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Abstract

Sampling from a Boltzmann distribution to calcu-
late important macro statistics is one of the central
tasks in the study of large atomic and molecular
systems. Recently, a one-shot configuration sam-
pler, the Boltzmann generator [Noé et al., 2019],
is introduced. Though a Boltzmann generator can
directly generate independent metastable states, it
lacks the ability to find transition pathways and
describe the whole transition process. In this pa-
per, we propose PathFlow that can function as a
one-shot generator as well as a transition pathfinder.
More specifically, a normalizing flow model is con-
structed to map the base distribution and linear in-
terpolated path in the latent space to the Boltzmann
distribution and a minimum (free) energy path in
the configuration space simultaneously. PathFlow
can be trained by standard gradient-based optimiz-
ers using the proposed gradient estimator with a
theoretical guarantee. PathFlow, validated with the
extensively studied examples including a synthetic
Müller potential and Alanine dipeptide, shows a
remarkable performance.

1 INTRODUCTION

In the study of large atomic and molecular systems, the
calculation of important macro statistics such as the total
energy of the system or the folding probability of a protein
is of fundamental importance [Tuckerman, 2010]. One may
turn to Monte Carlo methods that require unbiased sampling
of the equilibrium distribution. In many applications, the
distribution can be expressed by the Boltzmann distribution:

p(r) =
1

Z
exp(−K(r)),

where r is one configuration of the system, K(r) represents
functions depending on the potential energy of the system

e.g. the temperature and other thermodynamic quantities.
The statistics are typically based on a sufficient observation
of all important configurations. Whereas, the enumeration
of these configurations is usually infeasible.

Recently, Noé et al. [2019] introduce a machine learning
based Boltzmann distribution sampler, known as the Boltz-
mann generator. Following the idea of normalizing flows,
Boltzmann generators seek an invertible mapping FZX(z)
from a latent space Z to the configuration space X which
maps a simple Gaussian distribution to the targeted Boltz-
mann distribution. Unlike molecular dynamics (MD) sam-
pling methods that require a long time simulation, Boltz-
mann generators can produce uncorrelated and low energy
samples from different metastable states in one-shot.

Though the Boltzmann generator successfully repacks the
high probability regions of the configuration space into a
concentrated latent space density, its abilities to explore high
energy regions and to find the transition pathways are not
well justified. The synthetic experiments in Noé et al. [2019]
report the feasibility of achieving transition pathways with
low energy and high probabilities through mapping of the
linear interpolated paths in latent space. However, there are
neither theoretical results nor physical constraints to guar-
antee the physical meaning behind this observation. As an
important concept in molecular dynamics, the transition path
between metastable states provides an important description
of the transition mechanism. For instance, the transition path
can be used to evaluate the lowest energy barrier and the
transition rate, where the rate is a good metric of materials
in applications such as catalyst discovery. Meanwhile, the
transition path, as an important guidance, can help to figure
out the favorable condition for the transition of chemical
reactions. The lack of physical interpretations of direct paths
in the latent space limits the application of Boltzmann gener-
ators in transition path finding. To the best of our knowledge,
however, there is no successful effort yet to improve the path
finding ability of Boltzmann generators.

In this paper, an extended normalizing flow method, named
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Figure 1: Illustration of PathFlow that maps the base dis-
tribution and a linear interpolated path to the Boltzmann
distribution and a transition path simultaneously.

PathFlow, is proposed to improve the learning of transition
paths. Beside retaining the feature of generating indepen-
dent samples from the Boltzmann distribution, PathFlow
further introduces physical constraints during training to
regularize the mapping of linear interpolated paths between
two metastable states to the minimum energy path (MEP) or
the minimum free energy path (MFEP). A simple illustration
of this mapping is provided in Figure 1.

Specifically, a system with two metastable states centered
around A and B is considered. An invertible function F is
learnt in two modes:

Learning on examples follows the general training of nor-
malizing flows where we collect data of metastable states
from MD and then train the model by minimizing the nega-
tive log-likelihood loss function LNF.

Learning on paths is the main principle behind PathFlow.
Following the physical definition of MEP and MFEP, an-
other loss function Lpath is designed to measure the ability
of F mapping the linear interpolated path in the latent space
to a transition path with physical meaning. On-the-fly esti-
mators of physics quantities required in the calculation of
Lpath as well as its gradient ∇Lpath are provided based on
restraint dynamics [Maragliano et al., 2006, Maragliano and
Vanden-Eijnden, 2006].

