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Abstract

The rapid accumulation of mutations in influenza
strains challenges vaccine efficacy by enabling
immune escape. Current influenza vaccine strate-
gies rely on annual updates that incorporate re-
cently circulating strains, with strain selection
guided by experimental neutralization assays and
global surveillance data. However, these methods
are resource-intensive and have limited predic-
tive power, often resulting in mismatches between
the strains included in the vaccine and the strains
dominant at the time of vaccine rollout — ulti-
mately reducing vaccine effectiveness. Under-
standing how specific mutations alter viral fitness
and antigenicity could improve our ability to fore-
cast emerging escape variants and design more
effective vaccines. To address this, we adapt EVE,
a deep generative model, and retrain on influenza
hemagglutinin (HA) sequences to model the evo-
lution of H1N1. By training on HA sequences
sampled prior to the emergence of a given clade,
our model consistently predicts the most frequent
future mutations across all eight major H1N1
clades since the 2009 pandemic—without requir-
ing prior knowledge of clade identity. This work
highlights the potential of deep learning models to
forecast influenza evolution and support proactive
vaccine design.

1. Introduction
Influenza A represents one of the most significant causes of
respiratory infections worldwide, with seasonal epidemics
that infect one billion people and cause hundreds of thou-
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sands of deaths each year(WHO, 2025a). While the in-
fluenza vaccine is the primary line of defense and greatly
reduces the burden of disease, vaccines for seasonal in-
fluenza have the lowest and most variable performance of
any vaccine licensed for use in the United States, despite
decades of investment(Perofsky & Nelson, 2020). Their ef-
fectiveness is challenged by rapid evolution and continuous
antigenic shift and drift, which enables the virus to evade
host immune responses, necessitating the annual reformula-
tion of influenza vaccines to match circulating strains. Yet,
vaccine strains (including influenza A(H1N1), A(H3N2),
and B components) must be chosen more than six months in
advance to allow time for production. The World Health Or-
ganization (WHO) recommendations are primarily based on
surveillance sequencing and antigenic characterization of a
limited number of globally circulating strains, but these have
limited predictive power–traditional serological assays are
resource-intensive, making it challenging to measure neu-
tralization across thousands of circulating strains(Shu & Mc-
Cauley, 2017). Over a decade, only three influenza seasons
demonstrated more than 70% antigenic match between the
selected vaccine strain and the dominant strains six months
later(Choi et al., 2024). For example, the vaccine strain for
the 2019-2020 flu season was a clade 6B.1A.1 strain, an
emerging clade in February 2019 when WHO convened to
formulate recommendations, which mostly disappeared by
the start of November flu season as clade 6B.1A.5a took over
(Fig. 1A, 1B). Such mismatches can significantly reduce
vaccine effectiveness, emphasizing the need for improved
predictive models of viral escape.

Ideally, at the time of vaccine selection we would be able
to rank all circulating strains by their potential for domi-
nance in the next influenza season and their antigenic dis-
tance from prior infections and vaccinations. More high-
throughput experimental approaches are being developed
that can measure neutralizing titers against dozens of strains
simultaneously(Loes et al., 2024; Kikawa et al., 2025), al-
though testing all circulating strains or potential future mu-
tants remains intractable. Computational methods have also
emerged to aid vaccine strain selection, however most de-
pend heavily on large-scale antigenic data or current strain
prevalence data, limiting their ability to forecast emerging
variants(Agor & Özaltın, 2018; Gao et al., 2024; Lou et al.,
2024; Hayati et al., 2020; Shi et al., 2024).
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Figure 1. Data and modeling overview. A. Data curation strategy across 8 H1N1 clades since 2009. Tree from NextStrain(Hadfield et al.,
2018; Sagulenko et al., 2018) using data from GISAID(Shu & McCauley, 2017). B. Recommendations for influenza vaccine composition
from the World Health Organization(WHO, 2025b) (southern and northern hemisphere influenza seasons combined). C. Train and test
split strategy used for all 8 clades. D. Pipeline from sequence alignment of training dataset to EVE model to mutation effect prediction.

