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Abstract

Contextual dueling bandit is used to model the bandit problems, where a learner’s
goal is to find the best arm for a given context using observed noisy preference
feedback over the selected arms for the past contexts. However, existing algorithms
assume the reward function is linear, which can be complex and non-linear in
many real-life applications like online recommendations or ranking web search
results. To overcome this challenge, we use a neural network to estimate the reward
function using preference feedback for the previously selected arms. We propose
upper confidence bound- and Thompson sampling-based algorithms with sub-linear
regret guarantees that efficiently select arms in each round. We then extend our
theoretical results to contextual bandit problems with binary feedback, which is
in itself a non-trivial contribution. Experimental results on the problem instances
derived from synthetic datasets corroborate our theoretical results.

1 Introduction

Contextual dueling bandits (or preference-based bandits) [1, 2, 3] is a sequential decision-making
framework that is widely used to model the contextual bandit problems [4, 5, 6, 7, 8] in which a
learner’s goal is to find an optimal arm by sequentially selecting a pair of arms (also refers as a duel)
and then observing noisy preference feedback (i.e., one arm is preferred over another) for the selected
arms. Contextual dueling bandits has many real-life applications, e.g., online recommendation,
ranking web search, comparing two text responses generated from LLMs, and rating two restaurants/
movies, especially in the applications where it is easier to observe preference between two arms than
knowing the absolute reward for the selected arm. The preference feedback between two arms2 is
often assumed to follow the Bradley-Terry-Luce (BTL) model [2, 10, 11] in which the probability of
preferring an arm is proportional to the exponential of its reward.

Since the number of contexts (e.g., users of online platforms) and arms (e.g., movies/search results to
recommend) can be very large (or infinite), the reward of an arm is assumed to be parameterized by
an unknown function, e.g., a linear function [1, 2, 3]. However, the reward function may not always
be linear in practice. To overcome this challenge, this paper parameterizes the reward function via a
non-linear function, which needs to be estimated using the available preference feedback for selected
arms. To achieve this, we can estimate the non-linear function by using either a Gaussian processes
[12, 13, 14] or a neural network [7, 8]. However, due to the limited expressive power of the Gaussian
processes, it fails when optimizing highly complex functions. In contrast, neural networks (NNs)
possess strong expressive power and can model highly complex functions [15, 16].

In this paper, we first introduce the problem setting of neural dueling bandits, in which we use a
neural network to model the unknown reward function in contextual dueling bandits. As compared

∗Equal contribution and corresponding authors.
2For more than two arms, the preferences are assumed to follow the Plackett-Luce model [1, 9].
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to the existing work on neural contextual bandits [7, 8], we have to use cross-entropy loss due to
binary preference feedback. We then propose the first two neural dueling bandit algorithms based
on, respectively, upper confidence bound (UCB) [4, 5, 7, 17, 18, 19] and Thompson sampling (TS)
[8, 14, 20, 21] (in Section 3.1). Under mild assumptions, we derive an upper bound on the estimation
error of the difference between the reward values of any pair of arms (Theorem 1), which is valid
as long as the neural network is sufficiently wide. This result provides a theoretical assurance of
the quality of our trained neural network using the preference feedback. Based on the theoretical
guarantee on the estimation error, we derive upper bounds on the cumulative regret of both of our
algorithms (Theorem 2 and Theorem 3), which are sub-linear under some mild conditions. Our regret
upper bounds lead to a number of interesting and novel insights (more details in Section 3.2).

Interestingly, our theoretical results provide novel theoretical insights regarding the reinforcement
learning with human feedback (RLHF) algorithm (Section 4). Specifically, our Theorem 1 naturally
provides a theoretical guarantee on the quality of the learned reward model in terms of its accuracy in
estimating the reward differences between pairs of responses. As a special case, we extend our results
to neural contextual bandit problems with binary feedback in Section 5, which is itself of independent
interest. Finally, we empirically validate the different performance aspects of our proposed algorithms
in Section 6 using problem instances derived from synthetic datasets.

Related work. Learning from pairwise or K-wise comparisons has been thoroughly explored in
the literature. In the context of dueling bandits, the focus is on minimizing regret using preference
feedback [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34]. We refer the readers to [35] for a detailed
survey on dueling bandits. The closest work to ours is contextual dueling bandits [1, 2, 3, 36, 37], but
they only consider the linear reward function, which we extend to the non-linear reward functions.

2 Problem Setting

Contextual dueling bandits. We consider a contextual dueling bandit problem in which a learner
selects two arms (also refers as a duel) for a given context and observes preference feedback over
arms. The learner’s goal is to find the best arm for each context. Let C ⊂ Rdc be the context set and
A ⊂ Rda be finite arm set, where dc ≥ 1 and da ≥ 1. At the beginning of round t, the environment
generates a context ct ∈ C and the learner selects two arms (i.e., at,1, and at,2) from the finite arm set
A. After selecting two arms, the learner observes stochastic preference feedback yt for the selected
arms, where yt = 1 implies the arm at,1 is preferred over arm at,2 and yt = 0 otherwise. We assume
that the preference feedback depends on an unknown non-linear reward function f : C × A → R.
For brevity, we denote the set of all context-arm feature vectors in the round t by Xt ⊂ Rd and use
xa
t to represent the context-arm feature vector for context ct and an arm a.

Stochastic preference model. We assume the preference has a Bernoulli distribution that follows the
Bradley-Terry-Luce (BTL) model [10, 11], which is commonly used in the dueling bandits [1, 2, 3].
Under BTL preference model, the probability that the first selected arm (xt,1) is preferred over the
second selected arm (xt,2) for the given reward function f is given by

P {xt,1 ≻ xt,2} = P {yt = 1|xt,1, xt,2} =
exp (f(xt,1))

exp (f(xt,1)) + exp (f(xt,2))
= µ (f(xt,1)− f(xt,2)) .

where x1 ≻ x2 denotes that xt,1 is preferred over xt,2, µ(x) = 1/(1 + e−x)3 is the logistic function,
and f(xt,i) is the latent reward of the i-th selected arm for the given context ct. We need the following
standard assumptions on function µ (also known as a link function in the literature [2, 19]):
Assumption 1. • κµ

.
= infx,x′∈X µ̇(f(x)− f(x′)) > 0 for all pairs of context-arm.

• The link function µ : R → [0, 1] is continuously differentiable and Lipschitz with constant
Lµ. For logistic function, Lµ ≤ 1/4.

Performance measure. After selecting two arms, denoted by xt,1 and xt,2, in round t, the learner
incurs an instantaneous regret. There are two common notions of instantaneous regret in the dueling
bandits setting, i.e., average instantaneous regret: rat

.
= f(x⋆

t )− (f(xt,1) + f(xt,2)) /2, and weak
instantaneous regret: rwt

.
= f(x⋆

t )−max {f(xt,1), f(xt,2)}, where x⋆
t = argmaxx∈Xt f(x) denotes

the best arm for a given context that maximizes the value of the underlying reward function. After
3Our results can be extended to other preference models like the Thurstone-Mosteller model and Exponential

Noise as long as the stochastic transitivity holds [2].
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observing preference feedback for T pairs of arms, the cumulative regret (or regret, in short) of a
sequential policy is given by Rτ

T =
∑T

t=1 r
τ
t , where τ

.
= {a,w}. Any good policy should have

sub-linear regret, i.e., limT→∞ Rτ
T /T = 0. A policy with a sub-linear regret implies that the policy

will eventually find the best arm and recommend only the best arm in the duel for the given contexts.

3 Neural Dueling Bandits

Having a good reward function estimator is the key for any contextual bandit algorithm to achieve
good performance, i.e., smaller regret. As the underlying reward function is complex and non-linear,
we use fully connected neural networks [7, 8] to estimate the reward function only using the preference
feedback. Using this estimated reward function, we propose two algorithms based on the upper
confidence bound and Thomson sampling with sub-linear regret guarantees.

Reward function estimation using neural network. To estimate the unknown reward function f ,
we use a fully connected neural network (NN) with depth L ≥ 2, the width of hidden layer m, and
ReLU activations as done in [7] and [8]. Let h(x; θ) represent the output of a full-connected neural
network with parameters θ for context-arm feature vector x, which is defined as follows:

h(x; θ) = WLReLU (WL−1ReLU (· · ·ReLU (W 1x))) ,

where ReLU(x)
.
= max{x, 0}, W 1 ∈ Rm×d, W l ∈ Rm×m for 2 ≤ l < L, WL ∈ Rm×1. We

denote the parameters of NN by θ = (vec (W 1) ; · · · vec (WL)), where vec (A) converts a M ×N
matrix A into a MN -dimensional vector. We use m to denote the width of every layer of the NN, use
p to represent the total number of NN parameters, i.e., p = dm+m2(L− 1) +m, and use g(x; θ) to
denote the gradient of h(x; θ) with respect to θ.

The arms selected by the learner for context received in round s is denoted by xs,1, xs,2 ∈ Xs and the
observed stochastic preference feedback is denoted by ys = 1(xs,1 ≻ xs,2), which is equal to 1 if
the arm xs,1 is preferred over the arm xs,2 and 0 otherwise. At the beginning of round t, we use the
current history of observations {(xs,1, xs,2, ys)}t−1

s=1 to train the neural network (NN) using gradient
descent to minimize the following loss function:

Lt(θ) = − 1

m

t−1∑
s=1

[
logµ

(
(−1)1−ys [h(xs,1; θ)− h(xs,2; θ)]

) ]
+

1

2
λ ∥θ − θ0∥22 , (1)

Here θ0 represents the initial parameters of the NN, and we initialize θ0 following the standard
practice of neural bandits [7, 8] (refer to Algorithm 1 in [8] for details). Here, minimizing the first
term in the loss function (i.e., the term involving the summation from t− 1 terms) corresponds to the
maximum log likelihood estimate (MLE) of the parameters θ. Next, we develop algorithms that use
the trained NN with parameter θt to select the best arms (duel) for each context.

3.1 Neural dueling bandit algorithms

With the trained NN as an estimate for the unknown reward function, the learner has to decide
which two arms (or duel) must be selected for the subsequent contexts. We use UCB- and TS-based
algorithms that handle the exploration-exploitation trade-off efficiently.

UCB-based algorithm. Using upper confidence bound for dealing with the exploration-exploitation
trade-off is common in many sequential decision-making problems [2, 7, 17]. We propose a
UCB-based algorithm named NDB-UCB, which works as follows: At the beginning of the round t,
the algorithm trains the NN using available observations. After receiving the context, it selects the
first arm greedily (i.e., by maximizing the output of the trained NN with parameter θt) as follows:

xt,1 = argmax
x∈Xt

h(x; θt). (2)

Next, the second arm xt,2 is selected optimistically, i.e., by maximizing the UCB value:

xt,2 = argmax
x∈Xt

[h(x; θt) + νTσt−1(x, xt,1)] , (3)
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NDB-UCB Algorithm for Neural Dueling Bandit based on Upper Confidence Bound

1:Tuning parameters: δ ∈ (0, 1), λ > 0, and m > 0
2: for t = 1, . . . , T do
3: Train the NN using {(xs,1, xs,2, ys)}t−1

s=1 by minimizing the loss function defined in Eq. (1)
4: Receive a context and Xt denotes the corresponding context-arm feature vectors
5: Select xt,1 = argmaxx∈Xt h(x; θt) as given in Eq. (2))
6: Select xt,2 = argmaxx∈Xt [h(x; θt) + νTσt−1(x, xt,1)] (as given in Eq. (3))
7: Observe preference feedback yt = 1{xt,1≻xt,2}
8: end for

where νT
.
= (βT +B

√
λ/κµ +1)

√
κµ/λ in which βT

.
= 1

κµ

√
d̃+ 2 log(1/δ) and d̃ is the effective

dimension. We define the effective dimension in Section 3.2 (see Eq. (4)). We define

σ2
t−1(x1, x2)

.
=

λ

κµ

∥∥∥∥ 1√
m
(φ(x1)− φ(x2))

∥∥∥∥2
V −1
t−1

,

where Vt
.
=
∑t

s=1 φ
′(xs)φ

′(xs)
⊤ 1

m + λ
κµ

I. Here, φ′(xs)
.
= φ(xs,1) − φ(xs,2) = g(xs,1; θ0) −

g(xs,2; θ0) and g(x; θ0)/
√
m is used as the random features approximation for context-arm feature

vector x. Intuitively, after the first arm xt,1 is selected, a larger σ2
t−1(x, xt,1) indicates that x is very

different from xt,1 given the information of the previously selected pairs of arms. Hence, the second
term in Eq. (3) encourages the second selected arm to be different from the first arm.

