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Abstract001

Retrieval Augmented Generation (RAG) has002
become the standard non-parametric approach003
for equipping Large Language Models (LLMs)004
with up-to-date knowledge and mitigating005
catastrophic forgetting common in continual006
learning. However, standard RAG, relying007
on independent passage retrieval, fails to cap-008
ture the interconnected nature of human mem-009
ory crucial for complex reasoning (associa-010
tivity) and contextual understanding (sense-011
making). While structured RAG methods like012
HippoRAG 2 utilize knowledge graphs built013
from triples, we argue that the inherent context014
loss of knowledge triples limits fidelity. We015
introduce PropRAG, leveraging context-rich016
propositions and a novel LLM-free online beam017
search over proposition paths to find multi-step018
reasoning chains. PropRAG achieves state-of-019
the-art zero-shot Recall@5 and F1 scores on020
2Wiki, HotpotQA, and MuSiQue, advancing021
non-parametric continual learning by improv-022
ing evidence retrieval through richer represen-023
tation and efficient reasoning path discovery.024

1 Introduction025

Large Language Models (LLMs) face challenges026

in continual learning, such as catastrophic forget-027

ting (Cohen et al., 2024; Gu et al., 2024). Retrieval028

Augmented Generation (RAG) (Lewis et al., 2020)029

offers a non-parametric solution by retrieving ex-030

ternal knowledge. However, conventional RAG031

systems (Karpukhin et al., 2020; Lee et al., 2025),032

retrieving evidence independently, struggle with033

multi-step queries requiring interconnected infor-034

mation for sense-making (Klein et al., 2006) and035

associativity (Suzuki, 2007).036

Structured RAG methods, like HippoRAG 2037

(Gutiérrez et al., 2025) using triple-based KGs, im-038

prove multi-hop retrieval but suffer "context col-039

lapse" from lossy triples (Section 3). Other ad-040

vanced RAG strategies use online LLM calls during041

retrieval (Trivedi et al., 2022a; Jiang et al., 2024), 042

introducing latency, cost, and consistency issues. 043

We introduce PropRAG, a novel RAG frame- 044

work for dynamic, interconnected memory retrieval 045

without online LLM inference during the search 046

process. PropRAG features two key innovations: 047

1. Propositions as High-Fidelity Knowledge 048

Units: Extracted offline by an LLM, proposi- 049

tions preserve contextual richness unlike triples 050

(Section 3). 051

2. LLM-Free Online Beam Search for Reason- 052

ing Path Discovery: A novel algorithmic beam 053

search discovers and scores paths of intercon- 054

nected propositions from a pre-built graph using 055

embeddings and graph structure, avoiding LLM 056

inference costs and potential inconsistencies dur- 057

ing evidence discovery (Section 5.3). 058

PropRAG’s LLM-independent online path finding 059

over richer propositions enhances sense-making 060

and associativity. Experiments show substantial 061

outperformance, especially on multi-hop QA, set- 062

ting new state-of-the-art zero-shot RAG scores and 063

advancing non-parametric continual learning. 064

2 Related Work 065

Retrieval Augmented Generation (RAG) frame- 066

works (Lewis et al., 2020) augment LLMs by 067

retrieving documents. Early methods like DPR 068

(Karpukhin et al., 2020) used embedding similarity. 069

Despite better embeddings (Izacard et al., 2022; Ni 070

et al., 2022; Lee et al., 2025), standard RAG strug- 071

gles with multi-document synthesis (Asai et al., 072

2020). 073

Multi-Hop RAG aims to address this. Iterative 074

methods (Asai et al., 2020; Trivedi et al., 2022a) 075

retrieve sequentially. Graph-based RAG (Edge 076

et al., 2024; Sarthi et al., 2024) uses KGs. Hip- 077

poRAG 2 (Gutiérrez et al., 2025) used Personalized 078

PageRank over triple-based KGs, but triples are 079
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Knowledge Graph (Triple Representation)
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Nodes within the same proposition hyper-edge are fully connected.
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President Lincoln signed the preliminary Emancipation Proclamation in September 1862 
according to archival records.

The Emancipation Proclamation was set to take legal effect on January 1, 1863.

The legal effect of the Emancipation Proclamation was conditional on the Confederate 
states not rejoining the Union by that date.
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Passage: The archival records indicate President Lincoln signed the 
preliminary Emancipation Proclamation in September 1862, but it only 
took legal effect on January 1, 1863, provided the Confederate states did 
not rejoin the Union by that date.

Figure 1: Comparison of Knowledge Graph vs Proposition Graph for a complex passage. Left: Traditional triple-
based KG struggles to represent provenance ("archival records") and conditional clauses naturally, requiring sparse
connections or complex reification. Right: PropRAG’s proposition graph uses hyper-edges (fully connected cliques
within shaded ovals) to link all entities co-occurring within each contextually rich proposition, preserving nuances
like conditionality and provenance directly.

