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Abstract

Retrieval Augmented Generation (RAG) has
become the standard non-parametric approach
for equipping Large Language Models (LLMs)
with up-to-date knowledge and mitigating
catastrophic forgetting common in continual
learning. However, standard RAG, relying
on independent passage retrieval, fails to cap-
ture the interconnected nature of human mem-
ory crucial for complex reasoning (associa-
tivity) and contextual understanding (sense-
making). While structured RAG methods like
HippoRAG 2 utilize knowledge graphs built
from triples, we argue that the inherent context
loss of knowledge triples limits fidelity. We
introduce PropRAG, leveraging context-rich
propositions and a novel LLM-free online beam
search over proposition paths to find multi-step
reasoning chains. PropRAG achieves state-of-
the-art zero-shot Recall@5 and F1 scores on
2Wiki, HotpotQA, and MuSiQue, advancing
non-parametric continual learning by improv-
ing evidence retrieval through richer represen-
tation and efficient reasoning path discovery.

1 Introduction

Large Language Models (LLMs) face challenges
in continual learning, such as catastrophic forget-
ting (Cohen et al., 2024; Gu et al., 2024). Retrieval
Augmented Generation (RAG) (Lewis et al., 2020)
offers a non-parametric solution by retrieving ex-
ternal knowledge. However, conventional RAG
systems (Karpukhin et al., 2020; Lee et al., 2025),
retrieving evidence independently, struggle with
multi-step queries requiring interconnected infor-
mation for sense-making (Klein et al., 2006) and
associativity (Suzuki, 2007).

Structured RAG methods, like HippoRAG 2
(Gutiérrez et al., 2025) using triple-based KGs, im-
prove multi-hop retrieval but suffer "context col-
lapse" from lossy triples (Section 3). Other ad-
vanced RAG strategies use online LLM calls during

retrieval (Trivedi et al., 2022a; Jiang et al., 2024),
introducing latency, cost, and consistency issues.
We introduce PropRAG, a novel RAG frame-
work for dynamic, interconnected memory retrieval
without online LLM inference during the search
process. PropRAG features two key innovations:

1. Propositions as High-Fidelity Knowledge
Units: Extracted offline by an LLM, proposi-
tions preserve contextual richness unlike triples
(Section 3).

2. LLM-Free Online Beam Search for Reason-

ing Path Discovery: A novel algorithmic beam
search discovers and scores paths of intercon-
nected propositions from a pre-built graph using
embeddings and graph structure, avoiding LLM
inference costs and potential inconsistencies dur-
ing evidence discovery (Section 5.3).

PropRAG’s LLM-independent online path finding
over richer propositions enhances sense-making
and associativity. Experiments show substantial
outperformance, especially on multi-hop QA, set-
ting new state-of-the-art zero-shot RAG scores and
advancing non-parametric continual learning.

2 Related Work

Retrieval Augmented Generation (RAG) frame-
works (Lewis et al., 2020) augment LLMs by
retrieving documents. Early methods like DPR
(Karpukhin et al., 2020) used embedding similarity.
Despite better embeddings (Izacard et al., 2022; Ni
et al., 2022; Lee et al., 2025), standard RAG strug-
gles with multi-document synthesis (Asai et al.,
2020).

Multi-Hop RAG aims to address this. Iterative
methods (Asai et al., 2020; Trivedi et al., 2022a)
retrieve sequentially. Graph-based RAG (Edge
et al., 2024; Sarthi et al., 2024) uses KGs. Hip-
poRAG 2 (Gutiérrez et al., 2025) used Personalized
PageRank over triple-based KGs, but triples are



Passage: The archival records indicate President Lincoln signed the
preliminary Emancipation Proclamation in September 1862, but it only
took legal effect on January 1, 1863, provided the Confederate states did
not rejoin the Union by that date.
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Figure 1: Comparison of Knowledge Graph vs Proposition Graph for a complex passage. Left: Traditional triple-
based KG struggles to represent provenance ("archival records") and conditional clauses naturally, requiring sparse
connections or complex reification. Right: PropRAG’s proposition graph uses hyper-edges (fully connected cliques
within shaded ovals) to link all entities co-occurring within each contextually rich proposition, preserving nuances

like conditionality and provenance directly.

context-poor. PropRAG differs by using context-
rich propositions and an explicit, LLM-free online
beam search for path discovery on the proposition
graph.

Beam Search Recent work has explored leverag-
ing beam search to improve multi-hop retrieval. For
instance, (Zhang et al., 2023) proposed Beam Re-
trieval, an end-to-end trainable framework where
beam search is used during both training and infer-
ence to find optimal passage sequences. Their ap-
proach learns a scoring function via classification
heads optimized across hops using ground-truth
passage chains within a reading comprehension
setting.

In contrast, PropRAG adopts a fundamentally
different, zero-shot online retrieval strategy. While
also employing beam search, PropRAG operates
over a graph of contextually rich propositions, ex-
tracted offline using an LLM. Our beam search
algorithmically discovers proposition paths based
on pre-computed embedding similarity and graph
connectivity, crucially avoiding online LLM in-
ference costs, potential inconsistencies or task-

specific training during the retrieval phase. The
goal is to find semantically relevant reasoning
chains (proposition paths) which then inform a final
passage ranking, typically via Personalized PageR-
ank seeded by the discovered paths. PropRAG thus
decouples the complex reasoning path discovery
from end-to-end training dependencies, focusing
on leveraging richer knowledge units (propositions)
and algorithmic path exploration for improved zero-
shot multi-hop RAG performance.