TS-based algorithm. Thompson sampling [3, 21] selects an arm according to its probability of
being the best. Many works [3, 14, 21, 38] have shown that TS is empirically superior than to its
counterpart UCB-based bandit algorithms. Therefore, in addition, we also propose another algorithm
based on TS named NDB-TS, which works similarly to NDB-UCB except that the second arm
xt,2 is selected differently. To select the second arm xt,2, for every arm x ∈ Xt, it firstly samples
a reward rt(x) ∼ N

(
h(x; θt)− h(xt,1; θt), ν

2
Tσ

2
t−1(x, xt,1)

)
and then selects the second arm as

xt,2 = argmaxx∈Xt
rt(x).

3.2 Regret analysis

Let K denote the finite number of available arms in each round, H denote the NTK matrix for all
T ×K context-arm feature vectors in the T rounds, and h =

(
f(x1

1), . . . , f(x
K
T )
)
. The NTK matrix

H definition is adapted to our setting from Definition 4.1 of [7]. We now introduce the assumptions
needed for our regret analysis, all of which are standard assumptions in neural bandits [7, 8].
Assumption 2. Without loss of generality, we assume that

• the reward function is bounded: |f(x)| ≤ 1,∀x ∈ Xt, t ∈ [T ],
• there exists λ0 > 0 s.t. H ⪰ λ0I , and
• all context-arm feature vectors satisfy ∥x∥2 = 1 and [x]j = [x]j+d/2, ∀x ∈ Xt,∀t ∈ [T ].

The last assumption in Assumption 2 above, together with the way we initialize θ0 (i.e., following
standard practice in neural bandits [7, 8]), ensures that h(x; θ0) = 0,∀x ∈ Xt,∀t ∈ [T ].

Let H′ .
=
∑T

s=1

∑
(i,j)∈CK

2
zij(s)z

i
j(s)

⊤ 1
m , in which zij(s) = φ(xs,i) − φ(xs,j) and CK

2 denotes
all pairwise combinations of K arms. We now define the effective dimension as follows:

d̃ = log det
(κµ

λ
H′ + I

)
. (4)

Compared to the previous works on neural bandits, our definition of d̃ features extra dependencies on
κµ. Moreover, our H′ contains T ×K× (K−1) contexts, which is more than the T ×K contexts of
[7] and [8].4 Hence, our d̃ is expected to be generally larger than their standard effective dimension.

4 The effective dimension in [7] and [8] is defined using H: d̃′ = log det (H/λ+ I) / log(1 +

TK/λ). However, it is of the same order (up to log factors) as log det
(
H̃/λ+ I

)
, with H̃

.
=∑T

s=1

∑K
i=1 g(xs,i; θ0)g(xs,i; θ0)

⊤/m (see Lemma B.7 of [8]).
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Note that placing an assumption on d̃ above is analogous to the assumption on the eigenvalue of the
matrix Mt in the work on linear dueling bandits [2]. For example, in order for our final regret bound
to be sub-linear, we only need to assume that d̃ = Õ(

√
T ), which is analogous to the assumption

from [2]:
∑T

t=τ+1 λ
−1/2
min (Mt) ≤ c

√
T .

A key step in our proof is that minimizing the loss function Eq. (1) allows us to achieve the following:

1

m

t−1∑
s=1

(µ (h(xs,1; θt)− h(xs,2; θt))− ys) (g(xs,1; θt)− g(xs,2; θt)) + λ(θt − θ0) = 0. (5)

We use the above fact to prove our following result, which is equivalent to the confidence ellipsoid
results used in the existing bandit algorithms [19].

Theorem 1. Let δ ∈ (0, 1), ε′m,t
.
= C2m

−1/6
√
logmL3

(
t
λ

)4/3
for some absolute constant C2 > 0.

As long as m ≥ poly(T, L,K, 1/κµ, Lµ, 1/λ0, 1/λ, log(1/δ)), then with probability of at least 1− δ,

| [f(x)− f(x′)]− [h(x; θt)− h(x′; θt)] | ≤ νTσt−1(x, x
′) + 2ε′m,t,

for all x, x′ ∈ Xt, t ∈ [T ].

The detailed proof of Theorem 1 and all other missing proofs are given in the Appendix. Note that
as long as the width m of the NN is large enough (i.e., if the conditions on m in (10) are satisfied),
we have that ε′m,t = O(1/T ). Theorem 1 ensures that when using our trained NN h to estimate the
latent reward function f , the estimation error of the reward difference between any pair of arms is
upper-bounded. Of note, it is reasonable that our confidence ellipsoid in Theorem 1 is in terms of the
difference between reward values, because the only observations we receive are pairwise comparisons.
Now, we state the regret upper bounds of our proposed algorithms.

Theorem 2 (NDB-UCB). Let λ > κµ, B be a constant such that
√
2h⊤H−1h ≤ B, and c0 > 0

be an absolute constant such that 1
m ∥φ(x)− φ(x′)∥22 ≤ c0,∀x, x′ ∈ Xt, t ∈ [T ]. For m ≥

poly(T, L,K, 1/κµ, Lµ, 1/λ0, 1/λ, log(1/δ)), then with probability of at least 1− δ, we have

RT ≤ 3√
2

(
βT +B

√
λ

κµ
+ 1

)√
c0T d̃+ 1 = Õ

((√
d̃

κµ
+B

√
λ

κµ

)√
T d̃

)
.

The detailed requirements on the width m of the NN are given by Eq. (10) in Appendix A.

Theorem 3 (NDB-TS). Under the same conditions as those in Theorem 2, then with probability of at
least 1− δ, we have

RT = Õ

((√
d̃

κµ
+B

√
λ

κµ

)√
T d̃

)
.

Note that in terms of asymptotic dependencies (ignoring the log factors), our UCB- and TS- algorithms
have the same growth rates.

As we have discussed above, if we place an assumption on the effective dimension d̃ = Õ(
√
T )

(which is analogous to the assumption on the minimum eigenvalue from [2]), then the regret upper
bounds for both NDB-UCB and NDB-TS are sub-linear. The dependence of our regret bounds on
1
κµ

and Lµ (i.e., the parameters of the link function defined in Assumption 1) are consistent with the
previous works on generalized linear bandits [19] and linear dueling bandits [2].

As we have discussed above, compared with the regret upper bounds of NeuralUCB [7] and NeuralTS
[8], the effective dimension d̃ in Theorem 2 and Theorem 3 are expected to be larger than the effective
dimension d̃′ from [7, 8] because our d̃ results from the summation of a significantly larger number
of contexts. Therefore, our regret upper bounds (Theorem 2 and Theorem 3) are expected to be worse
than that of [7, 8]: Õ(d̃′

√
T ). This downside can be attributed to the difficulty of our neural dueling

bandits setting, in which we can only access preference feedback.
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4 Theoretical Insights for Reinforcement Learning with Human Feedback

Our algorithms and theoretical results can also provide insights on the celebrated reinforcement
learning with human feedback (RLHF) algorithm [39], which has been the most widely used method
for the alignment of large language models (LLMs). In RLHF, we are given a dataset of user
preferences, in which every data point consists of a prompt and a pair of responses generated by the
LLM, as well as a binary observation indicating which response is preferred by the user. Following
our notations in Section 2, the action xt,1 (resp. xt,2) corresponds to the concatenation of the prompt
and the first response (resp. second response). Of note, RLHF is also based on the assumption that
the user preference over a pair of responses is governed by the BTL model (Section 2). That is, the
binary observation yt is sampled from a Bernoulli distribution, in which the probability that the first
response is preferred over the second response is given by P {xt,1 ≻ xt,2} = µ (f(xt,1)− f(xt,2)).
Here f is often referred to as the reward function, which is equivalent to the latent utility function f
in our setting (Section 2).

Typically, RLHF consists of two steps: (a) learning a reward model using the dataset of user
preferences and (b) fine-tuning the LLM to maximize the learned reward model using reinforcement
learning. In step (a), same as our algorithms, RLHF also uses an NN h (which takes as input the
embedding from a pre-trained LLM) to learn the reward model by minimizing the loss function (1).
The accuracy of the learned reward model is crucial for the success of RLHF [39]. Importantly,
our Theorem 1 provides a theoretical guarantee on the quality of the learned reward model h, i.e.,
an upper bound on the estimation error of the estimated reward differences between any pair of
responses. Therefore, our Theorem 1 provides a theoretically principled measure of the accuracy
of the learned reward model in RLHF, which can potentially be used to evaluate the quality of the
learned reward model.

In addition, some recent works have proposed the paradigm of online/iterative RLHF [40, 41, 42, 43,
44] to further improve the alignment of LLMs. In online RLHF, the RLHF procedure is repeated
multiple times. Specifically, after an LLM is fine-tuned to maximize the learned reward model, it
is then used to generate pairs of responses to be used to query the user for preference feedback;
then, the newly collected preference data is added to the preference dataset to be used to train a new
reward model, which is again used to fine-tune the LLM. In this case, as the alignment of the LLM is
improved after every round, the newly generated responses by the improved LLM are expected to
achieve progressively higher reward values, which have been shown to lead to better alignment of
LLMs [40, 41, 42, 43, 44]. In every round, we can let the LLM generate a large number of responses
(i.e., the actions in our setting, see Section 2), from which we can use our algorithms to select two
responses xt,1 and xt,2 to be shown to the user for preference feedback. In addition, our algorithm
can also potentially be used to select the prompts shown to the user, which correspond to the contexts
in our problem setting (Section 2). Our theoretical results guarantee that our algorithms can help
select responses with high reward values (Theorem 2 and Theorem 3). Therefore, our algorithms can
be used to improve the efficiency of online RLHF.

5 Neural Contextual Bandits with Binary Feedback

We now extend our results to the neural contextual bandit problem in which a learner only observes
binary feedback for the selected arms (note that the learner only selects one arm in every iteration).
Observing binary feedback is very common in many real-life applications, e.g., click or not in online
recommendation and treatment working or not in clinical trials [19, 45, 46].

Contextual bandits with binary feedback. We consider a contextual bandit problem with binary
feedback. In this setting, we assume that the action set is denoted by A. Let Xt ⊂ Rd denote
the set of all context-arm feature vectors in the round t and xt,a represent the context-arm feature
vector for context ct and an arm a ∈ A. At the beginning of round t, the environment generates
context-arm feature vectors {xt,a}a∈A and the learner selects an arm at, whose corresponding
context-arm feature vector is given by xt,a. After selecting the arm, the learner observes a stochastic
binary feedback yt ∈ {0, 1} for the selected arm. We assume the binary feedback follows a
Bernoulli distribution, where the probability of yt = 1 for context-arm feature vector xt,a is given by
P {yt = 1|xt,a} = µ (f(xt,a)) , where µ : R → [0, 1] is a continuously differentiable and Lipschitz
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with constant Lµ, e.g., logistic function, i.e., µ(x) = 1/(1+e−x). The link function must also satisfy
κµ

.
= infx∈X µ̇(f(x)) > 0 for all arms.

Performance measure. The learner’s goal is to select the best arm for each context, denoted
by x⋆

t = argmaxx∈Xt
f(x). Since the reward function f is unknown, the learner uses available

observations {xs,a, ys}t−1
s=1 to estimate the function f and then use the estimated function to select

the arm at for context xt. After selecting the arm at, the learner incurs an instantaneous regret,
rt = µ (f(x⋆

t ))− µ (f(xt,a)). For T contexts, the (cumulative) regret of a policy that selects action
at for a context observed in round t is given by RT =

∑T
t=1 rt =

∑T
t=1 [µ (f(x⋆

t ))− µ (f(xt,a))] .
Any good policy should have sub-linear regret, i.e., limT→∞ RT /T = 0. Having sub-linear regret
implies that the policy will eventually select the best arm for the given contexts.

5.1 Reward function estimation using neural network and our algorithms

To estimate the unknown reward function f , we use a fully connected neural network (NN) with
parameters θ as used in the Section 3. The context-arm feature vector selected by the learner in round
s is denoted by xs,a ∈ Xs, and the observed stochastic binary feedback is denoted by ys. At the
beginning of round t, we use the current history of observations {(xs,a, ys)}t−1

s=1 and use it to train
the neural network (NN) by minimizing the following loss function (using gradient descent):

Lt(θ) = − 1

m

t−1∑
s=1

[
ys logµ (h(xs,a; θ)) + (1− ys) log (1− µ (h(xs,a; θ)))

]
+

λ ∥θ − θ0∥22
2

, (6)

where θ0 represents the initial parameters of the NN. With the trained NN, we use UCB- and TS-based
algorithms that handle the exploration-exploitation trade-off efficiently.