context-poor. PropRAG differs by using context-080

rich propositions and an explicit, LLM-free online081

beam search for path discovery on the proposition082

graph.083

Beam Search Recent work has explored leverag-084

ing beam search to improve multi-hop retrieval. For085

instance, (Zhang et al., 2023) proposed Beam Re-086

trieval, an end-to-end trainable framework where087

beam search is used during both training and infer-088

ence to find optimal passage sequences. Their ap-089

proach learns a scoring function via classification090

heads optimized across hops using ground-truth091

passage chains within a reading comprehension092

setting.093

In contrast, PropRAG adopts a fundamentally094

different, zero-shot online retrieval strategy. While095

also employing beam search, PropRAG operates096

over a graph of contextually rich propositions, ex-097

tracted offline using an LLM. Our beam search098

algorithmically discovers proposition paths based099

on pre-computed embedding similarity and graph100

connectivity, crucially avoiding online LLM in-101

ference costs, potential inconsistencies or task-102

specific training during the retrieval phase. The 103

goal is to find semantically relevant reasoning 104

chains (proposition paths) which then inform a final 105

passage ranking, typically via Personalized PageR- 106

ank seeded by the discovered paths. PropRAG thus 107

decouples the complex reasoning path discovery 108

from end-to-end training dependencies, focusing 109

on leveraging richer knowledge units (propositions) 110

and algorithmic path exploration for improved zero- 111

shot multi-hop RAG performance. 112

Propositions as Retrieval Units Chen et al. 113

(2024) showed propositions (atomic factoids) out- 114

perform passage/sentence retrieval. PropRAG in- 115

tegrates such propositions into a graph and uses 116

beam search for multi-hop reasoning. 117

3 Propositions: Escaping the Tyranny of 118

the Triple 119

The fidelity of knowledge representation is 120

paramount for multi-hop reasoning. Traditional 121

KG-based RAG often uses (Subject, Predicate, Ob- 122

ject) triples, a lossy compression discarding cru- 123
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cial nuances. Propositions—atomic, self-contained124

statements preserving context—offer a richer al-125

ternative. Key limitations of triples addressed by126

propositions include:127

1. Loss of Conditional Context: Many facts are128

true only under specific conditions (temporal,129

spatial, etc.). Triples often discard this.130

• Example Passage: The experimental drug131

showed promise in Phase 2 trials, reduc-132

ing tumor size significantly, but only in133

patients under 50 with the specific KRAS134

mutation."135

• Triples might yield: (drug, showed,136

promise), (drug, reduced, tumor137

size). The conditions "only in patients138

under 50" and "with specific KRAS muta-139

tion" are lost.140

• Propositions preserve conditions: E.g.,141

"The significant tumor size142

reduction by the experimental drug143

was observed only in patients144

under 50."145

2. Awkward Representation of Clauses and146

Meta-Relations: Representing complex re-147

lationships (provenance, causality, conditions148

within clauses) is unnatural in S-P-O format,149

often requiring complex reification that loses150

clarity.151

• Example Passage: "The archival records152

indicate President Lincoln signed the pre-153

liminary Emancipation Proclamation in154

September 1862, but it only took legal ef-155

fect on January 1, 1863, provided the Con-156

federate states did not rejoin the Union by157

that date."158

• Triples struggle with provenance159

("Archival records indicate...") or the160

conditional clause.161

• Propositions handle these naturally:162

E.g., "Archival records indicate163

President Lincoln signed...", "The164

legal effect... was conditional165

on...". The proposition graph (Figure166

1, right) uses hyper-edges preserving full167

context.168

3. Unary Predicates and Attributes: Sim-169

ple properties (e.g., "The ancient manuscript170

was fragile") are awkward in binary S-P-O.171

Triples like (manuscript, is, fragile) or172

(manuscript, hasProperty, fragile) treat173

attributes as entities or use weak/generic predi- 174

cates. 175

• Propositions capture unary predication di- 176

rectly: "The ancient manuscript was 177

fragile." (Entity: ancient manuscript). 178

The embedding of the full proposition pre- 179

serves the nuanced relationship. 180

4. N-ary Relationships (Events with Multiple 181

Participants): Real-world events often involve 182

more than two entities (e.g., collaborations, 183

transactions). Rigid S-P-O forces unnatural de- 184

composition into multiple binary triples, frag- 185

menting the event’s holistic view. 186

• Example Passage (Collaboration): "The 187

groundbreaking research paper on quan- 188

tum entanglement was co-authored by Al- 189

ice, Bob, and Charlie in 2023." 190

• Triples fragment this: (Alice, 191

co-authored, paper), (Bob, 192

co-authored, paper), etc., losing 193

that they collaborated *together*. 194

• Proposition captures N-ary rela- 195

tion: "Alice, Bob, and Charlie 196

co-authored the groundbreaking 197

research paper on quantum 198

entanglement in 2023." (Entities: 199

Alice, Bob, Charlie, paper, etc.). This 200

is represented as a hyper-edge in the 201

proposition graph. 202

PropRAG uses LLMs (Llama-3.3-70B-Instruct) of- 203

fline for high-quality proposition extraction, lever- 204

aging NLU capabilities during indexing. The sub- 205

sequent online retrieval does not involve further 206

LLM calls for knowledge representation. 207

4 Problem Formulation: Finding the 208

Reasoning Path 209

Traditional RAG aims to retrieve docu- 210

ments Dret maximizing individual relevance 211

sim(emb(d), emb(q)). Multi-hop KG-RAG like 212

HippoRAG 2 (Gutiérrez et al., 2025) ranks nodes 213

(entities/passages) by proximity to query seeds or 214

graph centrality, but does not explicitly construct 215

or evaluate multi-step reasoning paths. When 216

KGs use context-poor triples, semantic richness is 217

limited. 218

We reformulate multi-hop retrieval as finding 219

an optimal path of interconnected propositions 220

P = (p1, p2, ..., pk) that collectively answer query 221
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q. Propositions pi, pi+1 are linked by shared/syn-222

onymous entities. This connection occurs naturally223

in the proposition graph (Figure 1, right) where224

entities shared between proposition hyper-edges225

act as bridges. The objective is to find P ∗ =226

argmax
P∈ConnectedPaths(P)

