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Abstract

Self-improvement is a mechanism in Large Language Model (LLM) pre-training,1

post-training and test-time inference. We explore a framework where the model ver-2

ifies its own outputs, filters or reweights data based on this verification, and distills3

the filtered data. Despite several empirical successes, a fundamental understanding4

is still lacking. In this work, we initiate a comprehensive, modular and controlled5

study on LLM self-improvement. We provide a mathematical formulation for6

self-improvement, which is largely governed by a quantity which we formalize as7

the generation-verification gap. Through experiments with various model families8

and tasks, we discover a scaling phenomenon of self-improvement – a variant of the9

generation-verification gap scales monotonically with the model pre-training flops.10

We also examine when self-improvement is possible, an iterative self-improvement11

procedure, and ways to improve its performance. We believe our results have12

several empirical implications, and our study leaves many exciting future directions13

for understanding the potential and limits of LLM self-improvement.14

1 Introduction15

Recent work increasingly explores the use of synthetic data in training large language models (LLMs),16

with applications in both pre-training and post-training (Bai et al., 2022; Meng et al., 2022; Li et al.,17

2023b; Adler et al., 2024; Dubey et al., 2024; Yang et al., 2024; Hui et al., 2024; Li et al., 2024). While18

synthetic data, often generated by LLMs, offers a valuable complement to human-generated data,19

its misuse can harm performance. Bertrand et al. (2023) and Gerstgrasser et al. (2024) showed self-20

training on model-generated data leads to degradation. To mitigate this, incorporating a “reliable” ver-21

ifier to label data has shown promise in preventing such performance collapse (Gillman et al., 2024).22

A straightforward verification mechanism is to train a reward model on human-annotated data to23

assess the quality of synthetic data (Lightman et al., 2023; Wang et al., 2024a). However, this24

approach can be prohibitively expensive and may offer no signal in domains where models exhibit25

super-human performance. An alternative is to use a stronger model (Chang et al., 2023; Havrilla26

et al., 2024) for annotation, but this becomes infeasible when the model is at the frontier of current27

capabilities. A promising solution is to use the model to label its own generations. Motivated by the28

intuition that “verification is easier than generation”, one can hypothesize that the model may act as a29

better-than-random verifier of its own outputs, enabling self-improvement (Zelikman et al., 2022).30

Most previous self-improvement algorithms can be summarized as follows: 1) make multiple31

generations from the model, 2) use the same model to verify the generations, and 3) distill from the32

reranked/filtered generation (Zelikman et al., 2022; Huang et al., 2022; Wang et al., 2022b; Yehudai33

et al., 2024; Madaan et al., 2024; Yuan et al., 2024; Xu et al., 2024; Liang et al., 2024). With this34

framework, self-improvement is also related to improving inference quality (Wang et al., 2022a;35
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Figure 1: With proper verification method (e.g., CoT-S), the relative generation-verification gap
(Definition 2.2) scales monotonically with respect to the pre-train flops. We conjecture that in this
case, the relative gap is linear with respect to the log of the pre-train flops. MC denotes Multiple
Choice verification, CoT-S denotes CoT-Score verification, and To denotes Tournament verification.
The description of each verification can be found in Section 3.

Welleck et al., 2024) – if the model can verify its own generation, self-improvement can enhance36

test-time performance with additional computation towards more generations and updates.37

Despite significant empirical progress and some impressive results, a fundamental understanding of38

LLM self-improvement remains limited. It is uncertain whether these results can be interpreted solely39

as an indication of the self-improvement capability of LLMs, given the potential for confounders at40

various stages of the process. Moreover, much of the existing research has concentrated on just one41

model family or a single verification mechanism, limiting the broader applicability of the findings.42

In this work we conduct a comprehensive study of the self-improvement capability of LLMs; our43

contribution is as follows:44

• Self-Improvement Framework: Section 2 details the mathematical formulation of the self-45

improvement process, highlighting three critical desiderata. We propose the generation-verification46

gap (GV-Gap) (Definition 2.1) as the central metric for evaluation. GV-Gap captures the additional47

“precision” gained by using model verification over generations alone. It is defined as the perfor-48

mance improvement obtained by re-weighting generations by the model’s self-verification score49

(e.g., 0 or 1). Our empirical findings indicate that GV-Gap is a more accurate metric for measuring50

self-improvement versus the previous metric of the performance difference after a model update.51

• Scaling Properties: In Section 4, we measure the generation-verification gap across multiple52

model families, verification mechanisms, and tasks. Certain verification methods induce a scaling53

phenomenon for self-improvement – relative GV-Gap (Definition 2.2) increases monotonically54

with pre-train flops – shown in Figure 1. We find that in cross-verification, the GV-gap increases55

with verifier capability and decreases with generator capability. Finally, we observe that most56

models do not achieve self-improvement in information retrieval and reasoning tasks that exceed57

their inherent capabilities. By studying multiple types of verification, our results indicate general58

patterns beyond just prompt engineering.59

• Iterative Self-Improvement: In Section 5, we identify that i) GV-Gap saturates to 0 in handful60

rounds of iterative self-improvement; ii) the saturation rate is independent from the model capacity,61

iii) the effective diversity degrades during the iterative self-improvement.62

• Verification Mechanisms: In Appendix A, we consider methods to enhance self-improvement63

through a fine-grained study on the verification methods. Key observations include: i) there is signif-64

icant non-overlap between different verification mechanisms, ii) GV-Gap is not positively correlated65

with generation accuracy, iii) using an ensemble of verification can improve self-improvement.66

We believe our results provide an initial step towards a systematic understanding of the intriguing67

self-improvement framework in LLMs. While our observations provide several practical implications68

in pre-training, post-training, and test-time inferencing, we also leave several interesting future69

directions toward a more profound understanding of the mechanism of self-improvement.70

Due to space constrain, we defer the related work section to Appendix B.71
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2 A Dissection of the Self-improvement Framework72

In this section, we introduce the setup of the self-improvement framework considered in the paper,73

which consists of the following three main components:74

Response Generation. Let X be the prompt/context space, and Y be the response space. Let75

F ⊆ {f : X → ∆(Y)} be a class of generative models that maps a prompt to a distribution76

over responses. A task, task ∈ T (e.g., math, code, trivia, puzzles, etc.), defines a distribution77

µtask ∈ ∆(X ) over the prompt space X , and utility function utask : X × Y → [Umin, Umax], where78

Umin, Umax denote bounds of the utility function.79

The goal is to find a generative model that maximizes the expected utility: f⋆
task :=80

argmaxf∈F Jtask(f), where Jtask(f) := Ex∼µtask

[
Ey∼f(·|x)[utask(x, y)]

]
. We will often81

drop the subscript task when it is clear from the context.82

Verify with Proxy Utility. Without the access to the ground truth utility function u, we rely on a83

proxy utility function constructed by some model f , denoted as ûf : X × Y → [Umin, Umax]. For84

example, let Z = [10] := {1, 2, . . . 10} be scores, the proxy utility ûf (x, y) = Ez∼f(·|x,y,prom)[z]85

rates the quality of the response with a score from 1 to 10 with an instruction prompt prom. In86

Section 3, we provide more proxy utility functions used in our experiments.87

Update via Reweighting. Let t ∈ [T ] be the iteration index, ft be the model at iteration t, and ûf ′88

be the proxy utility defined by model f ′. The reweighted distribution ft[w(ûf ′)] is defined such that89

ft[w(ûf ′)](y | x) ∝ ft(y | x) · w(ûf ′(x, y)),∀x, y ∈ X × Y .