UCB-based algorithm. We propose a UCB-based algorithm named NCBF-UCB, which works
as follows: At the beginning of the round t, it trains the NN using available observations. After
receiving a context, the algorithm selects the arm optimistically as follows:

xt,a = argmax
x∈Xt

[h(x; θt) + νTσt−1(x)] , (7)

where σ2
t−1(x)

.
= λ

κµ

∥∥∥ g(x;θ0)√
m

∥∥∥2
V −1
t−1

, in which Vt
.
=
∑t

s=1 g(x; θ0)g(x; θ0)
⊤ 1

m + λ
κµ

I, νT
.
= (βT +

B
√
λ/κµ + 1)

√
κµ/λ in which βT

.
= 1

κµ

√
d̃b + 2 log(1/δ) and d̃b is the effective dimension. We

define the effective dimension later in this section (see Eq. (8)), which is different from Eq. (4).

NCBF-UCB Algorithm for Neural Contextual Bandits with Binary Feedback based on UCB

1:Tuning parameters: δ ∈ (0, 1) and λ > 0
2: for t = 1, . . . , T do
3: Train the NN using {(xs,a, ys)}t−1

s=1 by minimizing the loss function defined in Eq. (6)
4: Receive a context and Xt denotes the corresponding context-arm feature vectors
5: Select xt,a = argmaxx∈Xt

[h(x; θt) + νTσt−1(x)] (as given in Eq. (7))
6: Observe preference feedback binary yt
7: end for

TS-based algorithm. We also propose TS-based algorithm named NCBF-TS, which is
similar to NCBF-UCB except to select the arm xt,a, it firstly samples a reward rt(x) ∼
N
(
h(x; θt), ν

2
Tσ

2
t−1(x)

)
for every arm x ∈ Xt and then selects the arm xt,a = argmaxx∈Xt

rt(x).

Regret analysis. Let K denote the finite number of available arms. Our analysis here makes use
of the same assumptions as the analysis in Section 3 (i.e., Assumption 1 and Assumption 2). Let
Hb

.
=
∑T

s=1

∑K
i=1 g(xs,i; θ0)g(xs,i; θ0)

⊤ 1
m . We now define the effective dimension as follows:

d̃b = log det
(κµ

λ
Hb + I

)
. (8)
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Compared to H′ defined in Section 3.2, Hb contains only T ×K contexts, which is less than the
T ×K × (K − 1) contexts in H′. Therefore, our d̃b is expected to be generally smaller than in the
neural dueling bandit feedback, as binary reward is more informative than preference feedback. A
key step in our proof is that minimizing the loss function Eq. (1) allows us to achieve the following:

1

m

t−1∑
s=1

[µ (h(xs,a; θt))− ys] g(xs,a; θt) + λ(θt − θ0) = 0. (9)

We use the above fact to prove the following confidence ellipsoid result as done in linear reward
function [19, 45, 46].

Theorem 4. Let δ ∈ (0, 1), ε′m,t
.
= C2m

−1/6
√
logmL3

(
t
λ

)4/3
for some absolute constant C2 > 0.

As long as m ≥ poly(T, L,K, 1/κµ, Lµ, 1/λ0, 1/λ, log(1/δ)), then with probability of at least 1− δ,
we have

|f(x)− h(x; θt)| ≤ νTσt−1(x) + ε′m,t,

for all x ∈ Xt, t ∈ [T ].

Similar to Theorem 1, as long as the NN is wide enough (i.e., if the conditions on m in Eq. (10) are
satisfied. More details are in Appendix A), we have that ε′m,t = O(1/T ). Also note that in contrast
to Theorem 1 whose confidence ellipsoid is in terms of reward differences, our confidence ellipsoid
in Theorem 4 is in terms of the value of the reward function. This is because in contrast to neural
dueling bandits (Section 3), here we get to collect an observation for every selected arm.

In the following results, we state the regret upper bounds of our proposed algorithms for neural
contextual bandits with binary feedback.

Theorem 5 (NCBF-UCB). Let λ > κµ, B be a constant such that
√
2h⊤H−1h ≤ B, and

c0 > 0 be an absolute constant such that 1
m ∥g(xs,i; θ0)∥22 ≤ c0,∀x ∈ Xt, t ∈ [T ]. For m ≥

poly(T, L,K, 1/κµ, Lµ, 1/λ0, 1/λ, log(1/δ)), then with probability of at least 1− δ, we have

RT ≤ 2
√
2

(
βT +B

√
λ

κµ
+ 1

)√
c0T d̃b + 1 = Õ


√
d̃b

κµ
+B

√
λ

κµ

√T d̃b


Theorem 6 (NCBF-TS). Under the conditions as those in Theorem 5 holds, then with probability of
at least 1− δ, we have

RT = Õ


√
d̃b

κµ
+B

√
λ

κµ

√T d̃b

 .

Note that in terms of asymptotic dependencies (ignoring the log factors), our UCB- and TS- algorithms
have similar growth rates. All missing proofs and additional details are in Appendix C.

Comparison with Neural Bandits. The regret upper bounds of our NCBF-UCB and NCBF-TS
algorithms are worse than the regret of NeuralUCB [7] and NeuralTS [8]: Õ(d̃b

√
T ) (with κµ = 1)

because of our extra dependency on κµ and Lµ.5 Specifically, note that κµ < 1, therefore, the regret
bounds in Theorem 5 and Theorem 6 are increased as a result of the dependency on κµ. In addition,
the dependency on Lµ also places an extra requirement on the width m of the NN. Therefore, our
regret bounds are worse than that of standard neural bandit algorithms that do not depend on κµ and
Lµ. This can be attributed to the additional difficulty of our problem setting, i.e., we only have access
to binary feedback, whereas standard neural bandits [7, 8] can use continuous observations.

Also note that our regret upper bounds here (Theorem 5 and Theorem 6) are expected to be smaller
than those of neural dueling bandits (Theorem 2 and Theorem 3), because d̃b here is likely to be
smaller than d̃ from Theorem 2 and Theorem 3. This may be attributed to the extra difficulty in the
feedback in neural dueling bandits, i.e., only pairwise comparisons are available.

5Note that our effective dimension d̃b is defined using Hb Eq. (8), while the effective dimension d̃′ in [7]
and [8] are defined using H. However, as we have discussed in Footnote 4, d̃′ has the same order of growth as
log det (Hb/λ+ I). So, our regret upper bounds are comparable with those from [7] and [8].
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6 Experiments

To corroborate our theoretical results, we empirically demonstrate the performance of our algorithms
on different synthetic reward functions. We adopt the following two synthetic functions from earlier
work on neural bandits [7, 8, 15]: f(x) = 10(x⊤θ)2 (Square) and f(x) = cos(3x⊤θ) (Cosine). We
repeat all our experiments 20 times and show the average and weak cumulative regret with a 95%
confidence interval (represented by the vertical line on each curve) Due to space constraints, more
details of the following experiments and additional results are given in the Appendix.

Regret comparison with baselines. We compare regret (average/weak of our proposed algorithms
with three baselines: LinDB-UCB (adapted from [1]), LinDB-TS, and CoLSTIM [2]. LinDB-UCB
and LinDB-TS can be treated as variants of NDB-UCB and NDB-TS, respectively, in which a linear
function approximates the reward function. As expected, NDB-UCB and NDB-TS outperform all
linear baselines as these algorithms cannot estimate the non-linear reward function and hence incur
linear regret. For a fair comparison, we used the best hyperparameters of LinDB-UCB and LinDB-TS
(see Fig. 3) for NDB-UCB and NDB-TS. We observe the same trend for different non-linear reward
functions (see Fig. 5 and Fig. 6) and also for NCBF-UCB and NCBF-TS (see Fig. 7).

(a) Square (Average) (b) Square (Weak) (c) Cosine (Average) (d) Cosine (Weak)

Figure 1: Comparisons of cumulative regret (average and weak) of different dueling bandits algorithms
for non-linear reward functions: Square (10(x⊤θ)2) and Cosine (cos(3x⊤θ)).

Varying dimension and arms vs. regret Increasing the number of arms (K) and the dimension
of the context-arm feature vectors (d) makes the problem more difficult. To see how increasing
K and d affects the regret of our proposed algorithms, we vary the K = {5, 10, 15, 20, 25} and
d = {5, 10, 15, 20, 25} while keeping the other problem parameters constant. As expected, the regret
of NDB-UCB increases with increase in K and d as shown in Fig. 2. We also observe the same
behavior for NDB-TS as shown Fig. 4. All missing figures from this section are in the Appendix D.

(a) Varying K (Average) (b) Varying K (Weak) (c) Varying d (Average) (d) Varying d (Weak)

Figure 2: Cumulative regret (average and weak) of NDB-UCB vs. different number of arms (K) and
dimension of the context-arm feature vector (d) for Square reward function (i.e., 10(x⊤θ)2).

7 Conclusion

Due to their prevalence in many real-life applications, from online recommendations to ranking
web search results, we consider contextual dueling bandit problems that can have a complex and
non-linear reward function. We used a neural network to estimate this reward function using
preference feedback observed for the previously selected arms. We proposed upper confidence bound-
and Thompson sampling-based algorithms with sub-linear regret guarantees for contextual dueling
bandits. Experimental results using synthetic functions corroborate our theoretical results. Our
algorithms and theoretical results can also provide insights into the celebrated reinforcement learning
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with human feedback (RLHF) algorithm, such as a theoretical guarantee on the quality of the learned
reward model. We also extend our results to contextual bandit problems with binary feedback, which
is in itself a non-trivial contribution. A limitation of our work is that we currently do not account
for problems where multiple arms are selected simultaneously (multi-way preference), which is an
interesting future direction. Another future topic is to apply our algorithms to important real-world
problems involving preference or binary feedback, e.g., LLM alignment using human feedback.
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A Theoretical Analysis for NDB-UCB

Here, we first list the specific conditions we need for the width m of the NN:

m ≥ CT 4K4L6 log(T 2K2L/δ)/λ4
0,

m(logm)−3 ≥ Cκ−3
µ T 8L21λ−5,

m(logm)−3 ≥ Cκ−3
µ T 14L21λ−11L6

µ,

m(logm)−3 ≥ CT 14L18λ−8,

(10)

for some absolute constant C > 0. To ease exposition, we express these conditions above as
m ≥ poly(T, L,K, 1/κµ, Lµ, 1/λ0, 1/λ, log(1/δ)).

To simplify exposition, we use an error probability of δ for all probabilistic statements. Our final
results hold naturally by taking a union bound over all required δ’s. The lemma below shows that the
ground-truth utility function f can be expressed as a linear function.
Lemma 1 (Lemma B.3 of [8]). As long as the width m of the NN is wide enough:

m ≥ C0T
4K4L6 log(T 2K2L/δ)/λ4

0,

then with probability of at least 1− δ, there exits a θf such that

f(x) = ⟨g(x; θ0), θf − θ0⟩,
√
m ∥θf − θ0∥2 ≤

√
2h⊤H−1h ≤ B.

for all x ∈ Xt,∀t ∈ [T ].

Let ys = 1(xs,1 ≻ xs,2), then we can write P (ys = 1) = µ (h(xs,1; θ)− h(xs,2; θ)) and
P (ys = 0) = 1− µ (h(xs,1; θ)− h(xs,2; θ)) = µ (h(xs,2; θ)− h(xs,1; θ)).

A.1 Theoretical Guarantee about the Neural Network

The following lemma gives an upper bound on the distance between θt and θ0:

Lemma 2. We have that ∥θt − θ0∥2 ≤ 2
√

t
mλ ,∀t ∈ [T ].

Proof. As µ(·) ∈ [0, 1], then using Eq. (1) gives us

1

2
λ ∥θt − θ0∥22 ≤ Lt(θt) ≤ Lt(θ0)

= − 1

m

t−1∑
s=1

[
1xt,1≻xt,2 logµ (h(xs,1; θ0)− h(xs,2; θ0))+

(1− 1xt,1≻xt,2
) logµ (h(xs,2; θ0)− h(xs,1; θ0))

]
+

1

2
λ ∥θ0 − θ0∥22

(a)
= − 1

m

t−1∑
s=1

[
1xt,1≻xt,2

logµ (0) + (1− 1xt,1≻xt,2
) logµ (0)

]
= − 1

m

t−1∑
s=1

log 0.5

≤ 1

m
t(− log 0.5)

(b)

≤ t

m
.

Step (a) follow because h(x; θ0) = 0,∀x ∈ X , t ∈ [T ] which is ensured by Assumption 2, step (b)

follows because − log 0.5 < 1. Therefore, we have that ∥θt − θ0∥2 ≤
√

2 t
mλ ≤ 2

√
t

mλ .