Propositions as Retrieval Units Chen et al.
(2024) showed propositions (atomic factoids) out-
perform passage/sentence retrieval. PropRAG in-
tegrates such propositions into a graph and uses
beam search for multi-hop reasoning.

3 Propositions: Escaping the Tyranny of
the Triple

The fidelity of knowledge representation is
paramount for multi-hop reasoning. Traditional
KG-based RAG often uses (Subject, Predicate, Ob-
ject) triples, a lossy compression discarding cru-



cial nuances. Propositions—atomic, self-contained
statements preserving context—offer a richer al-
ternative. Key limitations of triples addressed by
propositions include:

1. Loss of Conditional Context: Many facts are
true only under specific conditions (temporal,
spatial, etc.). Triples often discard this.

* Example Passage: The experimental drug
showed promise in Phase 2 trials, reduc-
ing tumor size significantly, but only in
patients under 50 with the specific KRAS

mutation."
» Triples might yield: (drug, showed,
promise), (drug, reduced, tumor

size). The conditions "only in patients
under 50" and "with specific KRAS muta-
tion" are lost.

* Propositions preserve conditions: E.g.,
"The significant tumor size
reduction by the experimental drug
was observed only in patients
under 50."

2. Awkward Representation of Clauses and
Meta-Relations: Representing complex re-
lationships (provenance, causality, conditions
within clauses) is unnatural in S-P-O format,
often requiring complex reification that loses
clarity.

* Example Passage: "The archival records
indicate President Lincoln signed the pre-
liminary Emancipation Proclamation in
September 1862, but it only took legal ef-
fect on January 1, 1863, provided the Con-
federate states did not rejoin the Union by
that date."

e Triples  struggle  with  provenance
("Archival records indicate...") or the
conditional clause.

* Propositions handle these naturally:
E.g., "Archival records indicate
President Lincoln signed..."”, "The
legal effect... was conditional
on...". The proposition graph (Figure
1, right) uses hyper-edges preserving full
context.

3. Unary Predicates and Attributes: Sim-
ple properties (e.g., "The ancient manuscript
was fragile") are awkward in binary S-P-O.
Triples like (manuscript, is, fragile) or
(manuscript, hasProperty, fragile) treat

attributes as entities or use weak/generic predi-
cates.

* Propositions capture unary predication di-
rectly: "The ancient manuscript was
fragile.” (Entity: ancient manuscript).
The embedding of the full proposition pre-
serves the nuanced relationship.

4. N-ary Relationships (Events with Multiple

Participants): Real-world events often involve
more than two entities (e.g., collaborations,
transactions). Rigid S-P-O forces unnatural de-
composition into multiple binary triples, frag-
menting the event’s holistic view.

» Example Passage (Collaboration): "The
groundbreaking research paper on quan-
tum entanglement was co-authored by Al-
ice, Bob, and Charlie in 2023."

» Triples  fragment  this: (Alice,
co-authored, paper), (Bob,
co-authored, paper), etc., losing
that they collaborated *together™.

* Proposition  captures  N-ary  rela-
tion: "Alice, Bob, and Charlie
co-authored the groundbreaking
research paper on quantum
entanglement in 2023." (Entities:

Alice, Bob, Charlie, paper, etc.). This
is represented as a hyper-edge in the
proposition graph.

PropRAG uses LLMs (Llama-3.3-70B-Instruct) of-
fline for high-quality proposition extraction, lever-
aging NLU capabilities during indexing. The sub-
sequent online retrieval does not involve further
LLM calls for knowledge representation.

4 Problem Formulation: Finding the
Reasoning Path

Traditional RAG aims to retrieve docu-
ments D,.; maximizing individual relevance
sim(emb(d),emb(q)). Multi-hop KG-RAG like
HippoRAG 2 (Gutiérrez et al., 2025) ranks nodes
(entities/passages) by proximity to query seeds or
graph centrality, but does not explicitly construct
or evaluate multi-step reasoning paths. When
KGs use context-poor triples, semantic richness is
limited.

We reformulate multi-hop retrieval as finding
an optimal path of interconnected propositions
P = (p1,p2, ..., pi) that collectively answer query



q. Propositions p;, p;+1 are linked by shared/syn-
onymous entities. This connection occurs naturally
in the proposition graph (Figure 1, right) where
entities shared between proposition hyper-edges
act as bridges. The objective is to find P* =

argmax Score(P, q), where Score(P, q)
PeConnectedPaths(P)
measures path relevance, possibly via aggregated

embeddings. As finding the global optimum is
intractable, we use beam search as a heuristic.

5 Methodology: PropRAG

PropRAG implements path-finding via offline in-
dexing and online two-stage retrieval (Figure 2).

5.1 Offline Indexing (LLM-assisted)

1. Use an LLM (e.g., Llama-3.3-70B-Instruct) to
extract propositions and constituent entities from
corpus D.

2. Construct a proposition graph G = (V, E)) (de-
tailed in Section A.1).

3. Compute and store embeddings for all passages,
entities, and propositions.

5.2 Online Retrieval (LLM-free)

PropRAG’s online retrieval component executes a
two-stage, LLM-free process to identify relevant
reasoning paths (Figure 2). This staged approach
balances broad exploration with focused path re-
finement.

5.2.1 Stage 1: Coarse-grained Subgraph
Focusing

The objective of this stage is to efficiently prune
the search space to a highly relevant subgraph of
the proposition graph G.

1. Initial Candidate Identification: The top-
Nprop propositions most semantically similar
to the query ¢ are retrieved. Entities £(p) within
these propositions are extracted.