Therefore, unlike other path finding methods [Jónsson et al.,
1998, Weinan et al., 2002], PathFlow can be trained by
applying gradient-based methods to minimize the total loss:

L = wNFLNF + wpathLpath.

In the experiments based on extensively studied synthetic
Müller potential and real-world Alanine dipeptide exam-
ples, a remarkable performance is achieved by PathFlow.
Particularly, our contributions are summarized as below:

• Introduce physical constraints to normalizing flow
which leads to a new machine learning model with
knowledge of both high energy and low energy area of
a system. This new model can serve as a data generator
as well as a transition path finder.

• Design a loss function Lpath to measure the perfor-
mance of a transition path and provide its estimator
based on restraint dynamics. Theoretical bounds of the
estimation error are also provided.

2 RELATED LITERATURE

Molecular Dynamics. The first molecular dynamic sim-
ulations can be dated back to mid-20th century [Alder
and Wainwright, 1957, McCammon et al., 1977]. Over the
past several decades, with the fast development of com-
putational sciences, MD has been successfully applied to
physics, chemistry, biology, materials science, and several
other fields. One of the greatest challenges of MD is to
sample the rare events of state transitions. Enhanced sam-
pling is thus needed to accelerate the dynamics. One line of
research focuses on adding bias to the potential along pre-
defined collective variables (CVs) to decrease the energy
barrier. Such methods include, but are not limited to, the
widely used umbrella sampling [Torrie and Valleau, 1977],
adaptive biasing force method [Darve and Pohorille, 2001],
metadynamics [Laio and Parrinello, 2002], and variational
enhanced sampling [Valsson and Parrinello, 2014]. How-
ever, in many systems, proper CVs are not easily identified.
Under such a situation, CV-free methods can be helpful. A
number of such methods were proposed, such as parallel
tempering [Swendsen and Wang, 1986], replica exchange
of molecular dynamics [Sugita and Okamoto, 1999] and
integrated tempering sampling [Gao, 2008].

Transition Path Finding. The study of the transition be-
tween metastable states is one of the most fundamental prob-
lems in chemistry. Existing literature such as transition state
theory [Pechukas, 1981], transition path sampling [Dellago
et al., 2002] and transition path theory [Vanden-Eijnden,
2006] establishes theoretical foundations to understand the
mechanics of the transition. The well-known transition state
theory states that the system has to navigate itself to the tran-
sition state, which is a saddle point on the potential energy
surface. The most probable transition path for the reaction is
the MEP. Popular methods for finding MEP include nudged
elastic band (NEB) [Jónsson et al., 1998], string method
[Weinan et al., 2002] and its variations [Weinan et al., 2007,
Maragliano and Vanden-Eijnden, 2007, Pan et al., 2008].
Maragliano et al. [2006] extend the definition of MEP to
the free energy space and modify the string method to find
MFEP. After that, MFEP has been widely explored [Brand-
uardi et al., 2007, Chen et al., 2013] and applied in different
applications [Hu et al., 2007, Matsunaga et al., 2012].

Normalizing Flow. Normalizing flows (NF) are a family of
generative models with tractable distributions where both
sampling and density evaluation can be efficient and exact. It
was popularised by Mohamed and Jimenez Rezende [2015]
in the context of variational inference. Popular architectures
include, but are not limited to, the planar flow, nonlinear



independent components estimation (NICE) [Dinh et al.,
2014], real non-volume preserving (RealNVP [Dinh et al.,
2017]), masked autoregressive flow (MAF, [Papamakarios
et al., 2017]). Recent development on neural ordinary dif-
ferential equations [Chen et al., 2018] extends discrete flow
models to the continuous flow. Normalizing flows have been
widely applied in different machine learning applications
such as image generation [Ho et al., 2019], noise modelling
[Abdelhamed et al., 2019], video generation [Kumar et al.,
2019] and etc. Beside Boltzmann generators, normalizing
flows also receive great attention in physics [Köhler et al.,
2019, Kanwar et al., 2020, Wirnsberger et al., 2020, Wong
et al., 2020, Wu et al., 2020]

3 MODEL

Consider a system in the NVT ensemble where the coordi-
nates of D atoms are given by r = (r1, r2, ..., r3D) ∈
R3D. The potential energy of the system is denoted by
V (r). It is known that r follows a Boltzmann distribution:

p(r) =
1

Z
exp(−βV (r)),

where Z =
∫
R3D exp(−βV (r))dr is the partition function

and β = 1
κβT

is the inverse temperature. Here, κβ is the
Boltzmann constant and T is the temperature.