Alternatively, information encoded in the evolutionary his-
tory of influenza can be used to make zero-shot predic-
tions about future influenza evolution and key host adap-
tive or antigenic mutations. Annual surveillance efforts
have resulted in hundreds of thousands of sequenced strains
that are ideal for training evolutionary sequence models
for quantifying both fitness and viral escape(Shu & Mc-
Cauley, 2017). This sequencing data has previously been
used for forecasting based on lineage growth, whose pre-
dictive ability suffers from the average 3-month lag time
of influenza sequence deposition, but can instead be used
to learn the underlying patterns of influenza function and
structural constraints(Huddleston & Bedford, 2024). EVE–
a variational autoencoder that models the fitness of protein
mutations given a multiple sequence alignment–successfully
forecasts the functional effects of mutations for SARS-CoV-
2 Spike protein when trained on pre-pandemic coronavirus
sequences and aids in evaluation of vaccine strains(Thadani
et al., 2023; Youssef et al., 2025). In this study, we in-
vestigate whether EVE is sufficient to predict influenza A
evolution, particularly of the H1N1 2009 pandemic.

The 2009 ”swine flu” pandemic was a novel spillover of
H1N1 from pigs, distinct from prior 1918 and 1977 H1N1
pandemics(Saunders-Hastings & Krewski, 2016). Between
May and December 2009 alone, up to 2 million lives were
lost. The 2009 strain then displaced previous H1N1 strains
to begin producing seasonal outbreaks. At the start, muta-
tions primarily resulted in adaptation to humans, for instance
increasing binding to human-like α2,6-linked sialic acids,
increasing replication in the respiratory tract, or elevating
droplet transmission(Otte et al., 2016). The H1N1 compo-

nent of seasonal flu vaccines remained unchanged from the
2009 pdm09 strain until 2017, as circulating viruses main-
tained similar sera binding profiles for six years until anti-
genically distinct variants emerged(WHO, 2025b). Clade
6B.1 viruses obtained mutations in the Sa antigenic site that
caused detectable differences in human post-vaccination
sera, and the H1N1 vaccine component was consequently
updated to A/Michigan/45/2015. Since then, antigenic evo-
lution has dominated, resulting in five vaccine strain updates
since 2019 (Fig. 1B).

We trace the evolutionary trajectory of the H1 hemagglu-
tinin (HA) protein from the 2009 pandemic strain of In-
fluenza A H1N1 (A/California/07/2009, or pdm09) through
eight sequential, phylogenetically nested clades: 6, 6B,
6B.1, 6B.1A, 6B.1A.5a, 6B.1A.5a.2, 6B.1A.5a.2a, and
6B.1A.5a.2a.1(WIC, 2024). We demonstrate consistent
success in using EVE to predict evolution–whether host
adaptive or antigenic–at each of eight timepoints from 2009
to 2025, while training only on sequencing data available
prior to that clade’s emergence. This demonstrates the po-
tential of using evolutionary models of historical influenza
sequences to aid in vaccine strain selection.

2. Methods
A historical challenge in evaluating influenza models has
been the absence of well-defined baseline reference se-
quences from which key mutations emerged. To address
this, we perform phylogenetic analysis of H1N1 clades us-
ing the annual and interim reports sent from the Worldwide
Influenza Centre at the Francis Crick Institute to the WHO to
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inform vaccine composition(WIC, 2024). Tracking the evo-
lution of H1N1 from 2009 using these reports, we defined
each emerging clade’s characteristic mutations, identified
its most basal strain, and noted which years it was domi-
nant. We used this basal strain as the reference sequence
for modeling each clade, reverting any unique adaptations
(e.g., egg-passaged Q240R) to ensure that the reference
only contained the clade’s characteristic mutations from the
A/(H1N1)pdm09 sequence and the preceding clade. In total,
we examined the following nested clade lineages: pdm09, 6,
6B, 6B.1, 6B.1A, 6B.1A.5a, 6B.1A.5a.2, 6B.1A.5a.2a, and
6B.1A.5a.2a.1. Supplemental Fig 1 summarizes the clades,
reference strains, and training and test time alignments used.