Score(P, q), where Score(P, q)227

measures path relevance, possibly via aggregated228

embeddings. As finding the global optimum is229

intractable, we use beam search as a heuristic.230

5 Methodology: PropRAG231

PropRAG implements path-finding via offline in-232

dexing and online two-stage retrieval (Figure 2).233

5.1 Offline Indexing (LLM-assisted)234

1. Use an LLM (e.g., Llama-3.3-70B-Instruct) to235

extract propositions and constituent entities from236

corpus D.237

2. Construct a proposition graph G = (V,E) (de-238

tailed in Section A.1).239

3. Compute and store embeddings for all passages,240

entities, and propositions.241

5.2 Online Retrieval (LLM-free)242

PropRAG’s online retrieval component executes a243

two-stage, LLM-free process to identify relevant244

reasoning paths (Figure 2). This staged approach245

balances broad exploration with focused path re-246

finement.247

5.2.1 Stage 1: Coarse-grained Subgraph248

Focusing249

The objective of this stage is to efficiently prune250

the search space to a highly relevant subgraph of251

the proposition graph G.252

1. Initial Candidate Identification: The top-253

Nprop propositions most semantically similar254

to the query q are retrieved. Entities E(p) within255

these propositions are extracted.256

2. Seed Selection (Sinitial): From the extracted257

entities, the top-Nentity unique entities, ranked258

by their initial relevance scores (Appendix A.6),259

form the set Sinitial. These seeds are assigned260

uniform weights for the subsequent PPR to fos-261

ter diverse graph exploration.262

3. Exploratory Graph Traversal (PPR): Person-263

alized PageRank (PPR) is performed on the full264

graph G. Reset probabilities are concentrated265

exclusively on nodes in Sinitial (1.0 for seeds, 0266

otherwise). A high damping factor (e.g., 0.75) 267

is employed to encourage wider traversal from 268

these initial seeds. 269

4. Focused Subgraph (Gsub) Generation: The 270

top-K passages identified by the initial PPR, 271

along with all entities connected to them in G, 272

constitute the focused subgraph Gsub, which 273

serves as the operational graph for fine-grained 274

reasoning. 275

5.2.2 Stage 2: Fine-grained Path Discovery 276

and Ranking 277

Within Gsub, this stage explicitly discovers, scores, 278

and ranks multi-proposition reasoning paths. 279

1. Beam Search Path Exploration: The beam 280

search algorithm (Section 5.3) systematically ex- 281

plores Gsub to identify connected proposition 282

paths up to a maximum length Lmax. It main- 283

tains a beam of the top-B paths based on query 284

relevance. 285

2. Refined Seed Set Construction (Sfinal = 286

Sexplore ∪ Sexploit): The final set of seed en- 287

tities for ranking integrates relevance from two 288

sources: 289

• Exploration Seeds (Sexplore): Top-Binitial 290

entities from the top-Pinitial query-similar 291

propositions within Gsub. 292

• Exploitation Seeds (Sexploit): Top-Bbeam 293

entities identified as central to the top- 294

Pbeam high-scoring paths discovered by 295

beam search. 296

3. Exploitative Path-informed Ranking (PPR): 297

A second PPR iteration is confined to Gsub. 298

The reset probability vector r combines nor- 299

malized initial query-entity similarity scores 300

(sinit) and aggregated entity scores derived from 301

beam search paths (sbeam), as detailed in Ap- 302

pendix A.6. Specifically, for e ∈ Sfinal, 303

scorefinal(e) = max(s′explore,e, s
′
exploit,e); 304

passage nodes d also receive a base score 305

scorefinal(d) = λpassage · scoredpr(d, q). A 306

lower damping factor (e.g., 0.45) is used to capi- 307

talize on these refined relevance signals, yielding 308

a focused ranking of the top 5 evidence passages. 309

4. Final Evidence Ranking: Passages are ranked 310

according to their final PPR scores, promoting 311

those linked to entities within salient reasoning 312

paths. 313
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Figure 2: The two-stage retrieval process of PropRAG. Stage 1 (Crude Filtering) uses explorative PPR (high
damping factor = 0.75) on the full graph to identify top k = 50 passages and induce a relevant subgraph. Stage
2 (Fine Reasoning) performs beam search on the subgraph to discover reasoning paths, generates final relevance
signals, applies exploitative PPR (low damping factor = 0.45) on the subgraph using refined seeds, and selects the
final top kout = 5 passages.

5.3 Beam Search for Reasoning Paths314

PropRAG employs a beam search algorithm,315

adapted from sequence generation methodologies,316

to heuristically discover high-relevance reasoning317

paths within the proposition graph. This approach318

systematically explores sequences of propositions319

P = (p1, ..., pL) that maximize a relevance score320

Score(P, q) with respect to the input query q, per-321

forming a bounded-width search.322

Core Algorithmic Steps:323

• Initialization: The beam is initialized with324

paths of length 1, corresponding to the proposi-325

tions most semantically similar to the query.326

• State Representation: Each hypothesis in the327

beam comprises a partial path P = (p1, ..., pk),328

its cumulative relevance score Score(P, q), and329

the entities E(pk) in its terminal proposition pk.330

• Path Expansion: Paths are extended by identi-331

fying candidate next propositions pnext. These332

candidates are primarily drawn from proposi-333

tions connected to the current path’s terminal334

proposition pk via shared or synonymous enti- 335

ties within Gsub. To mitigate local optima and 336

encourage diverse exploration, the top-3 initial 337

query-relevant propositions are also considered 338

as potential pnext ("jump points"), irrespective 339

of direct graph connectivity to pk. 340

• Path Scoring: The relevance of an expanded 341

path Pnew = (P, pnext) is estimated as 342

Score(Pnew, q) ≈ sim(emb(Pnew), emb(q)). 343

An efficient average proposition embedding is 344

used for initial scoring. The top-M candidates 345

from this initial scoring are then re-evaluated us- 346

ing a more robust score derived from an embed- 347

ding of the concatenated text of all propositions 348

in Pnew. 349

• Selection and Pruning: From all generated can- 350

didate expansions, the top-B (beam width) paths 351

with the highest scores are retained for the sub- 352

sequent iteration; others are pruned. 353

• Termination Criteria: The search concludes 354

when paths reach the maximum length Lmax or 355
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Query: What year did the Governor of the city where the
basilica named after the same saint as the one that Mantua
Cathedral is dedicated to die?
Gold Answer: 1952
Top 5 Initial Propositions (Score - Text):

• 0.4275 - Mantua Cathedral is a Roman Catholic cathedral
dedicated to Saint Peter.

• 0.3851 - Mantua Cathedral is the seat of the Bishop of
Mantua.

• 0.3474 - Mantua Cathedral is located in Mantua, Lom-
bardy, northern Italy.

