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Abstract

Recent progress in large-scale reinforcement
learning (RL) has notably enhanced the rea-
soning capabilities of large language models
(LLMs), especially in mathematical domains.
However, current multimodal LLMs (MLLMs)
for mathematical reasoning often rely on one-
to-one image-text pairs and single-solution su-
pervision, overlooking the diversity of valid
reasoning perspectives and internal reflections.
In this work, we introduce MathV-DP, a novel
dataset that captures multiple diverse solution
trajectories for each image-question pair, fos-
tering richer reasoning supervision. We fur-
ther propose Qwen-VL-DP, a model built upon
Qwen-VL, fine-tuned with supervised learning
and enhanced via group relative policy opti-
mization (GRPO), a rule-based RL approach
that integrates correctness discrimination and
diversity-aware reward functions. Our method
emphasizes learning from varied reasoning per-
spectives and distinguishing between correct
yet distinct solutions. Extensive experiments
on the MathVista’s minitest and Math-V bench-
marks demonstrate that Qwen-VL-DP signifi-
cantly outperforms prior base MLLMs in both
accuracy and generative diversity, highlight-
ing the importance of incorporating diverse
perspectives and reflective reasoning in mul-
timodal mathematical reasoning. We will make
our data and model public available.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable abilities in reasoning tasks (Wei et al.,
2022; Wang et al., 2023; Zhou et al., 2023). This
has spurred significant interest in their application
to solving math problems described in natural lan-
guage (Luo et al., 2023; Yue et al., 2023b; Gou
et al., 2023; Jiang et al., 2023). Meanwhile, a more
challenging direction involves multimodal mathe-
matical reasoning (Lu et al., 2023), where models
must interpret various types of images and apply

advanced logical skills to address mathematical
questions with visual components. Open-source
multimodal large language models (MLLMs), such
as LLaVA (Liu et al., 2023) and Qwen-VL (Bai
et al., 2023), have achieved strong results on visual
question answering benchmarks (Guo et al., 2023).
However, when it comes to intricate mathematical
problems that require visual understanding, these
models still lag behind close-source counterparts
like GPT-4V and Gemini (OpenAl, b; Google).

Humans frequently engage in intuitive chain-
of-thought (CoT) processes to address complex
reasoning tasks (Ericsson and Simon, 1980). Re-
cent research (Wei et al., 2022) has demonstrated
that LLMs are capable of exhibiting similar CoT
reasoning. By employing straightforward prompt-
ing strategies or fine-tuning methods (Wang et al.,
2023; Hsieh et al., 2023), CoT can both boost the
reasoning abilities of LLMs and increase trans-
parency in their decision-making procedures. No-
tably, recent progresses, such as OpenAl ol (Ope-
nAl, c), have enabled LLMs to generate more elab-
orate internal CoT sequences. Despite these suc-
cesses in natural language contexts, adapting CoT
approaches for multimodal tasks remains fully un-
explored. In contrast to the rich supply of text-
centric CoT data used during language model train-
ing, there is a marked shortage of multimodal CoT
datasets within predominantly text-based online
resources (Dai et al., 2024). This scarcity con-
strains the development and reasoning capacity of
MLLMs.

Recent advancements in large-scale reinforce-
ment learning (RL) (Sutton et al., 1998) have signif-
icantly enhanced the reasoning capacity of LLMs
especially within mathematical reasoning tasks. ol
(OpenAl, c) and DeepSeek-R1 (Guo et al., 2025)
illustrate that extensive RL applied during post-
training can lead to substantial gains in complex
reasoning performance, in some instances surpass-
ing outcomes achieved via supervised fine-tuning



X Solution 1: (Confusing Function Value with
Derivative) Consider the value of the function.
log,(6)=2.584. log,(8)=3.We can see that 3>2.584,
so conclude the answer is smaller than.

v Solution 2: (Using the Derivative Formula)

X Recall the formula. For y=log,(x), the derivative is:
of y at x=6 is _ that at dy/dx=1/xIn2. Plug in the values. At x=6: 1/6In2.
x=8. At x=8: 1/8In2. Both denominators are positive.
Since 6<8, we have 1/6In2 > 1/8In2. It is clear that
as x increases, the denominator increases and the
o | derivative (the value) gets smaller. The derivative
at x=6 is larger than that at x=8.

