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ABSTRACT

Extremely skewed label distributions are common in real-world node classifica-
tion tasks. If not dealt with appropriately, it significantly hurts the performance
of GNNs on minority classes. Due to the practical importance, there have been
a series of recent researches devoted to this challenge. Existing over-sampling
techniques smooth the label distribution by generating “fake” minority nodes and
synthesize their features and local topology, which largely ignore the rich infor-
mation of unlabeled nodes on graphs. On the other hand, methods based on loss
function modification re-weight different samples or change classification mar-
gins. Representative methods in this category need to use label information to
estimate the distance of each node to its class center, which is unavailable on un-
labeled nodes. In this paper, we propose UNREAL, an iterative over-sampling
method. The first key difference is that we only add unlabeled nodes instead of
synthetic nodes, which eliminates the challenge of feature and neighborhood gen-
eration. To select which unlabeled nodes to add, we propose geometric ranking
to rank unlabeled nodes. Geometric ranking exploits unsupervised learning in the
node embedding space to effectively calibrates pseudo-label assignment. Finally,
we identify the issue of geometric imbalance in the embedding space and provide
a simple metric to filter out geometrically imbalanced nodes. Extensive experi-
ments on real-world benchmark datasets are conducted, and the empirical results
show that our method significantly outperforms current state-of-the-art methods
consistent on different datasets with different imbalance ratios.

1 INTRODUCTION

Node classification is ubiquitous in real-world applications, ranging from malicious account de-
tection (Mohammadrezaei et al., 2018) to fake news detection (Monti et al., 2019). Many real-
world data comes with an imbalanced class distribution (Mohammadrezaei et al., 2018; Wang et al.,
2020b). For instance, the proportion of malicious accounts in social networks is usually very rare. A
model trained using an imbalanced dataset is prone to be sub-optimal on under-represented classes.
While GNNs have achieved superior performance on node classification, training a fair GNN model
for handling highly-imbalanced class distributions remains a challenging task. For the application
of malicious account detection, GNN models would easily overfit the samples from the rare class of
malicious accounts (Liu et al., 2018; Zhao et al., 2021). The message passing scheme of GNN mod-
els make the problem even more complex, as here the samples cannot be treated as i.i.d. samples.
Moreover, quantity imbalanced is often coupled with topology imbalance (Chen et al., 2021), and
thus it is difficult to extend existing techniques for handling i.i.d. data to relational data.

Given its importance and unique characteristics, a group of recent studies has been devoted to solving
the imbalanced node classification problem (Zhao et al., 2021; Shi et al., 2020; Chen et al., 2021;
Park et al., 2021; Song et al., 2022). Over-sampling strategies are simple and effective for handling
data imbalance. However, it is a non-trivial task to adapt them to graph data since the topological
information of newly synthesized nodes is not provided. GraphSMOTE (Zhao et al., 2021) extends
the synthetic minority over-sampling technique (SMOTE) to graph data by synthesizing nodes in the
embedding space and generating relation information using link prediction. Shi et al. (2020) uses a
generative model to generate nodes to smooth the label distribution. GraphENS (Park et al., 2021)
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synthesizes the whole ego network of a new sample by combining two different ego networks based
on their similarity.

It is empirically observed in (Song et al., 2022) that the performance of existing over-sampling ap-
proaches is easily affected by (synthetic) minority nodes with high connectivity to other classes. To
alleviate this issue, Song et al. (2022) modify the loss function (thus the classification margin) based
on various statistics of the true label distributions of target nodes and classes. Chen et al. (2021) coin
this phenomenon by topology imbalance, and propose to re-weight the samples according to their
distance to the classification boundary, in which the distance is inferred via the structural similarity
and label information. As we note, both methods rely on ground truth label information, which is
not available for most nodes. Song et al. (2022) first train the model with the original training set
and use the model predictions to modify the loss function, while Chen et al. (2021) only uses label
information in the training set when computing the topology imbalance metric. However, the train-
ing set is highly-skewed in the first place, so information derived from them is less reliable, and the
bias could spread to later building blocks, which hurts the overall performance.

In this paper, we propose a novel imbalanced node classification method: unlabeled node retrieval
and labeling (UNREAL). At a high level, UNREAL is an over-sampling based approach, however
several distinct features make our method differ from existing over-sampling techniques signifi-
cantly. First, motivated by the observation that abundant unlabeled nodes are available in a node
classification scenario, instead of synthesizing new minority nodes, which brings in both additional
noise and large computational burden, we only add “real” nodes to the training set. Adding unla-
beled nodes (together with their pseudo-labels) to the training set is a commonly used technique for
semi-supervised node classification, which is proved to be highly effective for dealing with label
sparseness (Li et al., 2018; Zhou et al., 2019; Sun et al., 2020; Wang et al., 2021c). Self-Training
(ST) trains GNN on existing labeled data, then selects samples with high prediction confidence for
each class from unlabeled data, and adds them to the training set. However, in imbalanced scenar-
ios, ST cannot achieve satisfactory performance due to the bias in the original training set: using
the predictions from a classifier trained on the imbalanced training set may be highly biased and
contains a large portion incorrect pseudo-labels. This drawback of ST is empirically verified in our
experiments (see Section 3). Thus, we propose a series of techniques to overcome this challenge,
and our experimental results show these techniques are highly effective and outperforms baselines
by a large margin.

Similar to (Chen et al., 2021), we try to add nodes that are close to class centers to alleviate topology
imbalance. To identify such good nodes, we train the model with the training set and use the predic-
tion confidence as the selecting criteria, which we call confidence ranking. However, the bias in the
original training set results in unreliable predictions (Song et al., 2022), which inevitably hurts the
performance. Therefore, we introduce a key building block which utilizes the geometric structure in
the embedding space to calibrate the bias in the prediction confidence. This idea is partially inspired
by the work of Kang et al. (2019), where they hypothesize and verify empirically that the classifier
is the only under-performed component in the model when trained on an imbalanced training set.
Thus, after the preliminary training step, we retrieve node embeddings from the output layer (before
the classification layer) and use unsupervised clustering methods to rank the closeness of nodes to
their class centers, which we call geometric ranking. Also, given the two rankings, we apply infor-
mation retrieval techniques to select the best-unlabeled nodes to add. In practice, this procedure will
be applied iteratively for multiple rounds.

We summarize our contribution as follows: 1) As far as we know, UNREAL is the first method
to use unlabeled nodes rather than synthetic ones in over-sampling approaches to deal with class
imbalanced node classification; 2) for unlabeled node selection, UNREAL is also the first to apply
unsupervised methods in the embedding space to get complementary and less biased label predic-
tions; 3) we introduce geometric ranking, which ranks nodes according to the closeness of each
node to its class center in the embedding space; 4) given confidence and geometric rankings, infor-
mation retrieval techniques is used to effectively select high-quality new samples; 5) We identify the
Geometric Imbalance (GI) issue in the embedding space, and propose a metric to measure GI and
discard imbalanced nodes.

We conduct comprehensive experiments on multiple benchmarks, including citation networks (Sen
et al., 2008), an Amazon product co-purchasing network (Sen et al., 2008), and Flickr (Zeng et al.,
2019). We also test the performance of UNREAL on several mainstream GNN architectures namely
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GCN (Kipf & Welling, 2016), GAT (Veličković et al., 2017), and GraphSAGE (Hamilton et al.,
2017). Experimental results demonstrate the superiority of the proposal as UNREAL consistently
outperforms existing state-of-the-art approaches by a large margin.

2 PRELIMINARIES

2.1 NOTATION AND DEFINITIONS

In this work, we mainly focus on the ubiquitous semi-supervised node classification setup. Given
an undirected and unweighted graph G = (V, E ,L). Here, V is the node set and E is the edge set,
L ⊂ V denote the set of labeled nodes, so the set of unlabeled nodes is U = V − L, and X ∈ Rn×f

is the feature matrix (where n = |V| is the node size and f is the node feature dimension). We use
A ∈ {0, 1}n×n to denote the adjacency matrix and N (v) the set of 1-hop neighbors for node v.
The labeled sets for all classes are denoted by (C1, C2, · · · , Ck), where k is the number of different
classes.We use imbalance ratio, defined as ρ := maxi(|Ci|)

mini(|Ci|) , to measure the level of imbalance in a
dataset. We summarize the notation in a table in Appendix A.

2.2 MESSAGE PASSING NEURAL NETWORK FOR NODE CLASSIFICATION

In this section, we briefly introduce message passing neural networks (MPNNs). A standard MPNNs
consists of three components, a message function ml, an information aggregation function θl, and
a node feature update function ψl. The feature of each node is updated iteratively. Let hlv be the
feature of node v in the l-th layer, then in the (l + 1)-th layer the feature is updated as:

h(l+1)
v = ψl

(
h(l)v , θl

({
ml

(
h(l)v , h(l)u , ev,u

)
| u ∈ N (v)

}))
, (1)

where ev,u is the edge weight between v and u. For the classic GCN model (Kipf & Welling,
2016), h(l+1)

v is computed as: h
(l+1)
v = Φl

∑
u∈N (v)∪{v}

ev,u√
d̂ud̂v

h
(l)
u , where Φl is the parameter

matrix of the l-th layer and d̂v = 1 +
∑

u∈N (v) ev,u. For node classification, a classification layer
is concatenated after the last layer of a GNN.

3 PSEUDO-LABEL MISJUDGMENT AUGMENTATION PROBLEM IN
IMBALANCED LEARNING

Since self-training adds pseudo-labels to the training set and trains the model iteratively, misjudge-
ments in the early stages will cause the method to fail badly. We extensively investigate this issue
of ST in imbalanced learning. Conventional ST-based methods are generally exploited to deal with
sparsely label distribution to improve the performance of the model. However, the problem of clas-
sifier bias that often occurs in imbalanced scenarios has not received attention if we apply these
methods straightly to imbalanced learning. Here, we hypothesize that as the imbalance ratio of the
dataset becomes larger, the pseudo-labels obtained by ST-based methods are less credible. At the
same time, the prediction confidence of unlabeled nodes is no longer reliable. We conduct com-
prehensive experimental studies to very this hypothesis. Due to space constraints, we elaborate the
experimental details and conclusions in Appendix B.

4 UNREAL

In this section, we provide the details of the proposed method. UNREAL iteratively adds unlabeled
nodes (with predicted labels) to the training set and retrains the model. We propose three com-
plementary techniques to enhance the unlabeled node selection and labeling. More specifically, in
Section 4.1, we describe Dual Pseudo-tag Alignment Mechanism (DPAM) for effective node filter-
ing, the key idea of which is to use unsupervised clustering in the embedding space to obtain a node
ranking. In Section 4.2, we show how to combine geometric rank from DPAM and confidence rank-
ing to reorder unlabeled nodes according to their closeness to the class centers (Node-reordering).
Finally, in Section 4.3, we identify the issue of geometric node imbalance (GI) and define a new
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metric to measure GI, which is then used to filter out nodes with high GI. The overall pipeline of
UNREAL is illustrated in Figure 1. Our full algorithm is also provided in the Appendix G (Algo-
rithm 1).

4.1 DUAL PSEUDO-TAG ALIGNMENT MECHANISM FOR NODE FILTERING

UNREAL iteratively adds unlabeled nodes to the training set. In each iteration, we first train the
GNN model using the current training set. In the early stages the training set remains imbalanced, so
the model is likely to generate biased predictions. According to Kang et al. (2019), the embeddings
learned by the model are still of high quality, even if it is trained on imbalanced data. Therefore,
DPAM exploits the geometric structure in the embedding space and produce a candidate set of new
samples.

Let d be the embedding dimension. We use HL ∈ R|L|×d and HU ∈ R|U|×d to denote the embed-
ding matrix of labeled and unlabeled nodes respectively. Each row of the embedding matrix is the
embedding of a node u (denoted as hLu and hUu ), which is considered as a point in the d-dimension
Euclidean space. DPAM applies an unsupervised clustering algorithm, fcluster, which partitions the
embeddings of unlabeled nodes into k′ clusters and produces k′ corresponding cluster centers, where
k′ is usually larger than k, the number of classes.

fcluster(H
U ) =⇒ {K1, c1,K2, c2, · · · ,Kk′ , ck′} (2)

where Ki is the i-th cluster and ci is the i-th cluster center. We use vanilla k-means in our imple-
mentation. We also compute the embedding center of each class in the training set

ctrain
i =M({hLu | yu ∈ Ci}). (3)

Since we use k-means in our experiments, M(·) is simply the mean function. We next assign a
pseudo-label ỹm to each cluster Km:

ỹi = argmin
j

distance(ctrain
j , ci). (4)

We then combine clusters with the same pseudo-label m as Ũm, and U =
⋃k

m=1 Ũm. On the other
hand, the GNN model gives each node u in U a prediction ŷu, and we put unlabeled nodes whose
prediction is m into the set Um, and U =

⋃k
m=1 Um.

Dual Pseudo-tag Alignment Mechanism (DPAM) The pseudo-labels produced by applying an
unsupervised algorithm on the embeddings provide an alternative and potentially less biased predic-
tion, which may compensate the bias introduced by the imbalanced training set. At the same time,
the overall accuracy of the unsupervised algorithm is inferior to supervised methods, and thus it is
sub-optimal to rely solely on the pseudo-labels from clustering. As a result, DPAM only keeps un-
labeled nodes whose two labels aligns, i.e., those belong to the intersection of Ũm and Um for each
m ∈ {1, 2, · · · , k}; and each node in Ũm ∩Um gets a pseudo-label m. Due to the space constraints,
we defer the empirical studies on why DPAM works to Appendix D.1.

4.2 NODE RE-ORDERING

Now DPAM has selected a pool of candidate nodes: Z =
k⋃

i=m

(Ũm ∩ Um). In this section, we

present Node-Reordering, a method that re-orders nodes in Z according to the closeness of each
node to its class center. Node-Reordering combines the geometric ranking from the unsupervised
method and confidence ranking from model prediction.

Geometric and confidence rankings Suppose u ∈ Ũm ∩ Um, and let hUu be the embedding of u.
We measure the distance between node u and its class center by

δu = distance (hUu , c
train
m ) (5)
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Figure 1: Overall pipeline of our UNREAL. Colored nodes denote labeled nodes. Parameters in the
GNN Model and the classifier are trained together using the current training set.

where ctrain
m is the class center of class m (see equation 3). For each class m, we sort nodes in

Ũm ∩ Um in the increasing order of their distance to the class center, so we obtain k sorted lists
{S1,S2, · · · ,Sk}, which we call geometric rankings.

