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ABSTRACT

Neural Architecture Search (NAS) emerged as a promising approach to search for
optimal neural network architectures in a limited, predefined architecture space.
One popular method to form such a space is to derive a known architecture in
which we insert cells where NAS algorithms can automatically combine network
functions and connections. Cell-based methods yielded hundreds of thousands
of trained architectures whose specifications and performance are available to de-
sign performance prediction models. Cell-based approaches come with three main
limitations: i) generated networks have limited diversity resulting in very sim-
ilar performances, in turn hampering the generalization of trained performance
models, ii) networks’ implementations are missing hampering performance un-
derstanding, and iii) they solely focus on performance metrics (e.g., accuracy)
ignoring the growing sustainability concern. We propose CNNGen, an approach
that addresses: i) by leveraging a domain-specific language (DSL) to automat-
ically generate convolutional neural networks (CNNs) without predefined cells
or base skeleton. It allows the exploration of diverse and potentially unknown
topologies; ii) CNNGen’s comprehensive pipeline stores the network description
(textual and image representation) and the fully executable generated Python code
(integrated with popular deep-learning frameworks) for analysis or retraining, and
iii) in addition to training and performance metrics, CNNGen also computes en-
ergy consumption and carbon impact for green machine learning endeavors. We
demonstrate the possibilities of CNNGen by designing two performance predic-
tors and comparing them to the state of the art.

1 INTRODUCTION

Deep learning algorithms now efficiently power a wide range of applications, including image and
speech recognition (Lecun et al., 1998; Hinton et al., 2012), natural language processing (Touvron
et al., 2023), and autonomous vehicles (Nesti et al., 2023). Given the numerous neural architectures
available nowadays, finding the architecture that will perform best for a specific task is tedious and
requires expert knowledge (configuration of the architecture, including functions to apply). To ad-
dress this, Neural Architecture Search (NAS) (Elsken et al., 2017; 2019; Jin et al., 2019) has emerged
to automate the exploration and design of neural architectures by solving an optimization problem.
To support this research, the community developed benchmarks such as NASBench101 (Ying et al.,
2019). These benchmarks derive thousands (≈ 423K for NASBench101) of unique architectures
from a skeleton by combining connections and network functions in predefined cells. Though the
availability of such datasets is crucial for NAS optimization algorithms, they come with key limi-
tations. First, generated architectures lack diversity: 99% of generated NASBench101architectures
have a training accuracy on CIFAR-10 above 99% when trained for 108 epochs. In such cases, it
is difficult for performance prediction or classification models to discriminate highly performing
from badly performing ones. Second, essential artifacts (such as the fully trainable model code) are
missing, limiting reproducibility. Finally, these datasets tend to ignore the computational and envi-
ronmental costs incurred by training all these architectures by not recording them in the resulting
datasets. Recent studies show that these costs cannot be overlooked anymore (Wu et al., 2022; Pat-
terson et al., 2021). For example, LLaMA (Touvron et al., 2023), a large language model, required
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2, 048 high-end GPUs for an estimated carbon footprint of 173 tCO2eq1. Another study estimated
that the training of a single deep learning model can emit as much carbon as five cars over their
lifetime (Strubell et al., 2019). Although we target smaller architectures here, training thousands of
them may not be possible for smaller structures and may also result in carbon emissions.

In this paper, we propose CNNGen, a different approach for generating convolutional neural net-
works (CNNs). CNNGen relies on a domain-specific language (DSL), capturing the architecture
space via a dedicated grammar. Rather than systematically varying topologies in fixed cells, it con-
structs CNNs from scratch, assembling blocks according to grammar rules (as the example shown
in Figure 2). It results in a much more diverse set of network topologies. We randomly generated
about 1, 300 CNNs having from 9 to 272 layers and we observed widespread performance metrics.
We also store the full model code, the image representation (i.e., a PNG image as shown in Ap-
pendix A) of the network, and the computational and carbon footprint for training each network.
To demonstrate CNNGen relevance, we built two performance prediction models able to use the
PNG images of the networks and their code and compare them to a state-of-art performance pre-
dictor (Wen et al., 2019). Our code-based predictor outperforms the two others, highlighting the
interest in having this information while predicting performance. Our contributions are as follows:
i) a specialized DSL explicitly tailored for defining neural architectures; ii) a DSL-driven architec-
ture generator, transforming high-level architecture descriptions into executable Python code; iii)
a diverse and extensive dataset of neural architectures including their detailed architecture descrip-
tions, corresponding Python code, PNG images of the CNN structures, and crucial metrics like
accuracy and energy consumption for reusability; iv) two novel performance predictors, leveraging
the generated Python code and CNN images.