Suppose the system has two metastable states A and B,
which, for instance, may represent the reactant and product
states of a reaction. Based on MD simulation methods start-
ing from A and B, the data {riA}ni=1 and {riB}ni=1 can be
sampled. However, the transition between these two states
can hardly be observed without any enhanced sampling tech-
nique, because of the high energy barrier presented in the
potential energy landscape. In addition, long simulation tri-
als are always required to achieve statistically independent
samples for both metastable states.

This section describes the PathFlow model, avoiding
the aforementioned challenges, to generate independent
metastable states samples as well as the transition path. To
achieve these two goals, the model will be trained in two
modes: learning on examples and learning on paths.

3.1 LEARNING ON EXAMPLES

Given a target distribution X with probability density pX ,
normalizing flows (NFs) target to find a learnable and invert-
ible function Fθ : Rd 7→ Rd, usually represented by a neural
network with parameter θ, that transforms a probability den-
sity Z to the target X , i.e.,X = Fθ(Z) and Z = F−1θ (X).
Allowing the change of variable rule, we know that

pX(x) = pZ(F
−1
θ (x))

∣∣∣det(JF−1
θ

(x))
∣∣∣ ,

where JF−1
θ

(x) is the Jacobian matrix of F−1θ at x. Given
n realizations of the distribution X, {xi}ni=1, NFs can be
trained by minimizing the negative log-likelihood:

−
n∑
i=1

log pX(xi) = −
n∑
i=1

[
log pZ(F

−1
θ (xi))

+ log
∣∣∣det(JF−1

θ
(xi))

∣∣∣ ].
The base distribution Z is usually chosen as a uni-modal
Gaussian distribution or uniform distribution. However, Cor-
nish et al. [2020] point out that NFs can hardly map a uni-
modal base distribution to a multimodal distribution such as
the Boltzmann distribution considered in this paper. To over-
come this issue, we opt to use two separate base distributions
ZA and ZB for states A and B, respectively. Different from
Boltzmann generators using two mappings for two discon-
nected states, we will transform the two base distributions
using the same mapping Fθ. We expect that:

ZA = F−1θ (rA) and ZB = F−1θ (rB).

The negative log-likelihood loss to find the best parameter θ
can then be written as:

LNF(θ;wA, wB)

= wAL
A
NF(θ) + wBL

B
NF(θ)

= −wA
n∑
i=1

[
log pZA(F

−1
θ (riA)) + log

∣∣∣det(JF−1
θ

(riA))
∣∣∣]

− wB
n∑
i=1

[
log pZB (F

−1
θ (riB)) + log

∣∣∣det(JF−1
θ

(riB))
∣∣∣] ,
(1)

where (wA, wB) are the weights of the two states.

3.2 LEARNING ON PATHS

To enable PathFlow to find physically meaningful transition
pathways, we introduce physical constraints to the model
training. Here, we are especially interested in finding the
minimum energy path or the minimum free energy path.

3.2.1 Minimum Energy Path (MEP)

An MEP is a path that connects two minima of V (r) via a
saddle point and corresponds to the steepest descent path on
V (r) from this saddle point. More specifically, each point
on the MEP is a local potential energy minimum on the
hyperplane tangent to the path. This implies that the force
−∇V must be everywhere tangent to the MEP. Denote the
MEP by a curve r(α), where α ∈ [0, 1] is a parametrization
of the path. We then have, for ∀α ∈ [0, 1],

∇V (r(α)) is parallel to
dr(α)

dα
, (2)



or equivalently,

∇V (r(α))− (∇V (r(α)) · t̂)t̂ = 0, (3)

where t̂ is the unit tangent vector along the path at r(α).
Eq. (3) is not yet a numerically efficient way to measure the
performance of a path, due to the high computational cost
to calculate the tangent vector. Olender and Elber [1997]
instead prove that finding MEP is equivalent to solving the
following variation optimization problem:

PMEP = argmin
P :A→B

∫
P

‖∇V ‖2|dl|, (4)

for a gradient system

dr

dα
= −∇V (r(α)).