Question: The derivative

V' Solution 3: (Graphical/Intuitive Reasoning)
Look at the graph, the curve y=log,(x) is plotted and
shows a shape that rises quickly for small x, but
becomes flatter as x increases. The derivative at any
point corresponds to the slope of the curve at that
point. Near x=6, the curve is a bit steeper. x=8, the
curve is flatter (the tangent is closer to horizontal).
Since the curve gets flatter as x increases, the slope
at x=6 must be greater than at x=8.

Figure 1: An multimodal mathematical reasoning ex-
ample with alternative solutions that reaches the final
answer. Existing open-source image instruction datasets
containing limited solution per image-question, do not
fully exploit diverse solution with reflection to enhance
the multimodal mathematical reasoning capabilities of
MLLMs.

(SFT) (Radford et al., 2019). There has been grow-
ing interest within the research community to adapt
the rule-based RL used in DeepSeek-R1 to mul-
timodal scenarios (Chen et al., 2025; Yang et al.,
2025). These works just explore using final answer
and thinking format of image instruction dataset as
reward signal.

Furthermore, most existing MLLMs focus on
pre-training and post-training by using one-to-one
image-text data to improve the final answer accu-
racy on mathematical reasoning but neglect diverse
perspective of internal thought. As shown in Fig-
ure 1, for an image-question pair, there are usually
multiple reasonable inference solutions to reach the
final correct answer. Constrained by limited think-
ing perspectives tend to derive wrong solution and
answer. Existing open-source image instruction
datasets for fine-tuning or reinforcement learning,
containing limited solution per image-question, do
not fully exploit diverse solution with reflection to
enhance the multimodal mathematical reasoning
capabilities of MLLMs.

To bridge the gap, we construct MathV-DP
dataset involving a variety of solutions for image-
question corresponding to a single thought solution,
and train the model Qwen-VL-DP based on the
Qwen-VL-7B (Bai et al., 2025; Wang et al., 2024c)
through supervised fine-tuning and group relative
policy optimization (GRPO) (Shao et al., 2024) as
rule-based reinforcement learning. In addition, the

discrimination of diverse correct solutions and the
preference for different correct and incorrect solu-
tions are introduced in the reward function. Experi-
ments on MathVista’s minitest (Lu et al., 2023) and
Math-V (Wang et al., 2024a) show that learning the
correctness and diversity from multiple solution
perspectives significantly improves the accuracy
and generation diversity of base MLLMs on multi-
modal mathematical reasoning.

2 Related Works

2.1 Multimodal Reasoning

The progress of MLLMs has significantly advanced
research in multimodal reasoning (Chen et al.,
2024; You et al., 2023). A widely adopted strat-
egy involves augmenting existing question-answer
datasets in specialized domains to further fine-
tune MLLMSs. For answer enhancement, rationales
have been either human-authored (Zhang et al.,
2023b) or extracted from leading LLMs (Wang
et al., 2024b; Lin et al., 2023a; Chen and Feng,
2023; Li et al., 2024). Furthermore, VPD (Hu et al.,
2023) introduced a method for converting program-
matic answer representations into natural language
explanations. On the question side, DDCoT (Zheng
et al., 2023) employed LLMs to decompose com-
plex queries into simpler sub-questions. Math-
LLaVA (Shi et al., 2024) explored raw visual in-
formation presented in images to construct more
questions. To provide a more comprehensive as-
sessment of MLLM multimodal reasoning, sev-
eral benchmarks have emerged: MathVista (Lu
et al., 2023), and Math-V (Wang et al., 2024a) ad-
dress diverse mathematical reasoning tasks, while
MMMU (Yue et al., 2023a) spans multiple dis-
ciplines. Despite these progresses, open-source
MLLMs still exhibit substantial room for improve-
ment in complex multimodal reasoning scenarios.

2.2 Reinforcement Learning

Reinforcement learning (RL) (Littman and Moore,
1996) represents a foundational paradigm within
machine learning, wherein an agent interacts with
its environment by executing actions, receiving cor-
responding feedback in the form of rewards, and it-
eratively updating its policy to optimize cumulative
returns over time. Classical RL algorithms, such
as Q-learning (Watkins and Dayan, 1992), have
demonstrated broad applicability across domains
including robotics, game playing, and autonomous
systems.



With the advent of LLMs (Brown et al., 2020;
Radford et al., 2018), reinforcement learning
from human feedback (RLHF) (Bai et al., 2022)
has emerged as an essential strategy for model
fine-tuning, utilizing human-annotated preference
data. RLHF commonly incorporates optimization
methods like proximal policy optimization (PPO)
(Schulman et al., 2017) and direct preference opti-
mization (DPO) (Rafailov et al., 2023), facilitating
improved response alignment, coherence, and util-
ity in generated outputs.

