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ABSTRACT

Knowledge Graph Embedding (KGE) is a common method for Knowledge Graphs
(KGs) to serve various artificial intelligence tasks. The suitable dimensions of
the embeddings depend on the storage and computing conditions of the specific
application scenarios. Once a new dimension is required, a new KGE model
needs to be trained from scratch, which greatly increases the training cost and
limits the efficiency and flexibility of KGE in serving various scenarios. In this
work, we propose a novel KGE training framework MED, through which we could
train once to get a croppable KGE model applicable to multiple scenarios with
different dimensional requirements, sub-models of the required dimensions can be
cropped out of it and used directly without any additional training. In MED, we
propose a mutual learning mechanism to improve the low-dimensional sub-models
performance and make the high-dimensional sub-models retain the capacity that
low-dimensional sub-models have, an evolutionary improvement mechanism to
promote the high-dimensional sub-models to master the knowledge that the low-
dimensional sub-models can not learn, and a dynamic loss weight to balance the
multiple losses adaptively. Experiments on 4 KGE models over 4 standard KG
completion datasets, 3 real application scenarios over a real-world large-scale KG,
and the experiments of extending MED to the language model BERT show the
effectiveness, high efficiency, and flexible extensibility of MED. The code and data
are available at https://anonymous.4open.science/r/MED-DBFC/.

1 INTRODUCTION

Knowledge Graphs (KGs) are composed of triples representing facts in the form of (head entity,
relation, tail entity), abbreviated as (h, r, t). KG has been widely used in recommendation systems Zhu
et al. (2021); Zhang et al. (2021), information extraction Hoffmann et al. (2011); Daiber et al. (2013),
question answering Zhang et al. (2016); Diefenbach et al. (2018) and other tasks. A common way
to apply a knowledge graph is to represent the entities and relations in the knowledge graph into
continuous vector spaces, called knowledge graph embedding (KGE) Bordes et al. (2013); Sun et al.
(2019b), and then use the vector representation of entities and relations to serve a variety of tasks.

KGEs with higher dimensions have greater expressive power and usually achieve better performance,
but this also means a larger number of parameters and requires more storage space and computing
resources Zhu et al. (2022); Sachan (2020). The appropriate dimensions of the KGE are different for
different devices or scenarios. As shown in Fig. 1, large remote servers have large storage space and
sufficient computing resources to support high-dimensional KGE with good performance, while small
and medium-sized terminal devices, such as vehicle-mounted systems or smartphones, can only accept
low-dimensional KGE due to limited computing power and storage capacity. Therefore, according
to the conditions of different devices or scenes, people tend to train the KGE with appropriate
dimensions and as high quality as possible. However, the challenge is that once a new dimension
is required, a new KGE needs to be trained from scratch. Especially when only low-dimensional
KGE can be applied, to ensure good performance, the additional model compression technology
such as knowledge distillation Hinton et al. (2015); Zhu et al. (2022) is needed during training. This
significantly increases training costs and limits KGE’s efficiency and flexibility in serving different
scenarios.

Thus a new concept "croppable KGE" is proposed and we are interested in the research question that
is it possible to train a croppable KGE, with which KGEs of various required dimensions can
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be cropped out of it, directly be used without any additional training, and achieve promising
performance?

Figure 1: Diverse KGE dimensions for a KG.

In this work, our main idea of croppable KGE
learning is to train an entire KGE that contains
many sub-models of different dimensions in it.
These sub-models share their embedding param-
eters and are trained simultaneously. The goal
is that the low-dimensional sub-models can ben-
efit from the more expressive high-dimensional
sub-models, while the high-dimensional sub-
models retain the ability of the low-dimensional
sub-models and master the knowledge that the
low-dimensional sub-models cannot. Based on
this idea, we propose a croppable KGE train-

ing framework MED, which consists of three main modules, the Mutual learning mechanism, the
Evolutionary improvement mechanism, and the Dynamic loss weight to achieve the above purpose.
Specifically, the mutual learning mechanism is based on knowledge distillation and it makes pair-
wise neighbor sub-models learn from each other, so that the performance of the lower-dimensional
sub-model can be improved, and the higher-dimensional sub-model can retain the ability of the lower-
dimensional sub-model. The evolutionary improvement mechanism helps the high-dimensional
sub-model master more knowledge that the low-dimensional sub-model cannot by making the high-
dimensional sub-model pay more attention to learn the triples that the low-dimensional sub-model
can’t correctly predict. The dynamic loss weight is designed to adaptively balance multiple losses of
different sub-models according to their dimensions and further improve the overall performance.