Suppose the path is divided into S segments {li}Si=1 with arc
lengths {dli}Si=1. Let−∇Vi be the force at the starting point
of i-th path segment. The discretization of the optimization
objective in Eq. (4) provides us an ideal loss function to
measure the performance of a candidate path P :

LMEP(P ) =

S∑
i=1

‖∇Vi‖2|dli|. (5)

3.2.2 Minimum Free Energy Path (MFEP)

Finding MEP has to deal with the difficulty caused by the
extremely high dimensionality of the system and also the
non-smoothness of the potential energy landscape. This
difficulty can be reduced by the introduction of collec-
tive variables (CVs) and the mapping of MEP to the CV
space (denoted as X ). Given N predefined CVs denoted
by x(r) = (x1(r), ..., xN (r)) , the free energy associated
with x(r) is defined as follows:

U(z) = −β−1 ln
(
Z−1

∫
R3D

e−βV (r)

×
N∏
i=1

δ(xi(r)− zi)dr
)
,∀z ∈ X , (6)

where δ is the Dirac delta function. On the free energy
surface, the path of our interest is the minimum free energy
path (MFEP). Letting z(α) = x(r(α)), Maragliano et al.
[2006] show that MFEP z(α) must satisfy

dz(α)

dα
is parallel to M(z(α))∇zU(z(α)), (7)

where

Mij(z) = Z−1eβU(x)

∫
R3D

∑
k

∂xi(r(α))

∂rk

∂xj(r(α))

∂rk

e−βV (r)
N∏
i=1

(zi − xi(r))dr. (8)

Maragliano et al. [2006] also prove that MFEP is the most
likely path of transitions between A and B. Hence, it can
greatly help us understand the underlying physical mecha-
nism of the transition. Similar to Eq. (5), the following loss
can be utilized to measure the performance of a candidate
path on the free energy surface.

LMFEP(P ) =

S∑
i=1

‖Mi∇Ui‖2|dli|, (9)

where P is a candidate path in X connecting A and B.

Remark 3.1. The minimum energy path can be viewed as a
special case of the minimum free energy path. Specifically,
if we choose x(r) = r, i.e., an identity mapping, the free
energy U is exactly the potential energy V and the transition
matrix as defined in Eq. (8) is reduced to an identity matrix.
Therefore, Eq. (9) is the same as Eq. (5).

3.3 TOTAL LOSS DESIGN

It is necessary to find an invertible mapping Fθ that 1) maps
the base distribution to the target Boltzmann distribution
and 2) maps a base path in the latent space to a transition
path in the configuration or CV spaces. Given a base path
Pbase, the path after mapping is denoted as Fθ(Pbase). We
can then use Eqs. (1), (5) and (9) to measure how good the
parameter θ is to realize two targets. Denote the path loss as

Lpath(θ) =

{
LMEP(Fθ(Pbase)), or
LMFEP(Fθ(Pbase)).

(10)

Combining the path loss Eq. (10) with NF loss Eq. (1), we
obtain the loss to train PathFlow:

L(θ) = wNFLNF(θ) + wpathLpath(θ), (11)

where wNF and wpath are two hyper parameters to control
the weight of two losses. To ease the training of our model,
the base path Pbase and base distribution ZA, ZB should
be carefully selected. First, the end-points A and B of the
transition path need to be determined. In some applications
like the study of chemical reactions, the start and end of the
transition path is already known. In other cases, A and B
can be set in terms of the simulation data. For example, the
end-points can be chosen as

µA,µB =

{
1
n

∑
i r

i
A,

1
n

∑
i r

i
B , if in configuration space;

1
n

∑
i x(r

i
A),

1
n

∑
i x(r

i
B), if in CV space,

(12)
the mean of samples from states A and B, respectively. Since
the transition path must have A and B as its end-points, we
require the base path starting from F−1θ (A) and ending at
F−1θ (B). A natural choice of the whole base path is the
linear interpolated path between these two points, i.e.,

Pbase(α) = (1− α)F−1θ (A) + αF−1θ (B).



In the sampling space, the simulation data should center
around the points with minimal potential or free energy,
which at the same time are the end-points of the transition
path. Therefore, we prefer to set

ZA ∼ Gaussian(F−1θ (A), σI),

ZB ∼ Gaussian(F−1θ (B), σI).

Here, σ can be used to control the concentration of the base
distribution. When σ is small, most of the linear interpolated
path lies outside the concentration area of ZA and ZB .
Hence, the model can focus on learning the path only. On
the other hand, co-training of the path and the generator
may be difficult around A and B, since Fθ has to minimize
two losses at the same time. However, since we are most
interested in the transition process that happens around the
high energy barrier, we can avoid this conflict by reducing
the weight of path samples near the end-points.