Here w : R → R≥0 is a weight function that maps a utility from the verification procedure to a90

weight. The specific form of w is determined by the algorithm used for the model update step (we91

provide two examples below). The objective of this update is to find a model ft+1 ∈ F such that92

some distance ℓ(ft+1, ft[w(ûf ′)]) is small (i.e., ℓ-projecting ft[w(ûf ′)] onto F). Note that when93

f ′ = ft, we have self-improvement, though the framework can also be used for improving using94

utilities produced by a different model as is studied in Section 4.2.95

Example 2.1 (KL-regularized RL Update). One can treat the proxy utility û as reward, and perform96

RLHF style RL update with a reverse KL constraint (Christiano et al., 2017; Ouyang et al., 2022):97

ft+1 = argmax
f∈F

Ex,y∼µ◦f

[
ûft(x, y)− β log

(
f(y | x)
ft(y | x)

)]
.

In this case, we have w(s) = exp(s/β), and ℓ can be the KL divergence between ft+1 and ft[w(ûft)]98

(Hazan, 2016). ◁99

Example 2.2 (Rejection Sampling). In rejection sampling, we first filter the generation by a threshold100

τ , and then fine-tune the model on the filtered data:101

ft+1 = argmax
f∈F

Ex,y∼µ◦ft [log(f(y | x)) · 1[ûft(x, y) ≥ τ ]].

In this case, we have w(s) = 1[s ≥ τ ], and ℓ can be the total variation distance between ft+1 and102

ft[w(ûft)] (Zhang, 2006). ◁103

Finally, it is convenient to abuse the notation and allow w and û to take batch input. For example, we104

can allow w to take a list of score and then set the filtering threshold τ to the n quantile (n ∈ [0, 1])105

of the score. We denote this as top-n or quantile-n filtering.106

2.1 Three Key Factors of Self-improvement107

For any meaningful self-improvement, at iteration t, we would like to find ft+1 such that J(ft+1) >108

J(ft), where recall J(f) is the expected utility under the model f . We identify the three key109

conditions that may bottleneck improvement on model f :110

1. Improvable Generation. Our framework involves reshaping the generation distribution towards111

increased utility. In order for this to be useful, the utilities of generations must have variability. For112

example, if generation were done with greedy decoding, no improvement in this process would be113

possible. Fortunately, the improvable generation phenomenon has been well-observed in LLMs (Li114

et al., 2022; Brown et al., 2024) (see also Figure 3).115
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2. Informative verification. Recall that weight function w(ûg) is defined by the proxy utility function116

ûg , which is constructed by a verifier model g. If the verification capability is limited, the weighting117

may not provide a useful signal for improvement. The following definition quantifies this intuition:118

Definition 2.1 (Generation-Verification Gap). For a generator f and verifier g, we define the119

generation-verification gap (GV-Gap) between f and g as120

gap(f, g) := J(f [w(ûg)])− J(f) .

This is the core metric for our analysis throughout the paper. When the generator f and verifier121

g are the same, we denote the shorthand gap(f) := gap(f, f), which is the self-improvement122

generation-verification gap. However, the GV-Gap is an absolute quantity, which does not fully123

capture the various qualities of the generation. Imagine a generator that already achieves 99%124

accuracy on a task: first, the upper bound for gap(f) is only 0.01; second, incorrect responses are125

likely to be very subtle, and thus any improvement in the reweighted distribution might require a126

very strong verification model. This motivates the relative GV-Gap:127

Definition 2.2 (Relative Generation Verification Gap). For a generator f and verifier g, we define128

the relative generation-verification gap between f and g as129

gaprel(f, g) := Ex∼µ

[Ey∼f [w(ûg)](·|x)[u(x, y)]− Ey∼f(·|x)[u(x, y)]

Umax − Ey∼f(·|x)[u(x, y)]

]
,

That is, we weigh the gap of each prompt by its deficiency to the best possible utility. For simplicity,130

we will denote the self-GV-Gap as “gap” or gap and relative self-GV-Gap as “relative gap” or gaprel131

when the context is clear. In domains where verification is easier than generation, gap > 0 likely132

holds, and indicates that there is additional signal that can be exploited. One can also check that,133

for all prompts x ∈ X , if the weight function w(ûg)(x, ·) and u(x, ·) is positively correlated1 under134

the distribution of y ∼ f , then we can always guarantee gap(f, g) > 0.135

3. High-fidelity model update. The final condition is that the model ft+1 mimics/distills the136

performance of the reweighted distribution ft[w(ûft)], i.e., |J(ft+1) − J(ft[w(ûft)])| ≤ εupdate,137

with some small ε. For example, if through MLE we bound the TV-distance between the two by ε′,138

then by Holder’s inequality we have εupdate ≤ ε′Umax. Combining it with the gap guarantee, we have:139

J(ft+1)− J(ft) ≥ gap(ft, g)− εupdate.

With a sufficiently expressive LLM model class, it is often observed that the distillation error ε is small.140

Note that sometimes we might observe J(ft+1) − J(ft[w(ûft)]) > 0. For instance, a benchmark141

may require outputs in a specific format; in such cases, the finetuned model ft+1 might outperform142

the reweighted distribution ft[w(ûft)] simply by aligning outputs with the required format, even143

if the underlying answers remain unchanged. Recent work (Dubois et al., 2024; Zhang et al.,144

2024c) highlight additional confounders, such as modifications to output length during finetuning,145

which may inflate perceived improvements without reflecting true model capabilities. Conversely,146

it is conceivable that intrinsic enhancements in the model’s reasoning might occur; for example,147

mastering simpler tasks could indirectly boost performance on more complex problems requiring148

similar skills. However, in our experiment we only observe the former scenario. That said, both cases149

emphasize the need for caution when interpreting such improvements, and this further emphasizes150

the importance of our modular approach in dissecting the components of self-improvement.151

3 Experiment Setup152

Our experiment is based on lm-evaluation-harness (Gao et al., 2024). For all tasks we use the153

following setup: for generations and verification, we use sampling parameters p = 0.9, t = 0.7, max154

length of 512 and 4-shot in-context samples. For each prompt, we sample 128 responses and sample155

1 verification for each response2. In this work, we consider the following verification mechanisms (a156

formal description of each is provided in Appendix C along with example prompts in Appendix F):157

1Even under the case that w(ûg)(x, ·) and u(x, ·) are negatively correlated, if we have a small set of holdout
dataset with ground truth labels u(x, y), we can always define w(α) := exp(α · w((ûg))), use the holdout set
to tune α, and use w(α) to reweight the distribution.

2Note that an ideal verification should be sampling multiple verifications per generation. We only sample
one due to computational constraints and we leave multiple verifications along with understanding verification
compute scaling for future work.
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Figure 2: Gaps (%) in cross-improvement. For each row (a fixed generator), gaps increases as verifier
capacity goes up. For each column (a fixed verifier), gap decreases as generator capacity goes up.

