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Abstract

It is important to estimate an accurate signed distance function (SDF) from a point
cloud in many computer vision applications. The latest methods learn neural SDFs
using either a data-driven based or an overfitting-based strategy. However, these two
kinds of methods are with either poor generalization or slow convergence, which
limits their capability under challenging scenarios like highly noisy point clouds.
To resolve this issue, we propose a method to promote pros of both data-driven
based and overfitting-based methods for better generalization, faster inference, and
higher accuracy in learning neural SDFs. We introduce a novel statistical reasoning
algorithm in local regions which is able to finetune data-driven based priors without
signed distance supervision, clean point cloud, or point normals. This helps our
method start with a good initialization, and converge to a minimum in a much
faster way. Our numerical and visual comparisons with the state-of-the-art methods
show our superiority over these methods in surface reconstruction and point cloud
denoising on widely used shape and scene benchmarks. The code is available at
https://github.com/chenchaol5/LocalN2NM.

1 Introduction

It is an important task to estimate an implicit function from a point cloud in computer graphics,
computer vision, and robotics. An implicit function, such as a signed distance function (SDF),
describes a continuous 3D distance field to indicate distances to the nearest surfaces at arbitrary
locations. Since point clouds are easy to obtain, they are widely used as an information source to
estimate SDFs, particularly without using normals that are not available for most scenarios. The
challenge for SDF estimation mainly comes from the difficulty of bridging the gap between the
discreteness of point clouds and the continuity of implicit functions.

Recent methods [62, 64, 29, 14, 95, 80, 58, 74] overcome this challenge using either a data-driven
based or an overfitting-based strategy. To map a point cloud to a signed distance field, the data-driven
based methods [00, 27, 36, 45, 81,79, 22,42, 92, 83] rely on a prior learned with signed distance
supervision from a large-scale dataset, while the overfitting-based methods [28, 1, ,2,99,4,21,

, 18, 88] do not need signed distance supervision and just use the point cloud to infer a signed
distance field. However, both of the two kinds of methods have pros and cons. The data-driven based
methods can do inference fast but suffers from the need of large-scale training samples and poor
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generalization to instances that are unseen during training. Although the overfitting-based methods
have a better generalization ability and do not need the large-scale signed distance supervision, they
usually require a much longer time to converge during inference. The cons of these two kinds of
methods dramatically limit the performance of learning neural SDFs under challenging scenarios like
highly noisy point clouds. Therefore, beyond pursuing higher accuracy of SDFs, how to balance the
generalization ability and the convergence efficiency is also a significant issue.

To resolve this issue, we propose to learn an SDF from a single point cloud by finetuning data-driven
based priors. Our key idea is to promote the advantages of both the data-driven based and the
overfitting-based strategy to pursue better generalization, faster inference, and higher accuracy. Our
method overfits a neural network on a single point cloud to estimate an SDF with a novel loss
without using signed distance supervision, clean point, or point normals, where the neural network
was pretrained as a data-driven based prior from large-scale signed distance supervision. With
finetuning priors, our method can generalize better on unseen instances than the data-driven based
methods, and also converge much more accurate SDFs in a much faster way than the overfitting-based
methods. Moreover, our novel loss for finetuning the data-driven based prior can conduct a statistical
reasoning in a local region which can recover more accurate and sharper underlying surface from
noisy points. We report numerical and visual comparisons with the state-of-the-art methods and show
our superiority over these methods in surface reconstruction and point cloud denoising on widely
used shape and scene benchmarks. Our contributions are summarized below,

* We introduce a method which is capable of funetuning a data-driven based prior by minimiz-
ing an overfitting-based loss without signed distance supervision, leading to neural SDFs
with better generalization, faster inference, and higher accuracy.

» The proposed overfitting-based loss can conduct a novel statistical reasoning in local regions,
which improves the accuracy of neural SDFs inferred from noisy point clouds.

* Our method produces the state-of-the-art results in surface reconstruction and point cloud
denoising on the widely used benchmarks.

2 Related Works

Learning implicit functions has achieved promising performance in various tasks [62, 64, 29, 14,
, 80, 58,74, 30, 31, 33]. We can learn neural implicit representations from different supervision
including 3D supervision [61, 69, 59, 17], multi-view images [78, 44, 38, , 46,94, 63,41, ,
, 89, 84, 85], and point clouds [92, 43, 60, 27]. We briefly review the existing methods

related to point clouds below.