We evaluate the effectiveness of our proposed MED by implementing it on three typical KGE methods
and four standard KG datasets. We also prove its practical value by applying MED to a real-world
large-scale KG and downstream tasks. Furthermore, we demonstrate the extensibility of MED
by implementing it on language model BERT Devlin et al. (2019) and GLUE Wang et al. (2019)
benchmarks. The experimental results show that (1) MED successfully trains a croppable KGE
model available for various dimensional requirements, which contains multiple parameter-shared
sub-models of different dimensions that of high performance and can be used directly without
additional training; (2) the training efficiency of MED is far higher than that of independently training
multiple KGE models of different sizes or obtaining them by knowledge distillation. (3) MED can be
flexibly extended to other neural network models besides KGE and achieve good performance; (4)
our proposed mutual learning mechanism, evolutionary improvement mechanism, and dynamic loss
weight are effective and necessary for MED to achieve overall optimal performance. In summary, our
contributions are as follows:

• We propose a new research question and task: training croppable KGE, from which KGEs
of different dimensions can be cropped and used directly without any additional training.

• We propose a novel framework MED, including a mutual learning mechanism, an evolution-
ary improvement mechanism, and a dynamic loss weight, to ensure the overall performance
of all sub-models during training the croppable KGE.

• We experimentally prove that all sub-models of MED work well, especially the performance
of the low-dimensional sub-models exceeding the KGE with the same dimension trained by
the state-of-the-art distillation-based methods. MED also shows excellent performance in
real-world applications and good extensibility on other types of neural networks.

2 RELATED WORK

This work is to achieve a croppable KGE that meets different dimensional requirements. One of
the most common methods to obtain a good-performance KGE of the target dimension is utilizing
knowledge distillation with a high-dimensional powerful teacher KGE. Thus, we focus on two
research fields most relevant to our work: knowledge graph embedding and knowledge distillation.
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2.1 KNOWLEDGE GRAPH EMBEDDING

Knowledge graph embedding (KGE) technology has been widely applied with the key idea of
mapping entities and relations of a KG into continuous vector spaces as vector representations, which
can further serve various KG downstream tasks. TransE Bordes et al. (2013) is the most representative
translation-based KGE method by regarding the relation as a translation from the head to tail entity.
Variants of TransE include TransH Wang et al. (2014), TransR Lin et al. (2015), TransD Ji et al. (2015)
and so on. RESCAL Nickel et al. (2011) is the first one based on vector decomposition, and then to
improve it, DistMult Yang et al. (2015), ComplEx Trouillon et al. (2016), and SimplE Kazemi & Poole
(2018) are proposed. RotatE Sun et al. (2019b) is a typical rotation-based method that regards the
relation as the rotation between the head and tail entities. QuatE Zhang et al. (2019) and DihEdral Xu
& Li (2019) work with a similar idea. PairRE Chao et al. (2021) uses two relation vectors to project
the head and tail entities into an Euclidean space to encode complex relational patterns. With the
development of neural networks, KGEs based on graph neural networks (GNNs) Dettmers et al.
(2018); Nguyen et al. (2018); Schlichtkrull et al. (2018); Vashishth et al. (2020) are also proposed.
Although the KGEs are simple and effective, there is an obvious challenge: In different scenarios, the
required KGE dimensions are different, which depends on the storage and computing resources of
the device. It has to train a new KGE model from scratch for a new dimension requirement, which
greatly increases the training cost and limits the flexibility for KGE to serve diversified scenarios.

2.2 KNOWLEDGE DISTILLATION

High-dimensional KGEs have strong expression ability due to the large number of parameters, but
require a lot of storage and computing resources, and are not suitable for all scenarios, especially
small devices. To solve this problem, a common way is to compress a high-dimensional KGE to the
target low-dimensional KGE by knowledge distillation Hinton et al. (2015); Mirzadeh et al. (2020)
and quantization Bai et al. (2021); Stock et al. (2021) technology.

Quantization replaces continuous vector representations with lower-dimensional discrete codes. TS-
CL Sachan (2020) is the first work of KGE compression applying quantization. LightKG Wang et al.
(2021a) uses a residual module to induce diversity among codebooks. However, quantization cannot
improve the inference speed so it’s still not suitable for devices with limited computing resources.