1. Multiple Choice (MC) (Li et al., 2023a; Gao et al., 2024) asks the LM to label responses as158

“Correct” and “Incorrect” and uses the probability of “Correct” as a continuous score.159

2. Chain of Thought (CoT) (Wei et al., 2022) asks the LM to score responses and to provide the160

justification (i.e. CoT) and the score is parsed from the answer. Scores can be on a scale from161

1 to 10 (CoT-Score) (Yuan et al., 2024; Liang et al., 2024) or binary (CoT-Binary).162

3. Tournament (To) involves sampling a batch of generations and having a verifier compare163

generation pairs in a single elimination tournament to produce a new generation distribution. We164

can repeat the process until there is only one response left from the batch.165

We consider the following models families: Qwen-1.5 (Bai et al., 2023), Qwen-2 (Yang et al., 2024),166

Llama-2 (Touvron et al., 2023), Llama-3, Llama-3.1 (Dubey et al., 2024) and Yi-1.5 (Young et al.,167

2024). To avoid the confounding effect of the post-training, all experiments in this paper are performed168

on base models. Finally, all inference in this paper is performed with vLLM (Kwon et al., 2023).169

4 Scaling Properties of Generation-verification Gap170

In this section, we conduct a comprehensive study on measuring the scaling property of the generation-171

verification gap due to its valuable practical guidance in both pre-training and downstream tasks172

(Kaplan et al., 2020; Hernandez et al., 2021; Isik et al., 2024; Ruan et al., 2024).173

4.1 Scaling Results174

We start with the GSM8K benchmark (Cobbe et al., 2021), with 1320 questions on the test data split.175

The ground truth utility u(x, y) = 1 if the end of response y is the correct answer to the question x,176

or u(x, y) = 0 otherwise. We compute gap(f) for each model f and verification method, and we177

record the full results in Tables 4 and 5. In particular, we observe the following phenomenon:178

Small Models can not Self-improve. For small (in terms of pre-train flops) models such as Qwen-1.5179

0.5B, Qwen-2 0.5B and Llama-2 7B, gap(f) is non-positive for nearly all verification methods, even180

though the models have non-trivial generation accuracy. We also observe this phenomenon in Pythia181

(Biderman et al., 2023) and OPT (Zhang et al., 2022) model families. We believe this result indicates182

that self-improvement requires a minimal level of instruction following and reasoning capabilities,183

which is not present in these small models. We will further illustrate this point in Section 4.4.184

CoT Verification is More Stable than MC. Some MC verification incurs non-positive gap even for185

medium-sized models such as Qwen-1.5 14/32B and Llama-3/3.1 8B models, while CoT verification186

always has a positive gap for medium/large-sized models. Our results align with recent studies187

showing that MC evaluation might be unreliable, especially for small models (Dominguez-Olmedo188

et al., 2024). We perform a more in-depth analysis on this point in Appendix A.189

gaprel(f) Scales with Pre-training Flops. We observe that with certain verification methods (such as190

CoT-Score), the relative gap grows monotonically with the pre-train flops, demonstrating a scaling191

property. We visualize the scaling results in Figure 1, where we plot gaprel(f) with respect to the192

log of pre-train flops. Specifically, we hypothesize that in the case where the verification elicits the193

scaling property, gaprel(f) scales linearly with respect to the log of the pre-train flops. However, note194

that we should not expect the slope for each model family to be the same. In Figure 7, we repeat the195

same plot for gap(f), but we do not observe a similar trend with the absolute gap.196
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Table 1: Gap (%) on Natural Question for Qwen-
2 models. While all models have a non-trivial
generation accuracy, all gaps are near 0, indicat-
ing that the task is unimprovable.

0.5B 1.5B 7B 72B

Generation Accuracy 6.51 13.87 29.09 41.45
MC (top 0.8) -0.06 0.04 0.79 0.28
MC (τ = 0.8) -0.05 0.02 -0.05 -0.05

Table 2: Generation accuracy, gap and relative
gap (%) on Sudoku for Qwen-2 models. Only
the 72B models can self-improve. For the 72B
models, the improvement is around 200%.

0.5B 1.5B 7B 72B

Generation Accuracy 0.66 0.62 2.09 8.82
gap -0.09 0.04 -0.07 16.99
gaprel -0.15 -0.61 -0.01 20.81

4.2 Cross Verification197

In self-improvement, both generator and verifier change when transitioning between different models.198

To better understand the relationship between generation/verification ability and model capacity, we199

perform a cross-verification study, where we only alter either the generator or the verifier at a time.200

We consider the Llama-2 and Qwen-2 model families, and the two most representative verification201

methods: MC with quantile threshold and CoT-Score. We present the results in Figure 2. We observe202

that the results are consistent with our intuition on the difficulty of verification: fix a generator model203

f , gap(f, g) increases as the model capacity (defined by pre-train flops) of the verifier model g204

increases. On the other hand, fix a verifier model g, gap(f, g) decreases as the model capacity of the205

generator model f increases, as the error of the generator model becomes more difficult to detect.206

At first glance, the results seem to imply that selecting the largest model as the verifier, akin to a207

teacher-student setup, is advantageous. However, considering the computational costs associated208

with larger verifier models, this approach might be suboptimal. Alternatively, a weak-to-strong209

setup, where a smaller model verifies a larger one, might be more cost-effective, but our findings210

indicate that a positive gap cannot always be assured. We believe an interesting future direction is211

to explore the compute-optimal configuration for cross-verification. This, however, might require a212

combinatorially large number of experiments to pinpoint the optimal verifier for each generator.213

Takeaway on scaling of self-improvement

LLMs demonstrate clear scaling trends in self- and cross-improvement:

• Self-Improvement: With stable verification, the relative gap grows monotonically with
pre-training flops.

• Cross-Improvement: The gap scales directly with the verifier’s flops and inversely with
the generator’s flops.

If the relative gap scales linearly with the logarithm of pre-training flops, this relationship
could guide decisions on synthetic data generation strategies in self-improvement. Addition-
ally, results from cross-verification suggest that a compute-optimal combination may exist to
maximize efficiency in cross-improvement contexts.

214

4.3 Unimprovable Tasks215

The primary objective of self-improvement is predicated on the assumption that “verification is easier216

than generation”. As such, it is also worthwhile to consider tasks where such intuition would not217

hold. One such scenario involves factual tasks that require generating a factually correct answer to a218

trivia question. We hypothesize that the capability to generate a correct answer is contingent solely219

on whether the model has been trained with the relevant factual knowledge, and verification would220

provide little additional signal. To test this, we measure gap(f) on the Natural Question dataset221

(Kwiatkowski et al., 2019), where u(x, y) = 1 if y is one of the candidate answers to the question222

x, and u(x, y) = 0 otherwise. Our analysis on a test subset of 3610 questions, presented in Table 1,223

reveals that despite all models achieving non-trivial generation accuracy, the gap remains smaller224

than 1%, or is even negative, across all models. This suggests that certain tasks may not benefit from225

the current self-improvement framework. We include the full results in Table 6.226

6



0 1 2 3

60

70

80

Ac
cu

ra
cy

 (%
)

0 1 2 3
0

2

4

6

Ga
p 

(%
)

7B
7B-MC
14B
32B
72B

Round

Iterative Self-improvement (Qwen-1.5, GSM8K)

20 21 22 23 24 25 26 27

Number of Generations (k)

60

70

80

90

Pa
ss

@
k 

(%
)

Generation Diveristy (Qwen-1.5-7B, GSM8K)

Iteration 0
Iteration 1
Iteration 2
Iteration 3

Figure 3: Left: The generation accuracy and gap along the iterative self-improvement process for
Qwen-1.5 model family with CoT-Binary and MC verification. The horizontal line denotes 0.005.
Right: The change of effective generation diversity along the iterative self-improvement process for
Qwen-1.5 7B model, measured by pass@k for different k.