2.1 Data-driven based Methods

In 3D supervision, many techniques utilize a data-driven approach to learning priors, and then apply
these learned priors to infer implicit models for unseen point clouds. Some strategies focus on
acquiring global priors [60, 27, , 81,79, 22, 42] at the shape level, whereas others aim to boost
the generalization of these prlors by learning local priors [92, 83, 11, 37, 6, 51] at the component or
patch level. These learned priors facilitate the marching cubes algorithm [47] to reconstruct surfaces
from implicit fields. The effectiveness of these methods often rely on extensive datasets, but they
may not generalize well when facing with unseen point clouds that significantly deviate in geometry
from training samples.

2.2 Overfitting-based Methods

In an effort to enhance generalization, some methods concentrate on precisely fitting neural networks
to single point clouds. These methods incorporate innovative constraints [28, 1, s , 217,
utilize gradients [50, 18, 88], employ differentiable Poisson solvers [70], or apply specrally tailored
priors [51, 54] to learn either signed [50, 28, 1, , 2, 15,56, 13] or unsigned distance functions [ 18,

, ]. Despite achieving significant advances, these approaches typically require clean point
clouds to accurately determine distance or occupancy fields around the point clouds.
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Figure 1: The overview of our method. We learn the data-driven based prior by learning a neural
implicit function f’ with a condition ¢’ on a clean dataset. During inference, we employ a novel
statistical reasoning algorithm to infer a neural SDF f for a noisy point cloud M with learned prior
(average code and learned parameter).

2.3 Learning from Noisy Point Clouds

The key to accurately reconstructing surfaces on noisy point clouds is to minimize the effect of noise
in inferring implicit functions. PointCleanNet [73] was developed to filter out noise from point clouds
through a data-driven approach. GPDNet [72] incorporated graph convolution based on dynamically
generated neighborhood graphs to enhance noise reduction. Some other methods leveraged point
cloud convolution [6], alternating latent topology [90, 57], semi-supervised strategy [106, 19], dual
and integrated latent [76], or neural kernel field [91, 35] to reduce noise from point clouds. On the
unsupervised front, TotalDenoising [10] adopts principles similar to Noise2Noise [40], utilizing a
spatial prior suitable for unordered point clouds. DiGS [3] employs a soft constraint for unoriented
point clouds. Noise2NoiseMapping [52] leverage statistical reasoning among multiple noisy point
clouds with specially designed losses. Some methods using downsample-upsample frameworks [48],
gradient fields [49, 9, 16, 68, 65], convolution-free intrinsic occupancy network [67], intra-shape
regularization [66], eikonal equation [96, 23], neural Galerkin [34] and neural splines [93] have been
implemented to further diminish noise in point clouds. Our method falls in this category, but we aim
to promote the advantages of both the data-driven based and the overfitting-based strategy to pursue
better generalization, faster inference, and higher accuracy.

3 Method

Overview. We aim to infer a neural SDF f from a single point cloud with noises M. Our method
includes two stages shown in Fig. 1, one is to learn a prior f’ in a data-driven manner, the other is to
infer a neural SDF f on unseen noisy point cloud M. At the first stage, we learn a prior by training
a neural SDF using ground truth signed distances of clean meshes indicated by embeddings CS At
the second stage, we finetune the learned prior f’ to infer a neural SDF f of M using our proposed
local noise to noise mapping, where the embedding c indicating M is also learned. We can use the
marching cubes algorithm [47] to extract the zero-level set of f as the mesh surface of M.

Neural Signed Distance Function. We leverage an SDF f to represent the geometry of a shape.
An SDF f is an implicit function that can predict a signed distance s for an arbitrary location g, i.e.,
s = f(q). The latest methods usually train a neural network to approximate an SDF from signed
distance supervision or infer an SDF from 3D point clouds or multi-view images. A level set is an
iso-surface formed by the points with the same signed distance value. For instance, zero-level set is a
special level set, which is formed by points with a signed distance of 0. On the zero-level set, the
gradient V f(¢) of the SDF f at an arbitrary location ¢ is also the surface normal at g.

Data-driven Based Prior. As shown in Fig. 1, we employ an auto-decoder similar to DeepSDF [69]
for learning a prior f’ in a data-driven manner and inferring a neural SDF f for single point clouds
with noises, respectively. We employ a data-driven strategy to learn a prior f’ from clean meshes
first. Specifically, we learn f’ with an embedding c;. as a condition of queries. For each shape, we
sample queries ¢ around a shape represented by c’j, and establish the signed distance supervision by
recording the signed distance s to the ground truth mesh. Thus, we learn the prior f/ by minimizing
the prediction errors to the ground truth signed distances,
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where c] is a learnable condition for the i-th training shape, ¢; is the j-th query that is randomly

sampled around the i-th shape, and sf is the ground truth signed distance. We also add a regularization
term on the learned embeddings ¢}, and « is the balance weight.