Section 2 presents key concepts regarding NAS and DSLs. Section 3 motivates our different ap-
proaches to CNN generation and why the use of a DSL is appropriate. Section 4 describes our DSL
and how we leverage it to build automatically CNNs, and our dataset. Section 5 presents the predic-
tors we used in our evaluation. Section 6 use our set of neural architectures generated with our DSL
to evaluate our predictors. Section 7 wraps with conclusions and presents future work.

Open science policy. Our companion website comprises2: the CNNGen tool, the dataset of 1, 300
generated architectures and their performance metrics. It also comprises the performance prediction
models used in our evaluations.

2 BACKGROUND

Neural Architecture Search (NAS) focuses on automating the design of neural network archi-
tectures, focusing on search space, search strategy, and performance estimation. Various search
strategies exist including random search, Bayesian optimization, evolutionary methods, and rein-
forcement learning (Zoph & Le, 2017; Real et al., 2019; Miikkulainen et al., 2019). Performance
estimation techniques, such as learning curve extrapolation or network morphisms, aim to reduce
computational costs (Cai et al., 2018; Domhan et al., 2015; Jin et al., 2019). AutoML, exemplified
by Auto-Keras (Jin et al., 2019; 2023), simplifies machine learning model usage for individuals with
limited expertise. While Auto-Keras starts with an existing architecture and modifies it through
morphing, it requires a good starting point and explores a small neighbourhood around the current
architecture. Removing these constraints may allow for a more extensive exploration of the possible
architectures, in turn, making the search for optimal architectures more interesting.

Domain-Specific Language (DSL) is a high-level software language that captures the essence of a
particular domain via specialized abstractions (Wąsowski & Berger, 2023). A DSL typically pro-
vides a concise, expressive syntax that enables developers to easily and accurately enounce complex
ideas. It can also capture domain knowledge with constraints, reducing the risk of errors or inconsis-
tencies. Domain-specific languages exist for numerous domains (e.g., software engineering, biology,
or robotics) and at various abstraction levels (from programming GPUs to language modelling). In
the context of neural architecture search, using a DSL can be beneficial for several reasons.

1The term “tCO2eq” means a metric measure used to compare the emissions from various greenhouse gases
on the basis of their global-warming potential.

2https://doi.org/10.5281/zenodo.8387493
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First, the task of neural architecture search is highly complex, posing significant challenges when
developing efficient algorithms with general-purpose programming languages (as the usual strate-
gies in current ML communities). The DSL can mitigate this from a new perspective, simplifying
the representation of neural architectures, and making it easier to explore the search space efficiently.
Second, a DSL can ease the creation of specialized tools and workflows tailored to the needs of NAS
researchers and practitioners. For example, a DSL can automate recurrent tasks such as data pre-
processing, model training, and hyperparameter tuning, which can save time and reduce the risk of
errors. Third, the DSL can promote standardization and collaboration within the neural architecture
search community. By providing a common language and set of tools, a DSL enables researchers
and practitioners to share and reproduce experiments, which can help accelerate progress and im-
prove the overall quality of research in the field. In conclusion, using domain-specific language
in neural architecture search tasks enhances efficiency, accuracy, and collaboration, accelerating
progress toward more effective and efficient neural network designs.

3 MOTIVATION

Ying et al. (2019) built a reusable benchmark dataset (NASBench101) that uses a specific neural
network topology. It is defined as a convolution layer, followed by what is called a “stack” and then
a downsampling layer, another stack, another downsampling layer, a third stack, a global average
layer, and finally a dense layer. Stacks are a succession of three cells and each cell can contain a
maximum of 9 transitions (from one layer to another) and/or 7 layers. Layers in a cell can only be
3×3 convolutions, 1×1 convolutions, or max-pooling. Any combination (with repetitions) of these
layers is valid as long as the number of maximum layers and transitions between them is observed. In
the end, NASBench101 encompasses approximately 423, 000 unique graphs and provides a dataset
of performances when they are trained on CIFAR-10. Yet, plotting the performances of all the archi-
tectures shows that there are little differences in the observed accuracies as shown in Figure 1a. The
distribution of the accuracy reported from the test set shows that the queue of the distribution gath-
ers the majority of the models. They can achieve 80% accuracy and above. We attribute this small
variance in performance to a limited search space around a predefined architecture. We would like
to express those architectures but also to explore more freely their possible combinations. To do so,
we introduce a grammar for CNNs to sequence layers composing an architecture (see Section 4.1).
On the contrary, Figure 1b shows that the reported distribution of CNNGen models accuracy peaks
at about 55% and normal Gaussian form of the distribution spread between 40% and 68%.