On the other hand, for each node u ∈ Ũm ∩ Um, we can get a classification confidence for the node
from the output of the classifier as follow:

predictions = softmax (logits), confidence = max (predictions), (6)

Here, logits is the output of the neural network, usually a k (number of classes) dimensional vector.
The pseudo-labels of u from the classifier is the index of class with highest prediction probability
and the corresponding probability is its confidence. We sort nodes in Ũm ∩ Um in the decreas-
ing order of their confidence, and obtain another k sorted lists {T1, T2, · · · , Tk}, which we call
confidence rankings.

Rank Biased Overlap In the fields of information retrieval and recommendation systems, a fun-
damental task is to measure the similarity between two rankings. Rank Biased Overlap (RBO)
(Webber et al., 2010) compares two ranked lists, and returns a numeric value between zero and one
to quantify their similarity. A RBO value of zero indicates the lists are completely different, and a
RBO of one means completely identical.

Node-Reordering For each classm, we calculate the RBO value between Sm and Tm and then use
the RBO score as a weight and get the weighted combination of the two rankings. More specifically,
we first compute rm = RBO(Sm, Tm), and then compute

NNew
m = max{rm, 1− rm} · Sm +min{rm, 1− rm} · Tm, (7)

We then select nodes according to the new ranking based on values in NNew
m . Note that we always

make the geometric rankings have the dominating influence in this step. Due to the space constraints,
ablation analysis on Node-Reordering is presented in Appendix D.2.

4.3 GEOMETRIC IMBALANCE

In this section, we consider the issue of geometric imbalance (GI) in the embedding space, and
define a simple and effective metric to measure GI.
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Geometric Imbalance In highly imbalanced scenarios, minority nodes often suffer from topology
imbalance (Song et al., 2022; Chen et al., 2021), which means the node stays near the boundary
between the minority class and a majority class. The geometric ranking and DPAM introduced
above effectively alleviate this issue. However, when the class centers of a minority class and a
majority class are very close in the embedding space, the problem may still exist: we rank nodes
only based on their absolute distance to the centers, so the nodes on the boundary of two close
classes may have high rankings. We refer to this issue as geometric imbalance in the embedding
space. We present a visualization to illustrate geometric imbalance, which is in Figure 9 due to
space constraints.

Discarding geometrically imbalanced nodes (DGI) After identifying the GI problem, we define
a simple and natural metric to measure the degree of GI. According to equation 5, δu refers to
the distance between the embedding of u and the center of the class to which u is assigned (i.e.,
the closest class center among all classes). Similarly, we define βu as the distance between the
embedding of u and the second closest center to u. We have δu ≤ βu for all u, and intuitively, if
δu ≈ βu, then u is likely to have high degree of GI. We thus define the metric for measuring GI as

GIu =
βu − δu
δu

. (8)

We refer to the metric as GI index. The GI issue is more seriously on node with smaller GI index. So
we set a threshold and discard all nodes with GI index below the threshold. We empirically verify
the effectiveness of DGI, and the results and analysis are provided in Appendix D.2.

4.4 SELECTING NEW NODES ITERATIVELY

As in self-training techniques, we select nodes to join the training set in several rounds, and in each
round we retrain the model using the newly formed training set. In highly-imbalanced cases, we
only add nodes from the minority classes. In this way, the label distribution of the training set is
gradually smoothed, and the imbalance issues of minority nodes are alleviated, benefiting from the
addition of high-quality new samples.

5 EXPERIMENT

5.1 EXPERIMENTAL SETUPS

Datasets We validate the advantages of our method on five benchmark datasets(i.e. Cora, CiteSeer,
PubMed, Amazon-Computers, and Flickr) under different imbalance scenarios, in which the step
imbalance scheme given in (Zhao et al., 2021; Park et al., 2021; Song et al., 2022) is adopted to
construct class imbalanced datasets. More specifically, we choose half of the classes as minority
classes and convert randomly picked labeled nodes into unlabeled ones until the imbalance ratio
of the training set reaches ρ. For Flickr, in the public split, the training set is already imbalanced,
and thus we directly use this split and do not make any changes. For the three citation networks
(Cora, CiteSeer, Pubmed), we use the standard splits from Yang et al. (2016) as our initial splits
when the imbalance ratio is 10, 20. To create a larger imbalance ratio, 20 labeled nodes per class is
not enough, and we use a random split as the initial split for creating an imbalance ratio of 50 and
100. The detailed experimental settings such as evaluation protocol and implementation details of
our algorithm are described in Appendix F.

Baselines We compare UNREAL with several classic techniques (cross-entropy loss with re-
weighting (Japkowicz & Stephen, 2002), PC Softmax (Hong et al., 2021) and Balanced Soft-
max (Ren et al., 2020)) and state-of-the-art methods for imbalanced node classification, including
GraphSMOTE (Zhao et al., 2021), GraphENS (Park et al., 2021), ReNode (Chen et al., 2021),
and TAM (Song et al., 2022). Among them GraphSMOTE and GraphENS are representative
over-sampling method for node classification, ReNode and TAM are loss function modification
approaches. For TAM, we test its performances when combined with different base models, includ-
ing GraphENS, ReNode, and Balanced softmax, following Song et al. (2022). The implementation
details of baselines are described in Appendix F.5.
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Table 1: Experimental results of our method UNREAL and other baselines on four class-imbalanced
node classification benchmark datasets with ρ = 10. We report averaged balanced accuracy
(bAcc.,%) and F1-score (%) with the standard errors over 5 repetitions on three representative GNN
architectures.

SA
G

E
G

A
T

G
C

N

Dataset Cora CiteSeer PubMed Amazon-Computers

Imbalance Ratio (ρ = 10) bAcc. F1 bAcc. F1 bAcc. F1 bAcc. F1

Vanilla 62.82 ± 1.43 61.67 ± 1.59 38.72 ± 1.88 28.74 ± 3.21 65.64 ± 1.72 56.97 ± 3.17 80.01 ± 0.71 71.56 ± 0.81
Re-Weight 65.36 ± 1.15 64.97 ± 1.39 44.69 ± 1.78 38.61 ± 2.37 69.06 ± 1.84 64.08 ± 2.97 80.93 ± 1.30 73.99 ± 2.20
PC Softmax 68.04 ± 0.82 67.84 ± 0.81 50.18 ± 0.55 46.14 ± 0.14 72.46 ± 0.80 70.27 ± 0.94 81.54 ± 0.76 73.30 ± 0.51
BalancedSoftmax 69.98 ± 0.58 68.68 ± 0.55 55.52 ± 0.97 53.74 ± 1.42 73.73 ± 0.89 71.53 ± 1.06 81.46 ± 0.74 74.31 ± 0.51
GraphSMOTE 66.39 ± 0.56 65.49 ± 0.93 44.87 ± 1.12 39.20 ± 1.62 67.91 ± 0.64 62.68 ± 1.92 79.48 ± 0.47 72.63 ± 0.76
Renode 67.03 ± 1.41 67.16 ± 1.67 43.47 ± 2.22 37.52 ± 3.10 71.40 ± 1.42 67.27 ± 2.96 81.89 ± 0.77 73.13 ± 1.60
GraphENS 70.89 ± 0.71 70.90 ± 0.81 56.57 ± 0.98 55.29 ± 1.33 72.13 ± 1.04 70.72 ± 1.07 82.40 ± 0.39 74.26 ± 1.05
BalancedSoftmax+TAM 69.94 ± 0.45 69.54 ± 0.47 56.73 ± 0.71 56.15 ± 0.78 74.62 ± 0.97 72.25 ± 1.30 82.36 ± 0.67 72.94 ± 1.43
Renode+TAM 68.26 ± 1.84 68.11 ± 1.97 46.20 ± 1.17 39.96 ± 2.76 72.63 ± 2.03 68.28 ± 3.30 80.36 ± 1.19 72.51 ± 0.68
GraphENS+TAM 71.69 ± 0.36 72.14 ± 0.51 58.01 ± 0.68 56.32 ± 1.03 74.14 ± 1.42 72.42 ± 1.39 81.02 ± 0.99 70.78 ± 1.72

UNREAL 78.33 ± 1.04 76.44 ± 1.06 65.63 ± 1.38 64.94 ± 1.38 75.35 ± 1.41 73.65 ± 1.43 85.08 ± 0.38 75.27 ± 0.23
∆∆∆ +6.64 +4.30 +7.62 +8.62 +1.21 +1.23 +2.68 +0.96

Vanilla 62.33 ± 1.56 61.82 ± 1.84 38.84 ± 1.13 31.25 ± 1.64 64.60 ± 1.64 55.24 ± 2.80 79.04 ± 1.60 70.00 ± 2.50
Re-Weight 66.87 ± 0.97 66.62 ± 1.13 45.47 ± 2.35 40.60 ± 2.98 68.10 ± 2.85 63.76 ± 3.54 80.38 ± 0.66 69.99 ± 0.76
PC Softmax 66.69 ± 0.79 66.04 ± 1.10 50.78 ± 1.66 48.56 ± 2.08 72.88 ± 0.83 71.09 ± 0.89 79.43 ± 0.94 71.33 ± 0.86
BalancedSoftmax 67.89 ± 0.36 67.96 ± 0.41 54.78 ± 1.25 51.83 ± 2.11 72.30 ± 1.20 69.30 ± 1.79 82.02 ± 1.19 72.94 ± 1.54
GraphSMOTE 66.71 ± 0.32 65.01 ± 1.21 45.68 ± 0.93 38.96 ± 0.97 67.43 ± 1.23 61.97 ± 2.54 79.38 ± 1.97 69.76 ± 2.31
Renode 67.33 ± 0.79 68.08 ± 1.16 44.48 ± 2.06 37.93 ± 2.87 69.93 ± 2.10 65.27 ± 2.90 76.01 ± 1.08 66.72 ± 1.42
GraphENS 70.45 ± 1.25 69.87 ± 1.32 51.45 ± 1.28 47.98 ± 2.08 73.15 ± 1.24 71.90 ± 1.03 81.23 ± 0.74 71.23 ± 0.42
BalancedSoftmax+TAM 69.16 ± 0.27 69.39 ± 0.37 56.30 ± 1.25 53.87 ± 1.14 73.50 ± 1.24 71.36 ± 1.99 75.54 ± 2.09 66.69 ± 1.44
Renode+TAM 67.50 ± 0.67 68.06 ± 0.96 45.12 ± 1.41 39.29 ± 1.79 70.66 ± 2.13 66.94 ± 3.54 74.30 ± 1.13 66.13 ± 1.75
GraphENS+TAM 70.15 ± 0.18 70.00 ± 0.40 56.15 ± 1.13 54.31 ± 1.68 73.45 ± 1.07 72.10 ± 0.36 81.07 ± 1.03 71.27 ± 1.98

UNREAL 78.91 ± 0.59 75.99 ± 0.47 64.10 ± 1.49 63.44 ± 1.47 74.68 ± 1.43 72.78 ± 0.89 85.62 ± 0.44 75.34 ± 0.99
∆∆∆ +8.46 +5.99 +7.80 +9.13 +1.23 +0.68 +3.60 +2.40

Vanilla 61.82 ± 0.97 60.97 ± 1.07 43.18 ± 0.52 36.66 ± 1.25 68.68 ± 1.51 64.16 ± 2.38 72.36 ± 2.39 64.32 ± 2.21
Re-Weight 63.94 ± 1.07 63.82 ± 1.30 46.17 ± 1.32 40.13 ± 1.68 69.89 ± 1.60 65.71 ± 2.31 76.08 ± 1.14 65.76 ± 1.40
PC Softmax 65.79 ± 0.70 66.04 ± 0.92 50.66 ± 0.99 47.48 ± 1.66 71.49 ± 0.94 70.23 ± 0.67 74.63 ± 3.01 66.44 ± 4.04
BalancedSoftmax 67.43 ± 0.61 67.66 ± 0.69 51.74 ± 2.32 49.01 ± 3.16 71.36 ± 1.37 69.66 ± 1.81 73.67 ± 1.11 65.23 ± 2.44
GraphSMOTE 61.65 ± 0.34 60.97 ± 0.98 42.73 ± 2.87 35.18 ± 1.75 66.63 ± 0.65 61.97 ± 2.54 71.85 ± 0.98 68.92 ± 0.73
Renode 66.84 ± 1.78 67.08 ± 1.75 48.65 ± 1.37 44.25 ± 2.20 71.37 ± 1.33 67.78 ± 1.38 77.37 ± 0.74 68.42 ± 1.81
GraphENS 68.74 ± 0.46 68.34 ± 0.33 53.51 ± 0.78 51.42 ± 1.19 70.97 ± 0.78 70.00 ± 1.22 82.57 ± 0.50 71.95 ± 0.51
BalancedSoftmax+TAM 69.03 ± 0.92 69.03 ± 0.97 51.93 ± 2.19 48.67 ± 3.25 72.28 ± 1.47 71.02 ± 1.31 77.00 ± 2.93 70.85 ± 2.28
Renode+TAM 67.28 ± 1.11 67.15 ± 1.11 48.39 ± 1.76 43.56 ± 2.31 71.25 ± 1.07 68.69 ± 0.98 74.87 ± 2.25 66.87 ± 2.52
GraphENS+TAM 70.45 ± 0.74 70.40 ± 0.75 54.69 ± 1.12 53.56 ± 1.86 73.61 ± 1.35 72.50 ± 1.58 82.17 ± 0.93 72.46 ± 1.00
UNREAL 75.99 ± 0.98 73.63 ± 1.23 66.45 ± 0.39 65.83 ± 0.30 74.78 ± 1.30 72.80 ± 0.54 83.21 ± 1.50 70.81 ± 1.70

∆∆∆ +5.44 +3.23 +11.76 +12.77 +1.07 +0.30 +0.64 -1.65

5.2 MAIN RESULTS

Experimental results under different imbalance ratios In Table 1 and Table 2, we report the av-
eraged balanced accuracy (bAcc.) and F1 score with standard errors for the baselines and UNREAL
on four class-imbalanced node classification benchmark datasets under different imbalance ratios
(ρ = 10, 20). The results clearly demonstrate the advantage of UNREAL. Our method consistently
outperforms existing state-of-the-art approaches across four datasets, three base models and two im-
balance ratios (except for GraphSAGE on Amazon-Computers with imbalance ratio 10). In many
cases the margin is significant. To evaluate the performance on very skewed label distribution, we
also test in more imbalanced settings (ρ = 50, 100), and similarly, our method outperforms all other
methods consistently and often by a notable margin. We remark that since GraphSMOTE (Zhao
et al., 2021) synthesizes nodes within the minority class, it is not applicable when there is only one
node in some classes, which is the case when ρ = 20, 50, 100 in our setup. The results are presented
in Appendix C.1.