Recently, there has been a growing interest in
leveraging RL to enhance the reasoning abilities of
LLMs (Team et al., 2025; Guo et al., 2025; Shao
et al., 2024; Luong et al., 2024), particularly within
the scope of mathematical reasoning. The central
approach involves designing reward functions or
evaluative models that preferentially reinforce high-
quality reasoning steps and discourage inadequate
reasoning, thereby steering the optimization pro-
cess toward more organized and comprehensible
reasoning patterns through RL techniques. For in-
stance, ReST-MCTS (Zhang et al., 2024) utilizes a
process reward model (PRM) to assess the correct-
ness of individual reasoning steps within solution
paths. Moreover, recent research indicates that
even straightforward rule-based, outcome-level re-
ward functions can serve as robust and informative
signals during RL, as demonstrated by DeepSeek-
R1 (Guo et al., 2025). DeepSeek-R1 incorpo-
rates group relative policy optimization (GRPO)
(Shao et al., 2024) combined with outcome-based
reward assessments, effectively advancing the rea-
soning proficiency of LLMs. In this work, we focus
on further enhancing the reasoning capabilities of
MLLMs through reinforcement learning.

3 Method

Our proposed method is composed of two compo-
nents: (1) bootstrapping a substantial set of both
positive and negative chain-of-thought (CoT) solu-
tions with reflection for collected multimodal math-
ematical question-CoT; and (2) leveraging these
new sampled positive solutions, pairs of different
positive solutions and pairs of positive-negative
solutions to perform post-training on the under-
lying diverse rationales and to facilitate learning
discrimination and preference from identified pairs.
Through the data synthesis and post-training, the
MLLM is progressively improved from an initial
single solving perspective to a diverse state. The

overall framework is depicted in Figure 2.

3.1 Data Synthesis

In vision-language reasoning tasks, given an image
I and a corresponding question g, an MLLM is ex-
pected to perform joint reasoning over both modal-
ities to generate a rationale r, followed by deriv-
ing a final answer a. However, constructing large-
scale datasets comprising high-quality (1, q,r, a)
remains a significant challenge, primarily due to
the scarcity of well-annotated rationale data. This
data bottleneck hinders the post-training enhance-
ment of MLLM reasoning capabilities. Although
MLLMs possess a rudimentary ability for CoT rea-
soning and self-reflection, leveraging them to gen-
erate diverse and high-quality (I, ¢, r, a) samples
from existing multimodal mathematical datasets is
difficult. Recent advancements in language models,
such as DeepSeek-R1, demonstrate strong capa-
bilities in producing coherent, reflective reason-
ing across extended textual contexts. Formal lan-
guages, characterized by strict syntactic and se-
mantic rules, provide a structured representation
that eliminates ambiguity and enforces logical con-
sistency. When visual content is described using
formal language, it enables language models to
see and reason over image elements more effec-
tively. In our work, we utilize DeepSeek-R1 (Guo
et al., 2025) to synthesize diverse detailed reason-
ing chains on samples from the MultiMath-300K
dataset (Peng et al., 2024). This facilitates the
construction of a richer and more diverse set of
cross-modal mathematical reasoning samples, cul-
minating in our proposed 40K MathV-DP dataset.
The data generation pipeline is illustrated on the
left side of Figure 2.

Data Source. We adopt MultiMath-300K (Peng
et al., 2024) as the primary data source for our
data synthesis. This dataset is a large-scale, mul-
timodal, multilingual, multi-level, and multi-step
mathematical reasoning benchmark, encompass-
ing a wide range of K-12 level problems. It spans
nearly the entire K-12 curriculum, covering a broad
spectrum of mathematical domains, including arith-
metic, algebra, geometry, functions, algorithms,
and more. Compared to existing multimodal math-
ematics datasets (e.g., Geol170K (Gao et al., 2023)
and MathV360K (Shi et al., 2024)), the problems
in MultiMath-300K are newly curated and do not
overlap with those in previously released datasets.
Each instance is paired with a descriptive image
caption to support vision-language alignment, as
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Figure 2: The overall flowchart of the proposed multimodal question-solution data synthesis and post-training.
Post-training consists of supervised fine-tuning and rule-based reinforcement learning (GRPO) to learn diverse and

reflection reasoning manner.

well as a detailed step-by-step solution. The avail-
ability of formal visual descriptions and CoT an-
notations in MultiMath-300K with single solution
per sample makes it particularly well-suited as seed
data for synthesizing diverse solutions from mul-
tiple perspectives. Specifically, we randomly se-
lected 10K samples from them as seed data D.
Diverse Solutions Construction. Given an image,
we prompt large language reasoning model (i.e.,
DeepSeek-R1) with its formal dense caption, ques-
tion and limited original solution to construct more
diverse CoT data with reflection. The prompt for
generating new solutions s is shown in Figure 3.
Two correct solutions and two incorrect solutions
that differ from each other are generated at once for
each source sample. They are organized into three
formats to constitute MathV-DP dataset involving
CoT with reflection thinking, discrimination of dif-
ferent correct solutions and preference of solutions.