2. Seed Selection (S;,,;:iq.;): From the extracted
entities, the top-NVep 4ty unique entities, ranked
by their initial relevance scores (Appendix A.6),
form the set S;y;tiqa;. These seeds are assigned
uniform weights for the subsequent PPR to fos-
ter diverse graph exploration.

3. Exploratory Graph Traversal (PPR): Person-
alized PageRank (PPR) is performed on the full
graph (G. Reset probabilities are concentrated
exclusively on nodes in .S;, ;4541 (1.0 for seeds, 0

otherwise). A high damping factor (e.g., 0.75)
is employed to encourage wider traversal from
these initial seeds.

4. Focused Subgraph (G,,;) Generation: The
top-K passages identified by the initial PPR,
along with all entities connected to them in G,
constitute the focused subgraph G, which
serves as the operational graph for fine-grained
reasoning.

5.2.2 Stage 2: Fine-grained Path Discovery
and Ranking

Within G, this stage explicitly discovers, scores,
and ranks multi-proposition reasoning paths.

1. Beam Search Path Exploration: The beam
search algorithm (Section 5.3) systematically ex-
plores G, to identify connected proposition
paths up to a maximum length L,,,;. It main-
tains a beam of the top-B paths based on query
relevance.

2. Refined Seed Set Construction (Sfina =
Sexplore U Sexploir): The final set of seed en-
tities for ranking integrates relevance from two
sources:

* Exploration Seeds (Sezpiore): Top-Binitial
entities from the top- ;441 query-similar
propositions within G z.

* Exploitation Seeds (Seczpioit): Top-Bheam
entities identified as central to the top-
Pyeqm high-scoring paths discovered by
beam search.

3. Exploitative Path-informed Ranking (PPR):
A second PPR iteration is confined to G-
The reset probability vector r combines nor-
malized initial query-entity similarity scores
(sinst) and aggregated entity scores derived from
beam search paths (Speqrm), as detailed in Ap-
pendix A.6. Specifically, for e € Spina,
SCOT€ final (6) = maX(s;xplore,e’ s;xploit,e);

passage nodes d also receive a base score

scorefinal(d) = Apassage * SCOT€qpr(d,q). A

lower damping factor (e.g., 0.45) is used to capi-

talize on these refined relevance signals, yielding

a focused ranking of the top 5 evidence passages.

4. Final Evidence Ranking: Passages are ranked
according to their final PPR scores, promoting
those linked to entities within salient reasoning
paths.
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Figure 2: The two-stage retrieval process of PropRAG. Stage 1 (Crude Filtering) uses explorative PPR (high
damping factor = 0.75) on the full graph to identify top k£ = 50 passages and induce a relevant subgraph. Stage
2 (Fine Reasoning) performs beam search on the subgraph to discover reasoning paths, generates final relevance
signals, applies exploitative PPR (low damping factor = 0.45) on the subgraph using refined seeds, and selects the

final top ko = 5 passages.

5.3 Beam Search for Reasoning Paths

PropRAG employs a beam search algorithm,
adapted from sequence generation methodologies,
to heuristically discover high-relevance reasoning
paths within the proposition graph. This approach
systematically explores sequences of propositions
P = (p1, ..., pr) that maximize a relevance score
Score(P, q) with respect to the input query ¢, per-
forming a bounded-width search.
Core Algorithmic Steps:

e Initialization: The beam is initialized with
paths of length 1, corresponding to the proposi-
tions most semantically similar to the query.

 State Representation: Each hypothesis in the
beam comprises a partial path P = (p1, ..., pr),
its cumulative relevance score Score(P, ¢), and
the entities £(py,) in its terminal proposition py.

» Path Expansion: Paths are extended by identi-
fying candidate next propositions pye.¢. These
candidates are primarily drawn from proposi-
tions connected to the current path’s terminal

proposition py via shared or synonymous enti-
ties within G,;. To mitigate local optima and
encourage diverse exploration, the top-3 initial
query-relevant propositions are also considered
as potential pye.¢ ("jump points"), irrespective
of direct graph connectivity to p.

Path Scoring: The relevance of an expanded
path Poey = (P, Pnest) is estimated as
Score(Ppew,q) =~ sim(emb(Pyey),emb(q)).
An efficient average proposition embedding is
used for initial scoring. The top-M candidates
from this initial scoring are then re-evaluated us-
ing a more robust score derived from an embed-
ding of the concatenated text of all propositions
in Ppeyw.

Selection and Pruning: From all generated can-
didate expansions, the top-B (beam width) paths
with the highest scores are retained for the sub-
sequent iteration; others are pruned.

Termination Criteria: The search concludes
when paths reach the maximum length L4, or



Query: What year did the Governor of the city where the
basilica named after the same saint as the one that Mantua
Cathedral is dedicated to die?

Gold Answer: 1952

Top 5 Initial Propositions (Score - Text):

¢ (.4275 - Mantua Cathedral is a Roman Catholic cathedral
dedicated to Saint Peter.

* 0.3851 - Mantua Cathedral is the seat of the Bishop of
Mantua.

¢ (.3474 - Mantua Cathedral is located in Mantua, Lom-
bardy, northern Italy.

* 0.3372 - Foligno Cathedral is dedicated to the patron
saint of the city, Felician of Foligno (San Feliciano).

* (.3135 - No successor was appointed to the post of Gov-
ernor of Vatican City after Marchese Camillo Serafini’s
death in 1952.

Beam Search Depth 2/3 (Top 3 Paths):

¢ 0.4792 - Mantua Cathedral... dedicated to Saint Peter.
— St. Peter’s Basilica is located in Vatican City.