4.4 Sudoku227

Generalized sudoku is a canonical example where the generation (NP-hard) is harder than the228

verification (P) (Haythorpe, 2016). We consider 4 by 4 sudoku puzzles, each with a unique solution,229

with 288 puzzles in total. We task the models to use CoT reasoning for both generation and verification.230

The results, presented in Table 2 and detailed further in Appendix D.3, reveal a surprising pattern:231

only the largest models, such as Qwen-1.5/2 72B and Llama 3.1 70B, exhibit non-trivial gaps. For232

these models, the improvement is indeed more significant (50%− 300% improvement in accuracy)233

than the improvement in the math task.234

While the second observation aligns with common intuition, the first may be unexpected, as most235

models demonstrate the ability to self-improve on tasks where the gap between generation and verifi-236

cation appears even narrower, such as in GSM8K. We hypothesize that, despite sudoku verification237

being simpler than generation, it still necessitates a certain level of reasoning and planning, even238

with explicit verification guidelines. This requirement is similar in mathematical tasks; however, it is239

likely that most models have been exposed to math verification during pre-training, unlike sudoku240

verification. Consequently, smaller models may lack the requisite reasoning capabilities to improve241

on sudoku tasks. Although our analysis is primarily post-hoc, an interesting avenue for future research242

would be to develop a metric to predict a model’s “self-improvability” on specific tasks.243

Takeaway on improvable tasks

LLMs do not universally self-improve across all tasks:

• Trivia Tasks: There is no significant generation-verification gap, given the similarity in
complexity between generation and verification.

• Sudoku: Despite the exponential complexity separation between generation and verifica-
tion in generalized sudoku, most models fail to self-improve. When improvement occurs, it
is notably significant.

These findings suggest that the crucial factor for general self-improvement is the model’s
inherent reasoning and planning capabilities developed during pre-training.

244

5 Iterative Self-improvement245

Building on our understanding of single-round self-improvement, a natural extension is to study246

iterative self-improvement. As there is no additional information introduced in the process, it is247

unrealistic to expect indefinite improvement. Thus in this section, we study the dynamics of the248

iterative self-improvement, and its relationship with model scales.249

In our experiment, we perform iterative self-improvement on the Qwen-1.5 model family with250

CoT-Binary verification on GSM8K. We defer the finetuning hyperparameters to Appendix E. We251

present the results in Figure 3. We observe that 1) the gap diminishes nearly to zero within two or252

three rounds of self-improvement; this is consistent with the observation with previous works (Yuan253

et al., 2024; Liang et al., 2024). 2) The rate of saturation is similar across models with different254

capacities. 3) Notably, for the 7B and 14B models, the model accuracy at iteration 1 exceeds the sum255
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of the generation accuracy and the gap at iteration 0, i.e., J(f1) > J(f0[w(ûf0)]). This increase is256

attributed to improved adherence to the required answer format post-finetuning – the discrepancy257

between “flexible match” and “exact match” (extract the answer from the required answer format)258

disappears after the first round. As we argued in the previous section, this additional accuracy gain259

is not due to the self-improvement capability of the model, and thus our modular study reduces the260

confounding factors in understanding the self-improvement capability of the model.261

To compare the dynamics between verification methods, in Figure 3 we also plot MC (top 0.7)262

verification for the 7B model. We observe that the gap immediately drops to near 0 after the first263

round of self-improvement, and thus multi-round self-improvement with MC verification is unlikely.264

This rapid saturation is consistent across other thresholds for MC verification. We provide a more265

detailed study on the cause of this phenomenon in Appendix A.1.266

We also examine the “effective diversity” of generations throughout the iterative self-improvement267

process using the metric pass@k3. We present the results in Figure 3. We observe when k is small,268

pass@k increases with the number of rounds of self-improvement, validating the success of the269

self-improvement process. However, when k is large, pass@k decreases with the number of iterations,270

indicating that the diversity of the generations is reduced through the self-improvement process. This271

trend may result from the model’s inability to verify rare, yet correct, answers, potentially leading to272

convergence on incorrect solutions during the self-improvement process.273

Takeaway on iterative self-improvement

LLMs can perform iterative self-improvement with an effective verification method:

• Saturation Limit: Without new information, iterative self-improvement typically saturates
after two or three rounds, regardless of the model’s capacity (measured in pre-training flops).

• Cause of Saturation: A potential cause for this saturation is a decrease in effective
diversity, leading to convergence on incorrect answers for certain questions.

Addressing the reduction in diversity could potentially extend the duration and effectiveness
of the self-improvement process.

274

6 Conclusion and Discussion275

In this paper, we conduct a comprehensive and modular study on the LLM self-improvement frame-276

work through multiple model families, tasks and verification mechanisms. We structure the mathemat-277

ical framework of the self-improvement process and pinpoint the generation-verification gap as a criti-278

cal metric. Our results reveal several intriguing properties such as the scaling properties of the relative279

gap, saturation of iterative self-improvement and enhancement of verification via ensemble methods.280

These insights are likely to have practical implications for improving pre-training, post-training, and281

test-time inference. Additionally, our research opens several promising avenues for future exploration:282

• While our scaling analysis is primarily observational (Ruan et al., 2024), pursuing a more extensive283

scaling law study (Kaplan et al., 2020) based on our preliminary findings could provide robust284

empirical guidelines.285

• Our results hint at an inference-time scaling law (Wu et al., 2024) is possible for self-improvement286

(or with cross-improvement (c.r. Section 4.2). Identifying compute-optimal methods for287

self-improvement across different tasks remains a critical challenge.288

• The decline in the effective diversity of generations during iterative self-improvement presents a sig-289

nificant obstacle. Developing strategies to mitigate this issue offers considerable empirical benefits.290

• The distinct non-overlap property of verification mechanisms, despite their functional similarities,291

suggests that combining compositional verification could significantly enhance self-improvement.292

Exploring this potential further could yield fruitful results.293

3Given a question, pass@k is 1 if at least one of the k generations of the model is correct, or 0 otherwise.
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A A Fine-grained Study on Verification533

Among the three components of self-improvement, the verification step offers the most flexibility,534

whereas generation and update follow more fixed procedures. Therefore, this section presents a535

detailed examination of the verification mechanisms. Through this focused study, we aim to uncover536

practical ways to enhance the overall self-improvement process.537

A.1 Generalization of Verification Thresholds538

In the rejection sampling framework, selecting an appropriate threshold for filtering generations based539

on verification is a crucial practical concern. We explore verification methods adaptable to various540

thresholds, including MC, CoT-Score, and Tournament. Our analysis focuses on how the performance541

gap changes with different thresholds for these methods. We present results for the Qwen-1.5 model542

family using MC, MC-quantile and CoT-Score in Figure 4, and results using Tournament in Figure 5.543

For tournament verification, the threshold is defined as the number of rounds of tournament. We defer544

the results of other models to Appendix D.4. In Tournament, we note that the gap with respect to the545

accuracy in the previous iteration generally decreases monotonically; this trend occurs as the verifica-546

tion error is more likely to be exploited by the remaining generations at later stages of the tournament.547

We observe that the relationship between the gap and the threshold is consistent across most models548

when using any fixed verification method. For MC and Tournament, the gap follows a concave curve549

relative to the threshold, while for CoT-Score, it increases monotonically. In addition, the majority of550

models agrees on the optimal thresholds for each verification across model families, and we use the551

optimal thresholds to report our results for this paper. However, in general, one should not expect the552

optimal threshold transfers between different tasks. That said, the consistency in threshold effects553

suggests a practical approach: if determining the optimal threshold for a large model is costly, one554

might first establish it for a smaller model and then apply it to the larger model.555

A.2 Correlation Studies between Verification Methods556

As the verification methods are functionally similar, one might question the necessity to study multiple557

verifications. To address this, We start by comparing the distribution of gaps induced by different558
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Table 3: Gaps of combining verification with AND operation on Qwen-2 model family. For MC,
we use a quantile threshold of 0.8, for CoT-S, we use the global threshold of 8, as they are the
best-performing thresholds from the analysis in the previous sections.