Knowledge distillation (KD) has been widely used in Computer Vision Mirzadeh et al. (2020) and
Natural Language Processing Devlin et al. (2019); Sun et al. (2019a), helping reduce the model size
and increase the inference speed. The core idea is to use the output of a large teacher model to guide
the training of a small student model. DualDE Zhu et al. (2022) is a representative KD-based work to
transfer the knowledge of high-dimensional KGE to low-dimensional KGE. It considers the mutual
influences between the teacher and student and finetunes the teacher during training.MulDE Wang
et al. (2021b) transfers the knowledge from multiple low-dimensional teacher models to a student
model for hyperbolic KGE. ISD Zhou et al. (2022b) improves low-dimensional KGE by making it
play the teacher and student roles alternatively during training. IterDE Liu et al. (2023) introduces an
iterative distillation way and enables a KGE model to be the student and teacher during distilling
alternately, thus knowledge can be transferred smoothly between high-dimensional teacher and
low-dimensional student. Other distillation works related to knowledge graph include PMD Fan et al.
(2024) applying distillation to pre-trained language models to improve KG completion, IncDE Liu
et al. (2024) using distillation between the same-dimensional models at different times for incremental
learning, and SKDE Xu et al. (2024) proposing self-knowledge distillation to avoid introducing a
complex teacher model. Among these methods, DualDE Zhu et al. (2022) and IterDE Liu et al. (2023)
are more relevant to our work, all have the setting that compresses high-dimensional teacher into
low-dimensional student model. In this work, we propose a novel KD-based KGE training framework
MED, one training can obtain a croppable KGE that meets multiple dimensional requirements.

3 PRELIMINARY
Table 1: Score functions.

KGE method Scoring Function f(h, r, t)

TransE Bordes et al. (2013) −∥h+ r− t∥
SimplE Kazemi & Poole (2018) 1

2 (< hH , r, tT > + < tH , r−1, hT >)
RotatE Sun et al. (2019b) −∥h ◦ r− t∥
PairRE Chao et al. (2021) −

∥∥h ◦ rH − t ◦ rT
∥∥

Knowledge graph embedding (KGE) methods
aim to express the relations between entities in a
continuous vector space through a scoring func-
tion f . Specifically, given a knowledge graph
G = (E ,R, T ) where E , R and T are the sets
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of entities, relations and all observed triples, we utilize the triple scoring function to measure the
plausibility of triples in the embedding space for a triple (h, r, t) where h ∈ E , r ∈ R and t ∈ E . The
triple score function is denoted as s(h,r,t) = f(h, r, t) with embeddings of head entity h, relation r
and tail entity t as input. Table 1 summarizes the scoring functions of some popular KGE methods,
where ◦ is the Hadamard product, < x1, ..., xk >=

∑
i x

1
i ...x

k
i is the generalized dot product. The

higher the triple score, the more likely the model is to judge the triples as true. The optimization
objective of KGE model is

LKGE = −
∑

(h,r,t)∈T ∪T −

y log σ(s(h,r,t)) + (1− y) log(1− σ(s(h,r,t))), (1)

where T − = E ×R× E \ T is the set of negative triples, σ is the Sigmoid activation function, y is
the ground-truth label of triple (h, r, t), y = 1 for positive triples and y = 0 for negative triples.

4 MED FRAMEWORK

Figure 2: Overview of MED.

As shown in Fig. 2, our croppable KGE framework
MED contains multiple (let’s say n) sub-models
of different dimensions in it, denoted as Mi(i =
1, 2..., n) with dimension of di. Each sub-model Mi

is composed of the first di dimensions of the whole
embedding and the score of triple (h, r, t) output by
Mi is si(h,r,t) = f(h[0:di], r[0:di], t[0:di]), where
h[0:di] represents the first di elements of vector h.
The parameters of sub-model Mi are shared by all
sub-models Mj(i<j⩽n) that are higher-dimensional
than it. The number of sub-models n and the specific
dimension of each sub-model di can be set according
to the actual application needs. For low-dimensional
sub-models, we want to improve their performance as
much as possible. For high-dimensional sub-models,
we hope they cover the abilities that low-dimensional
sub-models already have and master the knowledge
that low-dimensional sub-models can not learn well,
that is, they need to correctly predict not only the
triples that low-dimensional sub-models can predict correctly but also those low-dimensional sub-
models predict wrongly.

MED is based on knowledge distillation Hinton et al. (2015); Tang et al. (2019); Devlin et al. (2019)
technique that the student learns by fitting the hard (ground-truth) label and the soft label from
the teacher simultaneously. In MED, we first propose a mutual learning mechanism that makes
low-dimensional sub-models learn from high-dimensional sub-models to achieve better performance,
and makes high-dimensional sub-models also learn from low-dimensional sub-models to retain
the abilities that low-dimensional sub-models already have. Then, we propose an evolutionary
improvement mechanism to enable high-dimensional sub-models to master the knowledge that the
low-dimensional sub-models can not learn well. Finally, we train MED with dynamic loss weight to
adaptively balance multiple optimization objectives of sub-models.