¢ 0.4756 - Mantua Cathedral... dedicated to Saint Peter.
— Alfredo Ormando died on 23 January 1998 in Rome.

¢ 0.4705 - Mantua Cathedral... dedicated to Saint Peter.
— The Italian name for St. Peter’s Basilica is...

Beam Search Depth 3/3 (Top 3 Paths):

¢ 0.5989 - Mantua Cathedral... dedicated to Saint Peter.
— St. Peter’s Basilica is located in Vatican City. — No
successor was appointed... after Marchese Camillo
Serafini’s death in 1952.

* 0.5674 - Mantua Cathedral... dedicated to Saint Peter.
— St. Peter’s Basilica is located in Vatican City. —
Marchese Camillo Serafini held the post of Governor...
until his death in 1952.

* (0.5458 - Mantua Cathedral... dedicated to Saint Peter.
— St. Peter’s Basilica is located in Vatican City. — The
post of Governor of Vatican City was not mentioned...

Observation: The crucial link "St. Peter’s Basilica is lo-
cated in Vatican City" (low initial relevance) is found during
beam search (Depth 2), enabling discovery of the full rea-
soning path by Depth 3.

Figure 3: Example beam search process (Lqr = 3)
for a MuSiQue query. Full text of propositions abridged
for fit.

when no valid expansions can be generated for
any hypothesis in the beam.

This online beam search operates entirely on pre-
computed embeddings and the graph structure, en-
suring efficient inference by avoiding any LLM
calls. Figure 3 offers a conceptual illustration of
this path discovery process.

6 Experiments

6.1 Setup

Datasets: We evaluate on NaturalQuestions (NQ)
(Wang et al., 2024), PopQA (Mallen et al., 2023),
and for multi-hop reasoning: 2WikiMultihopQA

(2Wiki) (Ho et al., 2020), HotpotQA (Yang et al.,
2018), and MuSiQue-Ans (Trivedi et al., 2022b).
We use 1000-query samples and corpora from
Gutiérrez et al. (2025) for comparability and limi-
tation of experimental cost.

Baselines: Comparisons include classic re-
trievers (BM25, Contriever, GTR), large embed-
ding models (GTE-Qwen2, GritLM, NV-Embed-
v2), and structure-augmented RAG (RAPTOR,
GraphRAG, LightRAG, HippoRAG, HippoRAG
2). Baseline results are primarily from Gutiérrez
et al. (2025). Citations for all baselines are in the
full version/appendix.

Implementation: PropRAG uses Llama-3.3-
70B-Instruct (Al@Meta, 2024) for offline propo-
sition extraction and QA, and NV-Embed-v2 (7B)
(Lee et al., 2025) for embeddings. Key parameters:
Beam width B = 4, max path length L,,,, = 3.
Details in Appendix A.2.

Metrics: Passage Recall@5; QA F1 score and
Exact Match (EM) per MuSiQue scripts (Trivedi
et al., 2022b).

6.2 Results and Discussion

Tables 1 (Recall@5) and 2 (F1 Score) present Pro-
pRAG’s performance.

Overall Performance: PropRAG (L =
3, B = 4) achieves a state-of-the-art average F1 of
64.9%, outperforming HippoRAG 2 by 2.0 points
and NV-Embed-v2 by 6.9 points. This highlights
the synergy of context-rich propositions and LLM-
free online path discovery.

Impact of Two-Stage Proposition Retrieval
(Lymaz = 1): Even with no path expansion
(Lmaz = 1), PropRAG’s two-stage process us-
ing propositions significantly improves over base-
lines (e.g., +4.0% MuSiQue F1 over HippoRAG 2).
This demonstrates the benefit of focused subgraph
search with propositions, even before extensive
beam search. A direct comparison of single-stage
proposition vs. triple retrieval will be explored in
ablation studies.

Benefit of Multi-Step Beam Search (L, >
1): Explicit path discovery via beam search fur-
ther boosts performance. Compared to L4 = 1,
Linae = 3 increases average F1 by +0.9% (to
64.9%) and MuSiQue Recall@5 by +2.7% (to
78.3%). This confirms that exploring 2-3 hop paths
uncovers crucial evidence. L;,q,; = 3 is optimal.

Simpler QA Performance: On NQ and PopQA,
PropRAG remains robust (e.g., 62.5% NQ F1,
56.4% PopQA F1 with L,,,; = 3), showing no



Table 1: Passage Retrieval Performance (Recall@5). Baselines from Gutiérrez et al. (2025). Best overall in bold,
best PropRAG variant also bolded if different.

Method NQ PopQA  MuSiQue 2Wiki  HotpotQA
Simple Baselines
BM25 56.1%  35.7% 43.5% 65.3% 74.8%
Contriever 54.6%  432% 46.6% 57.5% 75.3%
GTR (T5-base) 634%  49.4% 49.1% 67.9% 73.9%
Large Embedding Models
GTE-Qwen2-7B 743%  50.6% 63.6% 74.8% 89.1%
GritLM-7B 76.6%  50.1% 65.9% 76.0% 92.4%
NV-Embed-v2 (7B) 754%  51.0% 69.7% 76.5% 94.5%
Structure-Augmented RAG
RAPTOR 68.3%  48.7% 57.8% 66.2% 86.9%
HippoRAG 444%  53.8% 53.2% 90.4% 77.3%
HippoRAG 2 78.0%  51.7% 74.7% 90.4% 96.3%
PropRAG (Ours)
Loz =1 784%  56.3% 75.6% 92.0% 95.7%
Linaz =2 781%  56.1% 77.6% 93.4% 97.2%
Loz =3 77.9%  56.2% 78.3% 94.1% 97.4%
Loz =4 77.8%  56.0% 77.6% 93.7% 97.0%

Table 2: End-to-End QA Performance (F1 Score) with Llama-3.3-70B-Instruct Reader. Baselines from Gutiérrez
et al. (2025). Best overall in bold, best PropRAG variant also bolded if different.