MC CoT-B CoT-S MC+CoT-B MC+CoT-S CoT-B+CoT-S All

0.5B 3.39 0.21 0.64 3.12 3.01 0.72 3.11
1.5B 5.27 1.26 2.78 5.08 7.68 3.15 7.61
7B 4.66 2.36 1.97 5.24 4.96 3.35 5.46

72B 2.38 2.51 2.08 3.21 3.13 3.35 3.65

verification methods. We use Qwen-1.5 7B model as an example and we present the bar plot of the559

gap distribution in Figure 6. Notably, there are significant discrepancies, especially between MC560

and CoT methods – the variance in the gap is considerably larger with MC. This aligns with our561

previous findings in Section 5 where iterative self-improvement with MC verification saturates more562

quickly than with CoT. While CoT slightly improves the accuracy on most questions, MC will drive563

the accuracy to the extreme in one round of self-improvement. We observe that this pattern holds564

across all models, as detailed in Figure 10.565

To further compare the verification methods, we calculate the Pearson correlation coefficient between566

the outputs of the proxy utility û the gaps, shown in Figure 6. We use Qwen-1.5 7B as an example567

and defer full results to Figs. 11 and 12. We observe that the correlations between û are generally low,568

suggesting potential benefits in combining different verification methods. Notably, the correlation569

between MC verifications and the correlation between CoT verifications are generally the highest,570

and larger models tend to have a higher correlation between the gaps. Surprisingly, the gaps of any571

verification method do not positively correlate with generation accuracy, reinforcing the idea that the572

relative gap may be a more appropriate metric for measuring self-improvement capability.573

A.3 Improvement via Ensemble574

The non-overlap property of different verification methods suggests the potential for enhanced575

verification performance through their combination. We again focus on the rejection sampling setup.576

In the rejection sampling framework, we employ a logical AND operation, keeping samples only if577

they pass all verification filters. We provide an example result from Qwen-2 model family in Table 8,578

and we defer the full result to Appendix D.6. We observe that combining any verifications with579

non-trivial gaps improves the verification performance (with the exception of CoT for 0.5B model580

with near 0 gap). This promising outcome indicates that despite functional similarities, different581

verification mechanisms can still be combined to improve self-improvement efficacy. The consistent582

improvements across different model sizes also suggest that strategies developed using smaller583

models can be effectively applied to larger ones, if all verifications are valid.584

Takeaway on verification mechanisms

A fine-grained study on verification reveals several implications for practice:

• Verification Consistency: The distribution of the gaps and optimal verification threshold
typically generalize across models.

• Verification Distinction: Despite functional similarities, the outputs and gaps of verifica-
tion methods show non-trivial differences among each other.

• Ensemble Heuristic: Simple verification ensemble heuristics can improve the performance.

The consistency result suggests that configurations from smaller models can be applied to
larger ones to avoid the costs associated with tuning big models. The discovery that simple
ensemble techniques can enhance performance highlights the potential for more sophisticated
algorithms to further improve self-improvement strategies.

585

B Related Works586

Synthetic Data and Self-Training. Training LLMs with a mixture of “real” data (generated by587

human) and synthetic data has been the standard protocol nowadays given the limited number of588

human data and extensive amount of data required as we scale up the LLM training. Initial studies589

generated synthetic data from more powerful models (Gunasekar et al., 2023; Li et al., 2023b; Team590
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et al., 2023; Sun et al., 2023; Taori et al., 2023; Zhu et al., 2023; Wei et al., 2024), while recent591

approaches involve models training on their own outputs (Achiam et al., 2023; Adler et al., 2024;592

Dubey et al., 2024; Yang et al., 2024; Hui et al., 2024).593

On the theoretical front, extensive research has explored the phenomenon of model collapse during594

self-training and strategies to counter this degenerate behavior (Hataya et al., 2023; Martínez et al.,595

2023; Bertrand et al., 2023; Briesch et al., 2023; Taori & Hashimoto, 2023; Alemohammad et al.,596

2023; Dohmatob et al., 2024; Gillman et al., 2024).597

LLM Self-improvement. One of the most effective strategies to prevent model collapse during598

self-training is the use of a reliable verifier (Gillman et al., 2024). In the absence of additional599

resources like labeled data or an external oracle, models can utilize their own verification capabilities.600

This is particularly effective if the model is more proficient at verification than generation. Numerous601

studies have proposed variations of self-improvement algorithms based on this principle, resulting602

in significant practical achievements (Zelikman et al., 2022; Wang et al., 2022b; Huang et al., 2022;603

Singh et al., 2023; Chen et al., 2023; Madaan et al., 2024; Xu et al., 2024; Yuan et al., 2024; Liang et al.,604

2024; Wang et al., 2024b; Shinn et al., 2024; Zelikman et al., 2024). Previous research, however, often605

relied on additional data to enhance verification, used surrogate metrics for improvement, or limited606

their focus to a small number of models. In this work, instead of proposing any new algorithm, we607

aim to rigorously analyze the self-improvement phenomenon in a controlled, comprehensive manner.608

Improving Test-time Inference with Additional Computation. Recent research has demonstrated609

that the performance of models can be enhanced by allocating more computational resources to610

inference (Welleck et al., 2024) . This typically leverages the observation that LLMs can make diverse611

generations, and with a small probability it can generate high-quality responses (Li et al., 2022;612

Brown et al., 2024; Bansal et al., 2024). Thus with oracle verifier, or with training a high-quality613

reward model, model performance can be improved by simply making multiple generations and614

selecting the best ones according to the oracle or the reward model (Cobbe et al., 2021). There are615

also works on training process-based reward models (Lightman et al., 2023) to improve the model’s616

reasoning results (Luo et al., 2024; Wang et al., 2024a; Zhang et al., 2024a).617

Concurrently there are also works on the test-time scaling law which investigates the computational618

trade-off between the model size (which determines the number of generations given a computation619

budget) and final accuracy combined with reward model or oracle (Wu et al., 2024; Snell et al., 2024).620

The results provide the compute-optimal solution for test-time inferencing with a fixed compute621

budget and a fixed verifier. We believe a better understanding of self-improvement can also lead622

to a test-time scaling law without an external verifier.623

LLM-as-a-Judge. LLM-as-a-judge refers to using an LLM to verify the generation of some other (or624

the same) LLM (Chiang et al., 2023; Zheng et al., 2023; Bubeck et al., 2023; Chiang & Lee, 2023;625