4.1 MUTUAL LEARNING MECHANISM

We treat each sub-model Mi as the student of its higher-dimensional neighbor sub-model Mi+1

to achieve better performance, since high-dimensional KGEs usually have more expressive power
than low-dimensional ones due to more parameters Sachan (2020); Zhu et al. (2022). We also treat
sub-model Mi as the student of its lower-dimensional neighbor sub-model Mi−1, so the higher-
dimensional sub-model can review what the lower-dimensional sub-model has learned and retain the
low-dimensional one’s existing abilities. Thus, pairwise neighbor sub-models serve as both teachers
and students, learning from each other. The mutual learning loss between each pair of neighbor

4
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sub-models is
Li−1,i
ML =

∑
(h,r,t)∈T ∪T −

dδ

(
si−1
(h,r,t), s

i
(h,r,t)

)
, 1 < i ⩽ n, (2)

where si(h,r,t) is the score of triple (h, r, t) output by sub-model Mi and reflects the possibility that
this triplet exists, T − = E × R × E \ T is the negative triple set, n is the number of sub-models,
and dδ is Huber loss Huber & Peter (1964) with δ = 1 commonly used in knowledge distillation for
KGE Zhu et al. (2022). MED makes each sub-model only learn from its neighbor sub-models. The
advantage is that this not only reduces the computational complexity of training but also makes every
pair of teacher and student models have a relatively small dimension gap, which is important and
effective because the large gap of dimensions between teacher and student will destroy the distillation
effect Mirzadeh et al. (2020); Zhu et al. (2022).

4.2 EVOLUTIONARY IMPROVEMENT MECHANISM

The hard (ground-truth) label is the other important supervision signal during training in knowledge
distillation Hinton et al. (2015). High-dimensional sub-models need to master triples that low-
dimensional sub-models can not learn well, that is, high-dimensional sub-models need to correctly
predict those positive (negative) triples that are wrongly predicted to be negative (positive) by low-
dimensional sub-models. In MED, for a given triple (h, r, t), the optimization weight in sub-model
Mi for it depends on the triple score output by the previous sub-model Mi−1.

For a positive triple, the optimization weight of the model Mi for it is negatively correlated with
its score by the model Mi−1. Specifically, the higher its score from the model Mi−1 (meaning that
Mi−1 has been able to correctly judge it as a positive sample), the lower the optimization weight
of the model Mi for it, and the lower its score from the model Mi−1 (meaning that Mi−1 wrongly
judges it as a negative sample), the higher the optimization weight of the model Mi for it because
Mi−1 cannot predict this triple well. The optimization weight of Mi for the positive triple is

posih,r,t =
expw1/s

i−1
(h,r,t)∑

(h,r,t)∈Tbatch
expw1/s

i−1
(h,r,t)

if 1 < i ⩽ n ;
1

|Tbatch|
if i = 1, (3)

where si−1
(h,r,t) is the score for triple (h, r, t) output by the sub-model Mi−1, Tbatch is the set of

positive triples within a batch, and w1 is a learnable scaling parameter. Conversely, for a negative
triple, the optimization weight of the model Mi for it is positively correlated with its score by the
model Mi−1 Sun et al. (2019b), and the optimization weight of Mi for the negative triple is

negih,r,t =
expw2 · si−1

(h,r,t)∑
(h,r,t)∈T−

batch
expw2 · si−1

(h,r,t)

if 1 < i ⩽ n ;
1

|T−
batch|

if i = 1, (4)

where T−
batch is the set of negative triples within a batch, and w2 is a learnable scaling parameter.

Therefore, the evolutionary improvement loss of the sub-model Mi is

Li
EI = −

∑
(h,r,t)∈T ∪T −

posih,r,t · y log σ(si(h,r,t)) + negih,r,t · (1− y) log(1− σ(si(h,r,t))), (5)

where σ is the Sigmoid activation function, y is the ground-truth label of the triple (h, r, t), and it is 1
for positive triples and 0 for negative ones. In each sub-model, different hard (ground-truth) label
loss weights are set for different triples, and the high-dimensional sub-model will pay more attention
to learn the triple that the low-dimensional sub-model can not learn well.

