bly a piece of paper.

What is the setting like in <3>? The group is gathered near a wooden confer-
ence table in a formal setting.

How are [1] and [2] interacting at <8>? They are engaged in conversation or commu-
nication, indicated by body language and fo-
cus.

What does [1]’s expression suggest at <12>? [1] speaks or smiles, suggesting engagement
with [2] or others.

What shift occurs in the focus of the camera
between <5> and <6>?

The camera focuses more on individuals
standing together, reducing focus on the fore-
ground objects.

What are [3] and [4] doing at <9>? They clapping their hands in celebration.

What decorative element is visible at <2>? A bouquet of flowers lies on the table near
[2].

How has the posture of [1] and [2] changed
by <6>?

[1] and [2] face slightly outward, suggesting
a pose for a photograph or audience.

What overall physical change occurs between
[1] and [2] from <10> to <11>?

There’s a noticeable increase in their physi-
cal interaction, enhancing emotional engage-
ment.
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Table 13: INST-IT Dataset video-level caption.

Video-level caption

The video appears to document a formal or celebratory event indoors, possibly a ceremony such
as a wedding or official gathering, occurring in a room with wooden paneling and art or framed
pictures on the wall. At the beginning, during <1>, [1] is wearing a light gray suit and stands
with [2] in a sleeveless white lace dress, and [3] in a dark floral-patterned dress. The three are
close together, suggesting an intimate or focused setting. The progression between <2> and
<3> involves subtle changes in posture and interaction. [1] moves closer to [2], appearing to
hold hands or engage in an exchange, possibly involving a ring, as indicated by a bouquet of
flowers. [3] remains supportive and smiling, while [5], in red, momentarily holds an object above
their head, before disappearing from view by <4>.In frames <5> to <7>, [1] and [2] maintain
a close interaction, suggestive of a significant moment such as an exchange of vows or rings.
They are closely observed by [3], who stands smiling nearby, while [1] and [2] occasionally
adjust their positions, facing each other initially and then turning outward, which may signal
transitioning from an intimate moment to posing for a photo. By <7>, [4] joins, dressed in
darker attire, emphasizing the formal setting as [3] is no longer visible. Through <8> and <9>,
the group dynamics change slightly with the absence of [4] and [3] entering the scene again.
[1] and [2] appear to engage in a warm interaction as [3] supports them, clapping, alongside
the visible hands of [4] indicating applause, marking a cheerful tone. Finally, during <10> to
<12>, the focus shifts as [1] and [2] first engage in a kiss, underscoring an intimate conclusion
to their ceremony. They later stand apart slightly at the center, with [1] smiling or speaking,
and [2] leaning towards [1] suggestively content. Throughout, the consistent joyous mood is
accentuated by [3]’s ongoing clapping and expression of joy, emphasizing shared celebration
and approval from the audience captured.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes. We clearly and accurately state the contribution and scope in the abstract
and introduction (Sec. 1).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, we discussed the limitations in the appendix, please see Sec. E for more
details.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, we clearly describe the data construction process in Sec. 2 and provide
the necessary details about the model training in Sec. 3. The codes, models, dataset, and
benchmark will be fully open-sourced.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will release all the codes, data, and models once the blind review period is
finished. We will also provide a clear instructions to reproduce our experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, we specified the data combination, hyperparameters setting, model
architecture, and type of optimizer in Sec. 3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Error bars would be too computationally expensive to report. We claim that
gains in our experimental results are consistent and significant.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Yes, we mentioned the runtime and device configurations in Sec. 3.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We conduct the research strictly following the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discussed the broader impacts in Sec. E.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes, we credited them in appropriate ways, and respected their license.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We describe the usage of LLMs in Sec. 2 and Sec. A.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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