3.4 GRADIENT-BASED TRAINING

The gradient descent type algorithm is applied to update the
model parameter θ to minimize L(θ). Notice that

∇θL(θ) = wNF∇θLNF(θ) + wpath∇θLpath(θ).

The gradient ∇θLNF(θ) can be calculated by backpropa-
gation that has already been implemented in popular deep
learning frameworks such as Tensorflow [Abadi et al., 2016]
and PyTorch [Paszke et al., 2019]. ∇θLpath(θ), however, in-
volves the calculation of the potential mean force, the tran-
sition matrix and their gradients, and therefore cannot be
calculated automatically. In the next section, we will provide
efficient estimators of all the physics quantities appearing
in∇θLpath(θ) using restraint dynamics.

4 GRADIENT ESTIMATOR BY
RESTRAINT DYNAMICS

In this section, we provide an estimator of the gradient
∇θLpath(θ) to facilitate the gradient-based training of our
model. Since MEP can be viewed as a special case of MFEP
as we mentioned in Remark 3.1, we only consider the case
where Lpath = LMFEP. Suppose, under parameter θ, the
candidate path is P (θ) and of arc length l(P (θ)). We uni-
formly divide P (θ) into S segments, each with an arc length
|dli| = l(P (θ))/S in Eq. (9). We then have:

LMFEP(P ) = l(P (θ))
1

S

S∑
i=1

‖Mi∇Ui‖2,

as well as the gradient:

∇θLpath(θ) =∇θl(P (θ))
1

S

S∑
i=1

‖Mi∇Ui‖2

+ l(P (θ))
1

S

S∑
i=1

∇θ‖Mi∇Ui‖2. (13)

The calculation of ‖Mi∇Ui‖2 and its gradient
∇θ‖Mi∇Ui‖2 can be done by regular backpropaga-
tion only if the free energy surface (FES) U or its analytical
approximation are known. In practice, however, establishing
FES requires a large number of simulations, which can
be a task even harder than finding the path. Therefore, it
would be more efficient to estimate these values on the
fly at the given sample points on P (θ). We will adopt the
approach of restrained dynamics [Maragliano et al., 2006,
Maragliano and Vanden-Eijnden, 2006]. For a given point
z = (z1, ..., zM ) in the CV space, this method adds a
harmonic restraint to the potential of the system to represent
the effect of the spring forces between the configuration
variables and the CVs:

Vk(r; z) = V (r) +
k

2

N∑
i=1

(xi(r)− zi)2, (14)

where k is a parameter to control the restraint. The move-
ment of particles in the CV space under this extended poten-
tial can then be characterized by the overdamped Langevin
dynamics:

ṙ(t) = −∇Vk(r(t), z) +
√

2κβTηt, (15)

where η(t) is a white Gaussian noise with unit variance. It
can been shown that Eq. (15) has the following Boltzmann-
Gibbs density as its stationary distribution:

pk(r; z) =
1

Zk(z)
exp(−βVk(r; z)),

where Zk(z) =
∫
exp(−βVk(r, z))dr.

Estimation of ‖M∇U‖2. Define the effective free energy
corresponding to Vk(r; z) as

U (k)(z) = −β−1 ln
(
Z−1

∫
R3D

exp(−βVk(r; z))dr
)
.

Maragliano et al. [2006] prove that when k is large,

lim
k→∞

∇U (k)(z) = ∇U(z),

where

∇iU (k) =

∫
R3D

k(zi − xi(r))pk(r; z)dr, ∀i ≤ N.

If we further assume the ergodicity of dynamics Eq. (15),
we can obtain an estimator of the potential mean force:

∇iU (T,k)(z) =
k

T

∫ T

0

(zi − xi(r(t)))dt. (16)



Similar analysis can be done on M, and an estimator of
Mij(z) can be derived from Eq. (8) as follows:

M
(T,k)
ij (z) =

1

T

∫ T

0

∑
k

∂xi(r(t))

∂rk

∂xj(r(t))

∂rk
dt. (17)

Combining Eqs. (16) and (17), we obtain an estimation of
‖M∇U‖2 as ‖∇U (T,k)M (T,k)‖2.