We assembled a training dataset of all full-length influenza
A hemagglutinin protein sequences from the Global Initia-
tive on Sharing All Influenza Data (GISAID) database(Shu
& McCauley, 2017), comprising 365,500 full-length se-
quences submitted before January 1, 2025. The training
dataset for each clade-specific model was then built by fil-
tering the full Influenza A dataset to include only sequences
collected before that clade’s emergence, then deduplicating
and aligning them to the identified clade reference. Each
model was evaluated on a corresponding test dataset con-
taining all human sequences collected during the 2-4 year
period that clade was dominant and annotated as belonging
to that clade or its derivative subclades. For instance, se-
quences labeled 6B.1 or 6B.1A were included in the test set
for the clade 6B model. We assigned clade labels based on
our identified characteristic mutations, requiring only the
new mutations specific to the child clade rather than cumula-
tive acquisition of all ancestral mutations from pdm09. The
test dataset mutations were further filtered to remove any
mutation seen less than three times in order to ensure the mu-
tations were actually present in the population. Reversion
mutations back to a previous clade were also removed.

We estimate the fitness effect of mutations using EVE(Frazer
et al., 2021), a deep variational autoencoder trained on in-
fluenza sequences in our pre-clade emergence datasets. EVE
learns constraints underpinning structure and function for a
given protein family and considers higher-order dependen-
cies across positions. We compare with other alignment-
based models with different epistatic assumptions: EVcou-
plings (pairwise couplings; (Hopf et al., 2017)) and a PSSM
(site independent; (Hopf et al., 2017)), as well as EVEscape
which combines fitness predictions learned from EVE with
biophysical and structural features relevant to immune es-
cape (Thadani et al., 2023).

Additionally, we benchmarked predictions against experi-
mental data from Liu et al. 2024, which conducted deep mu-
tational scanning (DMS) assays to quantify relative fitness
scores across all mutations to the more variable globular
head domain (HA1 subunit), which includes the receptor

binding site and other key epitopes (Liu et al., 2024). For
each clade, we selected the DMS dataset performed in the
most closely related HA background: either pdm09 for early
clades or A/Wisconsin/588/2019 for clade 5a.2 onwards.
These DMS scores allowed comparison of computational
predictions to experimentally derived fitness phenotypes,
but do not capture immune escape.

3. Results
Extensive surveillance sequencing allows us to test EVE’s
ability to forecast frequent mutations in a retrospective study.
We first focus on clade 6B.1A.5a.2a (hereafter refered to
as 5a.2a) as it is the most widespread current H1N1 lin-
eage. We trained EVE on only pre-2021 sequences and
evaluated whether its top-scoring predictions corresponded
to the mutations that emerged within the years the clade was
dominant, in this case 2021 to 2025. To enforce biologically
relevant mutational constraints, we restricted our analysis to
the 4,442 possible single-nucleotide-accessible substitutions
from the clade’s reference sequence since multi-nucleotide
mutations are very rare (<4% of the test dataset). The test
dataset was also subsetted to HA1 for DMS comparison.

EVE identifies the most frequent mutations that occurred in
clade 5a.2a (Fig. 2A). All models were more likely to label
higher frequency mutations as escape than lower frequency
ones, but EVE was consistently better than the baseline
models, and the Wisconsin DMS at predicting the mutations
actually observed in the outbreak at every frequency thresh-
old, though the PSSM was surprisingly effective given its
site independent assumption. For example, out of the three
high-frequency HA1 mutations that emerged to define the
subsequent Clade 5a.2a.1, only EVE and EVcouplings cor-
rectly classify all of them as escape (Supplemental Fig. 10).
Other clade models do similarly well if not better, as five out
of eight clade models reach 100% prediction of the highest
frequency mutations (see Supplemental Figures 3-11 for
more details on each clade).