The correct solution with reflection is first taken
out separately with the original image and question.
The rationale before the final answer in each solu-
tion is wrapped with <think> and </think> tags as
Tthink 10 form a new set Dj totaling 20K:

D
D: = {(IiaQiaTthmk,ai)}'-:'l (1)

The generated different correct solutions are then
concatenated with the instruction Ins; (i.e., “Are
the solution perspectives of the two solutions dis-

similar?”) to form set Dy totaling 10K:

D= {(lo gl s )2, @

For the data format of correctness preference,
one of each of the correct and incorrect solutions
is randomly selected and both are concatenated
together as a pair in a random back-and-forth order
to construct set D,, totaling 10K. Instruction /n.s9
is “Is the former/later solution the correct one?”:

D, = {(Ii,qi,sj,s;,lns%1)}2'1 (3)

3.2 Post-Training

To improve the multimodal mathematical reason-
ing capabilities of MLLMs, we propose a two-
stage post-training framework comprising super-
vised fine-tuning followed by rule-based reinforce-
ment learning. In this pipeline, supervised fine-
tuning serves to stabilize the model’s reasoning
ability and learn diverse solving process with reflec-
tion, while the subsequent reinforcement learning
phase promotes better generalization, preference
of solution correctness and diversity in multimodal
mathematical reasoning task.

3.2.1 Supervised Fine-Tuning

Specifically, we utilize D} with diverse solu-
tion perspectives during the supervised fine-tuning



/Prompt-Solutions Generation:
[Role] You are a math expert.
[Image Description] formal image description
[Original Question] question
[Given Solution] original solution
[Task] Please change the given solution to two solutions
that are different and incorrect. Then change the given
solution to two solutions that have different solution paths
but the same final right answer.
[Requirement] For each solution, please involve complete
and detailed seeking thought process with planning,
reflection, and verification. Please split each whole
solution with '/******/> The solutions should be coherent
and independent, and contain no information about the

m

\correct given solution. /

Figure 3: The prompt template used in our DeepSeek-R1
API for generating additional solutions with reflection
for each input image description, question and original
CoT solution.

stage to guide the model M toward generating co-
herent and diverse reasoning chains with a negative
log-likelihood objective:

Lspr = — Z

(I,q,r,0)~DF

log M(r,alq,I) (4

Supervised fine-tuning not only aligns the
model’s outputs with desired formats but also en-
courages the emergence of more sophisticated mul-
timodal mathematical reasoning reflection behav-
iors. This establishes a robust foundation for the
subsequent RL phase, where rule-based feedback
is employed to further refine the model’s reasoning
abilities.

3.2.2 Rule-Based Reinforcement Learning

Building upon the model fine-tuned via supervised
fine-tuning, we further optimize its structured rea-
soning capabilities, output validity and diversity
of solutions through a rule-based reinforcement
learning framework. In particular, we design three
reward functions and employ group relative policy
optimization (GRPO) (Shao et al., 2024) for policy
updates.

Accuracy Reward. The accuracy-based reward
function assesses the correctness of the MLLM’s
final output by extracting the predicted answer us-
ing regular expressions and comparing it against
the ground truth. We regard multimodal mathe-
matical reasoning as deterministic tasks, the model
is required to present the final answer in a prede-
fined format to facilitate consistent and rule-based
evaluation.

Think Format Reward. To enforce the explicit
presence of a reasoning process, the format-based
reward function mandates that the MLLM’s ra-
tionale be encapsulated within predefined delim-
iters, i.e., <think> and </think>. Regularization is
used to verify the existence and correct ordering of
these markers, thereby ensuring adherence to the
required output structure.

Discrimination and Preference Reward. The
discrimination/preference reward function can be
viewed as a binary classification task. It is used
to evaluate whether the MLLM correctly distin-
guishes the diversity of different solutions and
whether it prefers the correct solution. This reward
signal facilitates the model to learn the different
perspectives of the solutions and the correctness
preference.