Now, Lemma 2 allows us to obtain the following lemmas regarding the gradients of the NN.
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Lemma 3. Let τ = 2
√

t
mλ . Then for absolute constants C3, C1 > 0, with probability of at least

1− δ,

∥g(x; θt)∥2 ≤ C3

√
mL,

∥g(x; θ0)− g(x; θt)∥2 ≤ C1

√
m logmτ1/3L7/2 = C1m

1/3
√

logm

(
t

λ

)1/3

L7/2,

for all x ∈ Xt, t ∈ [T ].

Proof. It can be easily verified that our τ = 2
√

t
mλ satisfies the requirement on τ specified in

Lemmas B.5 and B.6 from [8]. Therefore, the results from Lemmas B.5 and B.6 from [8] are
applicable for θt because our Lemma 2 guarantees that ∥θt − θ0∥2 ≤ τ .

In addition, Lemmas B.4 from [7] allows us to obtain the following lemma, which shows that the
output of the NN can be approximated by its linearization.

Lemma 4. Let τ ≜ 2
√

t
mλ . Let ε′m,t ≜ C2m

−1/6
√
logmL3

(
t
λ

)4/3
. Then for some absolute

constant C2 > 0, with probability of at least 1− δ,

|h(x; θt)− ⟨θt − θ0, g(x; θ0)⟩| ≤ C2τ
4/3L3

√
m logm = C2m

−1/6
√

logmL3

(
t

λ

)4/3

= ε′m,t,

for all x ∈ Xt, t ∈ [T ].

An immediate consequence of Lemma 4 is the following lemma.

Lemma 5. For all t ∈ [T ], we have for all x, x′ ∈ Xt that

|⟨φ(x)− φ(x′), θt − θ0⟩ − (h(x; θt)− h(x′; θt))| ≤ 2ε′m,t.

Proof. By re-arranging the left-hand side and then using Lemma 4, we get

|⟨φ(x)− φ(x′), θt − θ0⟩ − (h(x; θt)− h(x′; θt))|
= |⟨φ(x), θt − θ0⟩ − h(x; θt) + h(x′; θt)− ⟨φ(x′), θt − θ0⟩|
≤ |⟨φ(x), θt − θ0⟩ − h(x; θt)|+ |h(x′; θt)− ⟨φ(x′), θt − θ0⟩|

≤ 2C2m
−1/6

√
logmL3

(
t

λ

)4/3

= 2ε′m,t.

A.2 Proof of Confidence Ellipsoid

In our next proofs, we denote φ′
s ≜ g(xs,1; θ0) − g(xs,2; θ0), φ̃′

s ≜ g(xs,1; θt) − g(xs,2; θt), and
h̃s,t ≜ h(xs,1; θt)− h(xs,2; θt). Recall that p is the total number of parameters of the NN. We next
prove the confidence ellipsoid for our algorithm, including Lemma 6 and Theorem 1 below.

Lemma 6. Let βT ≜ 1
κµ

√
d̃+ 2 log(1/δ). Assuming that the conditions on m from Eq. (10) are

satisfied. With probability of at least 1− δ, we have that

√
m ∥θf − θt∥Vt−1

≤ βT +B

√
λ

κµ
+ 1, ∀t ∈ [T ].
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A.2.1 Proof of Lemma 6

For any θf ′ ∈ Rp, define

Gt(θf ′) ≜
1

m

t−1∑
s=1

[
µ (⟨θf ′ − θ0, φ

′
s⟩)− µ (⟨θf − θ0, φ

′
s⟩)
]
φ′
s + λ(θf ′ − θ0). (11)

We start by decomposing ∥θf − θt∥Vt−1
in terms of Gt in the following lemma.

Lemma 7. Choose λ > 0 such that λ/κµ > 1. Define Vt−1 ≜
∑t−1

s=1 φ
′
sφ

′⊤
s

1
m + λ

κµ
I.

∥θf − θt∥Vt−1
≤ 1

κµ
∥Gt(θt)∥V −1

t−1
+

√
λ

κµ

B√
m
.

Proof. Let λ′ ∈ (0, 1). For any θf ′
1
, θf ′

2
∈ Rp, setting θf̄ = λ′θf ′

1
+(1−λ′)θf ′

2
and using mean-value

theorem, we get:

Gt(θf ′
1
)−Gt(θf ′

2
) =

[
t−1∑
s=1

1

m
µ̇(⟨θf̄ − θ0, φ

′
s⟩)φ′

sφ
′⊤
s + λIp

]
(θf ′

1
− θf ′

2
)

≥ κµ

[
t−1∑
s=1

φ′
sφ

′⊤
s

1

m
+

λ

κµ
Ip

]
(θf ′

1
− θf ′

2
)

= κµVt−1(θf ′
1
− θf ′

2
).

Note that Gt(θf ) = λ(θf − θ0). Let ft be the estimate of f at the beginning of the iteration t and
ft,s = ⟨θt − θ0, φ

′
s⟩. Now using the equation above,

∥Gt(θt)− λ(θf − θ0)∥2V −1
t−1

= ∥Gt(θf )−Gt(θt)∥2V −1
t−1

≥ (κµVt−1(θf − θt))
⊤V −1

t−1κµVt−1(θf − θt)

= κ2
µ(θf − θt)

⊤Vt−1V
−1
t−1Vt−1(θf − θt)

= κ2
µ ∥θf − θt∥2Vt−1

.

This allows us to show that

∥θf − θt∥Vt−1
≤ 1

κµ
∥Gt(θt)− λ(θf − θ0)∥V −1

t−1
≤ 1

κµ
∥Gt(θt)∥V −1

t−1
+

1

κµ
∥λ(θf − θ0)∥V −1

t−1
,

(12)

in which we have made use of the triangle inequality.

Note that we choose λ such that λ
κµ

> 1. This allows us to show that Vt−1 ⪰ λ
κµ

I and hence

V −1
t−1 ⪯ κµ

λ I . Recall that Lemma 1 tells us that ∥θf − θ0∥2 ≤ B√
m

, which tells us that

1

κµ
∥λ(θf − θ0)∥V −1

t−1
=

λ

κµ

√
(θf − θ0)⊤V

−1
t−1(θf − θ0)

≤ λ

κµ

√
(θf − θ0)⊤

κµ

λ
(θf − θ0)

≤

√
λ

κµ
∥θf − θ0∥2

≤

√
λ

κµ

B√
m
.

(13)

Plugging Eq. (13) into Eq. (12) completes the proof.
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Recall that we denote ys = µ(f(xs,1)−f(xs,2))+ εs, in which ys is a binary observation and εs can
be seen as the observation noise. Next, we derive an upper bound on the first term from Lemma 7:

1

κµ
∥Gt(θt)∥V −1

t−1
=

1

κµ

∥∥∥∥∥ 1

m

t−1∑
s=1

[
µ(⟨θt − θ0, φ

′
s⟩)− µ(⟨θf − θ0, φ

′
s⟩)
]
φ′
s + λ(θt − θ0)

∥∥∥∥∥
V −1
t−1

=
1

κµ

∥∥∥∥∥ 1

m

t−1∑
s=1

(µ(ft,s)− µ (f(xs,1)− f(xs,2)))φ
′
s + λ(θt − θ0)

∥∥∥∥∥
V −1
t−1

=
1

κµ

∥∥∥∥∥ 1

m

t−1∑
s=1

(µ(ft,s)− (ys − εs))φ
′
s + λ(θt − θ0)

∥∥∥∥∥
V −1
t−1

=
1

κµ

∥∥∥∥∥ 1

m

t−1∑
s=1

(µ(ft,s)− ys)φ
′
s +

1

m

t−1∑
s=1

εsφ
′
s + λ(θt − θ0)

∥∥∥∥∥
V −1
t−1

≤ 1

κµ

∥∥∥∥∥ 1

m

t−1∑
s=1

(µ(ft,s)− ys)φ
′
s + λ(θt − θ0)

∥∥∥∥∥
V −1
t−1

+
1

κµ

∥∥∥∥∥ 1

m

t−1∑
s=1

εsφ
′
s

∥∥∥∥∥
V −1
t−1

.

(14)

Next, we derive an upper bound on the first term in Eq. (14). To simplify exposition, we define

A1 ≜
1

m

t−1∑
s=1

(
µ(ft,s)− ys

)(
φ′
s − φ̃′

s

)
, A2 ≜

1

m

t−1∑
s=1

(
µ(ft,s)− µ(h̃s,t)

)
φ̃′
s. (15)

Now the first term in Eq. (14) can be decomposed as:∣∣∣∣∣∣ 1
m

t−1∑
s=1

(
µ(ft,s)− ys

)
φ′
s + λ(θt − θ0)

∣∣∣∣∣∣
V −1
t−1

=
∣∣∣∣∣∣ 1
m

t−1∑
s=1

(
µ(ft,s)− ys

)(
φ′
s + φ̃′

s − φ̃′
s

)
+ λ(θt − θ0)

∣∣∣∣∣∣
V −1
t−1

=
∣∣∣∣∣∣ 1
m

t−1∑
s=1

(
µ(ft,s)− ys

)
φ̃′
s + λ(θt − θ0) +A1

∣∣∣∣∣∣
V −1
t−1

=
∣∣∣∣∣∣ 1
m

t−1∑
s=1

(
µ(ft,s) + µ(h̃s,t)− µ(h̃s,t)− ys

)
φ̃′
s + λ(θt − θ0) +A1

∣∣∣∣∣∣
V −1
t−1

=
∣∣∣∣∣∣ 1
m

t−1∑
s=1

(
µ(h̃s,t)− ys

)
φ̃′
s + λ(θt − θ0) +A2 +A1

∣∣∣∣∣∣
V −1
t−1

(a)
=
∣∣∣∣∣∣A2 +A1

∣∣∣∣∣∣
V −1
t−1

≤ ∥A2∥V −1
t−1

+ ∥A1∥V −1
t−1

≤
√

κµ

λ
∥A2∥2 +

√
κµ

λ
∥A1∥2 .

(16)

Note that step (a) above follows because

1

m

t−1∑
s=1

(
µ(h̃s,t)− ys

)
φ̃′
s + λ(θt − θ0)

=
1

m

t−1∑
s=1

(
µ(h(xs,1; θt)− h(xs,2; θt))− ys

)
(g(xs,1; θt)− g(xs,2; θt)) + λ(θt − θ0)

= 0,
(17)
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which is ensured by the way in which we train our NN (see Eq. (5)). Next, we derive an upper bound
on the norm of A1. To begin with, we have that

∥φ′
s − φ̃′

s∥2 = ∥g(xs,1; θ0)− g(xs,2; θ0)− g(xs,1; θt) + g(xs,2; θt)∥2
≤ ∥g(xs,1; θ0)− g(xs,1; θt)∥2 + ∥g(xs,2; θ0)− g(xs,2; θt)∥2

≤ 2C1m
1/3
√
logm

(
Ct

λ

)1/3

L7/2,

in which the last inequality follows from Lemma 3. Now the norm of A1 can be bounded as:

∥A1∥2 =

∥∥∥∥∥ 1

m

t−1∑
s=1

(
µ(ft,s)− ys

)(
φ′
s − φ̃′

s

)∥∥∥∥∥
2

≤ 1

m

t−1∑
s=1

∥∥∥(µ(ft,s)− ys

)(
φ′
s − φ̃′

s

)∥∥∥
2

=
1

m

t−1∑
s=1

|µ(ft,s)− ys| ∥φ′
s − φ̃′

s∥2

≤ 1

m

t−1∑
s=1

∥φ′
s − φ̃′

s∥2

≤ 1

m

t−1∑
s=1

2C1m
1/3
√
logm

(
t

λ

)1/3

L7/2

= m−2/3
√
logmt4/32C1λ

−1/3L7/2.

(18)

Next, we proceed to bound the norm of A2. Let λ′ ∈ (0, 1), and let at,s = λ′ft,s + (1 − λ′)h̃s,t.
Following the mean-value theorem, we have for some λ′ that

µ(ft,s)− µ(h̃s,t) = (ft,s − h̃s,t)µ̇(at,s).