Since EVE is able to assign high scores to high frequency
clade mutations, we see that as a clade evolves, more of
EVE’s escape predictions are observed (Fig. 2B). At the
clade’s emergence in 2021, none of any model’s top muta-
tions were present in the population—an important sanity
check confirming test set mutations are novel rather than
trivial memorization of mutations present at training time.
Over the next four years, as the clade accumulated muta-
tions to escape multiple seasons of influenza vaccinations,
predicted escape mutations began to appear. By the start
of 2025, 93% of EVE’s top 100 predictions had been ob-
served at least three times, while the DMS was only able
to recover 52% of the outbreak mutations—but both have
predicted power, far outperforming the random baseline (in
gray), which reflects the background rate of seen mutations
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Figure 2. EVE predicts future outbreak HA1 mutations in the dominant H1N1 clade 6B.1A.5a.2a more accurately than deep mutational
scans. We classify the top 100 mutations as model or DMS-predicted likely outbreak mutations. A. EVE and baselines are more likely to
predict mutations that are seen in higher frequency mutations in the clade. B. By 2025, 93% of EVE’s predicted escape mutations were
observed, outperforming every other model’s predictions. C. Higher scoring EVE mutations are first seen earlier in the clade outbreak. D.
EVE and DMS predict distinct sets of mutations, though the small overlapping set all appear in the clade.

relative to all possible single-nucleotide HA1 mutations.
Notably, higher EVE scores corresponded to mutations that
were seen earlier in the outbreak (Fig. 2C), suggesting
that more fit or immune-evasive substitutions are preferen-
tially identified by EVE. Median EVE scores decline over
time as more mutations—often with weaker selection advan-
tages—accumulate, consistent with expectations of epistatic
saturation and immunological niche filling over the course
of clade evolution, with only two new mutations emerging
by the second half of 2024. This is consistent with the
plateau of predicted mutations seen after 2023 (Fig. 2B).

We directly compare EVE and DMS predictions on their
ability to identify outbreak-relevant mutations (Fig. 2D).
Out of the top 100 mutations from each method, only 13 are
shared, highlighting their divergent scoring criteria. How-
ever, EVE’s predictions are more reflective of natural viral
evolution: 80 out of the 87 other top scorers have already
been observed in the 5a.2a outbreak, compared to less than
half that from DMS. Many DMS-predicted mutations are
unseen in circulating sequences and are likely to remain
unseen as new mutation rates drop (Fig. 2B and 2C). This
underscores a limitation of even up-to-date, in vitro fitness-
only mutagenesis scans in forecasting real-world evolution.

To evaluate performance across all clade models, we quanti-
fied the proportion of clade mutations observed ≥100 times
that fall within the model’s top 100 predicted escape muta-
tions (Fig. 3A). This is a stringent benchmark that directly
quantifies how well the model recapitulates known antigenic
evolution—EVE’s top 100 scores predict 52% of HA1 mu-

tations seen more than 100 times in Clade 5a.2a, compared
to 23% by the PSSM model, 14% by EVEscape, and 12%
by the Wisconsin DMS. The DMS consistently performs
comparably to the random baseline as 65 out of 497 (13%)
total mutations in Clade 5a.2a are observed more than 100
times, and for many clades predict almost no correct mu-
tations. The outlier is Clade 5a.2 which has a single HA1
mutation observed more than 100 times, K226M (K209M
in H1 numbering), which only the DMS predicts. Although
frequent in 2020, it died out as Clade 5a.2a took over.