Estimation of∇θ‖M∇U‖2. To estimate ∇θ‖M∇U‖2 in
the second term of Eq. (13), one naive approach is to use
the finite difference method requiring at least O(N) simu-
lation trails under Eq. (15), which may be computationally
challenged in practice. Instead, we propose a new estima-
tor that can be obtained simultaneously with Eqs. (16) and
(17). Specifically, we rewrite the gradient of ‖M∇U‖2 as
follows:

∇θ‖M∇U‖2 =
J(M∇U)>M∇U
‖M∇U‖2

,

where J(·) is the Jacobian matrix of a given function. Note
that the Jacobian matrix can be further decomposed as

J(M∇U) = ∇M∇U +M∇2U, (18)

where ∇M∇U = [∇z1M∇U, ...,∇zNM∇U ]. Recall that
the estimators Eqs. (16) and (17) can all be viewed as a time
average estimation of the expectation of a function f(r, z)
over distribution pk(r; z), i.e.,

∫
R3D f(r, z)pk(r; z)dr.

Specifically, for Mij , f(r, z) is taken as
∑
k
∂xi(r)
∂rk

∂xj(r)
∂rk

and for∇iU(z), f(r, z) is taken as k(zi − xi(r)). For this
expectation, Maragliano et al. [2006] have proved that

lim
k→∞

∫
R3D

f(r, z)pk(r; z)dr

=Z−1eβU(z)

∫
R3D

f(r, z)e−βV (r)
N∏
i=1

δ(zi − xi(r))dr.

Under certain regularity conditions that we can change the
order of derivative and limit, as well as the order of deriva-
tive and integration, the following equation is established.

lim
k→∞

∫
R3D

∂f(r, z)pk(r; z)

∂zl
dr

= lim
k→∞

∂
∫
R3D f(r, z)pk(r; z)dr

∂zl

=
∂Z−1eβU(z)

∫
R3D f(r, z)e

−βV (r)
∏N
i=1 δ(zi − xi(r))dr

∂zl
.

Estimating ∂M
∂zl

and ∇2U can both be generalized as
how to use the simulation trajectory r(t) to estimate

∫
R3D

∂f(r,z)pk(r;z)
∂zl

dr. By some manipulation, we have∫
R3D

∂f(r, z)pk(r; z)

∂zl
dr =

∫
R3D

∂f(r, z)

∂zl
pk(r; z)dr

+

∫
R3D

f(r, z)βk(xl(r)− zl)pk(r; z)dr

−
∫
R3D

f(r, z)pk(r; z)dr

∫
R3D

βk(xl(r)− zl)pk(r; z)dr.

All terms are expectations under density pk(r; z). There-
fore, with ergodicity, we can use time average to construct
the estimator:∫

R3D

∂f(r, z)pk(r; z)

∂zl
dr ≈ 1

T

∫ T

t=0

∂f(r(t), z)

∂zl
dt

+
1

T

∫ T

t=0

f(r(t))βk(xl(r(t))− zl)dt

− 1

T

∫ T

t=0

f(r(t), z)dt
1

T

∫ T

t=0

βk(xl(r(t))− zl)dt

, Fl(f(r, z), T, k). (19)

Plugging
∑
k
∂xi(r)
∂rk

∂xj(r)
∂rk

or k(zj − xj(r)) into f(r, z),
we get the estimators of∇lMi,j(z) and ∇2

i,jU(z).

∇lM (T,k)
ij (z) = Fl

(∑
k

∂xi(r)

∂rk

∂xj(r)

∂rk
, T, k

)
,

∇2
i,jU

(T,k)(z) = Fi (k(zj − xj(r)), T, k) . (20)

Using Eqs. (16), (17) and (20), the approximation of the
Jacobian matrix in Eq. (18) is established. We are ready to
use gradient-based algorithm to find θ that optimizes L(θ).

4.1 ESTIMATION ERROR

The following theorem shows the estimation error of esti-
mators Eqs. (16), (17) and (20).

Theorem 4.1. Suppose the dynamics Eq. (15) is ergodic,
for ∀i, j, l ≤ N and z in X , the estimation errors of
M

(T,k)
ij (z),∇iU (T,k)(z),∇lM (T,k)

ij (z),∇2
ijU

(T,k)(z) are
as follows.

|M (T,k)
ij (z)−Mij(z)| ≤ O(

1

k
) +O(

1√
T
),

|∇iU (T,k)(z)−∇iU(z)| ≤ O(
1

k
) +O(

k√
T
),

|∇lM (T,k)
ij (z)−∇lMij(z)| ≤ O(

1

k
) +O(

k√
T
),

|∇2
ijU

(T,k)(z)−∇2
ijU(z)| ≤ O(

1

k
) +O(

k2√
T
).