Note that µ̇(at,s) ≤ Lµ which follows from our Assumption 1. This allows us to show that

|µ(ft,s)− µ(h̃s,t)| = |(ft,s − h̃s,t)µ̇(at,s)|

= |ft,s − h̃s,t||µ̇(at,s)|

≤ Lµ|ft,s − h̃s,t|
= Lµ

∣∣⟨θt − θ0, g(xs,1; θ0)⟩ − ⟨θt − θ0, g(xs,2; θ0)⟩ − (h(xs,1; θt)− h(xs,2; θt))
∣∣

≤ Lµ

(∣∣⟨θt − θ0, g(xs,1; θ0)⟩ − h(xs,1; θt)
∣∣+ ∣∣h(xs,2; θt)− ⟨θt − θ0, g(xs,2; θ0)⟩

∣∣)
≤ Lµ × 2× C2m

−1/6
√

logmL3

(
t

λ

)4/3

= 2LµC2m
−1/6

√
logmL3

(
t

λ

)4/3

in which we have used Lemma 4 in the last inequality. Also, Lemma 3 allows us to show that
∥φ̃′

s∥2 = ∥g(xs,1; θt)− g(xs,2; θt)∥2 ≤ ∥g(xs,1; θt)∥2 + ∥g(xs,2; θt)∥2 ≤ 2C3

√
mL.
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Now we can derive an upper bound on the norm of A2:

∥A2∥2 =

∥∥∥∥∥ 1

m

t−1∑
s=1

(
µ(ft,s)− µ(h̃s,t)

)
φ̃′
s

∥∥∥∥∥
2

≤ 1

m

t−1∑
s=1

∥∥∥(µ(ft,s)− µ(h̃s,t)
)
φ̃′
s

∥∥∥
2

=
1

m

t−1∑
s=1

|µ(ft,s)− µ(h̃s,t)| ∥φ̃′
s∥2

≤ 1

m

t−1∑
s=1

2LµC2m
−1/6

√
logmL3

(
t

λ

)4/3

× 2C3

√
mL

≤ 4LµC2C3m
−2/3

√
logmt7/3L7/2λ−4/3.

(19)

Lastly, plugging Eq. (18) and Eq. (19) into Eq. (16), we can derive an upper bound on the first term
in Eq. (14):

1

κµ

∥∥∥∥∥ 1

m

t−1∑
s=1

(µ(ft,s)− ys)φ
′
s + λ(θt − θ0)

∥∥∥∥∥
V −1
t−1

≤ 1√
κµλ

m−2/3
√
logmt4/32C1λ

−1/3L7/2+

1√
κµλ

4LµC2C3m
−2/3

√
logmt7/3L7/2λ−4/3.

(20)

Next, plugging equation Eq. (20) into equation Eq. (14), and plugging the results into Lemma 7, we
have that

∥θf − θt∥Vt−1

≤ 1

κµ
√
m

∥∥∥∥∥
t−1∑
s=1

εsφ
′
s

1√
m

∥∥∥∥∥
V −1
t−1

+

√
λ

κµ

B√
m

+
1√
κµλ

m−2/3
√
logmt4/32C1λ

−1/3L7/2+

1√
κµλ

4LµC2C3m
−2/3

√
logmt7/3L7/2λ−4/3.

Here we define

εm,t ≜ B

√
λ

κµ
+

1√
κµλ

m−1/6
√
logmt4/32C1λ

−1/3L7/2+

1√
κµλ

4LµC2C3m
−1/6

√
logmt7/3L7/2λ−4/3.

(21)

It is easy to verify that as long as the conditions on m from Eq. (10) are satisfied (i.e., the width m of
the NN is large enough), we have that εm,t ≤ B

√
λ
κµ

+ 1.

This allows us to show that

√
m ∥θf − θt∥Vt−1

≤ 1

κµ

∥∥∥∥∥
t−1∑
s=1

εsφ
′
s

1√
m

∥∥∥∥∥
V −1
t−1

+ εm,t

≤ 1

κµ

∥∥∥∥∥
t−1∑
s=1

εsφ
′
s

1√
m

∥∥∥∥∥
V −1
t−1

+B

√
λ

κµ
+ 1.

(22)

Finally, in the next lemma, we derive an upper bound on the first term in Eq. (22).
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Lemma 8. Let βT ≜ 1
κµ

√
d̃+ 2 log(1/δ). With probability of at least 1− δ, we have that

1

κµ

∥∥∥∥∥
t−1∑
s=1

εsφ
′
s

1√
m

∥∥∥∥∥
V −1
t−1

≤ βT .

Proof. To begin with, we derive an upper bound on the log determinant of the matrix Vt ≜∑t
s=1 φ

′
sφ

′⊤
s

1
m + λ

κµ
I. Here we use CK

2 to denote all possible pairwise combinations of the indices

of K arms. Here we denote zij(s) ≜ φ(xs,i)− φ(xs,j). Also recall we have defined in the main text
that H′ ≜

∑T
s=1

∑
(i,j)∈CK

2
zij(s)z

i
j(s)

⊤ 1
m . Now the determinant of Vt can be upper-bounded as

det(Vt) = det

(
t∑

s=1

(φ(xs,1)− φ(xs,2)) (φ(xs,1)− φ(xs,2))
⊤ 1

m
+

λ

κµ
I

)

≤ det

(
T∑

s=1

(φ(xs,1)− φ(xs,2)) (φ(xs,1)− φ(xs,2))
⊤ 1

m
+

λ

κµ
I

)

≤ det

 T∑
s=1

∑
(i,j)∈CK

2

zij(s)z
i
j(s)

⊤ 1

m
+

λ

κµ
I


= det

(
H′ +

λ

κµ
I

)
.

(23)

Recall that in our algorithm, we have set V0 = λ
κµ

Ip. This leads to

log
detVt

detV0
≤ log

det
(
H′ + λ

κµ
I
)

detV0

= log
(λ/κµ)

p det
(κµ

λ H′ + I
)

(λ/κµ)p

= log det
(κµ

λ
H′ + I

)
.

(24)

We use εs to denote the observation noise in iteration s ∈ [T ]: ys = µ(f(xs,1) − f(xs,2)) + εs.
Let Ft−1 denote the sigma algebra generated by history {(xs,1, xs,2, εs)s∈[t−1] , xt,1, xt,2}. Here we
justify that the sequence of noise {εs}s=1,...,T is conditionally 1-sub-Gaussian conditioned on Ft−1.

Note that the observation yt is equal to 1 if xt,1 is preferred over xt,2 and 0 otherwise. Therefore, the
noise εt can be expressed as

εt =

{
1− µ(f(xt,1)− f(xt,2)), w.p. µ(f(xt,1)− f(xt,2))

−µ(f(xt,1)− f(xt,2)), w.p. 1− µ(f(xt,1)− f(xt,2)),

It can be easily seen that εs is Ft-measurable. Next, if can be easily verified that that conditioned on
Ft−1 (i.e., given xt,1 and xt,2), we have that E [εt|Ft−1] = 0. Also note that the absolute value of εt
is bounded: |εt| ≤ 1. Therefore, we can infer that εt is conditionally 1-sub-Gaussian, i.e.,

E [exp(λεt)|Ft] ≤ exp

(
λ2σ2

2

)
, ∀λ ∈ R.

with σ = 1.

Next, making use of the 1-sub-sub-Gaussianity of the sequence of noise {εs} and Theorem 1 from
[18], we can show that with probability of at least 1− δ,∥∥∥∥∥

t−1∑
s=1

εsφ
′
s

1√
m

∥∥∥∥∥
V −1
t−1

≤

√
log

(
detVt−1

detV0

)
+ 2 log(1/δ)
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≤
√

log det
(κµ

λ
H′ + I

)
+ 2 log(1/δ)

≤
√
d̃+ 2 log(1/δ),

in which we have made use of the definition of the effective dimension d̃ = log det
(κµ

λ H′ + I
)
.

This completes the proof.

Finally, we plug Lemma 8 into equation Eq. (22) to complete the proof of Lemma 6:

√
m ∥θf − θt∥Vt−1

≤ βT +B

√
λ

κµ
+ 1, ∀t ∈ [T ].

A.2.2 Proof of Theorem 1

Theorem 1. Let δ ∈ (0, 1), ε′m,t
.
= C2m

−1/6
√
logmL3

(
t
λ

)4/3
for some absolute constant C2 > 0.

As long as m ≥ poly(T, L,K, 1/κµ, Lµ, 1/λ0, 1/λ, log(1/δ)), then with probability of at least 1− δ,

| [f(x)− f(x′)]− [h(x; θt)− h(x′; θt)] | ≤ νTσt−1(x, x
′) + 2ε′m,t,

for all x, x′ ∈ Xt, t ∈ [T ].

Proof. Denote φ(x) = g(x; θ0). Recall that Lemma 1 tells us that f(x) = ⟨g(x; θ0), θf − θ0⟩ =
⟨φ(x), θf − θ0⟩ for all x ∈ Xt, t ∈ [T ]. To begin with, for all x, x′ ∈ Xt, t ∈ [T ] we have that

|f(x)− f(x′)− ⟨φ(x)− φ(x′), θt − θ0⟩|
= |⟨φ(x)− φ(x′), θf − θ0⟩ − ⟨φ(x)− φ(x′), θt − θ0⟩|
= |⟨φ(x)− φ(x′), θf − θt⟩⟩|

= |⟨ 1√
m
φ(x)− φ(x′),

√
m (θf − θt)⟩|

≤
∥∥∥∥ 1√

m
(φ(x)− φ(x′))

∥∥∥∥
V −1
t−1

√
m ∥θf − θt∥Vt−1

≤
∥∥∥∥ 1√

m
(φ(x)− φ(x′))

∥∥∥∥
V −1
t−1

(
βT +B

√
λ

κµ
+ 1

)
,

(25)

in which we have used Lemma 6 in the last inequality. Now making use of the equation above and
Lemma 5, we have that

|f(x)− f(x′)− (h(x; θt)− h(x′; θt))|
= |f(x)− f(x′)− ⟨φ(x)− φ(x′), θt − θ0⟩

+ ⟨φ(x)− φ(x′), θt − θ0⟩ − (h(x; θt)− h(x′; θt))|
≤ |(f(x)− f(x′))− ⟨φ(x)− φ(x′), θt − θ0⟩|

+ |⟨φ(x)− φ(x′), θt − θ0⟩ − (h(x; θt)− h(x′; θt))|

≤
∥∥∥∥ 1√

m
(φ(x)− φ(x′))

∥∥∥∥
V −1
t−1

(
βT +B

√
λ

κµ
+ 1

)
+ 2ε′m,t.

This completes the proof of Theorem 1.

A.3 Regret Analysis

Now we can analyze the instantaneous regret. To begin with, we have

2rt = f(x∗
t )− f(xt,1) + f(x∗

t )− f(xt,2)
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(a)

≤ ⟨φ(x∗
t )− φ(xt,1), θt − θ0⟩+

∥∥∥∥ 1√
m

(φ(x∗
t )− φ(xt,1))

∥∥∥∥
V −1
t−1

(
βT +B

√
λ/κµ + 1

)
+ ⟨φ(x∗

t )− φ(xt,2), θt − θ0⟩+
∥∥∥∥ 1√

m
(φ(x∗

t )− φ(xt,2))

∥∥∥∥
V −1
t−1

(
βT +B

√
λ/κµ + 1

)
= ⟨φ(x∗

t )− φ(xt,1), θt − θ0⟩+
∥∥∥∥ 1√

m
(φ(x∗

t )− φ(xt,1))

∥∥∥∥
V −1
t−1

(
βT +B

√
λ/κµ + 1

)
+ ⟨φ(x∗

t )− φ(xt,1), θt − θ0⟩+ ⟨φ(xt,1)− φ(xt,2), θt − θ0⟩

+

∥∥∥∥ 1√
m

(φ(x∗
t )− φ(xt,1) + φ(xt,1)− φ(xt,2))

∥∥∥∥
V −1
t−1

(
βT +B

√
λ/κµ + 1

)
≤ 2⟨φ(x∗

t )− φ(xt,1), θt − θ0⟩+ 2

∥∥∥∥ 1√
m

(φ(x∗
t )− φ(xt,1))

∥∥∥∥
V −1
t−1

(
βT +B

√
λ/κµ + 1

)
+ ⟨φ(xt,1)− φ(xt,2), θt − θ0⟩+

∥∥∥∥ 1√
m

(φ(xt,1)− φ(xt,2))

∥∥∥∥
V −1
t−1

(
βT +B

√
λ/κµ + 1

)
(b)

≤ 2h(x∗
t ; θt)− 2h(xt,1; θt) + 4ε′m,t + 2

∥∥∥∥ 1√
m

(φ(x∗
t )− φ(xt,1))

∥∥∥∥
V −1
t−1

(
βT +B

√
λ/κµ + 1

)
+ h(xt,1; θt)− h(xt,2; θt) + 2ε′m,t +

∥∥∥∥ 1√
m

(φ(xt,1)− φ(xt,2))

∥∥∥∥
V −1
t−1

(
βT +B

√
λ/κµ + 1

)
(c)

≤ 2h(xt,2; θt)− 2h(xt,1; θt) + 2

∥∥∥∥ 1√
m

(φ(xt,2)− φ(xt,1))

∥∥∥∥
V −1
t−1

(
βT +B

√
λ/κµ + 1

)
+ h(xt,1; θt)− h(xt,2; θt) + 6ε′m,t +

∥∥∥∥ 1√
m

(φ(xt,1)− φ(xt,2))

∥∥∥∥
V −1
t−1

(
βT +B

√
λ/κµ + 1

)
= h(xt,2; θt)− h(xt,1; θt) + 3

∥∥∥∥ 1√
m

(φ(xt,1)− φ(xt,2))

∥∥∥∥
V −1
t−1

(
βT +B

√
λ/κµ + 1

)
+ 6ε′m,t

(d)

≤ 3

(
βT +B

√
λ/κµ + 1

)∥∥∥∥ 1√
m

(φ(xt,1)− φ(xt,2))

∥∥∥∥
V −1
t−1

+ 6ε′m,t.