4.3 DYNAMIC LOSS WEIGHT

Since MED involves the optimization of multiple sub-models, we set dynamic loss weights during
training. Initially, low-dimensional sub-models prioritize learning from high-dimensional sub-models
to improve performance. This means low-dimensional sub-models rely more on soft label information,
so for low-dimensional sub-models, evolutionary improvement loss should account for less than
mutual learning loss. Conversely, high-dimensional sub-models should focus more on capturing
knowledge that low-dimensional models lack, while mitigating the impact of low-quality outputs from
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low-dimensional models to maintain their good performance, that is, high-dimensional sub-models
rely more on hard label information. So for high-dimensional sub-models, evolutionary improvement
loss should account for more than mutual learning loss. For a teacher-student pair, their mutual
learning loss acts on both teacher and student models simultaneously, so the effect of mutual learning
loss for them is theoretically the same. We set different evolutionary improvement loss weights for
different sub-models, and the final training loss function of MED is

L =

n∑
i=2

Li−1,i
ML +

n∑
i=1

exp(
w3 · di
dn

) · Li
EI , (6)

where w3 is a learnable scaling parameter, and di is the dimension of the ith sub-model.

5 EXPERIMENT

We evaluate MED on typical KGE and GLUE benchmarks and particularly answer the following
research questions: (RQ1) Is it capable for MED to train a croppable KGE at once that multiple
sub-models of different dimensions can be cropped from it and all achieve promising performance?
(RQ2) Can MED finally achieve parameter-efficient KGE models? (RQ3) Does MED work in
real-world applications? (RQ4) Can MED be extended to other neural networks besides KGE?

5.1 EXPERIMENT SETTING

5.1.1 DATASET AND KGE METHODS

MED is universal and can be applied to any KGE method with a triple score function, we select
three commonly used KGE methods as examples: TransE Bordes et al. (2013), SimplE Kazemi &
Poole (2018), RotatE Sun et al. (2019b) and PairRE Chao et al. (2021), the triple score functions are
described in Table 1.

Table 2: Statistics of datasets.
Dataset #Ent. #Rel. #Train #Valid #Test

WN18RR 40,943 11 86,835 3,034 3,134
FB15K237 14,541 237 272,115 17,535 20,466
CoDEx-L 77,951 69 551,193 30,622 30,622
YAGO3-10 123,143 37 1,079,040 4,978 4,982
SKG 6,974,959 15 50,775,620 - -

We conduct comparison experiments on two com-
mon KG completion benchmark datasets WN18RR
Toutanova et al. (2015) and FB15K237 Dettmers
et al. (2018) and two more larger-scale KGs CoDEx-
L Safavi & Koutra (2020) and YAGO3-10 Mahdis-
oltani et al. (2015). Besides, we apply our MED on a
real-world large-scale e-commerce social knowledge
graph (SKG) involving more than 50 million triples of social records by about 7 million users in the
Taobao platform in real application scenarios. Table 2 shows the statistics of the datasets.

5.1.2 EVALUATION METRIC

For the link prediction task, we adopt standard metrics MRR and Hit@k (k = 1, 3, 10) in the filtered
setting Bordes et al. (2013). For a test triple (h, r, t), we construct candidate triples by replacing h
with all entities and keeping the replaced triples not in training, validation, and test set. Then we
calculate the triple score rank of (h, r, t) among all candidate triples as its head prediction rank rankt.
Similarly, we get its tail prediction rank rankt. We average rankh and rankt as (h, r, t)’s final
rank. MRR is the mean reciprocal rank of all test triples, and Hit@k is the percentage of test triples
with rank ≤ k. We use Effi Chen et al. (2023), that is MRR/#P (#P is the number of parameters), to
quantify the parameter efficiency of models. We use f1-score and accuracy for user labeling task, and
normalized discounted cumulative gain ndcg@k(k = 5, 10) for product recommendation task.