Group Relative Policy Optimization. To ensure
stable training with both consistent policy updates
and informative reward signals, we adopt group
relative policy optimization (GRPO) as our rein-
forcement learning algorithm. For each token in
the generated sequence, GRPO computes the log-
likelihoods under the current policy 7(f) and a
reference policy. The ratio between these proba-
bilities is then calculated and clipped within the
interval [1 — €, 1 + €] to mitigate the risk of overly
aggressive updates. The reward, normalized to
serve as an advantage estimate, is subsequently
incorporated into a proximal policy optimization
(PPO) objective function:

Leiip = —E[min(ratio;- Ady, clipratio,- Ady)], (5)

where Ad, represents the advantage estimate, quan-
tifying the relative improvement of the chosen ac-
tion over the expected value under the reference
policy. To further constrain the updated policy from
deviating excessively from the reference distribu-
tion, a Kullback—Leibler (KL) divergence term is
incorporated into the objective, scaled by a coeffi-
cient 5. The total loss function is defined as:

Lr1.(0) = —E[min (ratio; - Ad, clipratio, - Ad;)
— B KL (mg(y[x), mret (y]2))]

GRPO employs a clipping strategy that effectively
mitigates drastic changes in the policy, while the
incorporation of KL regularization enforces prox-
imity between the updated and reference policies.
This dual mechanism enables stable and efficient in-
tegration of rule-based rewards, preserving training
robustness throughout the optimization process.



Model MathVista
ALL ‘ FQA GPS MWP TQA VQA ‘ ALG ARI GEO LOG NUM SCI STA
Heuristics Baselines
Random Chance 1791182 21.6 3.8 196 263 |21.7 147 20.1 13,5 83 172 163
Frequent Guess (Lu et al., 2023) 2631227 341 204 31.0 24.6|33.1 187 314 243 194 32.0 209
Human 60.3 59.7 484 730 632 559|509 592 514 40.7 53.8 649 639
Close-Source Multimodal Large Langugae Models (MLLMs)

Gemini 1.0 Nano 2 (Team et al., 2023) | 30.6 | 28.6 23.6 30.6 41.8 31.8 |27.1 29.8 26.8 10.8 20.8 40.2 33.5
Qwen-VL-Plus (Bai et al., 2023) 43.3|54.6 385 312 551 341 |39.1 320 393 189 264 59.0 56.1
Gemini 1.0 Pro (Team et al., 2023) | 452 |47.6 404 39.2 614 39.1 | 452 38.8 41.0 108 32.6 549 56.8

Claude 3 Haiku (Anthropic, 2024) 464 | - - - - - - - - - - - -
GPT-4V (OpenAl, b) 4991431 50.5 57,5 652 38.053.0 49.0 51.0 21.6 20.1 63.1 558

GPT-40 (OpenAl, a) 63.8 - - - - - - - - - - - -

OpenAl ol (OpenAl, c) 739 | - - - - - - - - - - - -

Open-Source Multimodal Large Langugae Models (MLLMs)

mPLUG-Owl-7B (Ye et al., 2023) |22.2|22.7 23.6 102 272 279 |23.6 19.2 239 135 12.7 263 214
miniGPT4-7B (Zhu et al., 2023) 23.1|18.6 260 134 304 302|281 21.0 247 162 167 254 179
LLaVAR-13B (Zhang et al., 2023a) |25.2|21.9 25.0 16.7 34.8 30.7 |242 22.1 23.0 135 153 426 219
InstructBLIP-7B (Dai et al., 2024) | 253 |23.1 20.7 183 323 352 |21.8 27.1 20.7 189 204 33.0 23.1
LLaVA-13B (Liu et al., 2023) 26.1 268 293 16.1 323 263|273 20.1 28.8 243 183 37.3 25.1
SPHINX-V1-13B (Lin et al., 2023b) | 27.5|234 23.1 21.5 399 341|256 28.1 234 162 174 402 236
LLaVA-1.5-13B (Liuet al., 2024) |27.7 |23.8 22.7 183 40.5 302|253 264 228 21.6 264 353 23.6
OmniLMM-12B (OpenBMB, 2024) |34.9 | 450 17.8 269 449 39.1 [23.1 323 209 189 27.8 459 442
SPHINX-V2-13B (Lin et al., 2023b) | 36.7 | 54.6 164 23.1 41.8 43.0 | 20.6 334 17.6 243 215 434 515