Experimental results for naturally imbalanced datasets We also validate our model on a natu-
rally imbalanced dataset, Flickr. The split of training set, validation set, and testing set follows (Zeng
et al., 2019), which has an imbalance ratio roughly ρ ≈ 10.8. We found that existing over-sampling
methods use too much memory due to synthetic nodes generation, and cannot handle Flickr on a
3090 GPU with 24GB memory. This include GraphENS (Park et al., 2021), GraphSMOTE (Zhao
et al., 2021) and ReNode (Chen et al., 2021). Due to the space constraints, we provide the experi-
mental results in 8.

5.3 ABLATION ANALYSIS

In this section, we conduct ablation studies to analyze the benefit of each component in our method.
From the results in Section 3, the necessity of unsupervised learning in the embedding space has
been verified. Thus, in this section, DPAM is applied in all comparing methods. Here, we test the
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Table 2: Experimental results of our method UNREAL and other baselines on four class-imbalanced
node classification benchmark datasets with ρ = 20. We report averaged balanced accuracy
(bAcc.,%) and F1-score (%) with the standard errors over 5 repetitions on three representative GNN
architectures.

SA
G

E
G

A
T

G
C

N

Dataset Cora CiteSeer PubMed Amazon-Computers

Imbalance Ratio (ρ = 20) bAcc. F1 bAcc. F1 bAcc. F1 bAcc. F1

Vanilla 53.20 ± 0.88 47.81 ± 1.23 35.32 ± 0.15 21.81 ± 0.12 61.13 ± 0.35 46.85 ± 0.76 72.34 ± 2.92 65.42 ± 3.00
Re-Weight 57.51 ± 1.05 54.63 ± 1.08 36.99 ± 1.79 27.33 ± 2.32 66.52 ± 2.42 58.22 ± 3.65 72.45 ± 2.06 65.85 ± 1.46
PC Softmax 61.74 ± 1.50 60.55 ± 1.97 42.53 ± 1.53 36.54 ± 1.13 68.26 ± 1.99 66.54 ± 1.87 73.84 ± 2.64 66.32 ± 2.97
BalancedSoftmax 64.06 ± 0.74 62.88 ± 0.86 47.29 ± 1.29 44.08 ± 1.71 69.71 ± 1.74 68.31 ± 1.71 76.92 ± 2.01 69.86 ± 1.99
Renode 59.40 ± 1.00 56.88 ± 1.52 38.25 ± 1.60 27.61 ± 2.25 67.45 ± 3.34 60.40 ± 5.74 74.15 ± 1.72 67.27 ± 0.92
GraphENS 67.30 ± 1.45 66.82 ± 1.40 46.39 ± 3.48 42.38 ± 4.14 71.37 ± 1.77 69.37 ± 1.69 75.41 ± 1.75 69.32 ± 1.58
BalancedSoftmax+TAM 64.75 ± 0.54 63.46 ± 0.72 48.52 ± 1.62 46.38 ± 1.79 69.95 ± 2.09 68.90 ± 1.86 77.09 ± 2.02 69.86 ± 1.76
Renode+TAM 59.88 ± 1.16 58.05 ± 1.66 41.11 ± 2.45 31.58 ± 2.62 68.53 ± 3.53 64.82 ± 4.32 73.46 ± 1.77 67.50 ± 1.18
GraphENS+TAM 66.94 ± 1.38 66.67 ± 1.42 48.80 ± 2.98 45.06 ± 4.16 71.92 ± 1.58 69.35 ± 1.88 75.78 ± 1.57 68.58 ± 1.78

UNREAL 77.02 ± 0.75 74.15 ± 0.87 55.81 ± 6.11 55.19 ± 6.23 73.06 ± 1.87 70.77 ± 1.96 85.69 ± 0.11 74.81 ± 0.68
∆∆∆ +9.72 +7.33 +7.01 +8.81 +1.14 +1.40 +8.60 +4.95

Vanilla 51.51 ± 0.53 46.59 ± 0.61 34.74 ± 0.16 22.00 ± 0.15 60.22 ± 0.47 46.03 ± 0.70 68.09 ± 2.96 60.08 ± 2.76
Re-Weight 58.68 ± 3.44 55.98 ± 3.97 36.78 ± 0.94 26.63 ± 1.61 63.47 ± 1.73 54.63 ± 3.25 71.44 ± 2.42 62.86 ± 1.94
PC Softmax 59.62 ± 1.41 58.77 ± 1.95 43.38 ± 2.01 37.76 ± 2.12 70.81 ± 1.41 70.25 ± 1.30 71.16 ± 1.15 62.26 ± 0.87
BalancedSoftmax 62.05 ± 1.62 61.14 ± 1.71 47.89 ± 1.25 44.84 ± 1.35 69.91 ± 1.68 67.43 ± 1.73 72.91 ± 1.93 62.79 ± 0.98
Renode 59.52 ± 2.28 57.16 ± 2.47 37.21 ± 2.01 27.09 ± 3.17 64.56 ± 1.65 55.87 ± 2.83 69.34 ± 2.35 59.02 ± 1.67
GraphENS 64.52 ± 2.05 62.52 ± 1.84 43.74 ± 3.81 37.47 ± 4.21 69.00 ± 2.67 65.54 ± 3.54 71.78 ± 2.30 61.83 ± 1.75
BalancedSoftmax+TAM 63.30 ± 0.99 62.81 ± 1.18 49.34 ± 1.29 46.92 ± 1.39 71.17 ± 2.09 68.85 ± 2.90 65.59 ± 2.86 58.12 ± 1.22
Renode+TAM 61.32 ± 2.18 59.19 ± 2.64 39.85 ± 2.20 30.63 ± 2.63 66.28 ± 3.24 58.99 ± 3.04 65.81 ± 2.57 56.73 ± 1.62
GraphENS+TAM 65.78 ± 1.62 63.80 ± 1.79 44.81 ± 2.66 39.47 ± 3.54 70.33 ± 2.33 67.00 ± 3.25 73.55 ± 2.04 64.03 ± 1.32

UNREAL 79.10 ± 0.71 76.21 ± 0.58 55.11 ± 5.00 53.67 ± 5.51 72.54 ± 1.52 70.54 ± 1.91 83.19 ± 0.66 74.39 ± 0.89
∆∆∆ +13.22 +12.41 +6.75 +8.81 +1.37 +1.69 +9.64 +10.36

Vanilla 54.61 ± 1.21 50.95 ± 1.90 37.36 ± 1.03 27.49 ± 1.41 62.04 ± 1.34 54.18 ± 1.73 62.70 ± 2.87 55.39 ± 2.69
Re-Weight 57.37 ± 0.61 55.30 ± 0.72 37.69 ± 1.20 27.92 ± 2.01 65.01 ± 2.69 58.34 ± 2.19 68.31 ± 2.06 60.45 ± 2.40
PC Softmax 59.25 ± 0.74 58.55 ± 0.81 42.77 ± 1.82 40.08 ± 1.82 70.55 ± 1.19 67.60 ± 1.59 70.57 ± 2.86 62.73 ± 2.69
BalancedSoftmax 61.93 ± 1.26 60.89 ± 1.36 43.64 ± 1.33 38.31 ± 1.13 69.89 ± 1.40 68.12 ± 0.78 68.45 ± 2.92 62.12 ± 3.10
Renode 58.48 ± 0.97 55.39 ± 0.94 40.65 ± 2.36 31.78 ± 3.24 66.50 ± 2.63 58.72 ± 4.16 68.36 ± 1.54 61.60 ± 2.00
GraphENS 63.54 ± 0.91 62.20 ± 0.87 44.89 ± 2.51 40.48 ± 2.94 71.37 ± 1.77 69.37 ± 1.69 75.47 ± 2.20 67.49 ± 1.65
BalancedSoftmax+TAM 64.16 ± 0.94 63.63 ± 1.10 44.32 ± 2.36 40.17 ± 2.06 70.06 ± 1.46 69.54 ± 1.35 66.10 ± 2.37 59.22 ± 2.48
Renode+TAM 59.77 ± 2.20 57.98 ± 2.79 42.50 ± 0.93 35.11 ± 1.84 67.31 ± 2.73 60.63 ± 3.49 66.42 ± 2.32 58.62 ± 1.95
GraphENS+TAM 63.39 ± 1.36 61.66 ± 1.53 45.92 ± 1.96 41.97 ± 2.50 69.62 ± 2.57 66.85 ± 3.00 75.75 ± 2.30 68.86 ± 1.29

UNREAL 73.10 ± 1.60 69.92 ± 1.43 58.35 ± 4.58 57.51 ± 4.92 73.67 ± 0.58 71.15 ± 0.67 78.88 ± 2.16 69.00 ± 1.42
∆∆∆ +8.94 +5.69 +12.43 +15.54 +2.30 +1.61 +3.13 +0.14

Table 3: Ablation analysis on different components
Modules Confidence ranking Geometric ranking Node-reordering DGI F1

Cora+GCN (ρ = 10)

73.93 ± 0.95
72.74 ± 0.63
75.85 ± 0.82
75.34 ± 0.63
75.00 ± 0.97
76.44 ± 1.06

CiteSeer+SAGE (ρ = 20)

46.09 ± 4.08
47.76 ± 1.06
50.32 ± 3.75
53.32 ± 3.75
58.71± 3.21
57.51 ± 4.92

PubMed+GAT (ρ = 50)

76.34 ± 0.39
75.42 ± 0.39
77.32 ± 0.21
76.89 ± 1.43
76.12 ± 2.63
77.38 ± 0.39

Computers+GAT (ρ = 100)

70.86 ± 1.73
68.86 ± 1.42
72.32 ± 2.43
73.65 ± 0.67
74.03 ± 2.53
75.83 ± 0.74

performance of three different ranking methods, namely confidence ranking, geometric ranking, and
Node-reordering (which combines the former two rankings with information retrieval techniques).
Moreover, we test the effect of DGI, which aims to eliminate geometrically imbalanced nodes.
As shown in Table 3, each component of our method can bring performance improvements. In
particular, in three out of four settings in the table, Node-reordering+DGI achieves best F1 scores.
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In all cases, using geometric ranking is better than confidence ranking, which empirically verifies
our hypothesis that the prediction confidence scores might contain bias and be less reliable.

6 RELATED WORK

Imbalanced learning Most real-world data is naturally imbalanced. The major challenge in im-
balanced scenarios is how to train a fair model which does not biased toward majority classes. There
are several commonly used approaches for alleviating this problem. Ensemble learning (Freund &
Schapire, 1997; Liu et al., 2008; Zhou et al., 2020; Wang et al., 2020a; Liu et al., 2020; Cai et al.,
2021) combines the results of multiple weak classifiers. Data re-sampling methods (Chawla et al.,
2002; Han et al., 2005; Smith et al., 2014; Sáez et al., 2015; Kang et al., 2019; Wang et al., 2021a)
smooth the label distribution in the training set by synthesizing or duplicating minority class sam-
ples. A third class of approaches alleviate the imbalance problem by modifying the loss function,
which give larger weights to minority classes or change the margins of different classes (Zhou &
Liu, 2005; Tang et al., 2008; Cao et al., 2019; Tang et al., 2020; Xu et al., 2020; Ren et al., 2020;
Wang et al., 2021b). Methods based on post-hoc correction compensate minority classes during the
inference step, after model training is complete (Kang et al., 2019; Tian et al., 2020; Menon et al.,
2020; Hong et al., 2021). Although these techniques have been widely applied on the i.i.d. data, it
is not a trivial task to extend them to graph-structured data.

Imbalanced learning in node classification Recently, a series of researches (Shi et al., 2020;
Wang et al., 2020c; Zhao et al., 2021; Liu et al., 2021; Qu et al., 2021; Chen et al., 2021; Park et al.,
2021; Song et al., 2022) explicitly tackle the challenges brought by the topological structures of
graph data when handling imbalanced node classification. GraphSMOTE (Zhao et al., 2021) syn-
thesizes minority nodes in embedding space by interpolating two minority nodes using the SMOTE
(Chawla et al., 2002) algorithm, and infers the neighborhoods of new nodes with link prediction
algorithms. ImGAGN (Qu et al., 2021) generates the features of minority nodes with all of the
minority nodes according to the learned weight matrix, and synthesizes the neighborhoods of new
nodes by based on weights. Qu et al. (2021) only consider binary classification, and it is computa-
tionally expensive to build a generator for each class on multi-classification tasks. GraphENS (Park
et al., 2021) works for multi-class node classification, which synthesizes the whole ego network
for minority nodes by interpolating the ego networks of two nodes based on their similarity. Chen
et al. (2021) identify topology imbalance as a main source of difficulty when handling imbalance on
node classification tasks; they propose ReNode, which mitigates topology imbalance by adjusting
the weights of nodes according to their distance to class boundaries. TAM (Song et al., 2022) adjusts
the scores of different classes in the Softmax function based on local topology and label statistics.
To obtain label information of unlabeled nodes, TAM trains the model using the original imbalanced
training set and takes the model predictions as proxies for ground-truth labels.

7 CONCLUSION

In this work, we observe that selecting unlabeled nodes instead of generating synthetic nodes in over-
sampling based methods for imbalanced node classification is much simpler and more effective. We
propose a novel iterative unlabeled nodes selection and retraining framework, which effectively se-
lect high-quality new samples from the unlabeled sets to smooth the label distribution of training set.
Moreover, we propose to exploit the geometric structure in the node embedding space to compensate
the bias in the model predictions. Extensive experimental results show that UNREAL consistently
outperforms existing state-of-the-art approaches by large margins.
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A NOTATION TABLE

Table 4: Elaborated notation table of this paper.