Method NQ PopQA  MuSiQue 2Wiki  HotpotQA Avg
No Retrieval (Parametric)
Llama-3.3-70B-Instruct 549%  32.5% 26.1% 42.8% 47.3% 40.7%
Simple Baselines
Contriever 589%  53.1% 31.3% 41.9% 62.3% 49.5%
GTR (T5-base) 59.9%  56.2% 34.6% 52.8% 62.8% 53.3%
Large Embedding Models
GTE-Qwen2-7B 62.0%  56.3% 40.9% 60.0% 71.0% 58.0%
GritLM-7B 613%  55.8% 44.8% 60.6% 73.3% 59.2%
NV-Embed-v2 (7B) 61.9%  55.7% 45.7% 61.5% 75.3% 58.0%
Structure-Augmented RAG
RAPTOR 50.7%  56.2% 28.9% 52.1% 69.5% 51.5%
GraphRAG 46.9%  48.1% 38.5% 58.6% 68.6% 52.1%
LightRAG 16.6% 2.4% 1.6% 11.6% 2.4% 6.9%
HippoRAG 553%  55.9% 35.1% 71.8% 63.5% 56.3%
HippoRAG 2 63.3% 56.2% 48.6% 71.0% 75.5% 62.9%
PropRAG (Ours)
Limaz =1 62.2%  56.1% 52.6% 73.5% 75.7% 64.0%
Limaz =2 61.9% 56.1% 53.4% 74.9% 76.0% 64.4%
Liaz =3 62.5%  56.4% 53.9% 75.3% 76.1% 64.9%
L =4 62.8%  56.0% 53.0% 75.3% 76.1% 64.7%

max

degradation on tasks with less multi-hop depen-
dency.

6.3 Ablation Studies

Ablations (Tables 3 and 4) on PropRAG (default
Linae = 3, B = 4) validate key design choices.

Beam Width (B): Increasing B from 1 to 4
boosts average R@5 by +1.4% and F1 by +0.6%.
B = 4 offers a strong balance, while B = 5 shows
slight F1 gains at the cost of some recall consis-
tency.

Propositions vs. Triples (Stage 1 PPR): To
isolate the benefit of propositions before multi-step
beam search, we compare PropRAG using only its
first stage PPR (effectively, PPR on the proposition-
based graph with parameters similar to HippoRAG
2’s single PPR stage) against HippoRAG 2 (no
filter, using triples and PPR, results from Gutiérrez
etal. (2025) Table 4). PropRAG (Stage 1 PPR only)
achieves an average Recall@5 of 87.2% compared
to 86.4% for HippoRAG 2 (+0.8%). Specifically
on MuSiQue, PropRAG (Stage 1) gets 75.4% vs.



Table 3: Ablation Study on Beam Width (B) using L;,,, = 3. Default B = 4. Performance shown as Recall@5 /

F1 Score.

Beam Width (B)

MuSiQue (R@5/F1)

2Wiki (R@5 / F1)

HotpotQA (R@5 / F1)

Average (R@5 /F1)

1 (Greedy Search)
2

3

4 (Default)

5

6

76.6% / 52.9%
77.4% [ 52.9%
78.0% / 53.1%
78.3% /53.9%
77.8% / 54.4%
77.8% / 53.9%

92.1% / 74.5%
94.4% /75.8%
94.2% 1 75.7%
94.1% 1 75.3%
93.7% / 75.4%
93.2% / 74.6%

97.0% 1 76.2%
97.4% 1 75.7%
97.5% /76.2%
97.4% 176.1%
97.4% 176.1%
97.2% 1 75.7%

88.5% 1 67.9%
89.7% 1 68.1%
89.9% / 68.3%
89.9% / 68.5%
89.6% / 68.6 %
89.4% / 68.1%

Table 4: Full Ablation Study Results (Recall@5). PropRAG uses L4, = 3, B = 4 unless noted. HippoRAG 2 (no

filter) results from Gutiérrez et al. (2025) Table 4.

Configuration MuSiQue 2Wiki  HotpotQA Avg
Full PropRAG (Linez = 3,B =4) 78.3% 94.1% 97.4% 89.9 %
Comparison Baselines
HippoRAG 2 (Triples, PPR, no filter) 73.0% 90.7% 95.4% 86.4%
PropRAG (Stage 1 PPR only, same parameters as HippoRAG 2) 75.4% 90.4% 95.9% 87.2%
Retrieval Strategy Ablations (Lymae = 3, B = 4)
PropRAG (Exploration Seeds Only) 75.6% 92.0% 95.6% 87.7%
PropRAG (Exploitation Seeds Only) 77.9% 91.4% 97.6% 89.0%
PropRAG (Allow all unconnected candidates in beam search) 77.4% 92.9% 96.6% 89.0%

73.0% for HippoRAG 2 (+2.4%). This confirms
that the richer context in propositions provides a
stronger foundation for graph-based retrieval even
in a simpler, single-PPR setup.