Signed Distance Inference. With the learned prior f’, we infer a neural SDF f for a single point
cloud with noises M. We do not require ground truth signed distances, clean point clouds, or even
point normal during the inference of f. Specifically, we infer f by finetuning parameters of f’ with a
learnable embedding c indicating the single point cloud with noises. The finetuning relies on a novel
statistical reasoning algorithm on local regions.

The advantage of our method lies in the capability of conducting the statistical reasoning in local
regions. Comparing to the global reasoning method [52], our method is able to not only infer more
accurate geometry but also significantly improve the efficiency. Our method starts from randomly
sampling a local region m,, on the shape M. We randomly select one point on M as the center of
My, and set up its K nearest noisy points as a local region m,,. Then, we randomly sample U queries
{@.}Y_, around m,,, and also randomly select U noisy points {p, }_; out of m,, for statistically
reasoning the surface in each iteration.

Our key idea of inferring a neural SDF f is to estimate a mean zero-level set that is consistent to
all points in the local region m,,. To this end, we use the U sampled queries {g, } to represent the
zero-level set in this area using f, and minimize the distances of the U noisy points {p, } to the
zero-level set in each iteration. Statistically, the expectation of the zero-level set should have the
minimum distance to all the noisy point splitting in region m,.

Specifically, we first project the U sampled queries {g,} onto the zero-level set of f using a
differentiable pulling operation [50]. For each query ¢, its projection on the zero-level set is,

T = qu— 5%V [(qu,)/|Vf(qu,c)l, 2)

where g/, is the projection of g, on the zero-level set, s = f(qGy, ¢), V f(Gu, ¢) is the gradient of f at
the location g, and c is the learnable embedding that represents the noisy point cloud M.

With the pulling operation, we can use projections {q,, } of queries {7, } to approximate the zero-level
set in region m,,. With a coarse zero-level set estimation, we expect this zero-level set can be
consistent to various subsets of noises {p,, } sampled from m,,. Thus, we minimize the errors between
the {¢,,}Y_, and a subset of points {p, }V_; on area m,, in each optimization iteration,

win B, ot g oo, EM D}, {po}) + Bl 3, 3)

where we learn f through finetuning the prior f” and learning the embedding ¢ representing the noisy
point cloud M. The expectation is over the local regions m,, that randomly sampled from the noisy
point cloud M, and the subset patch p, randomly sampled from each m,,. We follow the method [52]
to use the EMD to evaluate the distance between the two sets of points, which leads the neural SDF f
to converge on the specific noisy point cloud M.

Initialization. The network architecture of f is the same to the one of prior f’. We learn f with the
parameters of f” as the initialization, representing the prior that we learned. For the embedding c that
represents M, we initialize ¢ as the center of the embedding space learned by the prior f’ in Eq. 1,
ie,c=1/I ZZI: 1 ;. This initialization is important for the accuracy and efficiency of learning f
for single noisy point cloud M. This finetuning of parameters of f also shows advantages over the
auto-decoding [69] in terms of generalization and efficiency. We will justify these advantages in our
experiments.

Implementation Details. We randomly select one point from noisy point cloud M as a center, and
select its K = 1000 nearest points to form a local region m,,. We also randomly sample U = 1000
queries around the K noisy points for statistically reasoning. Specifically, we adopt a method



Metrics | PSR [39] | PSG [24] | R2N2[20] | COcc [71] | SAP[70] | OCNN [87] | IMLS [45] | POCO [7] | ALTO [90] | N2NM [52] | Ours
CDp, 0.299 0.147 0.173 0.044 0.034 0.067 0.031 0.030 0.028 0.026 0.023

NC 0.772 - 0.715 0.938 0.944 0.932 0.944 0.950 0.955 0.962 0.973
F-Score 0.612 0.259 0.400 0.942 0.975 0.800 0.983 0.984 0.985 0.991 0.992

Table 1: Numerical Comparisons on ShapeNet dataset in terms of C'Dy; x 10, NC and F-Score.

introduced by NeuralPull [50] to sample queries around each one of the K noisy points. We use
a Gaussian distribution centered at each point and set the standard deviation as the distance to the
51th nearest neighbor in the point cloud. We run the marching cubes for surface reconstruction at a
resolution of 256 for shapes, and 512 for large-scale scenes.