Indices
n The number of nodes,|V|
f The node feature dimension
k The number of different classes
k′ The number of cluster centers in the embedding space
d The dimension of the embedding space, or the dimension of the last layer of GNNs
T Rounds to select nodes
Parameters
G An undirected and unweighted graph
V The node set of G
E The edge set of G
X The feature matrix of G, X ∈ Rn×f

L The set of labeled nodes of G
A The adjacency matrix of G, A ∈ {0, 1}n×n

N (v) The set of 1-hop neighbors for node v
U The set of unlabeled nodes, U = V − L
Ci The i class of the labeled sets
ρ Imbalance ratio of a dataset, ρ := maxi(|Ci|)

mini(|Ci|)
hlv The feature of node v in the l-th layer
ev,u The edge weight between v and u
Φl The parameter matrix of the l-th layer
HL The embedding matrix of labeled nodes, HL ∈ R|L|×d

HU The embedding matrix of unlabeled nodes, HU ∈ R|U|×d

hLu The embedding of a node u, if u ∈ L
hUu The embedding of a node u, if u ∈ U
Ki The i-th cluster
ci The i-th cluster center,the center of cluster i-th
ỹi The pseudo-label of the cluster Ki

Ũm The combination of clusters with the same pseudo-label m
ŷu The prediction of node u in U given by GNN model
Um The combination of unlabeled nodes whose prediction given by the GNN model is m

Z The pool of candidate nodes after DPAM, Z =
k⋃

i=m

(Ũm ∩ Um)

ctrain
m The class center of class m in the embedding space
Si The sorted lists of geometric rankings
Ti The sorted lists of confidence rankings
rm The similarity between two rankings, rm = RBO(Sm, Tm)
δu The distance between the embedding of u and the closest class center to u
βu The distance between the embedding of u and the second closest class center to u
γ Threshold of DGI
p Weight hyperparameter of RBO
α The size threshold of nodes being added in each class per round
η Learning rate of GNN model
Functions
ml The message function of MPNNs
θl The information aggregation function
ψl The node feature update function
fcluster An unsupervised clustering algorithm for the embedding space
M(·) The mean function
fg GNN model
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B ADDITIONAL RESULTS OF PSEUDO-LABEL MISJUDGMENT
AUGMENTATION PROBLEM

Here, we present the details and results of the experiment which are not reported in Section 3 due to
the space constraints.

Experimental setup We first conduct experiments to test the accuracy of pseudo label for unla-
beled nodes on class-imbalanced graphs. ST based on different GNN structures are trained on four
node classification benchmark datasets, Cora, CiteSeer, PubMed, Amazon-Computers. We process
the four datasets with a traditional imbalanced distribution following Zhao et al. (2021); Park et al.
(2021); Song et al. (2022). The imbalance ratio ρ between the numbers of the most frequent class
and the least frequent class is set as 1, 5, 10, 20, 50, 100. We fix architecture as the 2-layer GNN (i.e.
GCN (Kipf & Welling, 2016), GAT (Veličković et al., 2017), GraphSAGE (Hamilton et al., 2017))
having 128 hidden dimensions and train models for 2000 epochs. We select the model by the vali-
dation accuracy. We test the accuracy of pseudo labels for unlabeled nodes which are newly added
to the training set, more specifically, we separately examine 100 nodes that join the majority class
and join the minority class. We repeat each experiment five times and report the average experiment
results.

Pseudo-label Misjudgment Augmentation Problem In different imbalanced scenarios for ST,
the accuracy of the pseudo labels for the unlabeled nodes which are selected into the minority class
and the majority class of the training set respectively are reported in Figure 2, 3, 4, 5 and Table 5.
We can find that as ρ becomes larger, the accuracy of pseudo labels for unlabeled nodes selected
into the minority class becomes lower, in other words, the influence of the bias of the classifier
becomes larger . This means that in an imbalanced scenario, the pseudo-labels given by the classifier
are not credible. Similarly, we also believe that even if the pseudo-label of a node is accurate,
the confidence given by the classifier is skewed, which means that we will also possibly put the
low-quality unlabeled nodes into the training set, and neglect high-quality unlabeled nodes. For
the unlabeled nodes selected into the majority class, we found that with the increasing degree of
imbalance, accuracy of pseudo labels for unlabeled nodes is basically stable at a low level, which
also better confirms the bias problem of the classifier. More importantly, regardless of selecting
majority class nodes or minority class nodes, UNREAL consistently outperforms ST.
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(c) Cora-SAGE

Figure 2: The experimental results on Cora under different imbalance scenarios (ρ = 1, 5, 10, 20,
50, 100). We select 100 unlabeled nodes newly added to the training set through ST & UNREAL,
and evaluate the performance of ST & UNREAL by testing the accuracy (%) with the standard errors
of these nodes’ pseudo labels. ST-Minor, UNREAL-Minor means that we only test unlabeled nodes
that are selected into the minority class, and SL-Major, UNREAL-Major means that we only test
unlabeled nodes that are selected into the majority class.

The specific performance of ST ST is a classic technique in semi-supervised learning to enhance
performance and robustness, e.g., Lee et al. (2013). However, as we have argued and verified above,
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(a) CiteSeer-GCN
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(b) CiteSeer-GAT
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(c) CiteSeer-SAGE

Figure 3: The experimental results on CiteSeer under different imbalance scenarios (ρ = 1, 5, 10, 20,
50, 100). We select 100 unlabeled nodes newly added to the training set through ST & UNREAL,
and evaluate the performance of ST & UNREAL by testing the accuracy (%) with the standard errors
of these nodes’ pseudo labels. ST-Minor, UNREAL-Minor means that we only test unlabeled nodes
that are selected into the minority class, and SL-Major, UNREAL-Major means that we only test
unlabeled nodes that are selected into the majority class.
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(a) PubMed-GCN
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(b) PubMed-GAT
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(c) PubMed-SAGE

Figure 4: The experimental results on PubMed under different imbalance scenarios (ρ = 1, 5, 10, 20,
50, 100). We select 100 unlabeled nodes newly added to the training set through ST & UNREAL,
and evaluate the performance of ST & UNREAL by testing the accuracy (%) with the standard errors
of these nodes’ pseudo labels. ST-Minor, UNREAL-Minor means that we only test unlabeled nodes
that are selected into the minority class, and SL-Major, UNREAL-Major means that we only test
unlabeled nodes that are selected into the majority class.
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(a) Computers-GCN
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(c) Computers-SAGE

Figure 5: The experimental results on Amazon-Computers under different imbalance scenarios (ρ
= 1, 5, 10, 20, 50, 100). We select 100 unlabeled nodes newly added to the training set through ST
& UNREAL, and evaluate the performance of ST & UNREAL by testing the accuracy (%) with the
standard errors of these nodes’ pseudo labels. ST-Minor, UNREAL-Minor means that we only test
unlabeled nodes that are selected into the minority class, and SL-Major, UNREAL-Major means
that we only test unlabeled nodes that are selected into the majority class.

Table 5: Experimental results of ST and UNREAL on four class-imbalanced node classification
benchmark datasets with ρ = 1, 5, 10, 20, 50, 100. We select 100 unlabeled nodes newly added to
the training set through ST & UNREAL, and evaluate the performance of ST & UNREAL by testing
the accuracy (%) with the standard errors of the pseudo labels for the seleted nodes, minor means
that we only evaluate unlabeled nodes thich are selected into the minority class, and major means
that we only evaluate unlabeled nodes which are selected into the majority class. We report average
results over 5 repetitions on three representative GNN architectures.

SA
G

E
G

A
T

G
C

N

Dataset Cora CiteSeer PubMed Amazon-Computers

Method Self-Training UNREAL Self-Training UNREAL Self-Training UNREAL Self-Training UNREAL

ρ = 1(minor) 91.40 ± 1.67 92.80 ± 1.30 78.60 ± 1.14 77.20 ± 2.58 95.80 ± 1.92 99.20 ± 0.44 84.40 ± 1.81 84.00 ± 3.60
ρ = 5(minor) 87.00 ± 6.59 96.40 ± 4.27 74.60 ± 0.83 77.40 ± 1.20 87.60 ± 1.67 99.40 ± 1.14 68.60 ± 1.67 82.20 ± 2.16
ρ = 10(minor) 83.20 ± 1.54 92.20 ± 0.85 69.60 ± 1.60 77.80 ± 1.29 82.80 ± 2.20 86.00 ± 3.19 58.60 ± 5.72 80.40 ± 3.46
ρ = 20(minor) 77.80 ± 1.48 89.40 ± 1.37 64.00 ± 0.96 69.40 ± 1.57 78.80 ± 2.60 82.60 ± 3.69 67.60 ± 5.72 80.60 ± 1.51
ρ = 50(minor) 74.60 ± 1.76 93.00 ± 0.82 60.60 ± 1.45 72.40 ± 3.84 77.80 ± 1.28 89.20 ± 1.29 64.60 ± 3.28 69.60 ± 3.04
ρ = 100(minor) 61.20± 1.04 77.80 ± 2.50 63.80 ± 0.80 69.20 ± 3.96 76.97 ± 3.17 85.40 ± 5.45 62.20 ± 4.49 66.40 ± 3.20

ρ = 1(major) 97.00 ± 1.00 99.40 ± 0.54 79.20 ± 0.01 77.60 ± 1.94 91.40 ± 1.94 96.80 ± 0.83 90.60 ± 3.50 98.60 ± 1.81
ρ = 5(major) 97.80 ± 0.44 99.20 ± 1.28 78.80 ± 1.92 81.80 ± 1.91 89.40 ± 2.88 95.60 ± 1.14 92.40 ± 0.89 96.20 ± 3.11
ρ = 10(major) 97.80 ± 1.09 99.30 ± 0.34 69.40 ± 1.14 83.40 ± 3.40 90.00 ± 3.16 94.20 ± 1.48 93.00 ± 2.54 98.40 ± 0.89
ρ = 20(major) 98.40 ± 0.89 99.80 ± 0.44 69.60 ± 1.14 79.20 ± 2.55 88.40 ± 3.43 95.80 ± 0.83 92.00 ± 1.41 99.40 ± 0.54
ρ = 50(major) 94.80 ± 1.92 97.00 ± 1.87 74.20 ± 3.77 72.00 ± 1.66 93.60 ± 1.72 96.20 ± 1.30 92.80 ± 1.78 97.80 ± 2.16
ρ = 100(major) 94.60 ± 1.43 96.50 ± 1.58 71.60 ± 7.43 72.40 ± 1.44 94.80 ± 2.16 96.40 ± 1.81 95.00 ± 1.87 99.80 ± 0.44

ρ = 1(minor) 90.80 ± 0.83 93.80 ± 1.92 80.20 ± 0.04 77.60 ± 1.94 96.40 ± 1.14 98.00 ± 0.70 84.20 ± 1.92 89.00 ± 2.54
ρ = 5(minor) 85.80 ± 0.81 91.20 ± 4.60 77.00 ± 1.83 76.20 ± 2.58 82.80 ± 2.62 91.20 ± 2.24 80.20 ± 2.48 86.60 ± 2.50
ρ = 10(minor) 81.40 ± 1.81 90.40 ± 1.69 75.20 ± 1.03 76.20 ± 0.44 80.80 ± 2.81 82.60 ± 3.43 75.40 ± 3.36 85.60 ± 4.44
ρ = 20(minor) 76.60 ± 1.38 90.00 ± 9.92 63.80 ± 6.30 75.80 ± 3.63 72.00 ± 3.25 82.40 ± 3.13 75.80 ± 1.42 83.40 ± 3.31
ρ = 50(minor) 71.80 ± 1.31 94.60 ± 4.92 61.60 ± 1.25 69.40 ± 2.96 73.80 ± 1.43 88.60 ± 1.27 66.00 ± 1.00 78.00 ± 3.39
ρ = 100(minor) 57.00 ± 1.69 78.20 ± 2.47 65.80 ± 1.20 70.80 ± 3.11 75.40 ± 0.97 91.00 ± 3.43 70.00 ± 1.07 79.80 ± 3.03

ρ = 1(major) 94.80 ± 0.83 99.20 ± 1.09 78.00 ± 1.58 76.40 ± 1.62 90.80 ± 1.78 96.20 ± 1.64 92.00 ± 1.41 90.60 ± 0.89
ρ = 5(major) 95.50 ± 1.22 97.40 ± 2.07 76.40 ± 0.89 78.40 ± 1.53 84.60 ± 3.50 96.00 ± 1.58 92.40 ± 0.89 99.90 ± 0.15
ρ = 10(major) 95.00 ± 1.00 98.40 ± 1.81 66.60 ± 0.54 71.60 ± 1.64 83.40 ± 2.19 95.80 ± 0.83 91.40 ± 1.51 99.80 ± 0.46
ρ = 20(major) 95.60 ± 0.54 98.00 ± 1.87 66.20 ± 0.83 70.80 ± 1.76 83.40 ± 2.60 95.20 ± 1.64 93.20 ± 1.64 99.90 ± 0.12
ρ = 50(major) 93.40 ± 3.36 97.40 ± 1.81 69.60 ± 3.62 71.60 ± 2.19 92.00 ± 5.70 96.20 ± 2.58 87.20 ± 0.83 99.60 ± 0.54
ρ = 100(major) 90.20 ± 3.11 94.00 ± 2.70 68.80 ± 5.80 77.20 ± 1.97 94.00 ± 3.31 97.60 ± 1.51 94.60 ± 1.94 99.80 ± 1.64