5.1.3 IMPLEMENTATION

For the link prediction task, we set dn = 640 for the highest-dimensional sub-model Mn and d1 = 10
for the lowest-dimensional sub-model M1. We set n = 64 and the dimension gap 10 for every pair of
neighbor sub-models. There are a total of 64 available sub-models of different dimensions from 10 to
640 in our croppable KGE model. The dimension of sub-model Mi(i = 1, 2..., 64) is 10× i. For the
user labeling and product recommendation task, we set n = 3 and train the croppable KGE containing
3 sub-models: M1 with d1 = 10 for mobile phone (MB) terminals that are limited by storage and
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computing resources, M2 with d2 = 100 for the personal computer (PC), and M3 with d3 = 500 for
the platform’s servers. We initialize the learnable scaling parameters wi, w2 and w3 in equation 3,
equation 4 and equation 6 to 1. We implement MED by extending OpenKE Han et al. (2018), an
open-source KGE framework based on PyTorch. We set the batch size to 1024 and the maximum
training epoch to 3000 with early stopping. For each positive triple, we generate 64 negative triples
by randomly replacing its head or tail entity with another entity. We use Adam Kingma & Ba (2015)
optimizer with a linear decay learning rate scheduler and perform a search on the initial learning
rate in {0.0001, 0.0005, 0.001, 0.01}. We train all sub-models simultaneously by optimizing the
uniformly sampled sub-models from the full Croppable model in each step.

5.1.4 BASELINES

For each required dimension dr, we extract the first dr dimensions from our croppable KGE as the
target model and compare it to the KGE models obtained by 8 baselines of the following 3 types:

• Directly training the target KGE model of requirement dimension dr, referred to as 1) DT. The
directly trained highest-dimensional KGE model (dr = dn) is marked as MDT

max.
• Extracting the first dr dimensions from MDT

max as the target model, referred to as 2) Ext. Besides,
we update MDT

max by assessing the importance of each one of 640 dimensions and arranging them
in descending order before extracting as Molchanov et al. (2017); Voita et al. (2019): 3) Ext-L,
the importance for each dimension of MDT

max is the variation of KGE loss on validation set after
removing it; and 4) Ext-V, the importance for each dimension is the average absolute of its
parameter weights of all entities and all relations.

• Distilling the target KGE by KD methods: 5) BKD Hinton et al. (2015) is the most basic one by
minimizing the KL divergence of the output distributions of teacher and student; 6) TA Mirzadeh
et al. (2020) uses a medium-size teaching assistant (TA) model as a bridge for size gap, where TA
model has the same dimension as the directly trained one whose MRR is closest to the average MRR
of teacher and student. We also compare with two KD methods proposed for KGE, which have
similar configurations to ours, i.e. compressing high-dimensional teacher into low-dimensional
student: 7) DualDE Zhu et al. (2022) considers the mutual influences between teacher and student
and optimizes them simultaneously; 8) IterDE Liu et al. (2023) enables the KGE model to
alternately act as student and teacher so that knowledge can be transferred smoothly between
high-dimensional teacher and low-dimensional student. In these baselines, MDT

max is the teacher,
and other settings including hyperparameters are the same as their original papers.

5.2 PERFORMANCE COMPARISON

We report the link prediction results of some representative dimensions in Table 3, more results of
other dimensions and metrics are in Appendix A and the ablation studies are in Appendix B.

MED outperforms baselines in almost all settings, especially for the extremely low dimensions. On
WN18RR with d=10, MED achieves an improvement of 14.9% and 15.1% on TransE, 8.4% and
6.6% on RotatE, 29.4% and 10.6% on PairRE compared with the best MRR and Hit@10 of baselines.
We can observe a similar phenomenon on FB15K237. This benefits from the rich knowledge sources
of low-dimensional models in MED: For sub-model Mi, Mi+1 is the teacher directly next to it, while
Mi+2 can also indirectly affect Mi by directly affecting Mi+1. Theoretically, all higher-dimensional
sub-models can finally transfer their knowledge to low-dimensional sub-models through stepwise
propagation. Although such stepwise propagation may have negative effects on high-dimensional
models by bringing low-quality knowledge from low-dimensional sub-models, the evolutionary
improvement mechanism in MED weakens the damage and makes high-dimensional ones still

Figure 3: Results of different dimensions for
PairRE on WN18RR (left) and FB15K237 (right).

achieve competitive performance than directly
trained KGEs as in Fig. 3. We also find that Ext-
based methods perform extremely unstable: Ext,
Ext-L, and Ext-V work worse than DT except
on WN18RR with TransE, indicating that only
considering the importance of each dimension is
not enough to guarantee the performance of all
sub-models. More results and ablation studies
are in Appendix A and Appendix B.
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Table 3: MRR and Hit@10 (H10) of some dimensions on WN18RR (WN) and FB15K237 (FB).
WN18RR FB15K237

10d 40d 160d 640d 10d 40d 160d 640d
KGE Method MRR H10 MRR H10 MRR H10 MRR H10 MRR H10 MRR H10 MRR H10 MRR H10