• 0.3372 - Foligno Cathedral is dedicated to the patron
saint of the city, Felician of Foligno (San Feliciano).

• 0.3135 - No successor was appointed to the post of Gov-
ernor of Vatican City after Marchese Camillo Serafini’s
death in 1952.

Beam Search Depth 2/3 (Top 3 Paths):

• 0.4792 - Mantua Cathedral... dedicated to Saint Peter.
→ St. Peter’s Basilica is located in Vatican City.

• 0.4756 - Mantua Cathedral... dedicated to Saint Peter.
→ Alfredo Ormando died on 23 January 1998 in Rome.

• 0.4705 - Mantua Cathedral... dedicated to Saint Peter.
→ The Italian name for St. Peter’s Basilica is...

Beam Search Depth 3/3 (Top 3 Paths):

• 0.5989 - Mantua Cathedral... dedicated to Saint Peter.
→ St. Peter’s Basilica is located in Vatican City. → No
successor was appointed... after Marchese Camillo
Serafini’s death in 1952.

• 0.5674 - Mantua Cathedral... dedicated to Saint Peter.
→ St. Peter’s Basilica is located in Vatican City. →
Marchese Camillo Serafini held the post of Governor...
until his death in 1952.

• 0.5458 - Mantua Cathedral... dedicated to Saint Peter.
→ St. Peter’s Basilica is located in Vatican City. → The
post of Governor of Vatican City was not mentioned...

Observation: The crucial link "St. Peter’s Basilica is lo-
cated in Vatican City" (low initial relevance) is found during
beam search (Depth 2), enabling discovery of the full rea-
soning path by Depth 3.

Figure 3: Example beam search process (Lmax = 3)
for a MuSiQue query. Full text of propositions abridged
for fit.

when no valid expansions can be generated for356

any hypothesis in the beam.357

This online beam search operates entirely on pre-358

computed embeddings and the graph structure, en-359

suring efficient inference by avoiding any LLM360

calls. Figure 3 offers a conceptual illustration of361

this path discovery process.362

6 Experiments363

6.1 Setup364

Datasets: We evaluate on NaturalQuestions (NQ)365

(Wang et al., 2024), PopQA (Mallen et al., 2023),366

and for multi-hop reasoning: 2WikiMultihopQA367

(2Wiki) (Ho et al., 2020), HotpotQA (Yang et al., 368

2018), and MuSiQue-Ans (Trivedi et al., 2022b). 369

We use 1000-query samples and corpora from 370

Gutiérrez et al. (2025) for comparability and limi- 371

tation of experimental cost. 372

Baselines: Comparisons include classic re- 373

trievers (BM25, Contriever, GTR), large embed- 374

ding models (GTE-Qwen2, GritLM, NV-Embed- 375

v2), and structure-augmented RAG (RAPTOR, 376

GraphRAG, LightRAG, HippoRAG, HippoRAG 377

2). Baseline results are primarily from Gutiérrez 378

et al. (2025). Citations for all baselines are in the 379

full version/appendix. 380

Implementation: PropRAG uses Llama-3.3- 381

70B-Instruct (AI@Meta, 2024) for offline propo- 382

sition extraction and QA, and NV-Embed-v2 (7B) 383

(Lee et al., 2025) for embeddings. Key parameters: 384

Beam width B = 4, max path length Lmax = 3. 385

Details in Appendix A.2. 386

Metrics: Passage Recall@5; QA F1 score and 387

Exact Match (EM) per MuSiQue scripts (Trivedi 388

et al., 2022b). 389

6.2 Results and Discussion 390

Tables 1 (Recall@5) and 2 (F1 Score) present Pro- 391

pRAG’s performance. 392

Overall Performance: PropRAG (Lmax = 393

3, B = 4) achieves a state-of-the-art average F1 of 394

64.9%, outperforming HippoRAG 2 by 2.0 points 395

and NV-Embed-v2 by 6.9 points. This highlights 396

the synergy of context-rich propositions and LLM- 397

free online path discovery. 398

Impact of Two-Stage Proposition Retrieval 399

(Lmax = 1): Even with no path expansion 400

(Lmax = 1), PropRAG’s two-stage process us- 401

ing propositions significantly improves over base- 402

lines (e.g., +4.0% MuSiQue F1 over HippoRAG 2). 403

This demonstrates the benefit of focused subgraph 404

search with propositions, even before extensive 405

beam search. A direct comparison of single-stage 406

proposition vs. triple retrieval will be explored in 407

ablation studies. 408

Benefit of Multi-Step Beam Search (Lmax > 409

1): Explicit path discovery via beam search fur- 410

ther boosts performance. Compared to Lmax = 1, 411

Lmax = 3 increases average F1 by +0.9% (to 412

64.9%) and MuSiQue Recall@5 by +2.7% (to 413

78.3%). This confirms that exploring 2-3 hop paths 414

uncovers crucial evidence. Lmax = 3 is optimal. 415

Simpler QA Performance: On NQ and PopQA, 416

PropRAG remains robust (e.g., 62.5% NQ F1, 417

56.4% PopQA F1 with Lmax = 3), showing no 418
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Table 1: Passage Retrieval Performance (Recall@5). Baselines from Gutiérrez et al. (2025). Best overall in bold,
best PropRAG variant also bolded if different.