ρ = 1(minor) 92.00 ± 0.70 97.80 ± 1.78 82.20 ± 2.28 76.60 ± 2.40 95.40 ± 3.36 90.00 ± 1.22 90.20 ± 1.48 88.20 ± 2.16
ρ = 5(minor) 80.80 ± 4.05 92.20 ± 1.32 74.00 ± 1.71 74.20 ± 1.78 87.20 ± 3.67 96.00 ± 0.90 80.20 ± 1.09 87.60 ± 1.14
ρ = 10(minor) 71.40 ± 1.54 78.8 ± 1.82 68.80 ± 1.03 73.20 ± 3.27 84.40 ± 1.79 82.20 ± 2.13 84.20 ± 1.48 85.40 ± 4.72
ρ = 20(minor) 65.40 ± 1.54 84.20 ± 1.39 51.60 ± 3.16 72.40 ± 3.20 76.20 ± 2.45 82.60 ± 3.06 73.80 ± 1.30 78.00 ± 1.55
ρ = 50(minor) 64.00 ± 0.95 94.20 ± 8.04 53.00 ± 3.65 71.60 ± 3.46 77.80 ± 0.67 84.80 ± 1.81 62.40 ± 4.49 66.20 ± 2.86
ρ = 100(minor) 50.60 ± 1.74 85.40 ± 1.02 59.60 ± 1.93 73.00 ± 1.87 75.20 ± 0.79 85.20 ± 2.30 63.60 ± 4.82 72.20 ± 0.83

ρ = 1(major) 92.20 ± 2.58 99.20 ± 0.83 78.80 ± 1.92 80.80 ± 1.97 98.20 ± 1.30 94.60 ± 1.51 97.00 ± 0.71 99.80 ± 1.09
ρ = 5(major) 90.80 ± 0.83 99.00 ± 1.22 76.00 ± 2.54 85.40 ± 1.45 88.00 ± 1.58 95.40 ± 2.70 97.80 ± 0.83 99.60 ± 0.54
ρ = 10(major) 91.20 ± 1.30 98.20 ± 0.83 71.00 ± 4.00 84.80 ± 1.39 87.80 ± 2.16 95.20 ± 0.84 98.60 ± 0.54 99.40 ± 0.54
ρ = 20(major) 91.40 ± 1.14 98.60 ± 0.54 69.60 ± 1.14 75.20 ± 1.80 87.90 ± 2.77 96.40 ± 1.51 99.00 ± 1.00 99.00 ± 1.00
ρ = 50(major) 91.80 ± 1.30 93.80 ± 3.83 70.20 ± 5.80 75.20 ± 1.74 91.00 ± 4.47 95.40 ± 2.19 99.80 ± 0.44 99.20 ± 0.44
ρ = 100(major) 94.20 ± 1.30 95.60 ± 3.43 69.60 ± 2.19 82.00 ± 1.35 91.80 ± 1.92 95.60 ± 3.97 99.40 ± 0.54 99.20 ± 0.83

for highly imbalanced data, ST is unlikely to achieve optimal performance as biased and untrust-
worthy predictions may bring low-quality nodes into the training set in the early stage. Our key idea
to remedy this is to exploit the geometric structural information in the embedding space. In this sec-
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tion, we empirically verify the informativeness of geometric structures by comparing UNREAL with
pure self-training schemes.
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(c) Cora-SAGE

Figure 6: The experimental results on Cora under different imbalance scenarios (ρ = 10, 20, 50,
100). We compare the F1-score (%) with the standard errors of ST and UNREAL.
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(c) CiteSeer-SAGE

Figure 7: The experimental results on CiteSeer under different imbalance scenarios (ρ = 10, 20, 50,
100). We compare the F1-score (%) with the standard errors of ST and UNREAL.
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(c) PubMed-SAGE

Figure 8: The experimental results on PubMed under different imbalance scenarios (ρ = 10, 20, 50,
100). We compare the F1-score (%) with the standard errors of ST and UNREAL.

Results The size of added nodes in each round for each class is a hyperparameter, and we tune
the hyperparameter based on the accuracy on the validation set. We repeat each experiment five
times and report the average experiment results on the node classification benchmark datasets under
different imbalance ratios in Figure 6, 7, 8. It can be observed that across different ratios, UN-
REAL consistently outperforms self-training by a large margin, and as imbalance ratio increases,
the gap of the F1 scores between ST and our method becomes larger. This shows that as the data
imbalance issue become more severe, the performance of ST degrades more rapidly, which is likely
due to noise introduced in early rounds.
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C ADDITIONAL RESULTS IN DIFFERENT SCENARIOS

C.1 MORE RESULTS ON HIGHER IMBALANCE RATIOS

In this section, we show the performance of UNREAL in highly-imbalanced scenarios by construct-
ing training sets with ρ = 50, 100 on the benchmark datasets which is not presented in the main
paper. The results are presented in Table 6 and Table 7. We can find that our model is more robust
on highly-imbalanced datasets with different architectures, namely GCN (Kipf & Welling, 2016),
GAT (Veličković et al., 2017), GraphSAGE (Hamilton et al., 2017)). It is shown that UNREAL
can deal with different degrees of imbalance, and significantly outperforms other methods with a
large margin. We observe from the Table 6 and Table 7 that the performance of of GraphENS
(also GraphENS+TAM) degrades noticeably on highly-imbalanced datasets. In highly imbalanced
scenarios, synthesizing or duplicating huge amounts of nodes based on rare minority nodes in the
training set is prone to overfitting of minority classes. On the other hand, BalancedSoftmax+TAM
achieves an overall better performance than GraphENS+TAM in those highly imbalanced scenarios.

C.2 RESULTS ON FLICKR

The Flickr is naturally imbalanced and the training set in the public split is also imbalanced, so we
directly evaluate the performance of all methods on the public split (Zeng et al., 2019). The results
is presented in Table 8.

D ADDITIONAL ANALYSIS FOR EACH COMPONENTS OF UNREAL

D.1 ADDITIONAL ANALYSIS FOR DPAM

In this section, we analyze why DPAM works. DPAM conducts an unsupervised algorithm to obtain
pseudo-labels for each unlabeled node in the embedding space, and finally only unlabeled nodes
whose pseudo-labels and classifier’s predictions are aligned are put into the candidate pool, which
effectively circumvents the bias problem of the classifier, such as pseudo-label misjudgment of unla-
beled nodes, selecting low-quality nodes into training set based on the skewed condidence rankings.
To quantify the performance of DPAM, we conduct the novel experiments below.

Experimental setup We use DPAM to filter the unlabeled nodes of the whole graph, and test
the accuracy of pseudo-labels (prediction of the classifier) of the aligned node set Uin and the dis-
carded node set Uout respectively. DPAM based on different GNN structures are trained on two node
classification benchmark datasets, Cora, Amazon-Computers. We process the two dataset with a tra-
ditional imbalanced distribution following Zhao et al. (2021); Park et al. (2021); Song et al. (2022).
The imbalance ratio ρ between the numbers of the most frequent class and the least frequent class is
set as 1, 5, 10, 20, 50, 100. We fix architecture as the 2-layer GNN (i.e. GCN(Kipf & Welling, 2016),
GAT(Veličković et al., 2017), GraphSAGE(Hamilton et al., 2017)) having 128 hidden dimensions
and train models for 2000 epochs. We select the model by the validation accuracy. We observe the
accuracy of pseudo labels for unlabeled nodes which are filtered out and absorbed into by DPAM
respectively. We repeat each experiment five times and present the average experiment results.

Result DPAM divides the unlabeled nodes of the whole graph into two parts, Uin, Uout. We verify
the effect of DPAM by testing the accuracy of pseudo-labels for these two parts of nodes. We can
observe that the accuracy of pseudo-labels for Uin and Uout differ greatly in different imbalanced
scenarios. Usually the pseudo-label accuracy of Uin is high and the pseudo-label accuracy of Uout is
lower, which means the effectiveness of DPAM. We can also observe that as ρ increases, the accuracy
of both decreases, which also reflects the model bias caused by the imbalanced label distribution.

D.2 ADDITIONAL ANALYSIS FOR NODE-REORDERING AND DGI

In this section, we analyze why Node-Reordering and DGI works. With DPAM, we filter out a large
part of untrustworthy nodes, and get a pool of candidate nodes. We try to carefully hunt for a part
of high-quality nodes in the pool to add to the training set, which involves a priority issue. As we
mentioned before, we have already verified in Section 3 that the prediction and confidence given by
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Table 6: Experimental results of our method UNREAL and other baselines on four class-imbalanced
node classification benchmark datasets with ρ = 50. We report averaged balanced accuracy
(bAcc.,%) and F1-score (%) with the standard errors over 5 repetitions on three representative GNN
architectures.

SA
G

E
G

A
T

G
C

N

Dataset Cora CiteSeer PubMed Amazon-Computers

Imbalance Ratio (ρ = 50) bAcc. F1 bAcc. F1 bAcc. F1 bAcc. F1

Vanilla 51.81 ± 0.62 43.98 ± 1.00 37.59 ± 0.17 23.54 ± 0.13 61.65 ± 0.34 47.95 ± 0.58 77.36 ± 3.41 69.68 ± 3.12
Re-Weight 58.54 ± 2.39 54.13 ± 3.20 38.19 ± 1.28 27.43 ± 2.34 65.70 ± 1.59 56.35 ± 4.26 79.10 ± 2.44 71.40 ± 2.86
PC Softmax 64.87 ± 2.23 62.01 ± 3.14 42.42 ± 2.19 38.83 ± 2.70 69.21 ± 0.59 69.40 ± 0.87 81.90 ± 1.63 74.34 ± 2.13
BalancedSoftmax 65.94 ± 1.55 64.00 ± 2.05 47.62 ± 1.11 46.55 ± 1.46 70.40 ± 1.00 69.04 ± 0.66 82.97 ± 0.83 73.74 ± 1.27
Renode 62.22 ± 1.76 61.18 ± 2.24 41.23 ± 1.66 33.66 ± 2.69 68.67 ± 1.21 63.05 ± 1.47 81.71 ± 0.99 72.55 ± 1.61
GraphENS 63.47 ± 0.98 62.21 ± 1.65 48.17 ± 1.58 41.07 ± 2.34 69.63 ± 2.55 64.30 ± 3.51 81.63 ± 2.35 72.57 ± 2.33
BalancedSoftmax+TAM 68.57 ± 1.58 67.25 ± 1.27 53.43 ± 2.42 51.74 ± 2.80 77.20 ± 1.45 74.86 ± 0.99 81.74 ± 2.30 73.85 ± 2.68
Renode+TAM 63.93 ± 1.96 61.64 ± 2.71 48.17 ± 1.58 41.07 ± 2.34 69.63 ± 2.55 64.30 ± 3.51 80.55 ± 1.75 72.33 ± 1.63
GraphENS+TAM 65.05 ± 1.11 62.11 ± 1.98 45.03 ± 1.34 42.65 ± 1.94 69.74 ± 0.78 70.82 ± 0.63 81.69 ± 2.22 72.09 ± 1.75

UNREAL 75.62 ± 2.02 72.59 ± 2.13 59.97 ± 4.59 58.66 ± 5.20 78.55 ± 0.84 75.91 ± 0.81 85.54 ± 0.26 75.76 ± 0.13
∆∆∆ +7.05 +5.34 +6.54 +6.92 +1.35 +1.06 +2.57 +1.91

Vanilla 53.90 ± 0.63 45.53 ± 0.89 36.48 ± 0.08 23.68 ± 0.16 60.16 ± 0.47 46.99 ± 0.58 72.42 ± 2.17 64.41 ± 2.68
Re-Weight 59.78 ± 1.92 56.69 ± 2.21 38.70 ± 2.23 29.38 ± 3.06 66.27 ± 0.68 57.34 ± 1.41 73.46 ± 3.07 67.00 ± 2.60
PC Softmax 59.44 ± 2.62 58.06 ± 2.69 43.13 ± 1.56 37.04 ± 2.07 70.86 ± 0.44 70.96 ± 0.54 77.21 ± 2.90 69.17 ± 2.89
BalancedSoftmax 64.71 ± 2.28 62.55 ± 2.61 51.89 ± 1.15 49.36 ± 1.52 70.94 ± 1.09 70.33 ± 0.99 77.49 ± 1.58 70.44 ± 2.33
Renode 63.81 ± 1.72 60.63 ± 2.26 41.60 ± 2.30 33.94 ± 4.60 70.35 ± 1.26 67.43 ± 0.01 72.39 ± 2.75 65.23 ± 3.35
GraphENS 64.52 ± 2.51 61.41 ± 3.15 45.23 ± 2.97 41.12 ± 4.23 69.66 ± 1.01 66.83 ± 0.94 78.36 ± 2.74 70.44 ± 2.51
BalancedSoftmax+TAM 68.05 ± 1.03 66.07 ± 1.14 54.28 ± 0.79 52.77 ± 0.97 75.65 ± 1.11 74.02 ± 1.44 78.86 ± 1.53 70.71 ± 2.04
Renode+TAM 64.40 ± 1.83 63.48 ± 2.83 43.54 ± 1.54 35.80 ± 2.43 71.23 ± 2.04 66.61 ± 4.31 76.07 ± 2.70 68.43 ± 2.68
GraphENS+TAM 65.33 ± 2.67 65.34 ± 2.53 48.00 ± 1.46 48.14 ± 1.43 71.50 ± 1.26 72.58 ± 1.07 80.02 ± 2.32 72.38 ± 2.47

UNREAL 77.07 ± 0.83 73.44 ± 1.05 57.70 ± 4.35 56.81 ± 4.67 79.41 ± 0.29 77.38 ± 0.39 86.06 ± 0.45 77.55 ± 0.71
∆∆∆ +9.02 +7.37 +3.42 +4.04 +3.76 +3.36 +6.04 +5.17

Vanilla 53.02 ± 0.83 45.58 ± 1.30 38.81 ± 0.89 25.28 ± 0.51 61.41 ± 1.01 50.46 ± 2.47 56.53 ± 2.12 48.52 ± 2.75
Re-Weight 58.03 ± 0.81 54.32 ± 0.99 38.49 ± 1.34 30.41 ± 1.82 62.41 ± 0.90 51.37 ± 2.62 70.36 ± 2.21 61.52 ± 2.73
PC Softmax 62.33 ± 1.62 59.97 ± 1.98 41.79 ± 1.19 36.90 ± 0.84 69.58 ± 1.09 67.13 ± 0.95 73.53 ± 2.02 66.12 ± 3.19
BalancedSoftmax 64.57 ± 0.77 62.22 ± 0.82 41.84 ± 1.72 40.09 ± 1.04 70.43 ± 0.38 68.99 ± 0.99 73.27 ± 2.30 68.30 ± 1.97
Renode 61.35 ± 1.86 58.88 ± 2.53 40.37 ± 2.33 32.57 ± 3.62 67.54 ± 3.05 59.77 ± 5.30 70.46 ± 3.45 62.30 ± 4.40
GraphENS 63.95 ± 0.96 62.63 ± 2.12 41.99 ± 1.54 37.44 ± 2.43 66.07 ± 1.12 61.63 ± 1.82 76.21 ± 2.84 68.10 ± 2.56
BalancedSoftmax+TAM 65.97 ± 0.71 65.53 ± 0.88 52.89 ± 1.65 49.92 ± 1.83 71.11 ± 0.75 71.73 ± 0.79 73.12 ± 1.41 66.45 ± 1.04
Renode+TAM 62.79 ± 0.47 61.05 ± 0.82 43.04 ± 1.30 36.97 ± 1.92 71.79 ± 1.33 67.80 ± 2.45 74.55 ± 2.95 66.06 ± 2.16
GraphENS+TAM 65.98 ± 1.37 64.84 ± 1.13 49.54 ± 1.79 49.48 ± 1.70 73.24 ± 1.32 73.73 ± 1.14 80.75 ± 1.22 72.31 ± 0.95

UNREAL 76.04 ± 1.30 72.99 ± 1.25 58.70 ± 4.10 57.53 ± 4.59 75.27 ± 1.26 72.16 ± 1.50 82.03 ± 0.77 72.98 ± 0.52
∆∆∆ +10.06 +7.46 +5.81 +7.61 +2.03 -1.57 +1.28 +0.67

Table 7: Experimental results of our method UNREAL and other baselines on four class-imbalanced
node classification benchmark datasets with ρ = 100. We report averaged balanced accuracy
(bAcc.,%) and F1-score (%) with the standard errors over 5 repetitions on three representative GNN
architectures.