The length of the embedding c or ¢’ is set to 256. We use Adam optimizer for learning a neural
implicit network, which is an auto-decoder similar to DeepSDF [69]. For training, we use an initial
embedding learning rate of 0.0005 for updating embeddings and an auto-decoder learning rate of
0.001 for optimizing the prior network. Both learning rates are decreased by 0.5 for every 500 epochs.
We train the prior network f’ for 2000 epochs. For inference, we finetune the network f’ for each
noisy point cloud in 4000 iterations with a learning rate of 0.0001.

4 Experiments and Analysis

We compare our method with the latest methods in terms of numerical and visual results on synthetic
point clouds and real scans in surface reconstruction.

Datasets and Metric. We use eight datasets including shapes and scenes in the evaluations.
For shapes, we conduct experiments under five datasets including ShapeNet [12], ABC [22], FA-
MOUS [22], Surface Reconstruction Benchmark (SRB) [92] and D-FAUST [5]. For scenes, we
conduct experiments under three real scan datasets including 3D Scene [105], KITTI [26], Paris-rue-
Madame [75], and nuScenes [8]. We leverage L1 Chamfer Distance (C'Dy1), L2 Chamfer Distance
(C'Dpo) to evaluate the error between the reconstructed surface and ground truth. We also use Normal
Consistency (NC) [59] and F-Score [82] with a threshold of 1% to evaluate the normal accuracy of
the reconstructed surface. In the ablation study, we also report time consumption to highlight the
superiority of our data-driven based prior. For KITTI and Paris-rue-Madame datasets, due to their
lack of ground truth meshes, we only report visual comparisons.

4.1 Surface Reconstruction for Shapes

Evaluation on ShapeNet.
We first report our results
on shapes from ShapeNet.
We report evaluations by
comparing our method with
the latest prior-based and
overfitting-based methods
in Tab 1. For prior-based
methods, we compare our
method with PSG [24],
R2N2 [20], COcc [71],
OCNN [87], IMLS [45],
POCO [7], and ALTO [90].
All of these methods are
pretrained to learn priors
using shapes with noises
in training set of ShapeNet.
We also follow these meth-
ods to use the same set of training shapes to learn our prior. For overfitting-based methods, we
compare our method with PSR [39], SAP [70], and N2NM [52]. These methods did not need to learn
a prior, and have the ability of inferring neural implicit functions on each shape in the testing set. We
also follow these methods and report our results by finetuning our prior through overfitting on each
testing shape. All the shapes for testing are corrupted with noises with a variance of 0.005.
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Figure 2: Comparison in surface reconstruction on ShapeNet. More
visual results are provided in the appendix.



Metrics | SAP [70] [ N2NM [52] | Ours

The comparisons in Tab. 1 indicate that our method can infer  ———rmm — %omn | smm

much more accurate neural implicit functions than the prior-based
methods. The improvement comes from the ability of conducting
test time optimization with the learned prior and inferring signed
distances using the local noise to noise mapping. Moreover, our
local statistical reasoning not only achieves better ability of recovering geometry from noisy points
than overfitting-based methods but also significantly reduces the time complexity during the test time
overfitting procedure with our prior. Different from prior-based methods, our ability of conducting test-
time optimization with our local statistical reasoning loss can significantly improve the generalization
ability on unseen shapes. Tab. 2 shows that our method can infer neural implicit functions on single
shapes much faster than the overfitting-based methods. We also demonstrate our advantages in visual
comparisons in Fig. 2. # \

v

1

Table 2: Time consumption
on ShapeNet dataset with
overfitting-based methods.

Evaluation on ABC. We also report
our evaluations on ABC dataset in
Tab. 3. We learn priors from shapes
in training set, and finetune this prior
for each single shape in the testing =
set. The numerical comparisons are \

conducted on the testing set of ABC Input IMLS P2s NeuralPull ~ Ours GT
dataset released by P2S [22]. It in- Figure 3: Comparison in surface reconstruction on ABC.

cludes two versions with different More visual results are provided in the appendix.

noise levels. Similarly, we also report comparisons with prior-based methods and overfitting-based
methods. With our local noise to noise mapping, we achieve the best performance over all baselines.
Compared to prior-based methods, such as P2S [22], COcc [71], and POCO [7], our loss can infer
more accurate geometry during the test time overfitting procedure. Also, the ability of finetuning the
prior can also provide a coarse estimation and a good start for inferring neural implicit from single
noisy points. Besides the accuracy, we also observe improvements on efficiency. Fig. 3 demonstrates
the improvements over the baselines in terms of surface completeness and edge sharpness.