Method NQ PopQA MuSiQue 2Wiki HotpotQA

Simple Baselines
BM25 56.1% 35.7% 43.5% 65.3% 74.8%
Contriever 54.6% 43.2% 46.6% 57.5% 75.3%
GTR (T5-base) 63.4% 49.4% 49.1% 67.9% 73.9%

Large Embedding Models
GTE-Qwen2-7B 74.3% 50.6% 63.6% 74.8% 89.1%
GritLM-7B 76.6% 50.1% 65.9% 76.0% 92.4%
NV-Embed-v2 (7B) 75.4% 51.0% 69.7% 76.5% 94.5%

Structure-Augmented RAG
RAPTOR 68.3% 48.7% 57.8% 66.2% 86.9%
HippoRAG 44.4% 53.8% 53.2% 90.4% 77.3%
HippoRAG 2 78.0% 51.7% 74.7% 90.4% 96.3%

PropRAG (Ours)
Lmax = 1 78.4% 56.3% 75.6% 92.0% 95.7%
Lmax = 2 78.1% 56.1% 77.6% 93.4% 97.2%
Lmax = 3 77.9% 56.2% 78.3% 94.1% 97.4%
Lmax = 4 77.8% 56.0% 77.6% 93.7% 97.0%

Table 2: End-to-End QA Performance (F1 Score) with Llama-3.3-70B-Instruct Reader. Baselines from Gutiérrez
et al. (2025). Best overall in bold, best PropRAG variant also bolded if different.

Method NQ PopQA MuSiQue 2Wiki HotpotQA Avg

No Retrieval (Parametric)
Llama-3.3-70B-Instruct 54.9% 32.5% 26.1% 42.8% 47.3% 40.7%

Simple Baselines
Contriever 58.9% 53.1% 31.3% 41.9% 62.3% 49.5%
GTR (T5-base) 59.9% 56.2% 34.6% 52.8% 62.8% 53.3%

Large Embedding Models
GTE-Qwen2-7B 62.0% 56.3% 40.9% 60.0% 71.0% 58.0%
GritLM-7B 61.3% 55.8% 44.8% 60.6% 73.3% 59.2%
NV-Embed-v2 (7B) 61.9% 55.7% 45.7% 61.5% 75.3% 58.0%

Structure-Augmented RAG
RAPTOR 50.7% 56.2% 28.9% 52.1% 69.5% 51.5%
GraphRAG 46.9% 48.1% 38.5% 58.6% 68.6% 52.1%
LightRAG 16.6% 2.4% 1.6% 11.6% 2.4% 6.9%
HippoRAG 55.3% 55.9% 35.1% 71.8% 63.5% 56.3%
HippoRAG 2 63.3% 56.2% 48.6% 71.0% 75.5% 62.9%

PropRAG (Ours)
Lmax = 1 62.2% 56.1% 52.6% 73.5% 75.7% 64.0%
Lmax = 2 61.9% 56.1% 53.4% 74.9% 76.0% 64.4%
Lmax = 3 62.5% 56.4% 53.9% 75.3% 76.1% 64.9%
Lmax = 4 62.8% 56.0% 53.0% 75.3% 76.1% 64.7%

degradation on tasks with less multi-hop depen-419

dency.420

6.3 Ablation Studies421

Ablations (Tables 3 and 4) on PropRAG (default422

Lmax = 3, B = 4) validate key design choices.423

Beam Width (B): Increasing B from 1 to 4424

boosts average R@5 by +1.4% and F1 by +0.6%.425

B = 4 offers a strong balance, while B = 5 shows426

slight F1 gains at the cost of some recall consis-427

tency.428

Propositions vs. Triples (Stage 1 PPR): To 429

isolate the benefit of propositions before multi-step 430

beam search, we compare PropRAG using only its 431

first stage PPR (effectively, PPR on the proposition- 432

based graph with parameters similar to HippoRAG 433

2’s single PPR stage) against HippoRAG 2 (no 434

filter, using triples and PPR, results from Gutiérrez 435

et al. (2025) Table 4). PropRAG (Stage 1 PPR only) 436

achieves an average Recall@5 of 87.2% compared 437

to 86.4% for HippoRAG 2 (+0.8%). Specifically 438

on MuSiQue, PropRAG (Stage 1) gets 75.4% vs. 439
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Table 3: Ablation Study on Beam Width (B) using Lmax = 3. Default B = 4. Performance shown as Recall@5 /
F1 Score.

Beam Width (B) MuSiQue (R@5 / F1) 2Wiki (R@5 / F1) HotpotQA (R@5 / F1) Average (R@5 / F1)

1 (Greedy Search) 76.6% / 52.9% 92.1% / 74.5% 97.0% / 76.2% 88.5% / 67.9%
2 77.4% / 52.9% 94.4% / 75.8% 97.4% / 75.7% 89.7% / 68.1%
3 78.0% / 53.1% 94.2% / 75.7% 97.5% / 76.2% 89.9% / 68.3%
4 (Default) 78.3% / 53.9% 94.1% / 75.3% 97.4% / 76.1% 89.9% / 68.5%
5 77.8% / 54.4% 93.7% / 75.4% 97.4% / 76.1% 89.6% / 68.6%
6 77.8% / 53.9% 93.2% / 74.6% 97.2% / 75.7% 89.4% / 68.1%

Table 4: Full Ablation Study Results (Recall@5). PropRAG uses Lmax = 3, B = 4 unless noted. HippoRAG 2 (no
filter) results from Gutiérrez et al. (2025) Table 4.

Configuration MuSiQue 2Wiki HotpotQA Avg

Full PropRAG (Lmax = 3, B = 4) 78.3% 94.1% 97.4% 89.9%

Comparison Baselines
HippoRAG 2 (Triples, PPR, no filter) 73.0% 90.7% 95.4% 86.4%
PropRAG (Stage 1 PPR only, same parameters as HippoRAG 2) 75.4% 90.4% 95.9% 87.2%

Retrieval Strategy Ablations (Lmax = 3, B = 4)
PropRAG (Exploration Seeds Only) 75.6% 92.0% 95.6% 87.7%
PropRAG (Exploitation Seeds Only) 77.9% 91.4% 97.6% 89.0%
PropRAG (Allow all unconnected candidates in beam search) 77.4% 92.9% 96.6% 89.0%