SA
G

E
G

A
T

G
C

N

Dataset Cora CiteSeer PubMed Amazon-Computers

Imbalance Ratio (ρ = 100) bAcc. F1 bAcc. F1 bAcc. F1 bAcc. F1

Vanilla 51.62 ± 0.20 43.91 ± 0.25 38.83 ± 0.26 24.71 ± 0.25 61.28 ± 0.12 47.55 ± 0.16 76.09 ± 3.79 69.32 ± 3.49
Re-Weight 59.11 ± 1.06 54.04 ± 1.36 42.67 ± 2.06 33.17 ± 3.40 67.14 ± 2.71 55.24 ± 5.36 81.53 ± 2.20 71.45 ± 2.05
PC Softmax 63.75 ± 1.02 61.19 ± 1.43 38.34 ± 0.71 33.65 ± 1.42 70.85 ± 0.44 70.26 ± 0.63 82.22 ± 1.99 72.38 ± 2.52
BalancedSoftmax 63.03 ± 1.57 61.28 ± 1.77 48.49 ± 1.20 46.59 ± 1.34 70.77 ± 1.88 68.88 ± 1.74 83.33 ± 3.35 74.34 ± 2.74
Renode 60.76 ± 2.53 58.09 ± 3.00 43.41 ± 2.07 33.69 ± 2.76 67.63 ± 2.77 61.70 ± 4.84 82.13 ± 1.73 71.79 ± 1.85
GraphENS 63.00 ± 1.30 62.33 ± 1.67 45.99 ± 2.06 37.23 ± 3.40 68.65 ± 1.00 62.17 ± 1.60 83.37 ± 2.17 73.96 ± 1.98
BalancedSoftmax+TAM 69.44 ± 0.59 67.10 ± 0.88 52.60 ± 0.69 51.21 ± 0.84 73.73 ± 1.10 73.72 ± 0.83 83.70 ± 2.17 75.39 ± 1.43
Renode+TAM 64.19 ± 1.46 60.90 ± 1.56 44.78 ± 1.51 35.90 ± 2.61 70.53 ± 0.75 64.35 ± 1.79 82.32 ± 2.19 73.09 ± 1.75
GraphENS+TAM 60.40 ± 4.42 57.77 ± 4.02 42.72 ± 2.54 39.40 ± 2.57 70.73 ± 1.96 72.50 ± 1.87 81.29 ± 1.52 71.66 ± 1.75

UNREAL 72.82 ± 3.55 69.12 ± 3.45 57.66 ± 1.96 56.50 ± 1.12 78.73 ± 0.88 76.03 ± 1.08 84.30 ± 0.30 76.06 ± 0.32
∆∆∆ +3.38 +2.02 +5.06 +5.29 +5.00 +2.31 +0.60 +0.67

Vanilla 51.58 ± 0.32 43.37 ± 0.21 37.91 ± 0.28 23.49 ± 0.21 62.07 ± 0.17 47.39 ± 0.20 72.66 ± 2.97 64.87 ± 3.46
Re-Weight 58.28 ± 1.88 54.47 ± 2.35 38.13 ± 1.55 29.60 ± 3.02 67.41 ± 2.69 58.06 ± 5.07 77.10 ± 3.26 68.35 ± 2.71
PC Softmax 63.74 ± 2.01 59.76 ± 2.19 45.07 ± 1.13 39.21 ± 2.29 69.68 ± 1.29 69.44 ± 1.29 79.72 ± 1.52 70.78 ± 1.45
BalancedSoftmax 63.19 ± 1.35 61.03 ± 1.46 46.03 ± 2.11 43.38 ± 2.24 71.45 ± 1.23 69.10 ± 1.20 79.15 ± 2.08 69.68 ± 2.13
Renode 60.04 ± 2.21 58.04 ± 2.66 42.40 ± 2.97 34.09 ± 0.04 68.54 ± 2.11 65.63 ± 3.15 75.34 ± 1.65 69.99 ± 1.60
GraphENS 63.93 ± 2.70 61.77 ± 3.38 44.43 ± 1.90 39.26 ± 2.55 68.50 ± 1.81 64.14 ± 3.28 81.63 ± 2.08 71.20 ± 2.75
BalancedSoftmax+TAM 64.96 ± 3.23 62.91 ± 3.96 52.75 ± 1.29 50.69 ± 1.83 73.38 ± 0.77 72.45 ± 0.88 80.86 ± 2.52 72.93 ± 2.95
Renode+TAM 63.45 ± 1.41 61.51 ± 1.95 41.55 ± 1.39 36.13 ± 2.87 71.53 ± 2.35 68.11 ± 4.28 78.60 ± 1.90 70.35 ± 2.80
GraphENS+TAM 62.52 ± 0.95 61.65 ± 1.19 45.79 ± 1.31 44.80 ± 1.14 69.09 ± 1.11 70.64 ± 1.10 83.33 ± 0.83 72.81 ± 1.22

UNREAL 75.42 ± 0.91 71.50 ± 0.89 60.35 ± 1.87 59.63 ± 1.86 77.88 ± 1.31 74.98 ± 1.35 85.33 ± 0.19 75.83 ± 0.74
∆∆∆ +10.46 +8.59 +7.60 +8.94 +4.50 +2.53 +2.00 +3.02

Vanilla 52.65 ± 0.24 43.79 ± 0.47 36.63 ± 0.09 24.12 ± 0.09 62.29 ± 0.25 47.02 ± 0.38 55.94 ± 2.37 47.21 ± 2.73
Re-Weight 59.42 ± 2.88 55.26 ± 4.40 36.24 ± 1.30 27.07 ± 2.88 63.33 ± 0.75 55.11 ± 1.62 70.76 ± 3.35 62.09 ± 3.30
PC Softmax 64.01 ± 1.15 60.74 ± 1.68 44.74 ± 1.41 37.61 ± 1.69 72.62 ± 1.42 70.95 ± 1.70 75.96 ± 2.44 69.12 ± 2.90
BalancedSoftmax 63.43 ± 2.12 62.30 ± 2.27 49.33 ± 1.12 44.58 ± 1.64 70.68 ± 0.92 69.15 ± 0.84 74.66 ± 0.86 66.28 ± 1.92
Renode 62.42 ± 0.90 60.08 ± 1.19 39.61 ± 2.66 30.13 ± 3.86 67.11 ± 1.12 61.09 ± 3.50 73.73 ± 2.26 64.47 ± 2.39
GraphENS 63.09 ± 0.97 61.20 ± 1.74 42.03 ± 1.88 36.71 ± 2.99 69.71 ± 1.87 63.47 ± 3.87 81.33 ± 1.66 72.83 ± 1.76
BalancedSoftmax+TAM 66.58 ± 1.53 64.56 ± 2.49 53.33 ± 1.06 50.15 ± 1.45 72.59 ± 2.06 72.22 ± 2.08 78.01 ± 1.06 71.02 ± 1.08
Renode+TAM 62.06 ± 2.08 60.72 ± 3.32 42.08 ± 1.88 33.19 ± 3.45 69.95 ± 1.01 65.99 ± 2.28 74.81 ± 3.29 67.48 ± 3.32
GraphENS+TAM 65.95 ± 2.25 63.88 ± 1.78 51.03 ± 1.51 50.49 ± 1.88 73.58 ± 2.01 72.44 ± 1.77 81.72 ± 1.08 72.31 ± 1.98

UNREAL 73.47 ± 2.31 68.30 ± 2.11 59.77 ± 2.98 58.92 ± 3.07 77.11 ± 0.59 74.03 ± 0.81 82.92 ± 2.94 73.11 ± 2.57
∆∆∆ +6.89 +3.74 +6.44 +8.43 +3.53 +1.59 +1.20 +0.28
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Table 8: Experimental results of our method UNREAL and other baselines on Flickr . We report
averaged balanced accuracy (bAcc.,%) and F1-score (%) with the standard errors over 5 repetitions
on three representative GNN architectures.

Dataset (Flickr) GCN GAT SAGE

Imbalance Ratio(ρ ≈ 10.80) bAcc. F1 bAcc. F1 bAcc. F1

Cross Entropy 24.62 ± 0.07 24.53 ± 0.11 25.87 ±0.30 25.32 ± 0.44 25.29 ± 0.18 24.16 ± 0.27
Re-Weight 28.31 ± 1.64 24.06 ± 1.16 30.66 ± 0.76 27.12 ± 0.34 27.39 ± 1.84 22.62 ± 1.04
PC Softmax 29.21 ± 2.16 25.81 ± 1.75 30.20 ± 0.46 27.24 ± 0.37 25.40 ± 2.49 21.08 ± 1.73
BalancedSoftmax 27.61 ± 0.61 23.70 ± 0.77 26.01 ± 2.81 23.50 ± 3.07 28.24 ± 2.10 24.98 ± 1.59
GraphSMOTE OOM OOM OOM OOM OOM OOM
Renode OOM OOM OOM OOM OOM OOM
GraphENS OOM OOM OOM OOM OOM OOM
BalancedSoftmax+TAM 27.06 ± 1.03 23.97 ± 0.60 28.24 ± 0.99 25.52 ± 0.89 29.79 ± 0.37 27.56 ± 0.25
Renode+TAM OOM OOM OOM OOM OOM OOM
GraphENS+TAM OOM OOM OOM OOM OOM OOM

UNREAL 30.76 ± 0.27 30.60 ± 0.29 29.45 ± 0.72 28.21 ± 0.76 53.68 ± 0.63 54.01 ± 1.34
∆∆∆ +1.55 +4.79 -1.21 +0.97 +23.89 +26.45
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Figure 9: An elaboration of Geometric Imbalance and DGI, we use T-SNE to visualize the all
embeddings of nodes in the training set and the part of embeddings of unlabeled nodes.
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Table 9: Experimental results of DPAM effectiveness on Cora with ρ = 1, 5, 10, 20, 50, 100. We
observe the accuracy (%) of the pseudo-label (prediction of the classifier) of the aligned node set Uin

and the discarded node set Uout respectively. We report averaged results with the standard errors over
5 repetitions on three representative GNN architectures. All, Labeled, Unlabeled represent the size
of whole nodes, labeled nodes, and unlabeled nodes on the graph. Align, Out, Align-True, Out-
Ture represent the size of Uin, Uout, nodes with accurate pseudo-labels of Uin, Uout respectively.

SA
G

E
G

A
T

G
C

N

Dataset All Labled Unlabled Align Align-True Accuracy(%) Out Out-True Accuracy(%)

ρ = 1 2708 140 2568 2072.00 ± 10.29 1391.00 ± 22.56 67.11 ± 1.17 496.00 ± 10.29 233.80 ± 16.66 47.17 ± 3.74
ρ = 5 2708 92 2616 2122.80 ± 18.93 1392.00 ± 34.21 65.58 ± 1.57 493.20 ± 18.73 186.80 ± 13.08 37.86 ± 1.75
ρ = 10 2708 86 2622 2134.60 ± 23.42 1326.40 ± 24.23 62.14 ± 1.67 487.40 ± 23.43 181.60 ± 18.24 37.32 ± 3.13
ρ = 20 2708 83 2625 2149.60 ± 17.67 1310.20 ± 86.72 60.97 ± 3.50 475.40 ± 17.67 169.80 ± 21.47 35.64 ± 3.44
ρ = 50 2708 203 2505 1860.80 ± 31.15 1059.40 ± 58.77 56.90 ± 2.62 644.20 ± 31.14 225.80 ± 10.70 35.05 ± 3.79
ρ = 100 2708 403 2305 1820.40 ± 12.42 1001.60 ± 21.60 55.02 ± 3.99 484.60 ± 23.99 151.40 ± 20.74 31.78 ± 2.37

ρ = 1 2708 140 2568 2072.00 ± 37.18 1412.40 ± 37.31 68.16 ± 1.41 496.00 ± 20.89 239.40 ± 11.37 48.29 ± 2.15
ρ = 5 2708 92 2616 2141.40 ± 26.36 1433.00 ± 59.82 66.90 ± 2.09 474.60 ± 26.36 195.20 ± 24.68 41.02 ± 3.27
ρ = 10 2708 86 2622 2132.60 ± 29.94 1377.40 ± 49.61 64.58 ± 1.60 489.40 ± 29.95 185.80 ± 12.28 37.97 ± 1.13
ρ = 20 2708 83 2625 2150.60 ± 37.35 1344.60 ± 54.17 62.16 ± 1.64 462.40 ± 33.28 178.00 ± 5.05 38.60 ± 2.12
ρ = 1 2708 140 2568 1892.40 ± 37.18 1080.80 ± 31.86 57.52 ± 1.52 612.60 ± 37.17 271.20 ± 6.30 44.35 ± 1.86
ρ = 1 2708 403 2305 1934.60 ± 19.65 1038.20 ± 21.08 53.66 ± 0.83 370.40 ± 37.17 147.53 ± 3.20 39.83 ± 1.36