Step (a) follows from Eq. (25), step (b) results from Lemma 5,
step (c) follows from the way in which xt,2 is selected: xt,2 =

argmaxx∈Xt

(
h(x; θt) +

∥∥∥ 1√
m
(φ(x)− φ(xt,1))

∥∥∥
V −1
t−1

(
βT +B

√
λ
κµ

+ 1
))

, and step (d)

follows from the way in which xt,1 is selected: xt,1 = argmaxx∈Xt h(x; θt).

Now denote σ2
t−1(xt,1, xt,2)

.
= λ

κµ

∥∥∥ 1√
m
(φ(xt,1)− φ(xt,2))

∥∥∥2
V −1
t−1

. Of note, σ2
t−1(xt,1, xt,2)

can be interpreted as the Gaussian process posterior variance with the kernel defined as
k
(
(x1, x2), (x

′
1, x

′
2)
)
= ⟨ 1√

m
(φ(x1)− φ(x2)) , (

1√
m
(φ(x′

1) − φ(x′
2))⟩, and with a noise variance

of λ
κµ

. It is easy to see that the kernel is positive semi-definite and is hence a valid kernel. Following
the derivations of the Gaussian process posterior variance, it is easy to verify that

σ2
t−1(xt,1, xt,2) ≤ (φ(xt,1)− φ(xt,2))

⊤(φ(xt,1)− φ(xt,2))
1

m

=

∥∥∥∥(φ(xt,1)− φ(xt,2))
1√
m

∥∥∥∥2
2

=
1

m
∥φ(xt,1)− φ(xt,2)∥22 ≤ c0,

in which we have denoted c0 > 0 as an absolute constant such that 1
m ∥φ(x)− φ(x′)∥22 ≤

c0,∀x, x′ ∈ Xt, t ∈ [T ]. Note that this is similar to the standard assumption in the literature
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that the value of the NTK is upper-bounded by a constant [47]. Therefore, this implies that
σ2
t−1(xt,1, xt,2)/c0 ≤ 1 for some constant c0 ≥ 1. Recall that we choose λ such that λ/κµ ≥ 1.

Note that for any α ∈ [0, 1], we have that α/2 ≤ log(1 + α). With these, we have that

1

2

(
λ

κµ

)−1 σ2
t−1(xt,1, xt,2)

c0
≤ log

(
1 +

(
λ

κµ

)−1 σ2
t−1(xt,1, xt,2)

c0

)

≤ log

(
1 +

(
λ

κµ

)−1

σ2
t−1(xt,1, xt,2)

)
,

which leads to

σ2
t−1(xt,1, xt,2) ≤ 2c0

λ

κµ
log
(
1 +

κµ

λ
σ2
t−1(xt,1, xt,2)

)
. (26)

Following the analysis of [14] and using the chain rule of conditional information gain, we can show
that

t∑
s=1

log
(
1 +

κµ

λ
σ2
s−1(xs,1, xs,2)

)
= log det

(
I+

κµ

λ
Kt

)
,

in which Kt is a t× t matrix in which every element is Kt[i, j] =
1
m (φ(xi,1)−φ(xi,2))

⊤(φ(xj,1)−
φ(xj,2)). Define the p × t matrix Jt = [ 1√

m
(φ(xi,1)− φ(xi,2))]i=1,...,t. Then we have that

Kt = J⊤
t Jt. This allows us to show that

t∑
s=1

log
(
1 +

κµ

λ
σ2
s−1(xs,1, xs,2)

)
= log det

(
I+

κµ

λ
Kt

)
= log det

(
I+

κµ

λ
J⊤
t Jt

)
= log det

(
I+

κµ

λ
JtJ

⊤
t

)
= log det

(
I+

κµ

λ

t∑
s=1

(φ(xs,1)− φ(xs,2)) (φ(xs,1)− φ(xs,2))
⊤ 1

m

)
≤ log det

(κµ

λ
H′ + I

)
= d̃

(27)

in which we have followed the same line of analysis as Eq. (23) and Eq. (24) in the second last
inequality.

Combining the results from Eq. (26) and Eq. (27), we have that

T∑
t=1

σ2
t−1(xt,1, xt,2) ≤ 2c0

λ

κµ

T∑
t=1

log
(
1 +

κµ

λ
σ2
t−1(xt,1, xt,2)

)
≤ 2c0

λ

κµ
d̃.

Finally, we can derive an upper bound on the cumulative regret:

RT =

T∑
t=1

rt ≤
T∑

t=1

1

2

(
3

(
βT +B

√
λ

κµ
+ 1

)√
κµ

λ
σt−1(xt,1, xt,2) + 6ε′m,t

)

≤ 3

2

(
βT +B

√
λ

κµ
+ 1

)√
κµ

λ

T∑
t=1

σt−1(xt,1, xt,2) + 6Tε′m,T

≤ 3

2

(
βT +B

√
λ

κµ
+ 1

)√
κµ

λ

√√√√T

T∑
t=1

σ2
t−1(xt,1, xt,2) + 6Tε′m,T
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≤ 3

2

(
βT +B

√
λ

κµ
+ 1

)√
κµ

λ

√
T2c0

λ

κµ
d̃+ 6Tε′m,T .

≤ 3

2

(
βT +B

√
λ

κµ
+ 1

)√
T2c0d̃+ 6Tε′m,T .

Recall that ε′m,t = C2m
−1/6

√
logmL3

(
t
λ

)4/3
. It can be easily verified that as long as the conditions

on m specified in Eq. (10) are satisfied (i.e., as long as the NN is wide enough), we have that
6Tε′m,T ≤ 1. Recall that βT = Õ( 1

κµ

√
d̃). This allows us to simplify the regret upper bound to be

RT ≤ 3

2

(
βT +B

√
λ

κµ
+ 1

)√
T2c0d̃+ 1

= Õ

((√
d̃

κµ
+B

√
λ

κµ

)√
d̃T

)
.

B Theoretical Analysis for NDB-TS

Denote νT ≜
(
βT +B

√
λ/κµ + 1

)√
κµ/λ, ct ≜ νT (1 +

√
2 log(Kt2)), and σ2

t−1(x1, x2) ≜

λ
κµ

∥∥∥ 1√
m
(φ(x1)− φ(x2))

∥∥∥2
V −1
t−1

. Here we use Ft−1 to denote the filtration containing the history

of selected inputs and observations up to iteration t − 1. To use Thompson sampling (TS) to
select the second arm xt,2, firstly, for each arm x ∈ Xt, we sample a reward value r̃t(x) from the
normal distribution N

(
h(x; θt)− h(xt,1; θt), ν

2
Tσ

2
t−1(x, xt,1)

)
. Then, we choose the second arm as

xt,2 = argmaxx∈Xt
r̃t(x).

Lemma 9. Let δ ∈ (0, 1). Define Ef (t) as the following event:

| [f(x)− f(xt,1)]− [h(x; θt)− h(xt,1; θt)] | ≤ νTσt−1(x, xt,1) + 2ε′m,t.

According to Theorem 1, we have that the event Ef (t) holds with probability of at least 1− δ.

Lemma 10. Define Eft(t) as the following event

|r̃t(x)− [h(x; θt)− h(xt,1; θt)] | ≤ νT
√

2 log(Kt2)σt−1(x, xt,1).

We have that P
[
Eft(t)|Ft−1

]
≥ 1− 1/t2 for any possible filtration Ft−1.

Definition 1. In iteration t, define the set of saturated points as

St = {x ∈ Xt : ∆(x) > ctσt−1(x, xt,1) + 4ε′m,t},

where ∆(x) = f(x∗
t )− f(x) and x∗

t ∈ argmaxx∈Xt f(x).

Note that according to this definition, x∗
t is always unsaturated.

Lemma 11. For any filtration Ft−1, conditioned on the event Ef (t), we have that ∀x ∈ Q,

P
(
r̃t(x) + 2ε′m,t > f(x)− f(xt,1)|Ft−1

)
≥ p,

where p = 1
4e

√
π

.

Proof. Adding and subtracting µt−1(x)
νtσt−1(x)

both sides of P (ft(x) > ρmf(x)|Ft−1), we get

P
{
r̃t(x) + 2ε′m,t > f(x)− f(xt,1)|Ft−1

}
= P

{
r̃t(x) + 2ε′m,t − [h(x; θt)− h(xt,1; θt)]

νTσt−1(x, xt,1)
>

f(x)− f(xt,1)− [h(x; θt)− h(xt,1; θt)]

νTσt−1(x, xt,1)
|Ft−1

}
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≥ P
{
r̃t(x) + 2ε′m,t − [h(x; θt)− h(xt,1; θt)]

νTσt−1(x, xt,1)
>

|f(x)− f(xt,1)− [h(x; θt)− h(xt,1; θt)] |
νTσt−1(x, xt,1)

|Ft−1

}
≥ P

{
r̃t(x)− [h(x; θt)− h(xt,1; θt)]

νTσt−1(x, xt,1)
>

|f(x)− f(xt,1)− [h(x; θt)− h(xt,1; θt)] | − 2ε′m,t

νTσt−1(x, xt,1)
|Ft−1

}
≥ P

{
r̃t(x)− [h(x; θt)− h(xt,1; θt)]

νTσt−1(x, xt,1)
> 1|Ft−1

}
≥ 1

4e
√
π
,

in which the third inequality makes use of Lemma 9 (note that we have conditioned on the event
Ef (t) here), and the last inequality follows from the Gaussian anti-concentration inequality: P(z >
a) ≥ exp(−a2)/(4

√
πa) where z ∼ N (0, 1).

The next lemma proves a lower bound on the probability that the selected input xt,2 is unsaturated.

Lemma 12. For any filtration Ft−1, conditioned on the event Ef (t), we have that,

P (xt,2 ∈ Xt \ St|Ft−1) ≥ p− 1/t2.

Proof. To begin with, we have that

P (xt,2 ∈ Xt \ St|Ft−1) ≥ P (r̃t(x
∗
t ) > r̃t(x),∀x ∈ St|Ft−1) . (28)

This inequality can be justified because the event on the right hand side implies the event on the left
hand side. Specifically, according to Definition 1, x∗

t is always unsaturated. Therefore, because xt,2

is selected by xt,2 = argmaxx∈Xt
r̃t(x), we have that if r̃t(x∗

t ) > r̃t(x),∀x ∈ St, then the selected
xt,2 is guaranteed to be unsaturated. Now conditioning on both events Ef (t) and Eft(t), for all
x ∈ St, we have that

r̃t(x) ≤ f(x)− f(xt,1) + ctσt−1(x, xt,1) + 2ε′m,t

= f(x)− f(xt,1) + ctσt−1(x, xt,1) + 4ε′m,t − 2ε′m,t

≤ f(x)− f(xt,1) + ∆(x)− 2ε′m,t

= f(x)− f(xt,1) + f(x∗
t )− f(x)− 2ε′m,t

= f(x∗
t )− f(xt,1)− 2ε′m,t

(29)

in which the first inequality follows from Lemma 9 and Lemma 10 and the second inequality makes
use of Definition 1. Next, separately considering the cases where the event Eft(t) holds or not and
making use of Eq. (28) and Eq. (29), we have that

P (xt,2 ∈ Xt \ St|Ft−1) ≥ P (r̃t(x
∗
t ) > r̃t(x),∀x ∈ St|Ft−1)

≥ P
(
r̃t(x

∗
t ) > f(x∗

t )− f(xt,1)− 2ε′m,t|Ft−1

)
− P

(
Eft(t)|Ft−1

)
≥ p− 1/t2,

in which the last inequality has made use of Lemma 10 and Lemma 11.