Zhou et al., 2024). Recently the same idea has also been applied to train a generative reward model626

(Ankner et al., 2024; Zhang et al., 2024b). Having a model that can verify its own generation is one627

of the key components of self-improvement, and in this work, we perform a fine-grained study on628

various types of LLM verification mechanisms.629

Reranking Algorithms. The self-improvement framework we study in this paper relies on reweight-630

ing the generation distribution. Prior to self-improvement, the reranking algorithm has already been631

widely applied in various NLP applications (Collins & Koo, 2005; Huang & Chiang, 2007; Stiennon632

et al., 2020; Cobbe et al., 2021; Krishna et al., 2022; Lightman et al., 2023).633

C Verification Mechanisms634

In this section, we provide a more complete description of the verification mechanism we use635

throughout the paper.636

• Multiple Choice (MC): Multiple choice verification asks the LM to label responses as “Correct”637

and “Incorrect”. Let prommc be a verification prompt and denote ûmc
f (x, y) a utility derived from638

the verifier generating a single token t+, t−, representing the word “Correct” and “Incorrect”639

respectively. The score uses the logits from these tokens to find the probability of “Correct”640
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conditioned on the next token being “Correct” or “Inorrect”:641

ûmc
f (x, y) :=

f(t+ | x, y, prommc)

f(t+ | x, y, prommc) + f(t− | x, y, prommc)
.

• Chain of Thought (CoT): CoT verification asks the LM to score responses and to provide the CoT.642

Denote by S ⊂ R the set of verification scores and by promS a verification prompt. We can define643

a utility644

ûS
f (x, y) := Es,z∼f(·|x,y,promS)[s(z)],

where z is the verification CoT, and s(z) ∈ S is the score extracted from the CoT. In our experiments645

we consider two versions, CoT-Score with S = [10] and CoT-Binary with S = {0, 1}.646

• Tournament (To): The tournament verification does not directly fit the utility framework described647

in Section 2. Rather, this verification procedure involves comparisons of a batch of generations to648

provide a modified distribution4. Given a comparison prompt promcom, we perform a tournament-649

style elimination over a batch of 2r generations by comparing disjoint pairs in each round until a650

single generation remains. Let Y(0) = y1, y2, . . . , y2r be the initial set of generations. At round k,651

the set Y(k) contains 2r−k remaining generations. These are split into disjoint pairs (yi, yj) ∈ Y(k).652

Each pair is compared using the prompt promcom, and the verifier’s output s ∈ A,B indicates the653

preferred generation:654

ywin =

{
yi if f(· | yi, yj , promcom) = A,

yj if f(· | yi, yj , promcom) = B.

where ywin is the winner of the pairwise comparison and advances to the next round. After each655

round k, the set of winners Y(k+1) contains half the number of generations. This process is repeated656

until k = r, leaving only one generation, the lone element in Yr.657

D Additional Results658

D.1 Additional Results for Section 4.1659
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of pretrain flops, and the y-axis is the relative gap. MC denotes Multiple Choice verification with
quantile threshold 0.8 (top 0.8), CoT-S denotes CoT-Score verification with global threshold 8, and
To denotes Tournament verification with 5 rounds.

4This batch-style distribution weighting also applies to strategies like top-k wherein we take the highest k
utility generations for a particular question.
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Table 4: Gap on GSM-8K for all models. For each verification, “top n” denotes taking the threshold
as the n quantile of the proxity utility for each prompt, and τ = n denotes taking the threshold as n
for all prompts. All numbers denote the percentage.

Name Size Accuracy MC CoT To
top 0.7 top 0.8 τ = 0.7 τ = 0.8 Bin S (τ = 8) S (τ = 9) round 5

Qwen-1.5

0.5B 11.31 -0.62 -1.42 -2.27 -3.68 -0.02 -0.01 0.12 0.44
1.8B 32.81 3.06 2.70 -0.01 0.00 1.58 0.95 1.02 -0.44
4B 50.21 4.85 4.63 0.48 0.89 2.36 2.14 2.27 2.08
7B 53.17 7.18 7.42 3.68 6.13 4.07 1.84 0.70 3.59

14B 63.87 -2.04 -5.61 2.36 -1.06 1.79 1.69 2.00 3.16
32B 70.25 -0.22 -1.98 1.72 1.06 3.07 1.84 1.90 -1.03
72B 74.55 4.84 4.75 2.00 3.95 3.55 2.47 2.91 6.40

Qwen-2

0.5B 26.19 4.59 3.39 3.81 -6.59 0.21 0.64 0.72 0.32
1.5B 48.82 6.09 5.27 5.02 1.32 1.26 2.78 2.80 1.29
7B 76.42 4.69 4.66 3.90 2.17 2.36 1.97 2.08 3.86

72B 81.69 2.39 2.38 0.89 2.12 2.51 2.08 2.45 2.20

Llama-2
7B 11.64 2.33 2.20 0.10 0.00 0.16 0.25 0.23 0.99

13B 21.57 3.45 3.18 -0.13 0.01 1.13 0.97 1.01 1.17
70B 48.42 5.14 4.91 4.77 4.16 3.98 3.44 3.45 5.68

Llama-3 8B 45.66 5.34 5.33 -0.50 0.44 2.67 2.10 2.13 4.08
70B 74.19 5.06 4.52 4.68 1.35 3.89 2.59 2.72 2.00

Llama-3.1 8B 49.31 4.68 4.57 -2.25 -0.24 3.37 2.09 2.05 4.78
70B 71.71 6.88 6.77 6.00 0.93 3.29 2.71 2.88 -0.40

Yi-1.5
6B 55.53 4.40 4.27 2.98 -0.97 2.01 1.88 1.95 2.24
9B 61.04 7.74 7.50 5.61 5.73 2.32 3.61 3.72 7.83

34B 73.71 6.29 6.23 3.34 4.84 2.49 2.86 2.95 3.41

D.2 Additional Results for Section 4.3660

Model Qwen-1.5
0.5B 1.8B 4B 7B 14B 32B 72B

Generation Accuracy 6.20 11.40 17.16 21.20 26.83 35.79 39.97
MC (top 0.2) -0.62 -0.02 -1.20 -1.15 -1.99 -0.43 -0.75
MC (τ = 0.8) -0.51 -0.32 -0.72 -1.07 -1.21 -0.10 0.32

661

Model Qwen-2
0.5B 1.5B 7B 72B

Generation Accuracy 6.51 13.87 29.09 41.45
MC (top 0.2) -0.06 0.04 0.79 0.28
MC (τ = 0.8) -0.05 0.02 -0.05 -0.05

662

Model Llama-2
7B 13B 70B

Generation Accuracy 25.52 41.00 29.09
MC (top 0.2) -0.96 0.76 0.30
MC (τ = 0.8) -0.81 -2.31 -0.44

663

Model Llama-3
8B 70B

Generation Accuracy 30.40 45.59
MC (top 0.2) 0.27 0.32
MC (τ = 0.8) -0.23 -0.41

664
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Table 5: Relative gaps on GSM-8K for all models. For each verification, “top n” denotes taking
the threshold as the n quantile of the proxity utility for each prompt, and τ = n denotes taking the
threshold as n for all prompts. All numbers denote the percentage

Name Size Accuracy MC CoT To
top 0.7 top 0.8 τ = 0.7 τ = 0.8 Bin S (τ = 8) S (τ = 9) round 5