(a) Distribution of accuracies of NASBench101 models
on CIFAR-10 test set after training for 36 epochs.

(b) Distribution of accuracies of 1, 300 models gener-
ated with CNNGen on CIFAR-10 test set after training
for 36 epochs.

Figure 1: Comparison of the distribution of the accuracies of CNN fromNASBench101and from
CNNGen when evaluated on CIFAR-10 after a training for 36 epochs. NASBench101models pro-
vide a higher accuracy (mean value of 82% while CNNGen’s mean value is 55%). Yet, CNNGen’s
boxplot spread wider suggesting there is potential to look for models that perform the best.

In addition, we take into account not only the classification performance but also the energy con-
sumption that is merely considered by other works. While climate change is now undeniable and we
know we should reduce and limit our resource consumption, the size of CNN architectures keeps
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increasing (Bernstein et al., 2021) suggesting that more data are needed for training, more layers
compose the architectures and thus more operations are performed when running the CNNs. How-
ever, adding layers is not necessarily a guarantee for higher performance and it may be difficult to
estimate the ideal size of a network. Thus, we would like to offer tradeoffs between the size and
other characteristics such as the computational cost and related carbon impact.

4 CNN GENERATOR (CNNGEN)

CNNgen generates CNN architectures thanks to a context-free grammar framework (Bettini, 2016;
Combemale et al., 2016). This grammar describes the topology (i.e., the structure of the topology)
of a CNN. The grammar consists of tokens that relate to layers in a CNN and rules, extracted from
the domain, constrain their sequencing. CNNGen provides an editor that allows specifying the CNN
topology and can transform automatically this specification into the model’s code using the Keras
Python framework.

4.1 SPECIFYING NEURAL ARCHITECTURES

CNNGen relies on Xtext (Bettini, 2016; Combemale et al., 2016) for its context-free grammar frame-
work. Xtext is supported by the Eclipse Foundation and offers a complete infrastructure covering
editors, parsing, compilation, and interpretation. Formally, a grammar consists of a finite set of
non-terminals, a finite set of terminals, and a finite set of grammar rules. Our analysis of different
CNN architectures (e.g., LeNet, AlexNet, and ResNet among a few others), led us to extract five key
concepts used to describe architectures. Figure 2 shows the different rules that we defined for these
concepts and terminals in our grammar. The full grammar is provided in Appendix B.

architecture → input featureExtraction* featureDescription classification*
output

featureExtraction → conv | BatchNormalisation | pooling | skipConnection
featureDescription → flatten | globalPooling
classification → fullyConnected

Figure 2: CNNGen grammar rules

The first row shows how the concepts are combined to form a valid CNN architecture. It reads
as follows: a CNN architecture must be composed of an input layer, followed by one or multiple
layers for feature extraction, then a layer performs what we call feature description. Then, there
must be one or multiple classification layers, and finally a single output layer. The three remaining
rows specified what are the literals for each of the other keywords (i.e., featureExtraction, feature-
Description, and classification). For instance, valid layers for featureDescription are “flatten" or
“globalPooling”. For now, a classification layer can only be fully connected. We can easily extend
this grammar to support additional constructs or constraints.

As an example, let us show how we can describe a LeNet5 architecture. Figure 3 shows a graphical
representation of a LeNet5 as depicted in the original paper Lecun et al. (1998). This CNN is
composed of an input layer, followed by a convolution layer, a subsampling (now called pooling)
layer, a second convolution layer and a second subsampling layer, a flatten layer, and three fully
connected layers before the output. The LeNet5 architecture can be described in CNNGen as shown
in Figure 4. In the following, we show how to generate the model’s code from a CNN specification.