Graph Guidance in Beam Search: The "Allow
unconnected candidates in beam search" ablation
tests the importance of graph structure guiding the
beam search. In this setting, candidate proposi-
tions for path expansion are chosen based purely
on embedding similarity to the query or previ-
ous step, without requiring graph connectivity (be-
yond the initial top-3 query-relevant jumps). This
configuration achieves an average Recall@5 of
89.0%, which is 0.9% lower than the full PropRAG
(89.9%) that primarily considers graph-connected
propositions. The drop is notable on MuSiQue
(77.4% vs. 78.3%) and 2Wiki (92.9% vs. 94.1%).
This demonstrates that leveraging the explicit con-
nections in the proposition graph effectively guides
the beam search towards more relevant reasoning
paths, rather than relying solely on semantic simi-
larity which can be noisy.

Seed Strategy: Balanced seeding (exploration
+ exploitation seeds) outperforms using only one
type, yielding the best average R@5 (89.9%).

These ablations confirm the contributions of
propositions, graph-guided beam search, two-stage
retrieval, and balanced seeding.

6.4 Qualitative Analysis

Figure 3 qualitatively shows beam search identi-
fying a crucial, low-initial-relevance intermediate
proposition, enabling the discovery of the full rea-
soning path without online LLM intervention.

7 Conclusion

PropRAG represents a significant advancement in
RAG by shifting from context-poor triples to richer
propositions and introducing a novel, LLM-free on-
line beam search mechanism for discovering multi-
step reasoning paths. This dual approach demon-
strably improves the quality of retrieved evidence,
particularly for complex multi-hop queries. Our
experiments show that PropRAG sets new state-
of-the-art results for zero-shot RAG systems on
several challenging benchmarks, enhancing both
retrieval recall and end-to-end QA F1 scores. The
framework’s ability to perform sophisticated ev-
idence gathering without incurring online LLM
inference costs is a key advantage. PropRAG un-
derscores the value of explicit, algorithmic model-
ing of reasoning processes over high-fidelity, pre-
structured knowledge, offering a promising direc-
tion for developing LLMs with more robust, asso-
ciative, and dynamic non-parametric memory.



Limitations

PropRAG’s primary limitations include the com-
putational overhead of beam search, which, while
LLM-free online, is more intensive than simpler
retrieval methods. The system’s performance is sen-
sitive to the quality of the offline proposition extrac-
tion phase; errors or omissions here can propagate.
Although online LLM calls are avoided during re-
trieval, the initial proposition generation relies on
an LLM, and its quality can influence downstream
results. Furthermore, the graph construction pro-
cess, particularly the accuracy of entity linking and
synonymy detection, plays a crucial role and can
be a source of error. The current path scoring relies
on embedding similarity, which might not capture
all semantic nuances required for perfect path eval-
uation.
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A Appendix

A.1 Proposition Graph Construction Details

The PropRAG Proposition graph G = (V, E) is
constructed to facilitate reasoning over intercon-
nected propositions. The vertex set V' comprises
two main types of nodes:

* Ventity: Nodes representing entities extracted
from the text corpus.

* Vpassage: Nodes representing the original text
passages from which propositions and entities
were derived.

The edge set F includes the following key types,
designed to capture relationships within and be-
tween propositions, and to link entities back to
their source contexts:

* Entity Clique Edges (Implicit Proposition
Hyper-edge): For each proposition p extracted
from the corpus, which contains a set of enti-
ties £(p), we add undirected edges connecting
all pairs of distinct entities {e;, e;} such that
ei,e; € E(p) and e; # e;. This forms a clique
(a fully connected subgraph) among all entities
co-occurring within that single proposition. This
clique structure implicitly represents the propo-
sition p as a hyper-edge, contextually linking all
its constituent entities together, rather than rely-
ing on potentially ambiguous predicate-labeled
edges between only two entities as in traditional
triple stores.

* Passage Containment Edges: An undirected
edge connects each entity node e € Vepyigy t0
the passage node d € Vpussage cOrresponding to
the text passage from which entity e (and its as-
sociated propositions) were originally extracted.
These edges ground entities and propositions in
their source documents.

* Synonymy Edges: An undirected edge con-
nects two distinct entity nodes e;, € € Vepgity if
their pre-computed embeddings are highly sim-
ilar, i.e., sim(emb(e;), emb(e;)) > Tgyn, Where
Tsyn 18 @ predefined similarity threshold. These
edges help bridge different textual mentions of
the same underlying concept.

This graph structure allows for traversal algorithms
(like PPR and beam search) to navigate through
the rich context embedded in propositions (via the
entity cliques/hyper-edges) and to connect entities
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back to their original passages, facilitating compre-
hensive evidence aggregation.

A.2 Implementation Details

PropRAG leverages Llama-3.3-70B-Instruct for of-
fline proposition extraction (and as the final QA
reader for experiments) and NV-Embed-v2 (7B) as
the base embedding model for passages, entities,
and propositions, ensuring consistency with the
HippoRAG 2 baseline setup. Default parameters
used in PropRAG experiments are as follows:

* Beam width for path discovery (B): 4

* Maximum path length for beam search (L,42):
3

* Initial PPR damping factor (Stage 1, explo-
ration): 0.75

* Final PPR damping factor (Stage 2, exploita-
tion): 0.45

* Number of passages in subgraph (K): 50

* Number of top paths for exact scoring (beam
search internal re-ranking) (M): 40

* Number of top initial seeds for final PPR
(Binitial): 5

* Number of top propositions to select seeds from
for final PPR (Pjy;1i41): B (Beam width)

* Number of top beam-derived seeds for final PPR
(Bbeam): 5

* Number of top beam-derived paths to select
seeds from for final PPR (Pyegm): 5

* Synonymy embedding similarity threshold
(Tsyn): 0.8

* Number of initial propositions for seeding Stage
1 PPR (Nprop): 20

* Number of initial entities from the top-Ny.qp
propositions for seeding Stage 1 PPR (Neyyity):
40

* Weight for passage direct retrieval score in final
PPR (Apassage): 0.05

These parameters were determined based on empir-
ical performance on development sets or adopted
from common practices in related research where
applicable. The choice of L,,,,; = 3 was based on
achieving the best average F1 score across devel-
opment datasets.