Qwen-1.5

0.5B 11.31 -0.70 -1.60 -2.56 -4.15 -0.03 -0.13 0.04 0.59
1.8B 32.81 4.55 4.01 -0.01 -0.01 4.45 3.10 3.15 -0.39
4B 50.21 9.75 9.31 0.96 1.80 8.22 6.92 8.12 5.24
7B 53.17 15.34 15.84 7.87 13.08 14.06 5.50 -0.35 10.26
14B 63.87 -5.64 -15.54 6.52 -2.94 7.77 8.00 9.02 12.19
32B 70.25 -0.75 -6.67 5.78 3.57 15.31 8.40 8.49 -4.55
72B 74.55 19.01 18.65 7.87 15.52 21.82 14.96 16.97 32.06

Qwen-2

0.5B 26.19 6.22 4.59 5.16 -8.93 0.44 1.58 1.79 1.31
1.5B 48.82 11.90 10.30 9.82 2.58 4.45 9.96 10.11 5.26
7B 76.42 19.89 19.74 16.53 9.18 16.46 13.73 14.34 17.17
72B 81.69 13.07 13.00 4.87 11.57 20.16 14.34 19.92 17.84

Llama-2
7B 11.64 2.64 2.49 0.11 0.00 0.25 0.39 0.37 1.91
13B 21.57 4.40 4.05 -0.16 0.02 2.45 1.79 1.82 2.88
70B 48.42 9.97 9.52 9.25 8.07 13.77 12.22 12.07 18.57

Llama-3 8B 45.66 9.62 9.60 -0.90 0.80 8.51 6.16 6.70 12.55
70B 74.19 18.08 16.13 16.71 4.84 19.09 13.24 13.74 11.28

Llama-3.1 8B 49.31 8.97 8.77 -4.31 -0.47 11.74 7.02 6.89 14.97
70B 71.71 22.83 22.47 19.91 3.09 16.68 12.65 13.59 -1.03

Yi-1.5
6B 55.53 9.89 9.60 6.70 -2.17 9.10 6.60 6.69 10.64
9B 61.04 19.86 19.25 14.40 14.70 10.09 14.29 14.35 24.78
34B 73.71 23.94 23.68 12.70 18.40 15.02 16.69 16.96 8.89

Model Llama-3.1
8B 70B

Generation Accuracy 27.75 45.13
MC (top 0.2) 0.42 0.44
MC (τ = 0.8) -0.59 -0.37

665

Model Yi-1.5
6B 9B 34B

Generation Accuracy 22.82 25.94 35.31
MC (top 0.2) 0.09 0.21 0.24
MC (τ = 0.8) -0.07 0.61 0.30

666

Table 6: Gap on Natural Question for all models. With non-trivial generation accuracy, all gaps are
near 0, indicating that the task is non-improvable.

D.3 Additional Results for Section 4.4667

Model Qwen-1.5
0.5B 1.8B 4B 7B 14B 32B 72B

Generation Accuracy 0.43 1.00 0.88 0.95 1.57 2.67 2.02
Gap 0.02 -0.03 -0.15 -0.64 0.22 0.07 1.23

Relative Gap -0.10 -2.80 -1.39 -3.06 0.67 -1.25 1.14

668
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Model Qwen-2
0.5B 1.5B 7B 72B 7B-Instruct 72B-Instruct

Generation Accuracy 0.66 0.62 2.09 8.82 2.16 8.15
Gap -0.09 0.04 -0.07 16.99 0.13 22.97

Relative Gap -0.15 -0.61 -0.01 20.81 0.20 26.40

669

Model Llama-2
7B 13B 70B

Generation Accuracy 0.82 0.89 0.86
Gap -0.13 -0.63 -0.86

Relative Gap 0.45 -2.02 -3.57

670

Model Llama-3
8B 70B

Generation Accuracy 1.39 1.63
Gap -1.10 -0.84

Relative Gap -15.4 -36.12

671

Model Llama-3.1
8B 70B

Generation Accuracy 1.11 1.68
Gap -0.19 5.5

Relative Gap -4.52 6.87

672

Model Yi-1.5
6B 9B 34B

Generation Accuracy 0.59 1.29 4.48
Gap -0.60 0.22 -1.75

Relative Gap -0.94 0.43 -0.77

673

Table 7: Generation accuracy, gap and relative gap on Sudoku for all models.
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D.4 Additional Results for Appendix A.1674
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Figure 8: Change in the gap as we vary the threshold for each verification method. We only present
the results for MC with global threshold, quantile threshold and CoT-Score, because CoT-Binary’s
gap does not change as we change the threshold.
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Figure 9: Tournament

D.5 Additional Results for Appendix A.2686
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Figure 10: The empirical distribution of gaps of each verification method of each model on GSM8K.
We cluster gaps in bins of intervals with width 0.005. We label the mean (µ) and standard deviation
(σ) of each distribution.
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Figure 11: The correlation plot of the output of each verification û.
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Figure 12: The correlation plot of the gap from each verification and generation accuracy.
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D.6 Additional Results for Appendix A.3717

Table 8: Relative gaps on GSM-8K for all models. For each verification, “top n” denotes taking
the threshold as the n quantile of the proxity utility for each prompt, and τ = n denotes taking the
threshold as n for all prompts. All numbers denote the percentage

Name Size MC CoT-B CoT-S MC+CoT-B MC+CoT-S CoT-B+CoT-S All

Qwen-1.5

0.5B -1.62 -0.07 -0.01 -1.65 -1.36 -0.08 -1.42
1.8B 2.36 1.04 0.95 2.16 2.22 1.18 2.14
4B 4.55 2.26 2.14 4.81 4.77 3.50 4.90
7B 7.46 3.98 1.84 9.02 7.88 4.88 9.12

14B -6.09 1.79 1.69 -5.73 -5.85 2.45 -5.60
32B -2.30 3.07 1.84 -1.87 -2.21 3.62 -2.00
72B 4.61 3.43 2.47 5.70 5.25 4.46 6.07

Qwen-2

0.5B 3.01 0.18 0.64 3.01 3.13 0.72 3.11
1.5B 5.04 0.86 2.78 5.08 7.68 3.15 7.61
7B 4.68 2.31 1.97 5.25 4.96 3.40 5.46

72B 2.44 2.50 2.28 3.21 3.13 3.35 3.65

Llama-2
7B 2.17 0.13 0.25 2.21 2.42 0.37 2.44

13B 3.19 0.91 0.97 3.47 3.38 1.76 3.21
70B 4.78 3.73 3.44 5.52 5.61 5.79 4.90

Llama-3 8B 4.98 2.59 2.10 5.88 5.81 4.09 5.83
70B 4.37 3.88 2.59 4.91 4.71 4.45 4.98

Llama-3.1 8B 4.34 3.50 2.09 4.47 4.57 3.27 2.96
70B 6.72 3.29 2.71 7.08 7.03 3.94 7.21

Yi-1.5
6B 4.27 2.01 1.88 4.83 4.72 3.16 4.95
9B 7.50 2.32 3.61 7.79 7.87 4.80 8.11

34B 6.23 2.49 2.86 6.32 6.35 3.76 6.41
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E Hyperparameters718

Table 9: Hyperparameter for Iterative Self-improvement
Minibatch size 64
Learning rate 1e-6