Additionally, EVE assigns higher scores to residues in the
antigenically-relevant head than the conserved stem domain,
and especially to clade-defining mutations (Fig. 3B-D). Top-
ranked residues disproportionately fall within the canon-
ically defined epitope regions (Sa, Sb, Ca, Cb, receptor-
binding site), and high-scoring residues often include clade-
defining mutations that mark key antigenic transitions. As
an example, we highlight the S179N (S162N in H1 num-
bering) mutation that defines Clade 6B.1 and was key to
finally moving towards a new vaccine recommendation af-
ter six years of the pdm09 strain vaccine. Lateral-patch-
binding pdm09 antibodies could not neutralize this new
strain because of this new glycosylation site in the Sa epi-
tope(Guthmiller et al., 2021). EVE predicted this mutation
as escape (within its top 100) in all three previous clade
models: its escape score is in the top 2/3rd of the pdm09
model’s escape predictions and in the top 1/3rd of Clade 6
and 6B models’ escape predictions. EVE predicted the first
major immunogenic H1N1 mutation at the very start of the
H1N1 pandemic, six years before its dominance in 2015.
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Figure 3. EVE prioritizes antigenically relevant, high frequency mutations across clades. A. Across clade models, a substantial fraction of
high-frequency (≥100x) clade mutations are ranked in the top 100 by EVE, outperforming DMS, PSSM, and random baselines. 5a.2 has
a single seen mutation. B. EVE scores (site-level maximum) of pdm09 model mapped onto a representative HA structure (PDB: 3tzg)
highlight high-scoring regions, especially the Receptor binding site (RBS) and antigenic sites Sa and Ca, within the head domain. Spheres
indicate clade-defining mutations across all 9 clades. C. EVE-predicted escape residues are consistently enriched in known head epitopes
compared to a background expectation. D. EVE-predicted escape residues in PDB epitopes are more likely to be observed.

4. Discussion
Our results demonstrate that unsupervised evolutionary mod-
els like EVE can prospectively predict key mutations in
influenza A virus HA protein, even when trained only on
historical sequence data. Across nine major H1N1 clades
that have emerged since the 2009 pandemic, we show that
the mutations prioritized by EVE before a clade’s emergence
are highly enriched for those that later become prevalent,
even more so than deep mutational scanning assays. Im-
portantly, we observe that EVE predictions are not only
temporally accurate, but also structurally plausible. High-
scoring mutations cluster in the HA head domain, especially
at known antigenic sites, while mutations in conserved stalk
helices are deprioritized. This aligns with known structural
and immunological constraints on HA evolution(Wu & Wil-
son, 2020). Furthermore, we find that EVE is predictive of
not only high-frequency mutations within a clade but also
of the defining mutations of successor clades, highlighting
the model’s capacity to anticipate lineage-defining events.

Compared to existing models for influenza evolution—many
of which rely on large-scale serological datasets or real-time
tracking of strain frequency—our approach offers a comple-
mentary strategy. By leveraging only evolutionary sequence
data, EVE enables forecasting of future mutations without
requiring extensive lab-based assays or surveillance data
that may lag behind real-time evolution. This is particularly
advantageous in under-sampled regions or for forecasting

long-term evolutionary trajectories, such as in the selection
of candidate vaccine strains. Notably, unlike prior work for
SARS-CoV-2, we find the EVE is a better predictor of future
evolution than EVEscape, likely because flu evolutionary
sequences already contain constraints relevant to immune
escape, and so do not benefit from explicit inclusion of
escape-relevant terms (Thadani et al., 2023).

Looking forward, we are working on an epistasis model to
combine single mutation scores for an interpretable strain-
wide escape score to better forecast entire vaccine strains
rather than individual mutations. We plan on extending
our framework to H3 since historically, the H3N2 vaccine
has been even less effective than the H1N1 vaccine due
to rapid antigenic evolution(McLean & Belongia, 2021).
We also plan to benchmark more computational methods,
including modifications to EVEscape for influenza, as well
as experimental scans measuring antibody escape. Overall,
this work supports the hypothesis that deep evolutionary
models, when trained on the right sequence context, can
generalize to forecast viral escape—offering a scalable, data-
efficient foundation for the future of vaccine strain design.