Evaluation on SRB. We report previous “;?’
experiments using man-made objects in k
ShapeNet and ABC dataset, We also re- 4
port our results on real scans on SRB ¢
dataset [92]. Since there is no training sam-
ples on SRB, we use the prior learned from
the ShapeNet as the prior for real scans. Al-
though the shapes in ShapeNet are not sim-
ilar to shapes in SRB, we found the prior '

can also work well with the scans on SRB.  Input Point2Mesh SIREN ~ GridPull ALTO  Ours
Different from the man-made objects, real Figure 4: Comparison in surface reconstruction on SRB.
scans have unknown noises. We report the More visual results are provided in the appendix.
evaluations with the prior-based and overfitting-based methods in Tab. 4 and Fig. 4. The comparisons
show that our method achieves the best performance in implicit surface reconstruction. Under the
same experimental settings, our method can infer more accurate geometry details with our local noise
to noise mapping.

Evaluation on FAMOUS. We re-
port evaluations on more complex
shapes on FAMOUS dataset. Sim-
ilar to SRB, we also use the prior
learned from ShapeNet. We evalu-
ate the performance on two kinds of
noises in Tab. 5. We can see that our
method can recover more geometry

4

details and achieve higher accuracy §2
and smoother surfaces. We also report £
visual comparisons in Fig. 5, which Input IMLS LPI GridPull Ours GT

also highlights our improvements in Figure 5: Comparison in surface reconstruction on FAMOUS.
More visual results are provided in the appendix.



Dataset | PSR [39] | P2S [22] | COcc [71] | NP [50] | IMLS [45] | PCP [55] | POCO [7] | OnSurf [53] | N2NM [52] | Ours
ABC var 3.29 2.14 0.89 0.72 0.57 0.49 2.01 3.52 0.113 0.096
ABC max 3.89 2.76 1.45 1.24 0.68 0.57 2.50 4.30 0.139 0.113

Table 3: Numerical Comparisons on ABC dataset in terms of C D5 x 100.

Metrics | IGR [28] | Point2Mesh [32] | PSR [39] | SIREN [77] | GP[16] | ALTO [90] | Steik [96] | SAP [70] | NKSR [35] | N2NM [52] | Ours
CDz: | 0178 0.116 0.232 0.123 0.086 0.089 0.079 0.076 0.069 0.067 0.055
F-Score | 0.755 0.648 0.735 0.677 0.766 0.772 0.822 0.830 0.829 0.835 0.860

Table 4: Numerical Comparisons on SRB dataset in terms of C Dy x 10 and F-Score.

terms of accuracy, smoothness, com-
pleteness, and recovered sharp edges.

Evaluation on D-FAUST. Finally, we
report our results on non-rigid shapes,
i.e., humans. Different from rigid
shapes in the previous experiments,
humans are with more complex poses.
We learn a prior from the training set,
and finetuning the prior on unseen hu-
mans with different poses. We mainly
compare our method with overfitting-
based methods in Tab. 6. We can see
that our method achieves the best per-
formance in CD, F-Score, and com-
parable performance to N2NM [52]
but with faster inference speed. We
further show the visual comparison in

=<

; \
Fig. 6. We can see that our method < i / q
can recover more accurate geometry Input IGR Point2Mesh  SAP Ours GT
and poses. Figure 6: Comparison in surface reconstruction on D-FAUST.

More visual results are provided in the appendix.

4.2 Surface Reconstruction for Scenes

Since we have a limited number of scenes for training, we use the prior learned from ShapeNet as the
pretrained prior in our experiments on scenes. Specifically, we conduct experiments on four different
scene datasets: 3D Scene [105], KITTI [26], Paris-rue-Madame [75] and nuScenes [8], where the
results on nuScenes are reported in the appendix.

Evaluation on 3D Scene. We further evaluate our method in surface reconstruction for scenes in
3D Scene [105]. We follow previous methods LIG [37] to randomly sample 1000 points per m?.
We compare our method with the latest methods including COcc [71] and LIG [37], DeepLS [11],
NeuralPull (NP) [50] and Noise2NoiseMapping (N2NM) [52]. For prior-based methods COcc [71]
and LIG [37], we leverage their released pretrained models to produce the results, and we also provide
them with the ground truth point normals. For overfitting-based methods DeepLS [1 1], NP [50] and
N2NM [52], we overfit them to produce results with the same noisy point clouds. We follow LIG [37]
to report C'Dy,1, C Dy and NC for evaluation. We report the comparisons in Tab. 7. The results
demonstrate that our method outperforms both kinds of methods with learned priors such as LIG [37]
and overfitting-based N2NM [52]. The visual comparisons in Fig. 7 show that our method can reveal
more geometry details on real scans, which justifies our capability of handling noise in point clouds.