ρ = 1 2708 140 2568 1944.00 ± 25.77 973.40 ± 32.26 51.27 ± 3.36 624.00 ± 25.77 237.00 ± 13.28 36.11 ± 4.07
ρ = 5 2708 92 2616 2004.40 ± 35.50 1038.20 ± 22.53 51.80 ± 3.73 611.60 ± 35.50 203.80 ± 7.15 33.40 ± 1.85
ρ = 10 2708 86 2622 2041.60 ± 32.48 1039.00 ± 41.32 50.89 ± 1.88 580.40 ± 32.48 189.20 ± 2.35 32.56 ± 4.25
ρ = 20 2708 83 2625 2040.20 ± 30.94 1002.20 ± 66.97 48.95 ± 2.66 578.80 ± 30.95 186.60 ± 18.00 32.18 ± 1.57
ρ = 50 2708 203 2505 1789.40 ± 30.56 870.20 ± 24.33 48.63 ± 1.03 715.60 ± 30.56 242.40 ± 16.77 33.87 ± 1.18
ρ = 100 2708 403 2305 1859.00 ± 192.42 914.41 ± 23.65 49.26 ± 2.59 446.00 ± 21.24 138.87 ± 6.32 31.15 ± 2.43

Table 10: Experimental results of DPAM effectiveness on Amazon-Computers with
ρ = 1, 5, 10, 20, 50, 100. We observe the accuracy (%) of the pseudo-label (prediction of the classi-
fier) of the aligned node set Uin and the discarded node set Uout respectively. We report averaged
results with the standard errors over 5 repetitions on three representative GNN architectures. All,
Labeled, Unlabeled represent the size of whole nodes, labeled nodes, and unlabeled nodes on the
graph. Align, Out, Align-True, Out-Ture represent the size of Uin, Uout, nodes with accurate
pseudo-labels of Uin, Uout respectively.

SA
G

E
G

A
T

G
C

N

Dataset All Labled Unlabled Align Align-True Accuracy(%) Out Out-True Accuracy(%)

ρ = 1 13752 200 13552 11977.60 ± 108.09 9603.80 ± 93.34 80.08 ± 3.07 1554.40 ± 08.23 676.60 ± 141.11 43.58 ± 2.83
ρ = 5 13752 120 13632 11593.60 ± 73.16 9172.80 ± 87.32 79.06 ± 1.17 2308.40 ± 173.54 544.40 ± 66.26 30.74 ± 9.09
ρ = 10 13752 110 13642 11822.40 ± 13.43 8786.60 ± 55.48 74.24 ± 0.83 1807.60 ± 109.34 495.00 ± 100.37 27.24 ± 4.30
ρ = 20 13752 105 13647 11866.60 ± 17.34 8698.20 ± 188.13 73.40 ± 1.39 1780.40 ± 67.36 521.00 ± 60.76 29.20 ± 2.41
ρ = 50 13752 255 13497 11843.20 ± 168.20 8994.40 ± 175.24 75.94 ± 0.75 1653.80 ± 138.11 474.20 ± 50.72 28.68 ± 2.16
ρ = 100 13752 505 13247 9159.00 ± 192.42 7352.90 ± 61.23 81.41 ± 4.59 4088.00 ± 93.99 1129.60 ± 75.74 28.67 ± 4.77

ρ = 1 13752 200 13552 12008.00 ± 101.93 9984.20 ± 308.03 83.44 ± 4.13 1544.80 ± 101.94 580.40 ± 190.49 43.33 ± 1.32
ρ = 5 13752 120 13632 11570.80 ± 136.11 8715.00 ± 86.33 75.33 ± 0.54 2061.20 ± 136.13 477.00 ± 97.07 25.39 ± 1.33
ρ = 10 13752 110 13642 8947.60 ± 13.40 6680.40 ± 177.54 75.85 ± 6.07 4694.40 ± 134.74 591.80 ± 13.74 15.94 ± 2.97
ρ = 20 13752 105 13647 10245.80 ± 68.00 7300.80 ± 64.89 71.42 ± 1.80 3401.20 ± 69.76 370.60 ± 43.87 18.52 ± 0.09
ρ = 50 13752 255 13497 10133.60 ± 31.56 7772.00 ± 155.87 77.17 ± 2.85 3363.40 ± 10.42 457.20 ± 108.19 19.28 ± 1.43
ρ = 100 13752 505 13247 11377.00 ± 63.32 9122.20 ± 96.70 80.46 ± 1.01 1910.00 ± 63.32 458.20 ± 41.04 24.78 ± 2.04

ρ = 1 13752 200 13552 10815.20 ± 86.50 7131.40 ± 72.83 65.94 ± 0.28 2736.80 ± 86.50 965.40 ± 56.42 35.26 ± 1.31
ρ = 5 13752 120 13632 10627.80 ± 78.33 6728.00 ± 53.24 63.25 ± 0.36 3004.20 ± 78.03 978.20 ± 59.93 32.55 ± 1.49
ρ = 10 13752 110 13642 10475.00 ± 118.41 6015.00 ± 41.14 57.43 ± 4.01 3167.00 ± 18.41 1064.40 ± 52.71 33.59 ± 6.23
ρ = 20 13752 105 13647 10653.20 ± 87.35 5998.40 ± 69.35 56.30 ± 4.01 2993.80 ± 87.35 886.20 ± 73.25 29.57 ± 1.77
ρ = 50 13752 255 13497 11044.80 ± 129.14 6760.80 ± 50.26 61.22 ± 3.42 2442.20 ± 28.48 879.00 ± 91.45 35.71 ± 1.78
ρ = 100 13752 505 13247 9175.20 ± 32.53 6475.60 ± 80.88 72.07 ± 1.96 4071.80 ± 32.63 1218.60 ± 14.70 34.43 ± 1.08

the classifier are biased, resulting in low accuracy of the pseudo-labels for nodes selected by ST in
highly imbalanced scenarios. We can get the geometric ranking according to the distance between
the unlabeled nodes and the class centers in the embedding space. Considering the influence of
classifier bias on confidence ranking, we believe that geometric ranking is more credible in the early
rounds. At the same time, we take into account the suboptimal nature of the unsupervised algorithm.
We believe that with the rounds of UNREAL increases, the label distribution of the training set is
gradually balanced, and the confidence given by the classifier is more reliable. Node-reordering
considers both geometric ranking and confidence ranking, specifically, obtain the similarity between
them to get a weight to reorder the priority of the nodes. To quantify the performance of Node-
Reordering and DGI, we conduct the novel experiments below.

Experimental setup We conduct experiments to test the accuracy of pseudo labels for unlabeled
nodes on class-imbalanced graphs. All model combinations based on different GNN structures are
trained on two node classification benchmark datasets, Cora, Amaon-Computers. We process the
two dataset with a traditional imbalanced distribution following Zhao et al. (2021); Park et al. (2021);
Song et al. (2022). The imbalance ratio ρ between the numbers of the most frequent class and the
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least frequent class is set as 1, 5, 10, 20, 50, 100. We fix architecture as the 2-layer GNN (i.e.
GCN(Kipf & Welling, 2016), GAT(Veličković et al., 2017), GraphSAGE(Hamilton et al., 2017))
having 128 hidden dimensions and train models for 2000 epochs. We select the model by the valida-
tion accuracy. We observe the accuracy of pseudo labels for unlabeled nodes which are newly added
to the minority class of training set. We repeat each experiment five times and present the average
experiment results.
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Figure 10: Sensitivity analysis on Cora based on GCN. The two images show the performance
change as clusters’ size k′ of K-Means and the threshold γ of DGI increases respectively.

Result As shown in Table 11 and Table 12, we verify the effectiveness of each component of
UNREAL by testing the accuracy of the nodes’ pseudo-labels selected by different model com-
binations, DPAM+Confidence ranking(with or without DGI), DPAM+Geometric ranking(with or
without DGI), DPAM+Node-Reordering(with or without DGI). It can be observed that in different
imbalanced scenarios, each component of UNREAL (Node-reordering & DGI) plays an important
role, and the performance outperforms the other model combinations significantly.

E HYPERPARAMETER SENSITIVITY ANALYSIS OF UNREAL

We investigate the sensitivity of performance to clusters’ size k′ of K-Means algorithm and the
threshold γ of DGI in Figure 10. We observe the performance gradually stabilize when k′ have
extremely high values, on the other hand, when k′ is extremely low values, the performance of UN-
REAL drops largely. We believe that when k′ is too small, the pseudo-labels given by unsupervised
algorithms will have more errors. Also, we observe the performance gradually stabilize when γ have
extremely low values. We believe this is because that the DGI screening is too strict, which will lead
to the loss of some high-quality nodes. On the other hand, extremely large γ will introduce many
noise into the training set.

F DETAILS OF THE EXPERIMENTAL SETUP

Here, we introduce the method of imbalanced datasets construction, evaluation protocol, and the
details of our algorithm and baseline methods.

F.1 IMBALANCED DATASETS CONSTRUCTION

The detailed descriptions of the datasets are shown in Table 13. For each citation dataset, for ρ =
10, 20, we follow the “public” split, and randomly convert minority class nodes to unlabeled nodes
until the dataset reaches imbalanced ratio ρ. For ρ = 50, 100, since there are not enough nodes per
class in the public split training set, we choose randomly selected nodes as training samples, and
for validation and test sets we still follow the public split. For the co-purchased networks Amazon-
Computers, we randomly select nodes as training set in each replicated experiment, and construct
a random validation set with 30 nodes in each class, and treat the remaining nodes as testing set.
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Table 11: Analyzed experimental results of Node-Reordering and DGI on Cora with
ρ = 1, 5, 10, 20, 50, 100. We select 100 unlabeled nodes newly added to the minority class of train-
ing set through different method combinations, and evaluate the validity of Node-Reordering & DGI
by testing the accuracy (%) with the standard errors of the pseudo labels for these nodes. We report
averaged results over 5 repetitions on three representative GNN architectures.

SA
G

E
G

A
T

G
C

N

Dataset Cora

Imbalance Ratio (ρ) ρ = 1 ρ = 5 ρ = 10 ρ = 20 ρ = 50 ρ = 100

DPAM+Confidence Ranking 61.40 ± 2.73 62.40 ± 2.59 60.20 ± 1.02 58.40 ± 1.05 57.60 ± 1.86 58.40 ± 2.15
DPAM+Geometric Ranking 64.00 ± 3.67 61.20 ± 2.89 61.20 ± 2.54 63.60 ± 1.31 55.60 ± 2.31 47.80 ± 2.87
DPAM+Node-Reordering 89.65 ± 3.23 86.98 ± 0.21 88.32 ± 0.83 85.32 ± 2.98 90.87 ± 2.31 71.60 ± 2.91
DPAM+Confidence Ranking+DGI 71.00 ± 5.47 75.40 ± 2.15 68.20 ± 1.25 69.40 ± 1.28 67.80 ± 2.75 66.60 ± 0.16
DPAM+Geometric Ranking+DGI 69.60 ± 3.78 73.80 ± 0.45 64.80 ± 1.26 64.20 ± 1.91 57.00 ± 1.57 69.00 ± 1.71
DPAM+Node-Reordering+DGI(UNREAL) 92.80 ± 1.30 96.40 ± 4.27 92.20 ± 0.85 89.40 ± 1.37 93.00 ± 0.82 77.80 ± 2.50

DPAM+Confidence Ranking 61.60 ± 4.26 64.00 ± 2.07 62.60 ± 3.47 57.80 ± 1.65 58.20 ± 1.07 60.60 ± 0.79
DPAM+Geometric Ranking 64.00 ± 2.78 67.80 ± 3.76 65.00 ± 4.30 52.00 ± 1.02 65.20 ± 2.58 40.80 ± 2.63
DPAM+Node-Reordering 91.79 ± 0.23 90.45 ± 5.78 84.32 ± 3.45 88.34 ± 0.23 90.32 ± 0.43 75.34 ± 1.54
DPAM+Confidence Ranking+DGI 69.80 ± 2.77 72.80 ± 3.94 72.40 ± 1.13 67.60 ± 1.59 71.60 ± 9.12 64.00 ± 1.74
DPAM+Geometric Ranking+DGI 73.60 ± 4.82 74.00 ± 5.47 68.40 ± 1.62 57.20 ± 2.17 68.00 ± 1.17 62.00 ± 1.53
DPAM+Node-Reordering+DGI(UNREAL) 93.80 ± 1.92 91.20 ± 4.60 90.40 ± 1.69 90.00 ± 9.92 94.60 ± 4.92 78.20 ± 2.47

DPAM+Confidence Ranking 54.80 ± 4.96 53.00 ± 2.46 51.80 ± 1.97 43.60 ± 2.57 46.20 ± 0.53 41.60 ± 1.14
DPAM+Geometric Ranking 53.60 ± 2.78 45.40 ± 1.75 40.60 ± 0.26 52.60 ± 2.47 47.40 ± 4.27 44.80 ± 2.84
DPAM+Node-Reordering 90.69 ± 0.21 86.90 ± 0.56 86.45 ± 3.21 88.34 ± 2.43 75.34 ± 4.20 76.43 ± 1.43
DPAM+Confidence Ranking+DGI 66.20 ± 5.78 59.00 ± 3.04 63.80 ± 1.52 54.60 ± 1.64 60.60 ± 1.37 57.40 ± 2.26
DPAM+Geometric Ranking+DGI 61.60 ± 3.71 61.80 ± 5.21 54.00 ± 7.31 53.60 ± 1.38 63.00 ± 1.23 45.20 ± 1.96
DPAM+Node-Reordering+DGI(UNREAL) 97.80 ± 1.78 92.20 ± 1.32 90.80 ± 1.82 89.20 ± 1.39 94.20 ± 8.04 85.40 ± 1.02

Table 12: Analyzed experimental results of Node-Reordering and DGI on Amazon-Computers
with ρ = 1, 5, 10, 20, 50, 100. We select 100 unlabeled nodes newly added to the minority class of
training set through different method combinations, and evaluate the validity of Node-Reordering &
DGI by testing the accuracy (%) with the standard errors of the pseudo labels for these nodes. We
report averaged results over 5 repetitions on three representative GNN architectures.