A.3 LLM Prompts

This section details the prompts used for entity
and proposition extraction with Llama-3.3-70B-
Instruct, crucial for the offline indexing phase of
PropRAG.

A.3.1 Entity Extraction Prompt

This prompt is designed for inclusive entity identi-
fication. Unlike strict Named Entity Recognition
(NER) often used for triple extraction, this step
aims to capture a broader set of concepts relevant
for constructing rich propositions. It explicitly asks
the LLM to identify named entities, dates, impor-
tant generic entities, and entities involved in predi-
cate relations. This provides a comprehensive list
for the subsequent proposition generation phase,
which only uses entities from this pre-identified set.
(The prompt is shown in Figure 4)

A.3.2 Proposition Extraction Prompt

This prompt guides the LLM to decompose a pas-
sage into atomic, yet contextually complete, propo-
sitions. It strictly uses the entities identified in
the previous step (Figure 4). The core focus is
on maintaining high fidelity by preserving com-
plex relationships, conditions, and the full context,
which are often lost or oversimplified in traditional
triple extraction processes. (The prompt is shown
in Figure 5)

A.4 Proposition Graph Statistics

The proposition graphs constructed for each dataset
vary in size and complexity, reflecting the nature
of the underlying corpora. Table 5 provides key
statistics for the graphs used in our experiments.
These include the number of extracted propositions,
the number of passage nodes (corresponding to
unique passages in the corpus subset), the num-
ber of unique entity nodes identified, and the total
number of edges in the constructed graph (encom-
passing entity clique edges, passage containment
edges, and synonymy edges).

A.5 Cost and Efficiency

The offline indexing phase of PropRAG involves
LLM-based proposition and entity extraction, as
well as embedding computation. For embedding,
we run a float16 version of NV-Embed-v2 on an
NVIDIA RTX 4090 GPU. For proposition and
entity extraction, we utilize the Llama-3.3-70B-
Instruct model via Nebius Al Studio’s API end-
point. Processing each passage for proposition and
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entity extraction takes approximately 2 seconds
with this setup. As a concrete example, indexing
the 11,656 passages from the MuSiQue dataset
completed within approximately 40 minutes, at a
monetary cost of around $4 USD using the APIL.

The token cost for the offline LLM-based propo-
sition extraction is an important consideration. Ta-
ble 6 compares the input and output token counts
for PropRAG on the MuSiQue dataset against those
reported for other structure-augmented RAG meth-
ods by Gutiérrez et al. (2025) for their respective
offline knowledge structuring phases.

PropRAG’s token cost for proposition extraction
is higher than methods like HippoRAG 2 (which
uses OpenlE for triple extraction, often less LLM-
intensive) or RAPTOR (which focuses on sum-
marization). This is attributable to the detailed
instructions and the generation of full-sentence
propositions, which are richer but require more to-
kens. However, PropRAG’s costs are considerably
lower than methods like LightRAG and GraphRAG,
which may involve more extensive LLM-based pro-
cessing for their graph construction or summariza-
tion steps. The trade-off is between the upfront
offline cost of generating high-fidelity propositions
and the downstream benefits in retrieval accuracy
and the avoidance of online LLM calls during re-
trieval. The online retrieval phase of PropRAG,
involving PPR and beam search, is entirely LLM-
free and computationally efficient, relying on pre-
computed embeddings and graph operations.

A.6 Entity Score Calculation from Paths

After the beam search identifies a set of high-
scoring proposition paths (as detailed in Section
5.3), PropRAG determines the importance of indi-
vidual entities based on their participation in these
paths. This entity scoring is crucial for generating
the final set of seed nodes (S;y,q) used in the Stage
2 PPR (Section 5). The scoring process adheres to
the following principles:

1. Path Score Inheritance: Each proposition
within an identified path is considered to have
the same relevance score as the overall path it
belongs to.

. Entity Score Aggregation: An entity’s total
score is determined by summing the scores of
all propositions (and thus, all paths) in which
it appears. If an entity is part of multiple high-
scoring paths or multiple propositions within a



Entity Extraction Prompt

Instruction: Your task is to extract entities from the given paragraph. Respond with a JSON dictionary
only, with a "entities" key that maps to an non-empty list of entities. All named entities and dates must
be included in the list. All generic entities important to the theme of the passage must be included in
the list. All entities that is involved in a predicate relation to the above entities must be included in the
list. All dates must be included in the list.

Demonstration:

Example Paragraph: Radio City Radio City is India’s first private FM radio station and was started
on 3 July 2001. It plays Hindi, English and regional songs. Radio City recently forayed into New
Media in May 2008 with the launch of a music portal - PlanetRadiocity.com that offers music related
news, videos, songs, and other music-related features.

Example Output:

{"entities":

["Radio City"”, "India", "private FM radio station”, "3 July 2001", "Hindi",
"English”, "New Media"”, "May 2008", "PlanetRadiocity.com”, "music portal”,
"news"”, "videos", "songs"]

Input Format:

Passage: ${passage}

Figure 4: LLM prompt for Entity Extraction. This prompt aims for comprehensive entity identification beyond
standard NER.
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Proposition Extraction Prompt

Instruction:

Your task is to analyze text passages and break them down into precise, atomic propositions using a specified list of named
entities. A proposition is a fully contextualized statement that expresses a single unit of meaning with complete specificity
about the relationships described.