ConvOcc DeepLS GridPull N2NM Ours GT
Figure 7: Comparison in surface reconstruction on 3D Scene.
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Dataset | PSR [39] | NP [50] | IMLS [45] | LPI[I15] | PCP [55] | POCO [7] | OnSurf [53] | GP[16] | N2NM [52] | Ours
F-var 1.80 0.28 0.80 0.19 0.07 1.50 0.59 0.13 0.033 0.029
F-max 3.41 0.31 0.39 0.26 0.30 2.75 3.64 0.21 0.117 0.105

Table 5: Numerical Comparisons on FAMOUS dataset in terms of C' D5 x 100.

Metrics IGR [28] | Point2Mesh [32] | PSR [39] | SAP [70] | N2NM [52] | Ours
CDpy x 10 0.235 0.071 0.044 0.043 0.037 0.034
F-Score 0.805 0.855 0.966 0.966 0.966 0.973
NC 0911 0.905 0.965 0.959 0.970 0.968

Table 6: Accuracy of reconstruction on D-FAUST dataset in terms of C D1, NC and F-Score.

Evaluation on KITTI. Following GridPull [16], we further evaluate our method on KITTI [26]
odometry dataset (Sequence 00, frame 3000 to 4000), which contains about 13.8 million points,
which are split into 15 chunks. We reconstruct each of them and concatenate them together for
visualization. We compare our method with the latest methods SAP [70] and GridPull [16]. As shown
in Fig. 8, our method is robust to noise in real scans, successfully generalizes to large-scale scenes,
and achieves visual-appealing reconstructions with more details.

Evaluation on Paris-rue-Madame. Following N2NM [52], we further evaluate our method on
Paris-rue-Madame [75], which contains much noises. We split the 10 million points into 50 chunks
each of which is used to learn a neural implicit function. We compare our method with LIG [37] and
N2NM [52]. For LIG [37], we produce the results for each chunk with released pretrained models.
For N2NM [52], we overfit on all chunks until convergence. As shown in Fig. 9, we achieve better
performance over LIG [37] and N2NM [52] in large-scale surface reconstruction, which highlight
our advantages in reconstructing complete and detailed surfaces from noisy scene point clouds.

4.3 Ablation Studies

We conduct ablation studies on the ABC dataset [22] to justify each module of our method.

Embedding Size. We evaluate our performance on different
sizes of embedding c. We try several sizes {128, 256,512} to  ~CDp, x 100
infer the signed distance functions from a noisy point cloud. ] L
The numerical comparison in Tab. 8 shows that the optimal Table 8: Effect of the embedding size.
result is obtained with a size of 256. Deviations from this value, either longer or shorter dimensions,
leads to worse results with the current number of training samples.

128
0.102

256
0.096

512
0.114

Metric

Prior. We conduct experiments to ex- Metric Without Prior | Without Embed | Fixed Param | With Prior
plore the importance of data-driven ~ CDr2 x 100 0.108 0.103 0.144 0.096
Time 1h 12min 30min 8 min

based prior. We first replace our
learned embedding ¢ and parameter Table 9: Effect of the prior.

with randomly initialized embedding and parameter, or only replace ¢ with randomly initialized
embedding. As shown in Tab. 9, The degenerated result of “Without Prior” and “Without Embed”
indicates that directly inferring implicit functions without our prior or learned embedding makes it
difficult to accurately learn the surfaces of the noisy point clouds, and also slows the convergence.
Then we fix the learned parameters and only optimize the embedding ¢, similar to auto-decoding.
The results also get worse, as shown in “Fixed Param”.

Local Region Splitting. We further vali-
date the effectiveness of local region split-
ting strategies. We employ three different
splitting strategies in Tab. 10. We first
split the whole space where the noisy point cloud is located uniformly into multiple voxel blocks, as
shown by the result of “Voxel”. The severely degenerated results indicate that this splitting strategy is
even worse than the global method N2NM [52], as it results in many empty voxel blocks. Then we
randomly select a point from the noisy point cloud as a center to sample all points within a radius of
0.1 as a local region. The result of “Sphere (Fixed Size)” slightly degenerates due to some of the
spheres containing too few points. In contrast, our splitting strategy, as shown by the result of “Sphere
(KNN)”, ensures that each local region has enough points to help achieve superior performance.

Voxel
0.314

Metric
CDys x 100

Sphere (Fixed Size)
0.101

Sphere (KNN)
0.096

Table 10: Effect of splitting strategies.