4.2 CNN GENERATION PROCESS

We rely on Xtend (Bettini, 2016) to generate the code of the trainable model. Regarding the topol-
ogy, the translation is straightforward since our grammar terminals map to Keras’ constructs. Re-
garding the hyperparameters, we need to handle multiple aspects. For instance, when dealing with
a convolution layer, we need to set the kernel size, the stride, the activation function, etc. When it
comes to a drop-out layer, we need to set the drop-out rate, and it goes on for every kind of layer.
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Figure 3: LeNet-5 architecture as described in Lecun et al. (1998)

LENET → input conv pooling conv pooling flatten fullyConnected fullyConnected output

Figure 4: LeNet5 described in the language defined in CNNGen

Since our grammar allows combinations of existing topologies, we do not have any prior about hy-
perparameter values that would maximize performance. therefore, we set them to random values.
Hyperparameter values are not independent, ignoring this will likely yield non-trainable models. For
instance, in a residual block of a ResNet, when the residual connection is merged back to the back-
bone, the merge is possible only if the two parts of the connection have the same feature dimensions
(this requirement comes from Python that is not able to cope with the merge of two structures of
different sizes). Our generator takes into account such rules to minimize the number of non-trainable
models (less than 1% of our generated networks were not trainable). Future evolutions of CNNGen
will see smarter strategies for hyperparameter selection and a DSL allowing experts to specify them.

4.3 CNNGEN OUTPUTS

We implemented a random generator in CNNGen so that it can serve as a benchmark generator. In
that case, the production and training of CNNs is fully automatic, and this is how we generated our
dataset of 1, 300 networks. As for the metrics, we record the following ones: accuracy, training
time in seconds, epochs executed, and training parameters, but also Emissions (CO2-equivalents
[CO2eq], in kg), Emissions Rate (Kg/s), CPU Power (W), GPU Power (W), RAM Power (W),
CPU Energy (Kw), GPU Energy (Kw), RAM Energy (Kw), and Total Energy Consumed (Kw),
and location-specific data such as Country Name / ISO Code. Here we use the Code Carbon 3

library to calculate measurements related to energy consumption. To ensure reproducibility, NAS-
Bench101 (Ying et al., 2019) made available the adjacency matrix of the different topologies. This
way, the different topologies that are in the benchmarks can be reproduced. Yet, this cannot ensure
the reproducibility of the results completely as, for instance, the hyperparameters may differ. To
improve this aspect, we make public, for a single model, the description of its topology in our DSL,
the generated Python code, a PNG image representing the model (i.e., the topology with hyperpa-
rameters), and associated measures.

5 PERFORMANCE PREDICTORS

NAS is a field that aims at reducing the cost of training ML models in the long run. It starts with
the training and evaluation of a set of ML models and then provides strategies to navigate through
these models (and architectures) to select the best-performing one for a specific task and for running
on a specific dataset. While building the NAS search space is already time and energy-consuming
as well as computationally demanding, some strategies (Xie et al., 2023; Elsken et al., 2019; Zhao
et al., 2021; Bender et al., 2018; Abdelfattah et al., 2021; Lin et al., 2021) require to train again few
architectures using the new dataset to process so that they can predict performances.

To reduce such costs, an interesting approach is estimating performance without training, solely
based on the topology and characteristics of the model (e.g., (Xie et al., 2023)). We offer two
performance predictors and compare them against a state-of-the-art one.

3https://codecarbon.io/
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5.1 IMAGE-BASED PERFORMANCE PREDICTION USING RESNET18

Our first predictor simply builds a relation between the graphical representation of an architecture
(i.e., a PNG image generated with a call to the Keras function plot_model 4) and its performance.
The goal is to analyze the succession of layers (and their parameters) of an architecture and predict
its performance. We chose a ResNet-18 model (He et al., 2016) as our prediction model since it is
able to perform image processing (since the input is a PNG image) at a low cost.

5.2 CODE-BASED PERFORMANCE PREDICTION USING TRANSFORMERS

Our second predictor relies on information contained in the actual Python code that is based on the
description of an architecture stated in our DSL. This predictor is able to parse the code and focus
on the different layers composing the architecture as well as extracting their hyperparameters. The
goal here is to learn correlations between the different layers and their hyperparameters on the one
hand and the performance of the architecture on the other hand. These are converted into a sequence
of tokens that is the input of a Transformer model (Vaswani et al., 2017) designed for sequence-to-
sequence tasks.