Acknowledgments

The authors thank Tomas Lio Grudny, Navami Jain, Pablo
Cárdenas, and members of the Marks lab, as well as
NextStrain and GISAID. This work was supported by the
Coalition for Epidemic Preparedness Innovations (CEPI).

5



Forecasting H1N1 Influenza Pandemic and Seasonal Evolution

References
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A. Supplemental Methods
Observed influenza sequences in GISAID reflect evolution under selection constraints for functional and infectious viruses.
Generative sequence models express the probability that a sequence x would be generated by this process as P(x|θ), where
the parameters θ capture the constraints describing functional variants. A generative model trained on a multiple sequence
alignment of observed viral protein variants can then be used to estimate the relative plausibility of a given mutant sequence
as compared to wild-type by using the log ratio of sequence likelihoods as a heuristic. For EVE (Frazer et al., 2021), since
an exact computation of the log likelihood of a sequence is intractable, we approximate it with the Evidence Lower Bound
(ELBO) loss used to optimize the VAE:

EEV E(x) = − log
P(x|θ)
P(w|θ)

∼ ELBO(w)− ELBO(x)

To contextualize EVE’s predictive performance, we compared against several sequence-based baselines, all computed from
the same clade-specific multiple sequence alignments (MSAs) used for EVE.

Position-Specific Scoring Matrices (PSSM) were constructed by computing the log-odds enrichment of each amino acid
at each site. Mutation scores were defined as the log-ratio between the wild-type and mutant residue frequencies at that
position, normalized by pseudocounts to avoid zero divisions. PSSM provides a simple, interpretable baseline that captures
conservation at the individual residue level without modeling interactions between sites.

EVcouplings (Hopf et al., 2019) models protein mutational constraints using pairwise statistical couplings inferred from
evolutionary covariation within an MSA, scoring each mutation by the change in statistical energy ∆E between the mutant
and wild-type sequence.

EVEscape (Thadani et al., 2023) builds upon EVE’s fitness scores with structural features (e.g., antibody accessibility) and
physicochemical dissimilarity from the reference strain to derive an escape likelihood for each mutation. We did not change
any model components for EVcouplings or EVEscape, we simply retrained on our influenza MSAs.
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B. Supplemental Figures

Figure 1. Summary information for each clade, including defining mutations, basal reference strain, and training/testing alignments
summaries. Mutation numbering is relative to the length of the full HA sequence from 1-566.

Figure 2. EVE summary statistics on full hemagglutinin, not subsetted to HA1 for DMS comparison as in Figure 3. Note that EVE top
100, seen ≥100 is consistent in purple across subfigures. A. Percentage of mutations seen ≥100x that are in the top 100 escape predictions
across baselines. B. Percentage of mutations seen ≥100x that are in EVE’s top 50, 100, and 200 escape predictions. C. Percent of
mutations seen ≥50x, ≥100x, and ≥200x that are in EVE’s top 100 escape predictions.
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Figure 3. EVE accurately forecasts mutations seen after the 2009 H1N1 pandemic during the years after A/California/07/2009 emerged
but before the first clade was defined. We classify the top 100 mutations as model-predicted likely outbreak mutations. A. Percent of
mutations seen in the clade that were predicted by EVE as a function of their minimum observed frequency. B. Distribution of mutations
seen in the clade and their EVE scores. The top ten residues with the most number of antibodies bound in the PDB are colored in gold. C.
Cumulative fraction of EVE-predicted mutations observed in the clade over time. D. Direct comparison of EVE vs DMS predicted escape
mutations across all possible HA1 mutations and HA1 mutations seen in clade. E. Higher scoring EVE mutations are first seen earlier in
the clade outbreak. F. EVE scores (site-level maximum) of the pdm09 model mapped onto a representative Hemagglutinin structure (PDB
ID 3tzg). Spheres indicate mutations observed >100 times between 2009 to 2011.