Metrics COcc [71] | LIG [37] | DeepLS[11] | NP [50] | N2NM [52] | Ours
CDps x 1000 14.10 6.190 1.607 2.115 0.507 0.389
CDr1 0.052 0.048 0.025 0.034 0.019 0.016
NC 0.908 0.849 0.915 0.900 0.929 0.942

Table 7: Numerical Comparisons on 3D Scene dataset in terms of C' D1, C' D5 and NC. Detailed
comparisons for each scene are provided in the appendix.
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Figure 9: Comparison in surface reconstruction on Paris-rue-Madame.

Global and Local. With our learned prior, we compare our Metric Global | Local
performance in global and local mappings with finetuning the CDjy, x 100 | 0.106 | 0.096
priors. We report results obtained with the local noise to noise Time 21 min | 8 min

mapping or the global one during the finetuning. As shown
in Tab. 11, the numerical comparison shows that the global
mapping struggles to infer local details from noisy point clouds. Moreover, our local prior also
converges faster than the global statistical reasoning.

Table 11: Effect of local mapping.

Local Region Size. We further validate the effec- Metric 500 | 1000 | 3000 | 5000
tiveness of local region sizes (points number in a CDys x 100 | 0.102 | 0.096 | 0.111 | 0.114
local region) in Tab. 12. We use different local re- . .
gion sizes including {500, 1000, 3000, 5000}. The Table 12: Effect of local region size.
results show that 1000 is the best.

SDF initi.alization. We further Vé}lifitclte Metric | Random | Square | Sphere (SAL) | Ours
the effectiveness of different SDF initial- Time S3min | 7.lmin 3.5min 5.0min
izations in Tab. 13 and Fig. 10, including -
random initialization, geometry initializa- Table 13: The effect of SDF initialization.

tion [1], initialization to a simple square
shape, and ours.

We can see our prior can reconstruct
more accurate surfaces from single
noisy point clouds in much shorter

/

. . . Random Square Sphere Ours GT
time than any other initializations. . ) o e
Figure 10: Comparison with different SDF initializations.
\.
\¢
Patch Noise Half Noise GT

Figure 11: Visual results with nonuniform noises.

Noise Type. We report our performance
with various noise types, i.e., impulse noise,
quantization noise, Laplacian noise, and
Gaussian noise. Visual comparison in
Fig. 12 justifies that we can also handle Impulse noise
other types of noise quite well. More-

over, we also tried more challenging cases

with nonuniform noises which do not have GT
a zero expectation across a shape, like a
shape with only a half of points having
noises or a shape with several patches hav-
ing noises. The result in Fig. 11 shows that ~ Figure 12: Visual results with different noise types.
our method can also handle nonuniform noises well.

Quantization noise

Laplace noise Gaussian noise



Noise Level. We report Noisy Input

our performance on point

clouds with different lev- /

els of noise. As shown ours {

in Tab. 14, the noise lev-

els of middle and max come . . . .

from the ABC d ataset [. - Flgolir/zt 13: Vils/ilal comSz/iorison witﬁ/zlifferent n7(fise levels.GT
The middle indicates noises

with a variance of 0.01L, where L is the longest edge of the bounding box. The max indicates noises
with a variance of 0.05L. Our extreme noise comes with a variance of 0.07L.

The C'Dyo comparison shows that our results slightly de- Method | Middle | Max | Extreme
generate with max and extreme noise, but still outperform N2NM [52] | 0.113 | 0.139 | 0.156
N2NM [52]. The visual results in Fig. 13 indicates that our Ours 0.096 | 0.113 | 0.125
method is more robust to noises even when the noise variance Table 14: Effect of noise level.

is as large as 7%.

Sparsity. We report the effect of the sparsity of noisy point Method 5% | 50% | 100%
clouds. We downsample the noisy point clouds to 25% and ~N2NM[52] | 0.154 | 0.133 | 0.113
50% of their original size to validate the impact of sparsity. Ours 0.121 | 0.107 | 0.096

The C' Dy results in Tab. 15 and visual comparisons in Fig. 14
indicate that our method can handle sparsity in noisy point
clouds better than N2NM [52]. Since our data-driven based prior can help to learn a more complete
surface and reduce the impacts brought by the sparsity.

4

Table 15: Effect of sparsity.

10% 30% 50% 70% 100% (3K) GT
Figure 14: Visual comparison with different point numbers.

Time Consumption. Since our method Mewic | 10% 30% 50% 70% | 100% (3K)
can handle sparsity and require less time as Time | 3.Imin | 3.6min | 4.0min | 4.5min | 5.0min

the point number decreases, we conduct an
experiment with downsampled noisy points
in Tab. 16. Fig. 14 indicates that we can
work well on much fewer points, and also provide an alternative of improving efficiency.