Next, we use the following lemma to derive an upper bound on the expected instantaneous regret.
Lemma 13. For any filtration Ft−1, conditioned on the event Ef (t), we have that,

E[2rt|Ft−1] ≤
23ct
p

E [σt−1(xt,2, xt,1)|Ft−1] + 18ε′m,t +
4

t2
.

Proof. To begin with, define xt as the unsaturated input with the smallest σt−1(x, xt,1):

xt = argminx∈Xt\St
σt−1(x, xt,1).

This definition gives us:

E [σt−1(xt,2, xt,1)|Ft−1] ≥ E [σt−1(xt,2, xt,1)|Ft−1, xt ∈ Xt \ St]P (xt,2 ∈ Xt \ St|Ft−1)

≥ σt−1(xt, xt,1)(p− 1/t2),
(30)
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in which the second inequality makes use of Lemma 12, as well as the definition of xt.

Next, conditioned on both events Ef (t) and Eft(t), we can decompose the instantaneous regret as

2rt = f(x∗
t )− f(xt,1) + f(x∗

t )− f(xt,2)

= f(x∗
t )− f(xt,2) + f(xt,2)− f(xt,1) + f(x∗

t )− f(xt,2)

= 2 [f(x∗
t )− f(xt,2)] + f(xt,2)− f(xt,1).

(31)

Next, we separately analyze the two terms above. Firstly, we have that

f(x∗
t )− f(xt,2) = f(x∗

t )− f(xt) + f(xt)− f(xt,2)

= ∆(xt) + [f(xt)− f(xt,1)]− [f(xt,2)− f(xt,1)]

≤ ∆(xt) + r̃t(xt) + ctσt−1(xt, xt,1) + 2ε′m,t − r̃t(xt,2) + ctσt−1(xt,2, xt,1) + 2ε′m,t

≤ ∆(xt) + ctσt−1(xt, xt,1) + ctσt−1(xt,2, xt,1) + 4ε′m,t

≤ ctσt−1(xt, xt,1) + 4ε′m,t + ctσt−1(xt, xt,1) + ctσt−1(xt,2, xt,1) + 4ε′m,t

≤ 2ctσt−1(xt, xt,1) + ctσt−1(xt,2, xt,1) + 8ε′m,t,
(32)

in which the first inequality follows from Lemma 9 and Lemma 10, the second inequality follows from
the way in which xt,2 is selected: xt,2 = argmaxx∈Xt

r̃t(x) which guarantees that r̃t(xt) ≤ r̃t(xt,2).
The third inequality follows because xt is unsaturated. Next, we analyze the second term from
Eq. (31).

f(xt,2)− f(xt,1) = h(xt,2; θt)− h(xt,1; θt) + νTσt−1(xt,2, xt,1) + 2ε′m,t

≤ νTσt−1(xt,2, xt,1) + 2ε′m,t

≤ ctσt−1(xt,2, xt,1) + 2ε′m,t,

(33)

in which the first inequality follows from Lemma 9, and the second inequality follows because
νT ≤ ct by definition. Now we can plug Eq. (32) and Eq. (33) into Eq. (31):

2rt ≤ 2
(
2ctσt−1(xt, xt,1) + ctσt−1(xt,2, xt,1) + 8ε′m,t

)
+ ctσt−1(xt,2, xt,1) + 2ε′m,t

≤ 4ctσt−1(xt, xt,1) + 3ctσt−1(xt,2, xt,1) + 18ε′m,t.
(34)

Next, by separately considering the cases where the event Eft(t) holds and otherwise, we are ready
to upper-bound the expected instantaneous regret:

E[2rt|Ft−1] ≤ E[4ctσt−1(xt, xt,1) + 3ctσt−1(xt,2, xt,1) + 18ε′m,t|Ft−1] +
4

t2

≤ E
[
4ctσt−1(xt,2, xt,1)

1

p− 1/t2
+ 3ctσt−1(xt,2, xt,1) + 18ε′m,t|Ft−1

]
+

4

t2

= ct

(
4

p− 1/t2
+ 3

)
E [σt−1(xt,2, xt,1)|Ft−1] + 18ε′m,t +

4

t2

≤ ct
23

p
E [σt−1(xt,2, xt,1)|Ft−1] + 18ε′m,t +

4

t2

in which the first inequality have made use of Eq. (34), the second inequality results from Eq. (30),
and the last inequality follows because 1

p−1/t2 ≤ 5/p and 1 ≤ 1/p.

Next, we define the following stochastic process (Yt : t = 0, . . . , T ), which we prove is a
super-martingale in the subsequent lemma by making use of Lemma 13.

Definition 2. Define Y0 = 0, and for all t = 1, . . . , T ,

rt = rtI{Ef (t)}, Xt = rt −
23ct
2p

σt−1(xt,2, xt,1)− 9ε′m,t −
2

t2
, and Yt =

t∑
s=1

Xs.

Lemma 14. (Yt : t = 0, . . . , T ) is a super-martingale with respect to the filtration Ft.
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Proof. As Xt = Yt − Yt−1, we have

E [Yt − Yt−1|Ft−1] = E [Xt|Ft−1]

= E
[
rt −

23ct
2p

σt−1(xt,2, xt,1)− 9ε′m,t −
2

t2
|Ft−1

]
= E [rt|Ft−1]−

[
23ct
2p

E [σt−1(xt,2, xt,1)|Ft−1] + 9ε′m,t +
2

t2

]
≤ 0.

When the event Ef (t) holds, the last inequality follows from Lemma 13; when Ef (t) is false, rt = 0
and hence the inequality trivially holds.

Lastly, we are ready to prove the upper bound on the cumulative regret of ou algorithm by applying
the Azuma-Hoeffding Inequality to the stochastic process defined above.

Proof. To begin with, we derive an upper bound on |Yt − Yt−1|:

|Yt − Yt−1| = |Xt| ≤ |rt|+
23ct
2p

σt−1(xt,2, xt,1) + 9ε′m,t +
2

t2

≤ 2 +
23ct
2p

c0 + 9ε′m,t + 2

≤ 1

p

(
4 + 12ctc0 + 9ε′m,t

)
,

where the second inequality follows because σt−1(xt,2, xt,1) ≤ c0, and the last inequality follows
since 1

p ≥ 1. Now we are ready to apply the Azuma-Hoeffding Inequality to (Yt : t = 0, . . . , T ) with
an error probability of δ:

T∑
t=1

rt ≤
T∑

t=1

23ct
2p

σt−1(xt,2, xt,1) +

T∑
t=1

9ε′m,t +

T∑
t=1

2

t2

+

√√√√2 log(1/δ)

T∑
t=1

(
1

p

(
4 + 12ctc0 + 9ε′m,t

))2

≤ 12cT

T∑
t=1

σt−1(xt,2, xt,1) + 9Tε′m,T + 2

T∑
t=1

1/t2

+

(
1

p

(
4 + 12cT c0 + 9ε′m,T

))√
2T log(1/δ)

≤ 12cT

√
T2c0

λ

κµ
d̃+ 9Tε′m,T +

π2

3
+

4 + 12cT c0 + 9ε′m,T

p

√
2T log(1/δ).

The second inequality makes use of the fact that ct and ε′m,t are both monotonically increasing in

t. The last inequality follows because
∑T

t=1 σt−1(xt,1, xt,2) ≤
√

T2c0
λ
κµ

d̃ which we have shown

in the proof of the UCB algorithm, and
∑T

t=1 1/t
2 ≤ π2/6. Note that Appendix B holds with

probability ≥ 1 − δ. Also note that rt = rt with probability of ≥ 1 − δ because the event Ef (t)
holds with probability of ≥ 1− δ (Lemma 9). Therefore, replacing δ by δ/2, the upper bound from
Appendix B is an upper bound on RT =

∑T
t=1 rt with probability of 1− δ.

Lastly, recall we have defined that νT
.
=

(
βT +B

√
λ/κµ + 1

)√
κµ/λ, ct ≜

νT (1 +
√

2 log(Kt2)), and βT = Õ( 1
κµ

√
d̃). This implies that cT =

Õ
((

1
κµ

√
d̃+B

√
λ/κµ

)√
κµ/λ

)
= Õ

(√
d̃

κµλ
+B

)
. Also recall that as long as the
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conditions on m specified in Eq. (10) are satisfied (i.e., as long as the NN is wide enough), we can
ensure that 9Tε′m,T ≤ 1. Therefore, the final regret upper bound can be expressed as:

RT = Õ

√ d̃

κµλ
+B

√T
λ

κµ
d̃+

√ d̃

κµλ
+B

√
T


= Õ

√ d̃

κµλ
+B

√T
λ

κµ
d̃


= Õ

((√
d̃

κµ
+B

√
λ

κµ

)√
T d̃

)
.

This completes the proof. As we can see, our TS algorithm enjoys the same asymptotic regret upper
bound as our UCB algorithm, ignoring the log factors.

C Theoretical Analysis for Neural Contextual Bandits with Binary Feedback
(Section 5)

In this section, we show the proof of Theorem 5 and Theorem 6 for neural contextual bandits with
binary feedback (Section 5). We can largely reuse the proof from Appendix A, and here we will only
highlight the changes we need to make to the proof in Appendix A.

To begin with, in our analysis here, we adopt the same requirement on the width of the NN specified
in Eq. (10). First of all, Lemma 1 still holds in this case, which allows us to approximate the unknown
utility function f using a linear function. It is also easy to verify that Lemma 2 still holds. As a
consequence, Lemma 3 and Lemma 4 both hold naturally.

C.1 Proof of Confidence Ellipsoid

Similar to the our proof in Appendix A.2, in iteration s, we denote φ′
s ≜ g(xs; θ0), φ̃′

s ≜ g(xs; θt),
and h̃s,t ≜ h(xs; θt). Here we show how the proof of Lemma 6 should be modified. For any
θf ′ ∈ Rp, define

Gt(θf ′) ≜
1

m

t−1∑
s=1

[
µ (⟨θf ′ − θ0, φ

′
s⟩)− µ (⟨θf − θ0, φ

′
s⟩)
]
φ′
s + λ(θf ′ − θ0). (35)

Note that the definition of Gt in Eq. (35) is exactly the same as that in Eq. (11), except that here we
use a modified definition of φ′

s. Note that here Vt is defined as Vt
.
=
∑t

s=1 g(xs; θ0)g(xs; θ0)
⊤ 1

m +
λ
κµ

I =
∑t

s=1 φ
′
sφ

′
s
⊤ 1

m + λ
κµ

I. In addition, the definition of ft,s remains: ft,s = ⟨θt − θ0, φ
′
s⟩. With

the modified definitions of Vt−1, we can easily show that Lemma 7 remains valid. Note that here the
binary observation can be expressed as ys = µ(f(xs)) + εs, in which εs is the observation noise. It
is easy to verify that the decomposition in Eq. (14) remains valid.

Next, defining A1 and A2 in the same way as Eq. (15), it is easy to verify that Eq. (16) is still valid.
Note that during the proof of Eq. (16), we have made use of Eq. (9), which allows us to ensure the
validity of 1

m

∑t−1
s=1

(
µ(h̃s,t)− ys

)
φ̃′
s + λ(θt − θ0) = 0 in Eq. (17). This is ensured by the way we

train our neural network with the binary observations. Next, we derive an upper bound on the norm
of A1. To begin with, we have that

∥φ′
s − φ̃′

s∥2 = ∥g(xs; θ0)− g(xs; θt)∥2

≤ C1m
1/3
√
logm

(
Ct

λ

)1/3

L7/2,

in which the inequality follows from Lemma 3. Then, the proof in Eq. (18) can be reused to show
that

∥A1∥2 =

∥∥∥∥∥ 1

m

t−1∑
s=1

(
µ(ft,s)− ys

)(
φ′
s − φ̃′

s

)∥∥∥∥∥
2

≤ m−2/3
√
logmt4/3C1C̃

1/3λ−1/3L7/2.
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Note that the upper bound above is smaller than that from Eq. (18) by a factor of 2. Similarly, we can
follow the proof of Eq. (19) to derive an upper bound on the norm of A2:

∥A2∥2 =

∥∥∥∥∥ 1

m

t−1∑
s=1

(
µ(ft,s)− µ(h̃s,t)

)
φ̃′
s

∥∥∥∥∥
2

≤ 2LµC2C3C̃
4/3m−2/3

√
logmt7/3L7/2λ−4/3,

in which the upper bound is also smaller than that from Eq. (19) by a factor of 2. As a result, defining
εm,t in the same way as Eq. (21) (except that the second and third terms in εm,t are reduced by a
factor of 2), we can show that Eq. (22) is still valid:

√
m ∥θf − θt∥Vt−1

≤ 1

κµ

∥∥∥∥∥
t−1∑
s=1

εsφ
′
s

1√
m

∥∥∥∥∥
V −1
t−1

+B

√
λ

κµ
+ 1. (36)

Now we derive an upper bound on the first term in Eq. (36) in the next lemma, which is proved by
modifying the proof of Lemma 8.