G-LLaVA-13B (Gao et al., 2023) - - 567 - - - - - - - - - -
Math-LLaVA (Shi et al., 2024) 46.6 | 37.2 577 565 513 335 | 53 402 565 162 333 492 439
Qwen2-VL-7B (Wang et al., 2024c) | 57.6 | 65.1 41.8 66.1 60.1 53.7 | 445 56.4 43.1 243 39.6 63.1 69.4
Qwen2.5-VL-7B (Bai et al., 2025) | 68.2 725 66.8 769 66.7 543 |70.1 68.7 669 269 43.0 65.7 76.1
Qwen2-VL-DP 60.9 | 70.7 564 69.8 64.6 487|509 604 472 254 403 65.6 71.1
Qwen2.5-VL-DP 704 | 72.8 72.6 77.2 685 545|711 69.6 69.3 27.0 43.1 66.9 77.2

Table 1: Comparison with baselines on the testmini set of MathVista benchmark. Baseline results are obtained
from Lu et al. (2023). The best results in both the close-source and open-source MLLMSs are in bold. MathVista is
divided in two ways: task type or mathematical skill, and we report the accuracy under each subset.

4 Experiments

4.1 Model and Implementation

We utilize the Qwen2-VL (Wang et al., 2024¢) and
Qwen2.5-VL (Bai et al., 2025) series as our base-
line architectures and focus our evaluation on the
7B parameter scale to assess the effectiveness of
our proposed method. Both the projection layer
and the language model parameters are trainable.
Supervised fine-tuning stage is performed with a
batch size of 16, a learning rate of 2e-5 over 1
epoch. During the reinforcement learning stage,
we generate 4 rollouts per query with a sampling
temperature of 1.0. The maximum sequence length
is set to 1024 to ensure the model has sufficient
capacity to produce complete reasoning solution.
Both the policy and reference models are initial-
ized from the same base model, with the reference
model held frozen during RL training. The policy

model is fine-tuned using a learning rate of le-6
and a batch size of 4. The KL divergence regu-
larization coefficient 8 in Eq. 6 is set to 0.04 by
default. All experiments are conducted on NVIDIA
H100 GPU with 80GB of memory.

4.2 Evaluation and Metrics

We assess our model’s performance in a zero-shot
setting using the minitest subset of the MathVista
benchmark (Lu et al., 2023). This subset com-
prises 1,000 items, including 540 multiple-choice
problems and 460 free-response questions requir-
ing answers in the form of integers, floating-point
numbers, or lists. MathVista is designed to compre-
hensively evaluate the multimodal mathematical
capabilities of MLLMs, covering diverse reason-
ing categories such as algebraic (ALG), arithmetic
(ARI), geometric (GEO), logical (LOG), numeric
commonsense (NUM), scientific (SCI), and statisti-



Math-V
Model
ALL‘Alg AnaG Ari CG Comb Cnt DG GT Log Angle Area Len SG Sta Topo TG
Heuristics Baselines
Human ‘68.8‘55.1 78.6 99.698.4 43.5 98.591.362.261.3 33.5 47.273.587.393.1 99.8 69.0

Close-Source Multimodal Large Langugae Models (MLLMs)

Qwen-VL-Plus (Bai et al., 2023)
Qwen-VL-Max (Bai et al., 2023)
Gemini Pro (Team et al., 2023)
GPT-4V (OpenAl, b)
GPT-40 (OpenAl, a)

10.7
15.6
17.7
22.8
30.4

11.3 179 143127 48 105154 89 143 11.6 64 100143 69 8.7 11.3
10.7 19.1 20.016.9 12.5 17.916.412.221.0 13.3
15.1 10.7 20.720.1 11.9 7.5 20.221.116.8 19.1
27.3 32.1 35.721.1 16.7 13.422.114.416.8 22.0
42.0 39.3 49.328.9 25.6 22.424.023.3294 17.3

142 19.811.520.7 13.0 17.3
19.020.014.313.8 17.4 20.8
22.220.923.824.1 21.7 25.6
29.8 30.129.144.8 34.8 17.9

Open-Source Multimodal Large Langugae Models (MLLMs)

SPHINX-V2-13B (Lin et al., 2023b)
LLaVA-1.5-13B (Liu et al., 2024)
Math-LLaVA (Shi et al., 2024)
Qwen2-VL-7B (Wang et al., 2024c¢)
Qwen2.5-VL-7B (Bai et al., 2025)
Qwen2-VL-DP
Qwen2.5-VL-DP