73.0% for HippoRAG 2 (+2.4%). This confirms440

that the richer context in propositions provides a441

stronger foundation for graph-based retrieval even442

in a simpler, single-PPR setup.443

Graph Guidance in Beam Search: The "Allow444

unconnected candidates in beam search" ablation445

tests the importance of graph structure guiding the446

beam search. In this setting, candidate proposi-447

tions for path expansion are chosen based purely448

on embedding similarity to the query or previ-449

ous step, without requiring graph connectivity (be-450

yond the initial top-3 query-relevant jumps). This451

configuration achieves an average Recall@5 of452

89.0%, which is 0.9% lower than the full PropRAG453

(89.9%) that primarily considers graph-connected454

propositions. The drop is notable on MuSiQue455

(77.4% vs. 78.3%) and 2Wiki (92.9% vs. 94.1%).456

This demonstrates that leveraging the explicit con-457

nections in the proposition graph effectively guides458

the beam search towards more relevant reasoning459

paths, rather than relying solely on semantic simi-460

larity which can be noisy.461

Seed Strategy: Balanced seeding (exploration462

+ exploitation seeds) outperforms using only one463

type, yielding the best average R@5 (89.9%).464

These ablations confirm the contributions of465

propositions, graph-guided beam search, two-stage466

retrieval, and balanced seeding.467

6.4 Qualitative Analysis 468

Figure 3 qualitatively shows beam search identi- 469

fying a crucial, low-initial-relevance intermediate 470

proposition, enabling the discovery of the full rea- 471

soning path without online LLM intervention. 472

7 Conclusion 473

PropRAG represents a significant advancement in 474

RAG by shifting from context-poor triples to richer 475

propositions and introducing a novel, LLM-free on- 476

line beam search mechanism for discovering multi- 477

step reasoning paths. This dual approach demon- 478

strably improves the quality of retrieved evidence, 479

particularly for complex multi-hop queries. Our 480

experiments show that PropRAG sets new state- 481

of-the-art results for zero-shot RAG systems on 482

several challenging benchmarks, enhancing both 483

retrieval recall and end-to-end QA F1 scores. The 484

framework’s ability to perform sophisticated ev- 485

idence gathering without incurring online LLM 486

inference costs is a key advantage. PropRAG un- 487

derscores the value of explicit, algorithmic model- 488

ing of reasoning processes over high-fidelity, pre- 489

structured knowledge, offering a promising direc- 490

tion for developing LLMs with more robust, asso- 491

ciative, and dynamic non-parametric memory. 492

8



Limitations493

PropRAG’s primary limitations include the com-494

putational overhead of beam search, which, while495

LLM-free online, is more intensive than simpler496

retrieval methods. The system’s performance is sen-497

sitive to the quality of the offline proposition extrac-498

tion phase; errors or omissions here can propagate.499

Although online LLM calls are avoided during re-500

trieval, the initial proposition generation relies on501

an LLM, and its quality can influence downstream502

results. Furthermore, the graph construction pro-503

cess, particularly the accuracy of entity linking and504

synonymy detection, plays a crucial role and can505

be a source of error. The current path scoring relies506

on embedding similarity, which might not capture507

all semantic nuances required for perfect path eval-508

uation.509
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A Appendix635

A.1 Proposition Graph Construction Details636

The PropRAG Proposition graph G = (V,E) is637

constructed to facilitate reasoning over intercon-638

nected propositions. The vertex set V comprises639

two main types of nodes:640

• Ventity: Nodes representing entities extracted641

from the text corpus.642

• Vpassage: Nodes representing the original text643

passages from which propositions and entities644

were derived.645

The edge set E includes the following key types,646

designed to capture relationships within and be-647

tween propositions, and to link entities back to648

their source contexts:649

• Entity Clique Edges (Implicit Proposition650

Hyper-edge): For each proposition p extracted651

from the corpus, which contains a set of enti-652

ties E(p), we add undirected edges connecting653

all pairs of distinct entities {ei, ej} such that654

ei, ej ∈ E(p) and ei ̸= ej . This forms a clique655

(a fully connected subgraph) among all entities656

co-occurring within that single proposition. This657

clique structure implicitly represents the propo-658

sition p as a hyper-edge, contextually linking all659

its constituent entities together, rather than rely-660

ing on potentially ambiguous predicate-labeled661

edges between only two entities as in traditional662

triple stores.663

• Passage Containment Edges: An undirected664

edge connects each entity node e ∈ Ventity to665

the passage node d ∈ Vpassage corresponding to666

the text passage from which entity e (and its as-667

sociated propositions) were originally extracted.668

These edges ground entities and propositions in669

their source documents.670

• Synonymy Edges: An undirected edge con-671

nects two distinct entity nodes ei, ej ∈ Ventity if672

their pre-computed embeddings are highly sim-673

ilar, i.e., sim(emb(ei), emb(ej)) ≥ τsyn, where674

τsyn is a predefined similarity threshold. These675

edges help bridge different textual mentions of676

the same underlying concept.677

This graph structure allows for traversal algorithms678

(like PPR and beam search) to navigate through679

the rich context embedded in propositions (via the680

entity cliques/hyper-edges) and to connect entities681

back to their original passages, facilitating compre- 682

hensive evidence aggregation. 683

A.2 Implementation Details 684

PropRAG leverages Llama-3.3-70B-Instruct for of- 685

fline proposition extraction (and as the final QA 686

reader for experiments) and NV-Embed-v2 (7B) as 687

the base embedding model for passages, entities, 688

and propositions, ensuring consistency with the 689

HippoRAG 2 baseline setup. Default parameters 690

used in PropRAG experiments are as follows: 691

• Beam width for path discovery (B): 4 692

• Maximum path length for beam search (Lmax): 693

3 694

• Initial PPR damping factor (Stage 1, explo- 695

ration): 0.75 696

• Final PPR damping factor (Stage 2, exploita- 697

tion): 0.45 698

• Number of passages in subgraph (K): 50 699

• Number of top paths for exact scoring (beam 700

search internal re-ranking) (M ): 40 701

• Number of top initial seeds for final PPR 702

(Binitial): 5 703

• Number of top propositions to select seeds from 704

for final PPR (Pinitial): B (Beam width) 705

• Number of top beam-derived seeds for final PPR 706

(Bbeam): 5 707

• Number of top beam-derived paths to select 708

seeds from for final PPR (Pbeam): 5 709

• Synonymy embedding similarity threshold 710

(τsyn): 0.8 711

• Number of initial propositions for seeding Stage 712

1 PPR (Nprop): 20 713

• Number of initial entities from the top-Nprop 714

propositions for seeding Stage 1 PPR (Nentity): 715

40 716

• Weight for passage direct retrieval score in final 717

PPR (λpassage): 0.05 718

These parameters were determined based on empir- 719

ical performance on development sets or adopted 720

from common practices in related research where 721

applicable. The choice of Lmax = 3 was based on 722

achieving the best average F1 score across devel- 723

opment datasets. 724
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A.3 LLM Prompts725