SA
G

E
G

A
T

G
C

N

Dataset Amazon-Computers

Imbalance Ratio (ρ) ρ = 1 ρ = 5 ρ = 10 ρ = 20 ρ = 50 ρ = 100

DPAM+Confidence Ranking 75.40 ± 2.50 70.20 ± 3.03 74.88 ± 3.11 68.20 ± 4.20 63.60 ± 2.30 61.40 ± 1.51
DPAM+Geometric Ranking 76.00 ± 1.41 74.80 ± 4.71 76.80 ± 2.28 65.80 ± 3.27 64.80 ± 3.70 65.60 ± 3.98
DPAM+Node-Reordering 82.80 ± 2.38 79.60 ± 3.64 78.20 ± 0.26 74.00 ± 3.28 65.20 ± 1.87 66.00 ± 2.82
DPAM+Confidence Ranking+DGI 76.40 ± 2.07 67.20 ± 4.32 75.80 ± 2.38 66.20 ± 3.70 62.80 ± 0.12 59.20 ± 1.30
DPAM+Geometric Ranking+DGI 78.20 ± 0.83 80.00 ± 1.22 76.40 ± 1.67 66.00 ± 2.44 64.20 ± 3.83 66.20 ± 2.38
DPAM+Node-Reordering+DGI(UNREAL) 84.40 ± 3.60 82.20 ± 2.16 80.40 ± 3.46 80.60 ± 1.51 69.60 ± 3.04 66.40 ± 3.20

DPAM+Confidence Ranking 84.60 ± 2.40 79.20 ± 1.78 73.00 ± 2.12 74.80 ± 2.16 65.00 ± 1.73 68.60 ± 1.40
DPAM+Geometric Ranking 86.00 ± 3.80 79.80 ± 2.94 74.80 ± 3.42 75.00 ± 2.91 70.80 ± 2.16 69.40 ± 1.10
DPAM+Node-Reordering 87.40 ± 2.30 80.60 ± 3.04 80.40 ± 2.19 79.00 ± 3.67 75.00 ± 1.22 73.40 ± 2.52
DPAM+Confidence Ranking+DGI 84.20 ± 1.64 79.40 ± 2.07 76.40 ± 6.50 76.00 ± 2.34 66.00 ± 0.12 72.00 ± 1.84
DPAM+Geometric Ranking+DGI 83.80 ± 1.09 80.20 ± 1.09 76.20 ± 2.28 77.80 ± 2.58 71.60 ± 0.89 69.00 ± 1.16
DPAM+Node-Reordering+DGI(UNREAL) 89.00 ± 2.54 86.60 ± 2.50 85.60 ± 4.44 83.40 ± 3.31 78.00 ± 3.39 79.80 ± 3.03

DPAM+Confidence Ranking 85.20 ± 3.38 80.20 ± 6.26 84.8 ± 0.83 77.60 ± 0.89 61.00 ± 0.70 65.40 ± 2.65
DPAM+Geometric Ranking 86.00 ± 0.70 81.20 ± 2.16 83.40 ± 1.14 78.00 ± 1.22 61.40 ± 0.54 65.00 ± 1.72
DPAM+Node-Reordering 86.00 ± 1.58 83.20 ± 3.27 84.60 ± 0.54 79.20 ± 1.92 61.80 ± 0.44 67.80 ± 1.03
DPAM+Confidence Ranking+DGI 86.40 ± 2.07 81.60 ± 3.20 83.40 ± 1.14 79.20 ± 0.44 61.20 ± 0.44 70.40 ± 3.59
DPAM+Geometric Ranking+DGI 87.00 ± 2.12 80.80 ± 2.48 84.20 ± 1.30 78.20 ± 1.48 61.20 ± 0.47 68.20 ± 1.72
DPAM+Node-Reordering+DGI(UNREAL) 88.20 ± 2.16 87.60 ± 1.14 85.40 ± 4.72 78.00 ± 1.55 66.20 ± 2.86 72.20 ± 0.83

Table 13: Summary of the datasets used in our experiments.

Dataset Nodes Edges Features Classes

Cora 2,708 5,429 1,433 7
Citeseer 3,327 4,732 3,703 6
Pubmed 19,717 44,338 500 3
Amazon-Computers 13,752 491,722 767 10
Flickr 89,250 899,756 500 7
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For Flickr, we follow the dataset split from Zeng et al. (2019). The details of label distribution in
training set of the five imbalanced benchmark datasets are in Table 14, and the label distribution of
full graph is provided in Table 15.

F.2 DETAILS OF GNNS

We evaluate our method with three classic GNN architectures, namely GCN (Kipf & Welling, 2016),
GAT (Veličković et al., 2017), and GraphSAGE (Hamilton et al., 2017). GNN consists of L =
1, 2, 3 layers and each GNN layer is followed by a BatchNorm layer (momentum=0.99) and a PRelu
activation (He et al., 2015). For GAT, we adopt multi-head attention with 8 heads. We search for the
best model on the validation set. The choices of hidden unit size for each layer are 64, 128, 256.

F.3 EVALUATION PROTOCOL

We adopt Adam (Kingma & Ba, 2014) optimizer with initial learning rate 0.01 or 0.005. We follow
(Song et al., 2022) to devise a scheduler, which cuts the learning rate by half if there is no decrease
on validation loss for 100 consecutive epochs. All learnable parameters in the model adopt weight
decay with rate 0.0005. For the first training iteration, we train the model for 200 epochs using the
original training set for Cora, CiteSeer, PubMed or Amazon-Computers. For Flickr, we train for
2000 epochs in the first iteration. We train models for 2000 epochs in the rest of the iteration with
the above optimizer and scheduler. The best models are selected based on validation accuracy. Early
stopping is used with patience set to 300.

F.4 IMPLEMENTATION DETAILS

In UNREAL, we employ the vanilla K-means algorithm as the unsupervised clustering method. The
number of clusters K is chosen from {100, 300, 500, 700, 900} for Cora, CiteSeer, PubMed and
Amaon-Computers. For Flickr, K is selected among {1000, 2000, 3000, 5000}. For Cora, CiteSeer,
PubMed, and Amazon-Computers, the number of training round T is tuned among {40, 60, 80, 100}.
For Flickr, T is tuned among {40, 50, 60, 70}. We also introduce a hyperparameter α, which is the
upper bound on the number of nodes being added per class per round. The tuning range of α is
{4, 6, 8, 10} for Cora, CiteSeer, Amazon-Computers and {64, 72, 80} for PubMed. For Flickr the
value of α is selected among {30, 40, 50, 60}. The weight parameters p in RBO is selected among
{0.5, 0.75, 0.98}, and the threshold in DGI is tuned among {0.25, 0.5, 0.75, 1.00}. For Flickr, we
only add minority nodes to the training set in all iterations, which means that we set α = 0 for
majority classes in Flickr.

F.5 BASELINES

For GraphSMOTE (Zhao et al., 2021), we use the branched algorithms whose edge predictions
are discrete-valued, which have achieved superior performance over other variants in most exper-
iments. For the ReNode method (Chen et al., 2021), we search hyperparameters among lower
bound of cosine annealing wmin ∈ {0.25, 0.5, 0.75} and upper bound of the cosine annealing
wmax ∈ {1.25, 1.5, 1.75} following Chen et al. (2021). PageRank teleport probability is fixed as
α = 0.15, which is the default setting in the released codes. For TAM (Song et al., 2022), we search
the best hyperparameters among the coefficient of ACM term α ∈ {1.25, 1.5, 1.75}, the coeffi-
cient of ADM term β ∈ {0.125, 0.25, 0.5}, and the minimum temperature of class-wise temperature
ϕ ∈ {0.8, 1.2} following Song et al. (2022). The sensitivity to imbalance ratio of class-wise tem-
perature δ is fixed as 0.4 for all main experiments. Following (Song et al., 2022), we adopt warmup
for 5 iterations since we utilize model prediction for unlabeled nodes.

F.6 CONFIGURATION

All the algorithms and models are implemented in Python and PyTorch Geometric. Experiments are
conducted on a server with an NVIDIA 3090 GPU (24 GB memory) and an Intel(R) Xeon(R) Silver
4210R CPU @ 2.40GHz.

24



Under review as a conference paper at ICLR 2023

Table 14: Label distributions in the training sets
Dataset C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

Cora (ρ=10) 20
(23.26%)

20
(23.26%)

20
(23.26%)

20
(23.26%)

2
(23.26%)

2
(23.26%)

2
(23.26%) - - -

Cora (ρ=20) 20
(24.10%)

20
(24.10%)

20
(24.10%)

20
(24.10%)

1
(1.19%)

1
(1.19%)

1
(1.19%) - - -

Cora (ρ=50) 50
(24.63%)

50
(24.63%)

50
(24.63%)

50
(24.63%)

1
(0.49%)

1
(0.49%)

1
(0.49%) - - -

Cora (ρ=100) 100
(24.81%)

100
(24.81%)

100
(24.81%)

100
(24.81%)

1
(0.25%)

1
(0.25%)

1
(0.25%) - - -

CiteSeer (ρ=10) 20
(30.30%)

20
(30.30%)

20
(30.30%)

2
(30.30%)

2
(3.03%)

2
(3.03%) - - - -

CiteSeer (ρ=20) 20
(31.75%)

20
(31.75%)

20
(31.75%)

1
(1.59%)

1
(1.59%)

1
(1.59%) - - - -

CiteSeer (ρ=50) 50
(32.68%)

50
(32.68%)

50
(32.68%)

1
(0.65%)

1
(0.65%)

1
(0.65%) - - - -

CiteSeer (ρ=100) 100
(33.00%)

100
(33.00%)

100
(33.00%)

1
(0.33%)

1
(0.33%)

1
(0.33%) - - - -

PubMed (ρ=10) 20
(47.62%)

20
(47.62%)

2
(4.76%) - - - - - - -

PubMed (ρ=20) 20
(48.78%)

20
(48.78%)

1
(2.44%) - - - - - - -

PubMed (ρ=50) 50
(49.50%)

50
(49.50%)

1
(0.99%) - - - - - - -

PubMed (ρ=100) 100
(49.75%)

100
(49.75%)

1
(0.50%) - - - - - - -

Amazon-Computers (ρ=10) 20
(18.18%)

20
(18.18%)

20
(18.18%)

20
(18.18%)

20
(18.18%)

2
(1.82%)

2
(1.82%)

2
(1.82%)

2
(1.82%)

2
(1.82%)

Amzon-Computers (ρ=20) 20
(19.05%)

20
(19.05%)

20
(19.05%)

20
(19.05%)

20
(19.05%)

1
(0.95%)

1
(0.95%)

1
(0.95%)

1
(0.95%)

1
(0.95%)

Amzon-Computers (ρ=50) 50
(19.61%)

50
(19.61%)

50
(19.61%)

50
(19.61%)

50
(19.61%)

1
(0.39%)

1
(0.39%)

1
(0.39%)

1
(0.39%)

1
(0.39%)

Amzon-Computers (ρ=100) 100
(19.80%)

100
(19.80%)

100
(19.80%)

100
(19.80%)

100
(19.80%)

1
(0.20%)

1
(0.20%)

1
(0.20%)

1
(0.20%)

1
(0.20%)

Flickr (ρ ≈ 10.80) 2628
(5.89%)

4321
(9.68%)

3164
(7.09%)

2431
(5.45%)

11525
(25.83%)

1742
(3.90%)

18814
(42.16%) - - -

Table 15: Label distributions on the whole graphs
Dataset C0 C1 C2 C3 C4 C5 C6 C7 C8 C9
Cora 351 217 418 818 426 298 180 - - -
CiteSeer 264 590 668 701 696 508 - - - -
PubMed 4103 7739 7835 - - - - - - -
Amazon-Computers 436 2142 1414 542 5158 308 487 818 2156 291
Flickr 5264 8506 6413 4903 22966 3479 37719 - - -
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G MAIN ALGORITHM

Algorithm 1 UNREAL

Input: Imbalanced dataset (G = (V, E ,L0), y), feature matrix X , adjacency matrix A, unlabeled
set U = V − L0, rounds T to select nodes, the size threshold α of nodes being added in each
class per round, weight hyperparameter p of RBO, threshold γ of DGI, learning rate η, the size
k′ of the clusters, GNN model fg, clustering algorithm fcluster, and the mean function M(·).

1: for i = 0 to round T do
2: Train fg based on the current training set Li := {C1, · · · , Ck}.
3: Obtain node embedding matrix of the labeled node set and unlabeled node set HL ∈

R|L|×d,HU ∈ R|U|×d, prediction ŷ and confidence r from classifier.
4: % Step 1: Dual Pseudo-tag Alignment Mechanism(DPAM)
5: fcluster(H

U ) =⇒ {K1, c1,K2, c2, · · · ,Kk′ , ck′}
6: ctrain

i =M({hLu | yu ∈ Ci})
7: Assign a label ỹm to each cluster Km: ỹm = argminj distance(c

train
j , cm).

8: Combine clusters with the same pseudo-label m as Ũm, and U =
⋃k

m=1 Ũm.
9: Put unlabeled nodes whose prediction in ŷ is m into the set Um, and U =

⋃k
m=1 Um.

10: % Step 2: Node-reordering
11: For each u ∈ Ũm ∩ Um: δu = distance (hLu , c

train
m ).

12: Obtain geometric rankings {S1,S2, · · · ,Sk} based on δ; and confidence rankings
{T1, T2, · · · , Tk} based on r.

13: For each m, NNew
m = max{rm, 1− rm} · Sm +min{rm, 1− rm} · Tm.

14: Select nodes based on the rank of their values in NNew
m .

15: % Step 3:Discarding geometrically imbalanced nodes (DGI)
16: Obtain the distance between the embedding of u and the second closest center to u as βu,

compute GI index of node u as βu−δu
δu

.
17: if βu−δu

δu
<γ then

18: Discard node u.
19: else
20: Select it to training set.
21: end if
22: Update the training set Li.
23: end for
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