5.3 STATE-OF-THE-ART PERFORMANCE PREDICTOR

As said before, there are multiple recent methods that try to train a few architectures as a starting
point for reasoning and selecting efficiently a suitable architecture (Xie et al., 2023). These meth-
ods are divided into different categories (such as few-shot learning or zero-shot learning) but they
often use complex algorithms and heuristics to search for a suitable architecture. Neural Predictor
for Neural Architecture Search (Wen et al., 2019), on the contrary, has decided to build a simple
predictor (i.e., a regression model). It is considered a few-shot learning method (see Table 1 in (Xie
et al., 2023)) and showed good results in predicting (near-)optimal architectures at a lower cost. We
found its implementation available and took it as our baseline.

6 EXPERIMENTS

We now evaluate CNNGen by answering the following research questions:

RQ1: Can CNNGen generate architectures with a wider range of performances than those pro-
duced by NASBench101?

RQ2: How do our performance predictors compare to the state of-the-art?

The first question aims to verify that the DSL-based approach can generate a more diverse set of
CNN architectures in terms of both performance and topology compared to a cell-based approach
like NASBench101. Because of this, we claim it is more relevant to consider reasoning over our
generator than over cell-based benchmarks and provide strategies to optimize the choice of CNN
architectures to train.

The second question compares a performance predictor that we have selected from the literature
with the ones that we presented in Section 5. In this evaluation, we do not aim to demonstrate that
the two predictors we propose are better than the one mentioned in the literature. Rather, if they can
perform similarly in their predictions, it could be worth considering other kinds of predictors that
can rely on different artefacts than an abstract representation of the models.

6.1 EXPERIMENTAL SETTINGS

To conduct our experiments, we randomly drew 1, 300 architectures from CNNGen. We used the
popular CIFAR-10 dataset to train these models with 36 epochs. The whole dataset was split into
80% for the training and 20% for the test set. In the training set, 20% of the data were used for
validation. Once these models are trained, they are used for training the three considered perfor-
mance predictors (see Section 5). The 1, 300 models were split into 80% and 20% respectively for

4https://keras.io/api/utils/model_plotting_utils/
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the training and the test set. Again, 10% of the training was dedicated to validation. To mitigate the
random effect of this split, the training and evaluation of the predictors were repeated 10 times.

6.2 RQ1: CNNGEN VS NASBENCH101REGARDING PERFORMANCE DISPERSION

To answer this question, we rely on the distribution of accuracy measures. We compare the dis-
tribution of these accuracy measures from the 1, 300 CNNGen architectures and from the 423, 000
from NASBench101when evaluated on the test set. These distributions are depicted Figure 1a for
NASBench101and Figure 1b for CNNGen. As we mentioned previously, accuracy measures com-
ing from NASBench101architectures revolve mainly between 80% and 85%. On the other hand,
CNNGen architectures mainly provide accuracy measures between 40% and 68%.

Discussion. CNNGen generates diversely performing random architectures. As it does not vary
models against a reference one and does not optimize the search, it achieves a lower average perfor-
mance for generated models. We see this as an opportunity to learn from bad models as well (and
how to avoid wasting resources in their training) and produce balanced datasets. We state that this
performance diversity stems from topology diversity. NASBench101topologies can only vary inside
the cells (3 stacks of 3 cells) with a maximum of 9 nodes and 7 edges. While NASBench101authors
enumerated all the possibilities, this is not possible with CNNGen due to its much larger space.
Among our 1, 300 topologies, we were able to draw some with as few as 9 layers while others were
about 272 layers. In comparison, supposing that all the cells would have 9 layers (i.e., nodes), a
stack would have a maximum of 9 × 3 = 27 nodes, and all three stacks would have 27 × 3 = 81
layers. Adding, the remaining layers would result in approximately a maximum of 85 layers. The
smallest model coming from NASBench101is about 15 layers.

In addition to performance, these diverse topologies showed diverse results in other metrics as well,
such as energy consumption. Figure 5 presents the distribution of the energy consumption for the
models generated with CNNGen. While we cannot compare with NASBench101because it does not
provide information about energy consumption, we can see some disparities amongst the models.
Further investigations are needed to understand the possible relation between energy consumption
and the number of layers in a model. It could also motivate the search for models that perform well
(e.g., above 80% accuracy) while consuming a minimum of energy.