This section details the prompts used for entity726

and proposition extraction with Llama-3.3-70B-727

Instruct, crucial for the offline indexing phase of728

PropRAG.729

A.3.1 Entity Extraction Prompt730

This prompt is designed for inclusive entity identi-731

fication. Unlike strict Named Entity Recognition732

(NER) often used for triple extraction, this step733

aims to capture a broader set of concepts relevant734

for constructing rich propositions. It explicitly asks735

the LLM to identify named entities, dates, impor-736

tant generic entities, and entities involved in predi-737

cate relations. This provides a comprehensive list738

for the subsequent proposition generation phase,739

which only uses entities from this pre-identified set.740

(The prompt is shown in Figure 4)741

A.3.2 Proposition Extraction Prompt742

This prompt guides the LLM to decompose a pas-743

sage into atomic, yet contextually complete, propo-744

sitions. It strictly uses the entities identified in745

the previous step (Figure 4). The core focus is746

on maintaining high fidelity by preserving com-747

plex relationships, conditions, and the full context,748

which are often lost or oversimplified in traditional749

triple extraction processes. (The prompt is shown750

in Figure 5)751

A.4 Proposition Graph Statistics752

The proposition graphs constructed for each dataset753

vary in size and complexity, reflecting the nature754

of the underlying corpora. Table 5 provides key755

statistics for the graphs used in our experiments.756

These include the number of extracted propositions,757

the number of passage nodes (corresponding to758

unique passages in the corpus subset), the num-759

ber of unique entity nodes identified, and the total760

number of edges in the constructed graph (encom-761

passing entity clique edges, passage containment762

edges, and synonymy edges).763

A.5 Cost and Efficiency764

The offline indexing phase of PropRAG involves765

LLM-based proposition and entity extraction, as766

well as embedding computation. For embedding,767

we run a float16 version of NV-Embed-v2 on an768

NVIDIA RTX 4090 GPU. For proposition and769

entity extraction, we utilize the Llama-3.3-70B-770

Instruct model via Nebius AI Studio’s API end-771

point. Processing each passage for proposition and772

entity extraction takes approximately 2 seconds 773

with this setup. As a concrete example, indexing 774

the 11,656 passages from the MuSiQue dataset 775

completed within approximately 40 minutes, at a 776

monetary cost of around $4 USD using the API. 777

The token cost for the offline LLM-based propo- 778

sition extraction is an important consideration. Ta- 779

ble 6 compares the input and output token counts 780

for PropRAG on the MuSiQue dataset against those 781

reported for other structure-augmented RAG meth- 782

ods by Gutiérrez et al. (2025) for their respective 783

offline knowledge structuring phases. 784

PropRAG’s token cost for proposition extraction 785

is higher than methods like HippoRAG 2 (which 786

uses OpenIE for triple extraction, often less LLM- 787

intensive) or RAPTOR (which focuses on sum- 788

marization). This is attributable to the detailed 789

instructions and the generation of full-sentence 790

propositions, which are richer but require more to- 791

kens. However, PropRAG’s costs are considerably 792

lower than methods like LightRAG and GraphRAG, 793

which may involve more extensive LLM-based pro- 794

cessing for their graph construction or summariza- 795

tion steps. The trade-off is between the upfront 796

offline cost of generating high-fidelity propositions 797

and the downstream benefits in retrieval accuracy 798

and the avoidance of online LLM calls during re- 799

trieval. The online retrieval phase of PropRAG, 800

involving PPR and beam search, is entirely LLM- 801

free and computationally efficient, relying on pre- 802

computed embeddings and graph operations. 803

A.6 Entity Score Calculation from Paths 804

After the beam search identifies a set of high- 805

scoring proposition paths (as detailed in Section 806

5.3), PropRAG determines the importance of indi- 807

vidual entities based on their participation in these 808

paths. This entity scoring is crucial for generating 809

the final set of seed nodes (Sfinal) used in the Stage 810

2 PPR (Section 5). The scoring process adheres to 811

the following principles: 812

1. Path Score Inheritance: Each proposition 813

within an identified path is considered to have 814

the same relevance score as the overall path it 815

belongs to. 816

2. Entity Score Aggregation: An entity’s total 817

score is determined by summing the scores of 818

all propositions (and thus, all paths) in which 819

it appears. If an entity is part of multiple high- 820

scoring paths or multiple propositions within a 821
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Entity Extraction Prompt

Instruction: Your task is to extract entities from the given paragraph. Respond with a JSON dictionary
only, with a "entities" key that maps to an non-empty list of entities. All named entities and dates must
be included in the list. All generic entities important to the theme of the passage must be included in
the list. All entities that is involved in a predicate relation to the above entities must be included in the
list. All dates must be included in the list.