Table 16: The comparison of time consumption with
different point numbers.

Optimization.

We visualize
the optimization
process in Fig. 15.
We reconstruct
meshes using the

neural SDF f 0 500 1000 1500 2000 2500 3000 3500 4000
learped n differ- Figure 15: Optimization during inference.
ent iterations. We

see that the shape is updated progressively to the ground truth shapes.

5 Conclusion

We propose a method to resolve the key problem in inferring SDFs from a single noisy point cloud.
Our method can effectively use a data-driven based prior as an initialization, and infer a neural SDF
by overfitting on a single noisy point cloud. The novel statistical reasoning successfully infers an
accurate and smooth signed distance field around the single noisy point cloud with the data-driven
based prior. By finetuning data-driven based priors with statistical reasoning, our method significantly
improves the robustness, the scalability, the efficiency, and the accuracy in inferring SDFs from single
point clouds. Our experimental results and ablations studies show our superiority and justify the
effectiveness of the proposed modules.
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A Appendix

A.1 Limitations

Our method is still limited to too large noises. For noises that corrupted shapes too much, our method
still produces bad results. One direction for our future work is to improve our prior, so that we could
have a better sense of a shape even under large noises.

A.2 Detailed Comparisons on 3D Scene

We detail our evaluations on each scene in 3D scene dataset in Tab. 17. The comparisons highlight
our advantages in each scene.

Name Metrics COcc [71] | LIG[37] | DeepLS[11] | NP [50] | N2NM [52] | Ours
CDprs x 1000 27.46 3.055 0.401 1.204 0.504 0.429

Burghers CDr1 0.079 0.045 0.017 0.031 0.020 0.016
NC 0.907 0.835 0.920 0.905 0.925 0.939

CDys x 1000 9.540 9.672 6.103 1.079 0.602 0.333

Lounge CDr1 0.046 0.056 0.053 0.019 0.016 0.014
NC 0.894 0.833 0.848 0.910 0.923 0.935

CDys x 1000 10.97 3.610 0.609 5.795 0.442 0.389

Copyroom CDpq 0.045 0.036 0.021 0.036 0.016 0.016
NC 0.892 0.810 0.901 0.862 0.903 0.916

CDyps x 1000 20.46 5.032 0.320 0.983 0.330 0.313

Stonewall CDyq 0.069 0.042 0.015 0.029 0.020 0.015
NC 0.905 0.879 0.954 0.930 0.951 0.961

CDps x 1000 2.054 9.580 0.601 1.513 0.657 0.482

Totepole CDyq 0.021 0.062 0.017 0.054 0.023 0.020
NC 0.943 0.887 0.950 0.893 0.945 0.957

Table 17: Numerical Comparisons on 3D Scene dataset in terms of C' Dy, C Do and NC.

A.3 More Results
We visualize more surface reconstruction results under ShapeNet [12], ABC [22], Surface Recon-

struction Benchmark (SRB) [92], FAMOUS [22], D-FAUST [5] and nuScenes [8] in Fig. 16, Fig. 17,
Fig. 18, Fig. 19, Fig. 20 and Fig. 21.
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Figure 16: Comparison in surface reconstruction on ShapeNet.

Input ConvOcc IMLS P2S NeuralPull ~ OnSurf N2NM Ours GT

Figure 17: Comparison in surface reconstruction on ABC.
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Figure 18: Comparison in surface reconstruction on SRB.

IMLS NeuralPull LPI OnSurf GridPull N2NM Ours GT

Figure 19: Comparison in surface reconstruction on FAMOUS.
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Figure 20: Comparison in surface reconstruction on D-FAUST.

N2NM Ours

Figure 21: Comparison in surface reconstruction on nuScenes.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in the Appendix A.1.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: We describe in Method one of the core contributions of the local noise-to-
noise mapping, and although there is no theory or theorem in it, we verify its validity and
reasonableness in our experiments.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed information in reproducing our methods in Implementation
Details of Section 3.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide our demonstration code as a part of our supplementary materials.
We will release our source code, data and sufficient instructions upon acceptance.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide all the training and test details for shapes and scenes in Section 4.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We report the average performance in terms of several metrics as the experi-
mental results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We report our inference time with other methods in the experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper conforms in all respects to the NeurIPS
Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the application and potential positive impact of our method in the
introduction.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: There is no such risk to the paper.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We use open-source datasets and code under their licence.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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