TransE

DT 0.121 0.287 0.214 0.496 0.233 0.531 0.237 0.537 0.150 0.235 0.299 0.477 0.315 0.499 0.322 0.508
Ext 0.125 0.298 0.199 0.468 0.225 0.515 0.237 0.537 0.115 0.211 0.236 0.392 0.286 0.462 0.322 0.508
Ext-L 0.139 0.315 0.224 0.497 0.236 0.534 0.237 0.537 0.109 0.194 0.232 0.381 0.285 0.462 0.322 0.508
Ext-V 0.139 0.309 0.222 0.494 0.236 0.532 0.237 0.537 0.139 0.256 0.237 0.396 0.293 0.466 0.322 0.508
BKD 0.141 0.323 0.226 0.513 0.233 0.531 - - 0.176 0.293 0.303 0.480 0.315 0.501 - -
TA 0.144 0.335 0.226 0.512 0.234 0.533 - - 0.175 0.246 0.303 0.484 0.319 0.504 - -
DualDE 0.148 0.337 0.225 0.514 0.235 0.533 - - 0.179 0.301 0.306 0.483 0.319 0.505 - -
IterDE 0.143 0.332 0.224 0.511 0.236 0.531 - - 0.176 0.285 0.307 0.482 0.317 0.505 - -
MED 0.170 0.388 0.232 0.518 0.236 0.529 0.237 0.537 0.196 0.341 0.308 0.486 0.320 0.505 0.322 0.507

SimplE

DT 0.061 0.126 0.316 0.389 0.409 0.459 0.421 0.481 0.097 0.179 0.236 0.390 0.285 0.458 0.295 0.472
Ext 0.004 0.007 0.160 0.249 0.357 0.401 0.421 0.481 0.037 0.068 0.090 0.144 0.229 0.372 0.295 0.472
Ext-L 0.005 0.006 0.169 0.244 0.398 0.454 0.421 0.481 0.045 0.059 0.083 0.146 0.196 0.316 0.295 0.472
Ext-V 0.004 0.006 0.246 0.317 0.398 0.461 0.421 0.481 0.049 0.069 0.105 0.149 0.224 0.369 0.295 0.472
BKD 0.075 0.156 0.343 0.399 0.414 0.468 - - 0.113 0.204 0.244 0.412 0.287 0.463 - -
TA 0.089 0.189 0.368 0.418 0.415 0.472 - - 0.124 0.221 0.254 0.416 0.290 0.465 - -
DualDE 0.083 0.175 0.386 0.423 0.419 0.475 - - 0.120 0.213 0.258 0.429 0.293 0.466 - -
IterDE 0.077 0.162 0.375 0.419 0.416 0.469 - - 0.120 0.215 0.257 0.427 0.293 0.465 - -
MED 0.111 0.224 0.385 0.431 0.418 0.477 0.421 0.482 0.143 0.267 0.261 0.427 0.291 0.466 0.294 0.470

RotatE

DT 0.172 0.418 0.456 0.556 0.471 0.567 0.476 0.575 0.254 0.424 0.312 0.495 0.322 0.506 0.325 0.515
Ext 0.299 0.378 0.437 0.516 0.467 0.549 0.476 0.575 0.138 0.245 0.251 0.410 0.291 0.465 0.325 0.515
Ext-L 0.206 0.277 0.399 0.487 0.445 0.541 0.476 0.575 0.135 0.243 0.221 0.365 0.280 0.453 0.325 0.515
Ext-V 0.261 0.377 0.337 0.471 0.416 0.532 0.476 0.575 0.160 0.281 0.238 0.393 0.288 0.458 0.325 0.515
BKD 0.175 0.434 0.457 0.556 0.472 0.570 - - 0.277 0.442 0.314 0.503 0.322 0.510 - -
TA 0.177 0.438 0.459 0.558 0.473 0.572 - - 0.280 0.447 0.313 0.501 0.323 0.510 - -
DualDE 0.179 0.440 0.462 0.559 0.473 0.573 - - 0.282 0.449 0.315 0.502 0.322 0.512 - -
IterDE 0.176 0.436 0.459 0.560 0.471 0.569 - - 0.276 0.445 0.317 0.504 0.323 0.512 - -
MED 0.324 0.469 0.466 0.561 0.471 0.574 0.476 0.574 0.288 0.459 0.318 0.504 0.323 0.510 0.324 0.514