Demonstration:
Example Paragraph: Radio City Radio City is India’s first private FM radio station and was started
on 3 July 2001. It plays Hindi, English and regional songs. Radio City recently forayed into New
Media in May 2008 with the launch of a music portal - PlanetRadiocity.com that offers music related
news, videos, songs, and other music-related features.
Example Output:
{" entities ":

["Radio City", "India", "private FM radio station", "3 July 2001", "Hindi",
"English", "New Media", "May 2008", "PlanetRadiocity.com", "music portal",
"news", "videos", "songs"]

}

Input Format:
Passage: ${passage}

Figure 4: LLM prompt for Entity Extraction. This prompt aims for comprehensive entity identification beyond
standard NER.
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Proposition Extraction Prompt

Instruction:
Your task is to analyze text passages and break them down into precise, atomic propositions using a specified list of named
entities. A proposition is a fully contextualized statement that expresses a single unit of meaning with complete specificity
about the relationships described.
For each proposition:

1. Extract a complete, standalone statement that preserves the full context
2. Use ONLY the entities provided in the named_entities list - do not introduce new entities
3. Ensure each proposition contains only ONE claim or relationship
4. Be extremely specific about which entities are involved in each relationship
5. Maintain clear causal connections between related statements

Respond with a JSON object containing a list of propositions, where each proposition is an object with:
- "text": The full proposition text as a complete, contextualized statement
- "entities": An array of entities from the named_entities list that appear in that proposition
Critical Guidelines:

• ONLY use entities from the provided named_entities list
• Make relationships explicit and specific - clarify exactly which entities relate to which other entities
• Clarify precisely which entity a modifier applies to (e.g., specify which product had "80% improvement")
• Establish clear connections between related facts (e.g., "Adobe optimized their applications FOR THE M1 CHIP")
• Connect comparative statements to their specific reference points (e.g., "Adobe’s applications on the M1 chip improved

by 80% compared to Intel-based Macs")
• Preserve temporal information and causal relationships between events
• Make each proposition stand alone with all necessary context
• Include ALL relevant entities from the named_entities list in both the proposition text and entities array
• Ensure the collection of propositions captures ALL meaningful information in the passage

Demonstration:
Passage: In 2020, after Apple launched the M1 chip, major software companies like Adobe optimized their applications,
improving performance by up to 80% compared to Intel-based Macs.
Named entities:

["Apple", "M1 chip", "2020" , "Adobe", "Adobe 's applications", "Intel -based
↪→ Macs", "80% performance improvement "]

{
"propositions ": [

{
"text": "Apple launched the M1 chip in 2020." ,
"entities ": ["Apple", "M1 chip", "2020"]

},
{

"text": "Adobe optimized their applications specifically for the M1 chip
↪→ after its launch.",

"entities ": ["Adobe", "Adobe 's applications", "M1 chip"]
},
{

"text": "Adobe 's applications running on the M1 chip improved performance
↪→ by up to 80% compared to the same applications running on Intel -
↪→ based Macs.",

"entities ": ["Adobe", "Adobe 's applications", "M1 chip", "80% performance
↪→ improvement", "Intel -based Macs"]

}
]

}

Input Format:

Passage: ${passage}
Named entities: ${entities_json_list}

Figure 5: LLM prompt for Proposition Extraction. This prompt emphasizes contextual completeness and adherence
to pre-identified entities.

14



Table 5: Statistics of Constructed Proposition Graphs per Dataset.

Statistic NQ PopQA MuSiQue 2Wiki HotpotQA

# Propositions 55536 57624 59028 30099 53566
# Passage Nodes 9633 8676 11656 6119 9811
# Entity Nodes 62368 73577 76928 43444 75608
# Total Edges 1.27M 1.17M 1.34M 0.86M 1.31M

Table 6: Offline LLM Token Costs (Input/Output) for
Knowledge Structuring on MuSiQue Dataset (Millions
of Tokens). Baseline data from Gutiérrez et al. (2025).

Method Input Tokens (M) Output Tokens (M)

RAPTOR 1.7 0.2
HippoRAG 2 9.2 3.0
PropRAG (Ours) 16.5 4.6
LightRAG 68.5 18.3
GraphRAG 115.5 36.1

single path, its score accumulates, reflecting its822

centrality and repeated relevance.823

3. Emphasis on Connecting Entities: The scoring824

mechanism gives additional weight to entities825

that form crucial links within a reasoning path,826

particularly for synonymous connections.827

• Synonymous Connections Boost: When828

a proposition PA (containing entity EA)829

connects to proposition PB (containing en-830

tity EB) via a synonymous link where831

EA ≈ EB , the connected entity (EB in832

PB) receives an additional score increment833

equivalent to the path’s score. This effec-834

tively elevates the importance of EB , treat-835

ing it as a strong continuation of a cen-836

tral concept from PA. The rationale is that837

EB is vital for identifying the passage as-838

sociated with PB . The original connect-839

ing entity (EA in PA) contributes its score840

through its presence in PA but does not re-841

ceive this specific connection-based score842

enhancement itself. If PA was connected843

from a preceding proposition, its own cen-844

tral entities would have been accounted for845

similarly.846

• Exact Connections: Entities that are847

shared exactly between two consecutive848

propositions in a path (forming an ex-849

act connection) naturally contribute to the850

score aggregation through their appearance851

in both propositions. Their role as direct852

bridges is thus inherently emphasized by853

the summation of scores from both propo-854

sitions they are part of. 855

4. Initial Proposition Entities: For entities appear- 856

ing in the very first proposition of a path (which 857

do not have a preceding "connection" within 858

that path), their initial relevance is captured 859

through the "exploration seeds" (Sinitial). Many 860

entities from these initial top query-relevant 861

propositions are directly considered as explo- 862

ration seeds. This ensures their potential im- 863

portance is factored into the final seed set, even 864

if they don’t benefit from the connection-based 865

score enhancements that apply to entities deeper 866

within a path. 867

Following the aggregation of scores for all enti- 868

ties involved in the discovered paths, the entities 869

are ranked by their total accumulated scores. This 870

ranked list is then used to select the top-Bbeam "ex- 871

ploitation seeds." These exploitation seeds, rich 872

in path-derived relevance, are combined with the 873

"exploration seeds" (Sinitial) to form the final seed 874

set Sfinal for the concluding PPR stage, ensuring a 875

comprehensive and robust final ranking of evidence 876

passages. 877
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