The proof of Theorem 4.1 can be found in Appendix A.
To achieve an error of order ε, M (T,k)

ij (z), ∇iU (T,k)(z)



and ∇lM (T,k)
ij (z) require at most T = O(1/ε4), while

∇2
ijU

(T,k)(z) requires T = O(1/ε6). This is consistent
with our empirical observation that using∇2

ijU
(T,k)(z) to

estimate ∇2U can be statistically unstable which leads to
the high variance of the whole Jacobian matrix estimation.

To overcome this issue, we propose a method that uses one
more simulation trial to avoid estimation of∇2U. Note that
by Eq. (18), ∇θ‖M∇U‖2 can be decomposed as

∇θ‖M∇U‖2 =
(∇M∇U)>M∇U
‖M∇U‖2

+∇2U
M>M∇U
‖M∇U‖2

.

The second order term ∇2U appears in the second term in
the form of a Hessian-vector product, which can be esti-
mated directly with one additional simulation trial indepen-
dently of N . Specifically, let v = M>M∇U

‖M∇U‖2 and we have:

∇2Uv ≈ ∇U(z + δv)−∇U(z)

δ
.

Only one extra restraint simulation centered at z + δv is
required to get the estimate. Moreover, to increase stability,
the product can also be estimated by central difference.

∇2Uv ≈ ∇U(z + δv)−∇U(z − δv)
2δ

,

By using Hessian-vector product trick, we obtain a new
estimation of the second term.

∇2U
M>M∇U
‖M∇U‖2

≈∇U
(T,k)(z + δv(T,k)(z))

2δ

− ∇U
(T,k)(z − δv(T,k)(z))

2δ
,

where v(T,k)(z) = (M(T,k))>M(T,k)∇U(T,k)(z)
‖M(T,k)∇U(T,k)(z)‖2

. Empirically,
we find that using this trick can greatly stabilize the estima-
tion with an acceptable simulation budget increment. For
more detailed error estimation, please refer to Appendix B.

5 NUMERICAL EXAMPLE: MÜLLER
POTENTIAL

We first illustrate PathFlow using a two-dimensional Müller
potential that has metastable states separated by high energy
barriers. The Müller potential has an explicit formulation:

V (x, y) =

4∑
k=1

Ake
Bk , (21)

where we take

Bk = ak(x− x0k)2 + bk(x− x0k)(y − y0k) + ck(y − y0k)2.

Values of all parameters can be found in Appendix C. The
two metastable states of Müller potential are located around

Figure 2: Experiment result on Müller Potential. PathFlow
generates samples filling in two low energy regions. At
the same time, the transition path found passes near the
transition state. The energy barrier we found has energy of
−38 which is very close to the ground-truth value −40.

A = [−0.56, 1.44] and B = [−0.05, 0.47], while the transi-
tion state is located around C = [−0.82, 0.62]. For simplic-
ity, we consider finding the minimum energy path (MEP)
starting from state A and ending at state B. We collect 100
data points using Markov Chain Monte Carlo starting from
A and B respectively for learning on examples. Our normal-
izing flow is a masked autoregressive flow (MAF) model
with 10 autoregressive layers and hidden units of shape
[256, 128, 64] with ReLU activation.

Given the explicit formulation of V (x, y), there is no need of
estimating the gradient of L(θ) using the proposed method
in Section 4. All the gradients can be automatically ob-
tained by backpropagation implemented in Tensorflow 2.3.
We train the model by Adam optimizer. As shown in fig-
ure 2, PathFlow can learn the transition path and the sampler
of metastable states at the same time. 1) In terms of path
finding, PathFlow finds a transition path that passes the tran-
sition state C. The optimal energy barrier has energy around
-40. The energy barrier we found is around -38 which is
very close to the ground-truth. 2) In terms of sample genera-
tor, we can successfully generate data points for metastable
states in one-shot.

6 NUMERICAL EXAMPLE: ALANINE
DIPEPTIDE

In this section, we provide a practical example to illustrate
the performance of our proposed models.