We note an anomaly in our pdm09 model, which starts out with 50% of its predicted escape mutations seen immediately on
2009-01-01 in the test dataset. We hypothesize that this is due to backfilled Collection Date annotations in GISAID—old
sequences misentered as collected on 2009-01-01 although they were sequenced and submitted years later. Nine hundred
sequences are listed as collected on January 1st, 2009 in GISAID, or equivalently 21% of the test mutations seen on January
1st itself, which is not likely to be true. Especially since none of our other models have this issue, we believe it is unique to
an early time period where real-time sequence deposition was not yet normalized. We have updated the pdm09 model to
stop training before 2008-12-31 so we can evaluate it on a test set starting from 2008-12-31 instead of 2009-01-01 like our
other models.
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Figure 4. EVE accurately forecasts mutations seen in Clade 6 during the years it was dominant (2011-2013). We classify the top 100
mutations as model-predicted likely outbreak mutations. A. Percent of mutations seen in the clade that were predicted by EVE as a
function of their minimum observed frequency. B. Distribution of mutations seen in the clade and their EVE scores. The top ten residues
with the most number of antibodies bound in the PDB are colored in gold. C. Cumulative fraction of EVE-predicted mutations observed
in the clade over time. D. Direct comparison of EVE vs DMS predicted escape mutations across all possible HA1 mutations and HA1
mutations seen in clade. E. Higher scoring EVE mutations are first seen earlier in the clade outbreak. F. EVE scores (site-level maximum)
of Clade 6 model mapped onto a representative Hemagglutinin structure (PDB ID 3tzg). Spheres indicate mutations observed >100 times
between 2011 to 2013.

Figure 5. EVE accurately forecasts mutations seen in Clade 6B during the years it was dominant (2013-2016). We classify the top 100
mutations as model-predicted likely outbreak mutations. A. Percent of mutations seen in the clade that were predicted by EVE as a
function of their minimum observed frequency. B. Distribution of mutations seen in the clade and their EVE scores. The top ten residues
with the most number of antibodies bound in the PDB are colored in gold. C. Cumulative fraction of EVE-predicted mutations observed
in the clade over time. D. Direct comparison of EVE vs DMS predicted escape mutations across all possible HA1 mutations and HA1
mutations seen in clade. E. Higher scoring EVE mutations are first seen earlier in the clade outbreak. F. EVE scores (site-level maximum)
of Clade 6B model mapped onto a representative Hemagglutinin structure (PDB ID 3tzg). Spheres indicate mutations observed >100
times between 2013 to 2016.
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Figure 6. EVE accurately forecasts mutations seen in Clade 6B.1 during the years it was dominant (2015-2018). We classify the top
100 mutations as model-predicted likely outbreak mutations. A. Percent of mutations seen in the clade that were predicted by EVE as a
function of their minimum observed frequency. B. Distribution of mutations seen in the clade and their EVE scores. The top ten residues
with the most number of antibodies bound in the PDB are colored in gold. C. Cumulative fraction of EVE-predicted mutations observed
in the clade over time. D. Direct comparison of EVE vs DMS predicted escape mutations across all possible HA1 mutations and HA1
mutations seen in clade. E. Higher scoring EVE mutations are first seen earlier in the clade outbreak. F. EVE scores (site-level maximum)
of Clade 6B.1 model mapped onto a representative Hemagglutinin structure (PDB ID 3tzg). Spheres indicate mutations observed >100
times between 2015 to 2018.