Optimizer AdamW
Gradient step 2000

Max Sequence Length 2048
Data Type bf16

F Generation and Verification Prompts719

Multiple Choice Verification Prompt (GSM8K / nq_open)

Judge the correctness of the following solution of the problem. Answer with either Correct or
Incorrect. Problem: {problem}
Solution: {generation}
Judge:

720

Chain of Thoughts Binary Prompt (GSM8K)

Review the following math problem and the attempted solution and verify the correctness
of the attempted solution, with a judgement of <correct> or <incorrect>. Your judgement
should follow each criterion below: - The final ANSWER is after the phrase "The answer is
ANSWER", and verify if the answer is correct with respect to the problem. If there is no such
phrase, treat the answer as incorrect. - Each solution contains a derivation before the final
answer, check the soundness of the derivation as well. - Your final judgement should reflect
solely on the correctness of the final answer, but if there are issues in the derivation, please
mention them in your justification.
Problem: {problem}
Attempted Solution: {generation}
After examining the problem and the attempted solution: - Briefly justify your judgement, up
to 50 words. - Conclude with the judgement using the format: "Correctness: <correct> or
<incorrect>".
Remember to assess from the math verifier perspective and be critical and verify carefully.
Judgement:

721

Chain of Thoughts Score Prompt (GSM8K)

Review the following math problem and the attempted solution and give a score from 1 to 10
to the attempted solution. The final ANSWER is after the phrase "Final Answer: The final
answer is ANSWER". Give the answer a 1 if there is no such phrase or ANSWER is wrong,
and give the answer a 10 if both the answer and the derivation are correct.
Problem: {problem}
Attempted Solution: {generation}
After examining the problem and the attepmted solution: - Briefly justify your score, up to 50
words. - Conclude with the score using the format: "Score: <score>".
Remember to assess from the math verifier perspective and be critical and verify carefully.
Judgement:

722
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Tournament Prompt (GSM8K)

Review the following math problem and two attempted solutions. Your task is to determine
the better solution between the two. Your judgement should follow each criterion below: -
The final ANSWER is after the phrase "The answer is ANSWER", and you should always
prefer correct answers over incorrect answer. - Always prefer solutions with the phrase "The
answer is ANSWER" over ones without it. - If both answers are correct or incorrect, you
should prefer the one with better reasonings. Problem: {problem}
Solution A: {generation1}
Solution B: {generation2}
After examining the problem and the attempted solutions: - Briefly justify your judgement,
up to 50 words. - Conclude with the judgement using the format: "Preferred solution: <A> or
<B>".
Remember to assess from the math verifier perspective and be critical and verify carefully.
Judgement:

723

Sudoku Generation Prompt

You are a Sudoku solver specialized in 4x4 puzzles. You will be given a string of 16 digits
representing an initial 4x4 Sudoku puzzle, where 0 represents an empty cell. Your task is to
solve the puzzle and provide the complete solution.
Rules for solving a 4x4 Sudoku:
Each row must contain the numbers 1-4 without repetition.
Each column must contain the numbers 1-4 without repetition.
Each 2x2 quadrant must contain the numbers 1-4 without repetition.
The solution must maintain all the initial non-zero numbers from the puzzle in their original
position.
Input format:
ab cd
ef gh
ij kl
mn op
Where each letter represents a single digit (0-4), and 0 indicates an empty cell. Your tasks:
Analyze the given puzzle.
Fill in all empty cells (0s) with appropriate numbers following Sudoku rules.
Provide your solution in the same format as the input, maintaining the original structure.
Puzzle: {problem}
Answer:

724

Sudoku Generation Example

Puzzle:
03 21
00 30
04 00
21 00
Answer: I filled A1 with 4 to complete Row 1. In Quadrant 1, the missing numbers 1 and 2
were assigned to B1 and B2 based on Column constraints. B4 was set to 4 to complete Row
2. In Quadrant 3, C1 was filled with 3. Row 3 missing numbers 1 and 2 were placed in C3
and C4. D4 was assigned 3 to complete Column 4, and D3 was set to 4 to finish Row 4.
Solution:
43 21
12 34
34 12
21 43
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Sudoku Verification Prompt

You are a Sudoku validator for 4x4 puzzles. You will be given two strings of 16 numbers
each: the first represents the initial Sudoku puzzle, and the second represents the proposed
solution. Your task is to determine if the solution is correct.
Rules for a valid 4x4 Sudoku solution:
Each row must contain the numbers 1-4 without repetition.
Each column must contain the numbers 1-4 without repetition.
Each 2x2 quadrant must contain the numbers 1-4 without repetition.
The solution must maintain all the initial numbers from the puzzle.
Input format:
Question: Input format:
ab cd
ef gh
ij kl
mn op
Where each letter represents a single digit (0-4), and 0 indicates an empty cell. Answer:
[same format but there should be no 0]
Your task:
Check if the solution maintains all initial numbers from the puzzle.
Verify that each row, column, and 2x2 quadrant contains 1-4 without repetition.
Respond with "Correct" if the solution is valid, or "Incorrect" if it’s not.
Question: {problem}
Answer: {generation}
Judgment:

726

Sudoku Verification Example

problem:
03 00
21 00
00 01
10 43
generation:
34 12
21 31
34 21
12 44
correctness: Checking if the solution maintains all initial numbers from the puzzle:
Position (Row 1, Column 2): Puzzle has 3, Solution has 3 — Correct
Position (Row 2, Column 1): Puzzle has 2, Solution has 2 — Correct
Position (Row 2, Column 2): Puzzle has 1, Solution has 1 — Correct
Position (Row 3, Column 4): Puzzle has 1, Solution has 1 — Correct
Position (Row 4, Column 1): Puzzle has 1, Solution has 1 — Correct
Position (Row 4, Column 3): Puzzle has 4, Solution has 4 — Correct
Position (Row 4, Column 4): Puzzle has 3, Solution has 3 — Correct
All initial numbers are maintained.
Checking the rows:
Row 1: Numbers are 4, 3, 1, 2 (No repetition) - Correct
Row 2: Numbers are 2, 1, 3, 1 (Number 1 repeats) - Invalid
Row 3: Numbers are 3, 4, 2, 1 (No repetition) - Correct
Row 4: Numbers are 1, 2, 4, 3 (No repetition) - Correct
Checking the columns:
Column 1: Numbers are 4, 2, 3, 1 (No repetition) - Correct
Column 2: Numbers are 3, 1, 4, 2 (No repetition) - Correct
Column 3: Numbers are 1, 3, 2, 4 (No repetition) - Correct
Column 4: Numbers are 2, 1, 1, 3 (Number 1 repeats) - Invalid
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Checking the 2x2 quadrants:
Quadrant 1 (Rows 1-2, Columns 1-2): Numbers are 4, 3, 2, 1 (No repetition) - Correct
Quadrant 2 (Rows 1-2, Columns 3-4): Numbers are 1, 2, 3, 1 (Number 1 repeats) - Invalid
Quadrant 3 (Rows 3-4, Columns 1-2): Numbers are 3, 4, 1, 2 (No repetition) - Correct
Quadrant 4 (Rows 3-4, Columns 3-4): Numbers are 2, 1, 4, 3 (No repetition) - Correct
Conclusion: There are repetitions in Row 2, Column 4, and Quadrant 2, the solution violates
the Sudoku rules.
Therefore, the response is: Incorrect
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