Figure 5: Disitribution of the energy consumption (in Watt-hour) measured via Code-Carbon for the
1, 300 models generated via CNNGen

Conclusion (RQ1)

With only 1, 300 randomly chosen models, we observe that the number of layers in topolo-
gies coming from CNNGen may be more diverse from 9 to 270 compared with 15 to 85
regarding NASBench101for a much greater number of architectures. Our generated mod-
els with CNNGen report lower accuracies than the ones reported by NASBench101but
that could offer new opportunities for optimization search. The energy distribution shows
promise in designing energy prediction models.
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6.3 RQ2: PERFORMANCE PREDICTION

The goal is to compare whether our two predictors perform similarly with regard to the state-of-the-
art predictor (i.e., neural predictor). To answer this question we use the Kendall rank correlation
coefficient (known as Kendall’s tau, Ktau, or Kτ ) and the mean average error (MAE) regarding the
difference between the prediction and the observed accuracy measures. The first measure will ensure
that, regardless of how far the predictions can be from actual accuracy measures, the predictors are
still able to find the best-performing models. In fact, it guarantees that the ranking is respected.
Ktau is defined between −1 and 1 with 0 stating that the ranking provided by the predictions is
not correlated with the ones from the observed measures. The MAE will measure the mean error
between observed measures and the predictions. It is defined between 0 and +∞, with 0 a perfect
prediction that never differs from observed measures. In addition, we perform a Mann-Whitney
statistical test and report the p-value to support our observations. The null hypothesis is that the
two sets of measures come from the same distribution. We consider that the null hypothesis can
be refuted if the reported p-value is lower than 0.05 (or 5e−2). Figures 6 and 7 report respectively
the boxplots of ktau and MAE measures over 10 repetitions when trying to predict based on the
PNG image (called img, on the left), the Python code (called py_code, in the middle) and the neural
predictor (called neural_predictor, on the right).

Figure 6 shows that the neural predictor has a mean Kτ of 0.10 which suggests that there is a low
correlation between the ranking performed by the predictions and the ones with actual measures.
We note that the img predictor provides a lower mean Kτ (i.e., 0.05). On the contrary, the py_code
predictor gets a higher mean Kτ (about 0.30). Thus, the py_code seems to be the best predictor
among the three while the two others are comparable. This conclusion is supported by the upper part
of Table 1. We can refute the null hypothesis when comparing py_code to either of the two other
predictors. When comparing the distributions between img and neural_predictor, the reported p-
value is closer to the limit (i.e., 0.05) but still below (0.037) which suggests that the neural predictor
and its higher kτ coefficients should be considered second. Now, when considering the MAE and
Figure 7, the mean value regarding py_code is still below than others. To be noted, there is an outlier
in the distribution. Then, img has the second lower mean MAE and finally the neural predictor.
Looking at the lower part of Table 1, the p-values reveal that img and py_code boxplots are different
from the one from the neural predictor. However, with a p-value of 0.088 when comparing the
distributions coming from img and py_code, we cannot refute the null hypothesis.

Discussion. Providing the code of the generated models allows us to derive more accurate perfor-
mance predictors and the image allows simple models to be on par with the state of the art. This
demonstrates the relevance of providing more information than the adjacency matrix of the network
to derive performance predictors.

Figure 6: Boxplots reporting Kendall’s tau (Kτ )
from our 10 runs to compare the three different
predictors. On the left, only the PNG image is
used to predict, in the middle, the Python code is
used, and on the right is the state-of-the-art pre-
dictor (i.e., neural predictor).

Figure 7: Boxplots reporting mean average er-
ror (MAE) from our 10 runs to compare the
three different predictors. On the left, only the
PNG image is used to predict, in the middle, the
Python code is used, and on the right is the state-
of-the-art predictor (i.e., neural predictor).
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P-value
Kτ

img vs. py_code 1.8e−4

img vs. neural 3.7e−2

py_code vs. neural 1.8e−4

MAE
img vs. py_code 8.8e−2

img vs. neural 7.2e−3

py_code vs. neural 2.8e−3

Table 1: p-values Mann-Whitney statistical tests when comparing the results from the predictors
against each others. The top part reports the p-values when comparing the Kτ ranking correlation
coefficient while the bottom part considers measures from the MAE.