Lemma 15. Let βT
.
= 1

κµ

√
d̃b + 2 log(1/δ). With probability of at least 1− δ, we have that

1

κµ

∥∥∥∥∥
t−1∑
s=1

εsφ
′
s

1√
m

∥∥∥∥∥
V −1
t−1

≤ βT .

Proof. Note that in the main text, we have the following modified definitions: Hb
.
=∑T

s=1

∑
i∈K g(xs,i; θ0)g(xs,i; θ0)

⊤ 1
m , and d̃b = log det

(κµ

λ Hb + I
)
.

To begin with, we derive an upper bound on the log determinant of the matrix Vt
.
=∑t

s=1 g(xs; θ0)g(xs; θ0)
⊤ 1

m + λ
κµ

I. Now the determinant of Vt can be upper-bounded as

det(Vt) = det

(
t∑

s=1

g(xs; θ0)g(xs; θ0)
⊤ 1

m
+

λ

κµ
I

)

≤ det

(
T∑

s=1

∑
i∈K

g(xs,i; θ0)g(xs,i; θ0)
⊤ 1

m
+

λ

κµ
I

)

= det

(
Hb +

λ

κµ
I

)
.

Recall that in our algorithm, we have set V0 = λ
κµ

Ip. This leads to

log
detVt

detV0
≤ log

det
(
Hb +

λ
κµ

I
)

detV0

= log
(λ/κµ)

p det
(κµ

λ Hb + I
)

(λ/κµ)p

= log det
(κµ

λ
Hb + I

)
.

Next, following the same line of argument in the proof of Lemma 8 about the observation noise ε, we
can easily show that in this case of neural contextual bandits with binary observation, the sequence of
noise {εs} is also conditionally 1-sub-Gaussian.

Next, making use of the 1-sub-sub-Gaussianity of the sequence of noise {εs} and Theorem 1 from
[18], we can show that with probability of at least 1− δ,∥∥∥∥∥

t−1∑
s=1

εsφ
′
s

1√
m

∥∥∥∥∥
V −1
t−1

≤

√
log

(
detVt−1

detV0

)
+ 2 log(1/δ)

≤
√
log det

(κµ

λ
Hb + I

)
+ 2 log(1/δ)
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≤
√
d̃b + 2 log(1/δ),

in which we have made use of the definition of the effective dimension d̃b = log det
(κµ

λ Hb + I
)
.

This completes the proof.

Finally, plugging Lemma 15 into Eq. (36) allows us to show that Lemma 6 remains valid:

√
m ∥θf − θt∥Vt−1

≤ βT +B

√
λ

κµ
+ 1, ∀t ∈ [T ]. (37)

Now we can prove the confidence ellipsoid in Theorem 4:

Theorem 4. Let δ ∈ (0, 1), ε′m,t
.
= C2m

−1/6
√
logmL3

(
t
λ

)4/3
for some absolute constant C2 > 0.

As long as m ≥ poly(T, L,K, 1/κµ, Lµ, 1/λ0, 1/λ, log(1/δ)), then with probability of at least 1− δ,
we have

|f(x)− h(x; θt)| ≤ νTσt−1(x) + ε′m,t,

for all x ∈ Xt, t ∈ [T ].

Proof. Denote φ(x) = g(x; θ0). Recall that Lemma 1 tells us that f(x) = ⟨g(x; θ0), θf − θ0⟩ =
⟨φ(x), θf − θ0⟩ for all x ∈ Xt, t ∈ [T ]. To begin with, for all x ∈ Xt, t ∈ [T ] we have that

|f(x)− ⟨φ(x), θt − θ0⟩| = |⟨φ(x), θf − θ0⟩ − ⟨φ(x), θt − θ0⟩|
= |⟨φ(x), θf − θt⟩⟩|

= |⟨ 1√
m
φ(x),

√
m (θf − θt)⟩|

≤
∥∥∥∥ 1√

m
φ(x)

∥∥∥∥
V −1
t−1

√
m ∥θf − θt∥Vt−1

≤
∥∥∥∥ 1√

m
φ(x)

∥∥∥∥
V −1
t−1

(
βT +B

√
λ

κµ
+ 1

)
,

(38)

in which we have used Lemma 6 (reproduced in Eq. (37)) in the last inequality. Now making use of
the equation above and Lemma 4, we have that

|f(x)− h(x; θt)|
= |f(x)− ⟨φ(x), θt − θ0⟩+ ⟨φ(x), θt − θ0⟩ − h(x; θt)|
≤ |f(x)− ⟨φ(x), θt − θ0⟩|+ |⟨φ(x), θt − θ0⟩ − h(x; θt)|

≤
∥∥∥∥ 1√

m
φ(x)

∥∥∥∥
V −1
t−1

(
βT +B

√
λ

κµ
+ 1

)
+ ε′m,t,

in which the last inequality follows from Eq. (38) and Lemma 4.

Recall that we have defined in the paper σ2
t−1(x)

.
= λ

κµ

∥∥∥ g(x;θ0)√
m

∥∥∥2
V −1
t−1

, and νT
.
= (βT +B

√
λ/κµ +

1)
√
κµ/λ in which βT

.
= 1

κµ

√
d̃b + 2 log(1/δ). This completes the proof of Theorem 4.

C.2 Regret Analysis

Now we can analyze the instantaneous regret:

rt = f(x∗
t )− f(xt)

≤ h(x∗
t ; θt) + νTσt−1(x

∗
t ) + ε′m,t − h(xt; θt) + νTσt−1(xt) + ε′m,t

≤ h(xt; θt) + νTσt−1(xt)− h(xt; θt) + νTσt−1(xt) + 2ε′m,t

= 2νTσt−1(xt) + 2ε′m,t.
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Next, the subsequent analysis in Appendix A.3 follows by replacing σt−1(xt,1, xt,2) by σt−1(xt),
which allows us to show that

T∑
t=1

σ2
t−1(xt) ≤ 2c0

λ

κµ
d̃b.

Finally, we can derive an upper bound on the cumulative regret:

RT =

T∑
t=1

rt ≤
T∑

t=1

(
2νTσt−1(xt) + 2ε′m,t

)
≤ 2

T∑
t=1

νTσt−1(xt) + 2

T∑
t=1

ε′m,t

≤ 2νT

√√√√T

T∑
t=1

σ2
t−1(xt) + 2Tε′m,T

≤ 2νT

√
T2c0

λ

κµ
d̃b + 2Tε′m,T .

Again it can be easily verified that as long as the conditions on m specified in Eq. (10) are satisfied

(i.e., as long as the NN is wide enough), we have that 2Tε′m,T ≤ 1. Also recall that βT = Õ( 1
κµ

√
d̃b),

and νT
.
= (βT +B

√
λ/κµ +1)

√
κµ/λ = Õ( 1√

κµ

√
d̃b +B +

√
κµ/λ). This allows us to simplify

the regret upper bound to be

RT ≤ 2νT

√
T2c0

λ

κµ
d̃b + 1

= Õ


√
d̃b

κµ
+B

√
λ

κµ

√d̃bT

 .

The proof for the Thompson sampling algorithm follows a similar spirit, which we omit here.

D Leftover details from Section 6

To demonstrate the different performance aspects of our proposed algorithms, we have used different
synthetic rewards functions, mainly, f(x) = 10(x⊤θ)2 (Square) and f(x) = cos(3x⊤θ). The details
of our experiments are as follows: We use a d-dimensional space to generate the sample features
of each context-arm pair. We denote the context-arm feature vector for context ct and arm a by xa

t ,
where xa

t =
(
xa
t,1, . . . , x

a
t,d

)
, ∀ t ≥ 1. The value of i-the element of xa

t vector is sampled uniformly
at random from (−1, 1). Note that the number of arms remains the same across the rounds, i.e., K.
We then select a d-dimensional vector θ by sampling uniformly at random from (−1, 1)d. In all our
experiments, the binary preference feedback about x1 being preferred over x2 (or binary feedback in
Section 5) is sampled from a Bernoulli distribution with parameter p = µ (f(x1)− f(x2))).

In all our experiments, we use NN with 2 hidden layers with width 50, λ = 1.0, δ = 0.05, d = 5,
K = 5, and fixed value of νT = ν = 1.0. For having a fair comparison, We choose the value of ν
after doing a hyperparameter search over set {10.0, 5.0, 1.0, 0.1, 0.01, 0.001, 0.0} for linear baselines,
i.e., LinDB-UCB and LinDB-TS. As shown in Fig. 3, the average cumulative regret is minimum for
ν = 1.0. Note that we did not perform any hyperparameter search for NDB-UCB and NDB-TS,
whose performance can be further improved by doing the hyperparameter search.

As supported by the neural tangent kernel (NTK) theory, we can substitute the initial gradient g(x; θ0)
for the original feature vector x as g(x; θ0) represents the random Fourier features for the NTK [48].
In this paper, we use the feature vectors g(x; θt) instead of g(x; θ0) and recompute all g(x; θt) in
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each round for all past context-arm pairs. Additionally, compared to NTK theory, we have designed
our algorithm to be more practical by adhering to the common practices in neural bandits [7, 8].
Specifically, in the loss function for training our NN (as defined in Eq. (1)), we replaced the theoretical
regularization parameter 1

2mλ ∥θ − θ0∥22 (where m is the width of the NN) with the simpler λ ∥θ∥22.
Similarly, for the random features of the NTK, we replaced the theoretical 1√

m
g(x; θt) with g(x; θt).

Computational resources. All the experiments are run on a server with AMD EPYC 7543 32-Core
Processor, 256GB RAM, and 8 GeForce RTX 3080.

(a) Square (UCB) (b) Square (TS) (c) Cosine (UCB) (d) Cosine (TS)

Figure 3: Average cumulative regret of LinDB-UCB and LinDB-TS vs. different values of ν for
Square reward function (i.e., 10(x⊤θ)2).

(a) Varying d (Average) (b) Varying d (Weak) (c) Varying K (Average) (d) Varying K (Weak)

Figure 4: Cumulative regret (average and weak) of NDB-TS vs. different number of arms (K) and
dimension of the context-arm feature vector (d) for Square reward function (i.e., 10(x⊤θ)2).

(a) 10(x⊤θ)2 (Average) (b) 10(x⊤θ)2 (Weak) (c) 20(x⊤θ)2 (Average) (d) 20(x⊤θ)2 (Weak)

(e) 30(x⊤θ)2 (Average) (f) 30(x⊤θ)2 (Weak) (g) 40(x⊤θ)2 (Average) (h) 40(x⊤θ)2 (Weak)

Figure 5: Comparisons of cumulative regret (average and weak) of different dueling bandits algorithms
for non-linear reward functions.
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(a) cos(3x⊤θ) (Average) (b) cos(3x⊤θ) (Weak) (c) 3cos(x⊤θ) (Average) (d) 3cos(x⊤θ) (Weak)

(e) 5cos(x⊤θ) (Average) (f) 5cos(x⊤θ) (Weak) (g) 10cos(x⊤θ) (Average) (h) 10cos(x⊤θ) (Weak)

Figure 6: Comparisons of cumulative regret (average and weak) of different dueling bandits algorithms
for non-linear reward functions.

(a) 10(x⊤θ)2 (b) 40(x⊤θ)2 (c) cos(3x⊤θ) (d) 10cos(x⊤θ)

Figure 7: Comparing cumulative regret of GLM bandits algorithms for non-linear reward functions.

(a) Varying d (UCB) (b) Varying K (UCB) (c) Varying d (TS) (d) Varying K (TS)

Figure 8: Cumulative regret of Algorithm NCBF-UCB and NCBF-TS vs. different number of arms
(K) and dimension of the context-arm feature vector (d) for Square reward function (i.e., 10(x⊤θ)2).

E Broader Impacts

The contributions of our work are primarily theoretical. Therefore, we do not foresee any immediate
negative societal impact in the short term. Regarding our longer-term impacts, as discussed in
Section 4, our algorithms can be potentially adopted to improve online RLHF. On the positive side,
our work can lead to better and more efficient alignment of LLMs through improved online RLHF,
which could benefit society. On the other hand, the potential negative societal impacts arising from
RLHF may also apply to our work. On the other hand, potential mitigation measures to prevent the
misuse of RLHF would also help safeguard the potential misuse of our algorithms.
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