Figure 7. EVE accurately forecasts mutations seen in Clade 6B.1A during the years it was dominant (2017-2019). We classify the top
100 mutations as model-predicted likely outbreak mutations. A. Percent of mutations seen in the clade that were predicted by EVE as a
function of their minimum observed frequency. B. Distribution of mutations seen in the clade and their EVE scores. The top ten residues
with the most number of antibodies bound in the PDB are colored in gold. C. Cumulative fraction of EVE-predicted mutations observed
in the clade over time. D. Direct comparison of EVE vs DMS predicted escape mutations across all possible HA1 mutations and HA1
mutations seen in clade. E. Higher scoring EVE mutations are first seen earlier in the clade outbreak. F. EVE scores (site-level maximum)
of Clade 6B.1A model mapped onto a representative Hemagglutinin structure (PDB ID 3tzg). Spheres indicate mutations observed >100
times between 2017 to 2019.
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Figure 8. EVE accurately forecasts mutations seen in Clade 6B.1A.5a during the years it was dominant (2018-2020). We classify the top
100 mutations as model-predicted likely outbreak mutations. A. Percent of mutations seen in the clade that were predicted by EVE as a
function of their minimum observed frequency. B. Distribution of mutations seen in the clade and their EVE scores. The top ten residues
with the most number of antibodies bound in the PDB are colored in gold. C. Cumulative fraction of EVE-predicted mutations observed
in the clade over time. D. Direct comparison of EVE vs DMS predicted escape mutations across all possible HA1 mutations and HA1
mutations seen in clade. E. Higher scoring EVE mutations are first seen earlier in the clade outbreak. F. EVE scores (site-level maximum)
of Clade 6B.1A.5a model mapped onto a representative Hemagglutinin structure (PDB ID 3tzg). Spheres indicate mutations observed
>100 times between 2018 to 2020.

Figure 9. EVE accurately forecasts mutations seen in Clade 6B.1A.5a.2 during the years it was dominant (2019-2021). We classify the
top 100 mutations as model-predicted likely outbreak mutations. A. Percent of mutations seen in the clade that were predicted by EVE
as a function of their minimum observed frequency. B. Distribution of mutations seen in the clade and their EVE scores. The top ten
residues with the most number of antibodies bound in the PDB are colored in gold. C. Cumulative fraction of EVE-predicted mutations
observed in the clade over time. D. Direct comparison of EVE vs DMS predicted escape mutations across all possible HA1 mutations and
HA1 mutations seen in clade. E. Higher scoring EVE mutations are first seen earlier in the clade outbreak. F. EVE scores (site-level
maximum) of Clade 6B.1A.5a.2 model mapped onto a representative Hemagglutinin structure (PDB ID 3tzg). Spheres indicate mutations
observed >100 times between 2019 to 2021.
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Figure 10. EVE accurately forecasts mutations seen in Clade 6B.1A.5a.2a during the years it was dominant (2021-2025). We classify the
top 100 mutations as model-predicted likely outbreak mutations. A. Percent of mutations seen in the clade that were predicted by EVE as
a function of their minimum observed frequency. B. Distribution of mutations seen in the clade and their EVE scores. The top ten residues
with the most number of antibodies bound in the PDB are colored in gold. C. Cumulative fraction of EVE-predicted mutations observed
in the clade over time. D. Direct comparison of EVE vs DMS predicted escape mutations across all possible HA1 mutations and HA1
mutations seen in clade. E. Higher scoring EVE mutations are first seen earlier in the clade outbreak. F. EVE scores (site-level maximum)
of Clade 6B.1A.5a.2a model mapped onto a representative Hemagglutinin structure (PDB ID 3tzg). Spheres indicate mutations observed
>100 times between 2021 to 2025.

Figure 11. EVE accurately forecasts mutations seen in Clade 6B.1A.5a.2a.1 during the years it was dominant (2022-2025). We classify
the top 100 mutations as model-predicted likely outbreak mutations. A. Percent of mutations seen in the clade that were predicted by
EVE as a function of their minimum observed frequency. B. Distribution of mutations seen in the clade and their EVE scores. The
top ten residues with the most number of antibodies bound in the PDB are colored in gold. C. Cumulative fraction of EVE-predicted
mutations observed in the clade over time. D. Direct comparison of EVE vs DMS predicted escape mutations across all possible HA1
mutations and HA1 mutations seen in clade. E. Higher scoring EVE mutations are first seen earlier in the clade outbreak. F. EVE scores
(site-level maximum) of Clade 6B.1A.5a.2a.1 model mapped onto a representative Hemagglutinin structure (PDB ID 3tzg). Spheres
indicate mutations observed >100 times between 2022 to 2025.
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