Conclusion (RQ2)

Considering both measures (i.e., kτ and MAE), our py_code is better on both measures
than the state-of-the-art predictor when trying to predict the performance over our 1, 300
CNNGen models. Then, since img seems better than the neural predictor over MAE and
vice-versa over Kτ we cannot really conclude whether one prevails but rather we consider
them equivalent.

7 CONCLUSION

This work introduced CNNGen, a context-free grammar-based architecture generator capable of
producing a diverse range of CNN architectures tailored for image classification tasks within Neu-
ral Architecture Search (NAS). CNNGen also offers two new performance predictors. To evalu-
ate CNNGen, we randomly generated 1, 300 architectures and observed their diversity in terms of
topologies, performance or energy consumption. This diversity is much higher than for cell-based
approaches such as NASBench101. We also evaluated our performance predictors against the state-
of-the-art and demonstrated the utility of providing the model code and the image representation to
build quality predictors. In particular, our code-based transformer performs best.

For future work, two research directions emerge. First, we would like to include NAS optimiza-
tion techniques in CNNGen. For instance, Genetic Programming (GP) or Genetic Improvement
(GI) techniques (Kifetew et al., 2017) can lead to computationally efficient explorations (Liu et al.,
2022). GI would allow for automatic exploration and optimization of the architectures following
an evolutionary strategy. The second research direction concerns the predictor design. We would
like to explore prediction models for other quantities than performance, and in particular energy
consumption or environmental impact. Our goal is to use such predictors during search to estimate
accurately the property of a candidate network without having to train it. CNNGen paves the way
for more sustainable NAS practices.
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A CNNGEN SAMPLE ARCHITECTURES

Figure 8: a visual representation of a CNN generated by CNNGen stored as a PNG image. This is
used by one of the proposed performance predictors as input to predict the accuracy of a new CNN
architecture (before training).
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Figure 9: a visual representation of a CNN generated by CNNGen stored as a PNG image. This is
used by one of the proposed performance predictors as input to predict the accuracy of a new CNN
architecture (before training).
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Figure 10: a visual representation of a CNN generated by CNNGen stored as a PNG image. This is
used by one of the proposed performance predictors as input to predict the accuracy of a new CNN
architecture (before training).
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B CNNGEN’S GRAMMAR

CNNDescLang : cnndesclang = (Architecture);
Architecture : input = (’input’) fe += (FeatureExtraction)+ (inter =

(Interstice) class += (Classification)+)? output = (’output’);
Dropout : ’dropout’;
Pooling : ’avg_pooling’ | ’max_pooling’;
Convolution : (bnconv = ’bnconv’) | (convbn = ’convbn’) | (conv =

’conv’);
GlobalPooling : (’global_avg_pooling’) | ("global_max_pooling");
FlattenOrGlobal : (flat=’flatten’) | (gp = GlobalPooling);
Interstice : fg = (FlattenOrGlobal);
Classification : drop = (Dropout)? d=(’dense’);
ConvDrop : conv = Convolution (drop = Dropout)?;
MergeConv : merge=Merge convdrop += (ConvDrop)*;
ConvOrMerge : convdrop += (ConvDrop)+ | convdrop += (ConvDrop)*

mergeConv += MergeConv+;
Left : (p=Pooling)? com=ConvOrMerge (pool=Pooling)?;
Right : conv += Convolution+ | {Right} empty = ’Empty’;
MergeBody : ’(’ left = Left virg=’,’ right = Right ’)’;
Merge : db = ’[’ (mergeBody+=MergeBody)+ fm = ’]’;
FeatureExtraction : (conv = Convolution | merge = (Merge)) drop = (Dropout)?

pool = (Pooling)?;

Figure 11: Complete CNNGen grammar rules

15


	Introduction
	Background
	Motivation
	CNN Generator (CNNGen)
	Specifying Neural Architectures
	CNN Generation Process
	CNNGen Outputs

	Performance Predictors
	Image-Based Performance Prediction using ResNet18
	Code-Based Performance Prediction using Transformers
	State-of-the-Art Performance Predictor

	Experiments
	Experimental Settings
	RQ1: CNNGen vs NASBench101Regarding Performance Dispersion
	RQ2: Performance Prediction

	Conclusion
	CNNGen Sample Architectures
	CNNGen's Grammar