For each proposition:

Extract a complete, standalone statement that preserves the full context

Use ONLY the entities provided in the named_entities list - do not introduce new entities
Ensure each proposition contains only ONE claim or relationship

Be extremely specific about which entities are involved in each relationship

Maintain clear causal connections between related statements

Nk W

Respond with a JSON object containing a list of propositions, where each proposition is an object with:
- "text": The full proposition text as a complete, contextualized statement

- "entities"”: An array of entities from the named_entities list that appear in that proposition
Critical Guidelines:

¢ ONLY use entities from the provided named_entities list

* Make relationships explicit and specific - clarify exactly which entities relate to which other entities

¢ Clarify precisely which entity a modifier applies to (e.g., specify which product had "80% improvement")

* Establish clear connections between related facts (e.g., "Adobe optimized their applications FOR THE M1 CHIP")

» Connect comparative statements to their specific reference points (e.g., "Adobe’s applications on the M1 chip improved
by 80% compared to Intel-based Macs")

* Preserve temporal information and causal relationships between events

* Make each proposition stand alone with all necessary context

¢ Include ALL relevant entities from the named_entities list in both the proposition text and entities array

» Ensure the collection of propositions captures ALL meaningful information in the passage

Demonstration:

Passage: In 2020, after Apple launched the M1 chip, major software companies like Adobe optimized their applications,
improving performance by up to 80% compared to Intel-based Macs.

Named entities:

["Apple"”, "M1 chip"”, "2020", "Adobe", "Adobe's applications”, "Intel-based
— Macs", "80% performance improvement”]
{
"propositions”: [
{
"text": "Apple launched the M1 chip in 2020.",
"entities”: ["Apple”, "M1 chip”, "2020"]
}’
{
"text": "Adobe optimized their applications specifically for the M1 chip
— after its launch.”,
"entities”: ["Adobe"”, "Adobe's applications”, "M1 chip"]
})
{
"text"”: "Adobe's applications running on the M1 chip improved performance
— by up to 80% compared to the same applications running on Intel-
> based Macs.",
"entities”: ["Adobe"”, "Adobe's applications”, "M1 chip"”, "80% performance
<~ improvement”, "Intel-based Macs"]
}
]
}

Input Format:

Passage: ${passage}
Named entities: ${entities_json_list}

Figure 5: LLM prompt for Proposition Extraction. This prompt emphasizes contextual completeness and adherence
to pre-identified entities.
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Table 5: Statistics of Constructed Proposition Graphs per Dataset.

Statistic NQ PopQA MuSiQue 2Wiki HotpotQA

# Propositions 55536 57624 59028 30099 53566

# Passage Nodes 9633 8676 11656 6119 9811

# Entity Nodes 62368 73577 76928 43444 75608

# Total Edges 1.27M 1.17M 1.34M  0.86M 1.31M
Table 6: Offline LLM Token Costs (Input/Output) for sitions they are part of.

Knowledge Structuring on MuSiQue Dataset (Millions
of Tokens). Baseline data from Gutiérrez et al. (2025). 4. Initial Proposition Entities: For entities appear-
ing in the very first proposition of a path (which

Method Input Tokens (M)  Output Tokens (M) do not have a preceding "connection" within
RAPTOR 1.7 0.2 that path), their initial relevance is captured
HlppORAG2 9.2 3.0 " : " o

PropRAG (Ours) 16.5 46 thrgqgh the exploratl'm'l §eeds (Sinitial)- Many
LightRAG 68.5 18.3 entities from these initial top query-relevant
GraphRAG 115.5 36.1 propositions are directly considered as explo-

ration seeds. This ensures their potential im-
portance is factored into the final seed set, even
if they don’t benefit from the connection-based
score enhancements that apply to entities deeper
3. Emphasis on Connecting Entities: The scoring within a path.
mechanism gives additional weight to entities
that form crucial links within a reasoning path,
particularly for synonymous connections.

single path, its score accumulates, reflecting its
centrality and repeated relevance.

Following the aggregation of scores for all enti-
ties involved in the discovered paths, the entities
are ranked by their total accumulated scores. This
* Synonymous Connections Boost: When  ranked list is then used to select the top-Bpeam "€X-

a proposition P4 (containing entity E4) ploitation seeds." These exploitation seeds, rich

connects to proposition Pp (containing en-  jp path-derived relevance, are combined with the

tity I’p) via a synonymous link where  vexploration seeds” (Sipitiar) to form the final seed

Ea =~ EB, the connected entity (Ep in g1 § final for the concluding PPR stage, ensuring a

Pp) receives an additional score increment comprehensive and robust final ranking of evidence
equivalent to the path’s score. This effec- passages.

tively elevates the importance of E'p, treat-
ing it as a strong continuation of a cen-
tral concept from P4. The rationale is that
E'p is vital for identifying the passage as-
sociated with Pg. The original connect-
ing entity (E4 in P4) contributes its score
through its presence in P4 but does not re-
ceive this specific connection-based score
enhancement itself. If P4 was connected
from a preceding proposition, its own cen-
tral entities would have been accounted for
similarly.

* Exact Connections: Entities that are
shared exactly between two consecutive
propositions in a path (forming an ex-
act connection) naturally contribute to the
score aggregation through their appearance
in both propositions. Their role as direct
bridges is thus inherently emphasized by
the summation of scores from both propo-
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