9.7
11.1
15.7
16.3
25.0
17.7
26.9

6.7 7.1
7.0 143
9.0 202
11.3 24.9
22.0 29.8
15.2 20.8
23.3 30.8

129 75 7.7 6.0 9.6 16.710.1
143 9.1 6.6 6.0 13.55.6 13.5
15.718.2 10.1 10.516.414.416.0
15.716.9 10.1 11.916.415.619.3
32.119.5 185 16.422.111.125.2
20.820.2 12.0 7.9 20.321.216.9
32.220.6 27.3 17.423.922.928.6

11.0
10.4
20.2
22.5
29.3
19.2
28.9

11.812.5 82 8.6 8.7 6.0
12.6 14.711.513.8 13.0 10.7
18.417.6 9.4 24.1 21.7 17.9
16.422.514.317.2 4.4 20.8
27.628.522.934.5 17.4 22.0
19.123.214.413.9 17.5 20.9
30.9 28.828.737.9 18.4 23.2

Table 2: Performance Comparison on the Math-V benchmark with the accuracy metric across various mathmatical
subjects. Baseline results are obtained from Wang et al. (2024a). The best results in both the close-source and

open-source MLLMs are in bold.

cal reasoning (STA). Additionally, its questions are
distributed across various subtypes, including Fig-
ure Question Answering (FQA), Geometry Prob-
lem Solving (GPS), Math Word Problem (MWP),
Textbook Question Answering (TQA), and Visual
Question Answering (VQA). For evaluation, we
leverage GPT-4 (OpenAl, a) to extract final an-
swers or selected choices from model responses
and compute accuracy by verifying the correspon-
dence between predicted and grounded answers.
In addition, we perform evaluations on Math-V
(Wang et al., 2024a). Math-V contains 3,040 visual-
context math problems curated from authentic math
competitions.

Accuracy evaluation mainly depends on the fi-
nal answer of the MLLM output, we also use the
effective semantic diversity metric (Shypula et al.,
2025) to assess the diversity of the MLLM’s out-
put solutions. For each input, model generates K
responses G; = {g}, g7, ..., 9/ }. We then adopt
the following pairwise diversity score:

([1() > dsem(g§7gf),

2) 1<j<k<K
(7

where dgm 1S semantic distance function. It is
obtained by Sentence Transformer (Reimers and
Gurevych, 2019), which is 1 if semantically dis-
similar and O otherwise. This pairwise evaluation

Divpair (Gi) =

strategy incorporates normalization over the total
number of candidate pairs, thereby ensuring robust-
ness against fluctuations in the number of valid out-
puts generated for different prompts. The overall
diversity of a model on the benchmark is then com-
puted by averaging all pairwise diversity scores.

5 Results and Analysis

5.1 Main Comparison on Accuracy

We compare Qwen-VL-DP with other MLLMs on
the minitest split of the MathVista benchmark in Ta-
ble 1. As shown in the table, open-source MLLMs
such as instructBLIP (Dai et al., 2024) and LLaVA-
1.5 (Liu et al., 2023) have poor performance in mul-
timodal mathematics, with overall accuracy lower
than 30%. Compared to the base model, Qwen2.5-
VL-7B, with superior multimodal mathematical
ability, Qwen2.5-VL-DP achieves 70.4% overall
accuracy with a improvement of 2.2%. Qwen2-VL-
DP also obtains improvement of 3.3% compared
with base model Qwen2-VL-7B. More surprisingly,
the proposed Qwen2.5-VL-DP model outperforms
close-source models GPT-4V and GPT-40 (Ope-
nAl, b), even achieving comparable performance
to OpenAl ol (OpenAl, c), the most powerful close-
source MLLMs with the ability of detailed think-
ing. The results on Math-V are shown in Table 2.
Qwen2.5-VL-DP demonstrates substantial perfor-



mance gains over its base model, narrowing the gap
with state-of-the-art models such as GPT-4V and
GPT-40. The excellent performance of Qwen-VL-
DP indicates that the high-quality data synthesis of
solutions with diverse perspective and reflection is
effective in improving MLLM’s multimodal math-
ematical reasoning capabilities and performance.

5.2 Comparision on Generation Diversity

The proposed Qwen-VL-DP model has demon-
strated exceptional performance in multimodal
mathematical reasoning task. To assess its capabil-
ity of generation diversity, we conduct evaluation
experiments using effective semantic diversity met-
ric on MathVista’s minitest subset. For each input
sample, the number of generated responses K is
taken as 3, 5, and 10 to calculate the corresponding
pairwise diversity score for final averaging. Ta-
ble 3 presents comparison of the effective semantic
diversity among the Qwen-VL base model, the su-
pervised fine-tuned model, the model tuned using
only GRPO, and the post-training model after two
stages using MathV-DP data. The results indicate
that either supervised fine-tuning or reinforcement
learning on MLLM using solution data with di-
verse perspectives can enhance the generative di-
versity of the base model. Through our synthesis
of MathV-DP and proposed post-training, MLLM
can further enhance the accuracy performance of
multimodal mathematical reasoning while improv-
ing the diversity of output responses. The reason is
that Qwen-VL-DP has learnt diverse solution per-
spectives after supervised fine-tuning and further
learnt the discriminative and preference of different
solutions after rule-based reinforcement learning.