We study the isomerization transition and sampling of Ala-
nine dipeptide modeled by the CHARMM27 force field
[Brooks et al., 2009] at 300 K in vacuum. This transi-
tion happens between two metastable states named C7eq



Figure 3: Experiment result on Alanine dipeptide in vacuum
under room temperature 300K. The under-layer density plot
is the kernel density estimation of the Boltzmann Distri-
bution generated by Meta Dynamics. Transition pathways
found by PathFlow, string method and NEB overlap in most
regions. The energy barrier with the energy of about 8.6
kcal/mol lies on all paths.

and C7ax. We choose two torsion angles φ(C,N,Cα, C)
and ψ(N,Cα, C,N) as our CVs for this system, i.e., z =
(φ, ψ). All the MD simulations are performed by the pack-
age GROMACS 2021 [Lindahl et al., 2021] linked with
Plumed 2.7 [Tribello et al., 2014]. To generate data in two
metastable states, we run brute-force MD simulations start-
ing from C7eq and C7ax for 100 picoseconds (ps), respec-
tively. The CV values along the MD trajectories are com-
puted and recorded in every 0.2 ps. We randomly select 100
data points for each state to train the sampler. On each can-
didate path in the CV space, we sample a point every 0.1 arc
length. For each sample on the path, we run three restraint
simulations with k = 500 kJ/mol/rad for 100 ps. The CV
values along the trajectories are computed and recorded in
every 0.01 ps to estimate the potential mean force, transfor-
mation matrix M, and their derivative. We choose a masked
autoregressive flow with 15 autoregressive layers and hid-
den units of shape [512, 256, 128, 64] with ELU activation
as our normalizing flow model.

Path Finding. To illustrate the path-finding ability of Path-
Flow, we compare our model with Nudged Elastic Band
(NEB) and the string method with swarms of trajectory. All
the methods are implemented with 40 images. The detailed
setting up of the string method follows that in Pan et al.
[2008] Section III.1.

Figure 3 plots the transition pathways found by NEB (aver-
age of 30-40 iterations), the string method (average of 60-70
iterations) and PathFlow. We observe that transition paths
found by PathFlow, NEB and the string method overlap in
most regions. They all pass the same energy barrier with
free energy difference of 8.6 kcal/mol. The three pathways

Figure 4: Free energy profile of the transition pathway found
by PathFlow. Free energy in C7eq (α = 0) is set as 0. The
configuration plots were made by Cuny et al. [2017].

C7eq C7ax Average
Boltzmann -0.3889 1.689 0.6498
PathFlow -1.005 0.1581 -0.4235
BG Separate -1.097 0.03027 -0.5333

Table 1: Test Negative Log Likelihood of PathFlow, Boltz-
mann Generator and BG Separate.

differ around C7ax which may be caused by the conflict
between LNF and Lpath during training. However, the free
energy profile of our pathway in Figure 4 is almost con-
sistent with that of the string method in Pan et al. [2008].

Configuration Generation. We also compare PathFlow
with the Boltzmann generator on Alanine Dipeptide config-
urations. The Boltzmann generator is trained using a Gaus-
sian base distribution and simulation samples from both
state C7eq and C7ax. We expect that the Boltzmann gener-
ator is not effective at sampling separated and disconnected
states, and hence we further trained two separate Boltzmann
Generators (BG Separate)for these two states, respectively.
We tested three models on 100 samples from each state. The
test negative log likelihood is listed in Table 1.

We observe that BG Separate performs well on both states,
but the Boltzmann generator achieves the worst test loss
among all models. This confirms that the Boltzmann gener-
ator is not effective at sampling multi-modal distributions
with two metastable states, which is widely known as a
major challenge for generative models. However, by in-
troducing two base distributions, our model PathFlow out-
performs Boltzmann generators significantly in sampling
multi-modal distributions. PathFlow obtains a test loss close
to that of BG separate but only uses half the model size.



7 CONCLUSION AND PERSPECTIVE

In summary, PathFlow is a promising tool for generating
Boltzmann samples and discovering transition paths to de-
scribe the transition mechanisms. Different from existing
path finding algorithms (e.g.,NEB [Jónsson et al., 1998],
string method [Weinan et al., 2002]), PathFlow is trained by
the standard gradient-based optimizers associating with the
efficient gradient estimator developed in section 4. Note that
the estimator has the potential to be employed by other ma-
chine learning based path finding algorithms. In particular,
as an independent research interest, it is empirically found
that the gradient-based training leads to a faster path finding
speed and fewer simulation trials. In addition, PathFlow
can be viewed as one successful application of multitask
learning to physics. We expect more multitask learning tech-
niques will demonstrate their power in scientific research.
Future research directions also include normalizing flows or
other machine learning based methods in the transition tube
[Vanden-Eijnden, 2006] sampling as well as CV discovery.
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