Model Diver@3 | Diver@5 | Diver @10
Qwen2-VL-7B 27.64 30.18 31.33
Qwen2-VL-SFT 33.72 35.63 35.75
Qwen2-VL-GRPO 35.05 36.08 37.11
Qwen2-VL-DP 37.48 38.97 39.16
Qwen2.5-VL-7B 33.29 34.76 36.89
Qwen2.5-VL-SFT 39.46 39.78 39.81
Qwen2.5-VL-GRPO | 39.02 39.49 39.73
Qwen2.5-VL-DP 40.42 41.44 41.58

Table 3: Effective semantic diversity scores for Qwen-
VL models evaluated in our experiments.

5.3 Enhancements from SFT and RL

We conduct ablation study across three training
paradigms: (1) supervised fine-tuning (SFT) on

80 Qwen2-VL-7B Qwen2-VL-SFT
= Qwen2-VL-DP = Qwen2.5-VL-7B
mQwen2.5-VL-GRPO mQwen2.5-VL-DP

Qwen2-VL-GRPO
mQwen2.5-VL-SFT

70.4

69.6

70 68.2

65
60.9
593
00 57.6 57.8
55
50 JE—

MathVista

Accuracy (%)

Figure 4: Accuracy of Qwen-VL model adopting differ-
ent post-training strategies on MathVista.

our curated dataset, (2) SFT followed by GRPO,
and (3) RL applied in isolation. As shown in Fig-
ure 4, MLLM by SFT demonstrates improvements
on the MathVista. Applying RL to the SFT model
yields further gains, suggesting that RL facilitates
deeper and more varied deductive reasoning. These
progressive enhancements underscore the comple-
mentary strengths of SFT and RL: while SFT pro-
vides a stable foundation by aligning the model
with diverse high-quality reasoning perspectives,
RL further strengthens these abilities by promoting
advanced cognitive behaviors. In contrast, applying
RL without prior SFT leads to suboptimal perfor-
mance, likely due to the absence of a structured
reasoning baseline. Overall, integrating SFT with
RL emerges as an effective paradigm for enhancing
the MLLM’s mathematical reasoning ability.

6 Conclusions

In this work, we proposed MathV-DP, a novel
dataset that enriched multimodal mathematical rea-
soning with diverse solving perspectives and re-
flective supervision. Building upon Qwen-VL ,
we introduced Qwen-VL-DP, trained via both su-
pervised fine-tuning and group relative policy op-
timization (GRPO), a rule-based reinforcement
learning method tailored to reward correctness, di-
versity, and discrimination of multiple solutions.
Our experiments on MathVista’s minitest and Math-
V benchmarks demonstrated that incorporating
diverse reasoning perspectives significantly en-
hanced both the accuracy and generative diversity
of MLLMs. These findings highlight the impor-
tance of moving beyond one-to-one image-text su-
pervision, advocating for a shift towards learning
from multiple valid solving perspectives.



7 Limitations

By learning from synthetic CoT data with diverse
solving perspectives and reflection, and preference
data involving discrimination of solution diversity
and correctness, MLLM could be enhanced in mul-
timodal mathematical reasoning as well as gen-
erative diversity across multiple responses. Such
diversity could not be controlled explicitly in a sin-
gle response; a single generation tends to randomly
be one of the multiple correct solution perspectives
learned. In future work, our model will be guided
or trained to controllably generate the expected
solution perspective.

8 Ethics Statement

We do not envision that our work will result in any
harm as defined in ethics policy. Qwen2-VL and
Qwen2.5-VL base model use Apache License. For
datasets, MultiMath-300K uses Apache License
2.0. The evaluation datasets use permissive Cre-
ative Commons Licenses. The intended use of
these source datasets and evaluation datasets is to
train and test the model’s multimodal reasoning
capability, which is consistent with our utilization
of all these data. Our proposed MathV-DP dataset
can improve the multimodal mathematical reason-
ing ability of the open-source Qwen-VL through
post-training.
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