PairRE

DT 0.220 0.321 0.415 0.472 0.449 0.534 0.453 0.544 0.182 0.314 0.284 0.452 0.319 0.505 0.332 0.522
Ext 0.152 0.209 0.334 0.463 0.419 0.526 0.453 0.544 0.148 0.222 0.217 0.353 0.294 0.469 0.332 0.522
Ext-L 0.162 0.220 0.363 0.442 0.437 0.523 0.453 0.544 0.150 0.249 0.219 0.333 0.309 0.489 0.332 0.522
Ext-V 0.172 0.260 0.389 0.456 0.441 0.529 0.453 0.544 0.176 0.277 0.229 0.374 0.311 0.490 0.332 0.522
BKD 0.228 0.336 0.421 0.483 0.451 0.536 - - 0.198 0.332 0.288 0.453 0.321 0.508 - -
TA 0.245 0.340 0.426 0.487 0.452 0.537 - - 0.208 0.346 0.292 0.455 0.323 0.509 - -
DualDE 0.242 0.336 0.428 0.495 0.453 0.540 - - 0.207 0.342 0.293 0.456 0.326 0.512 - -
IterDE 0.235 0.336 0.426 0.495 0.450 0.538 - - 0.205 0.340 0.293 0.462 0.324 0.508 - -
MED 0.317 0.376 0.433 0.502 0.451 0.541 0.451 0.542 0.239 0.384 0.303 0.466 0.324 0.510 0.330 0.520

5.3 PARAMETER EFFICIENCY OF MED

In Table 4, we compare our sub-models of suitable low dimensions to parameter-efficient KGEs
especially proposed for large-scale KGs including NodePiece Galkin et al. (2022) and EARL Chen
et al. (2023). In the case that the number of model parameters is roughly equivalent, the performance
of the sub-models of MED exceeds that of the specialized parameter-efficient KGE methods. This
demonstrates sub-models of our method are parameter efficient. More importantly, it can provide
parameter-efficient models of different size for applications.

Table 4: Link prediction results on WN18RR, FB15K237, CoDEx-L and YAGO3-10.
FB15k-237 WN18RR CoDEx-L YAGO3-10

Dim #P(M) MRR Hit@10 Effi Dim #P(M) MRR Hit@10 Effi Dim #P(M) MRR Hit@10 Effi Dim #P(M) MRR Hit@10 Effi

RotatE 1000 29.3 0.336 0.532 0.011 500 40.6 0.508 0.612 0.013 500 78 0.258 0.387 0.003 500 123.2 0.495 0.670 0.004
RotatE 100 2.9 0.296 0.473 0.102 50 4.1 0.411 0.429 0.100 25 3.8 0.196 0.322 0.052 20 4.8 0.121 0.262 0.025
+ NodePiece 100 3.2 0.256 0.420 0.080 100 4.4 0.403 0.515 0.092 100 3.6 0.190 0.313 0.053 100 4.1 0.247 0.488 0.060
+ EARL 150 1.8 0.310 0.501 0.172 200 3.8 0.440 0.527 0.116 100 2.1 0.238 0.390 0.113 100 3 0.302 0.498 0.101
+ MED 40 1.2 0.318 0.504 0.265 40 3.2 0.466 0.561 0.146 20 3.1 0.243 0.385 0.078 20 4.9 0.313 0.528 0.064

5.4 MED IN REAL APPLICATIONS

Table 5: Results on SKG.
User Labeling Product Recommendation
server (500d) PC terminal (100d) MP terminal (10d)

Method train time acc. f1 ndcg@5 ndcg@10 ndcg@5 ndcg@10
DT 103h 0.889 0.874 0.411 0.441 0.344 0.361
PCA - - - 0.417 0.447 0.392 0.418
DualDE 195h - - 0.423 0.456 0.404 0.433
MED 53h 0.893 0.879 0.431 0.465 0.422 0.451

We apply the trained croppable KGE with
TransE on SKG to three real applications: the
user labeling task on servers and the product rec-
ommendation task on PCs and mobile phones.
Table 5 shows that our croppable user embed-
dings substantially exceed all baselines includ-
ing directly trained (DT), the best baseline DualDE, and a common dimension reduction method in
industry principal components analysis (PCA) on MDT

max. Notably, the excellent performance on the
mobile phone task (which can only carry embeddings with a maximum dimension of 10 limited by
storage and computing resources) demonstrates the enormous practical value of our approach. More
application details are in Appendix C.

5.5 EXTEND MED TO NEURAL NETWORKS

To verify the extensibility of our method to other neural networks, we take the language model
BERT Devlin et al. (2019) as an example. We uniformly adopt distillation methods implemented
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based on Hugging Face Transformers Wolf et al. (2020) as baselines. Following previous works Sun
et al. (2019a); Tang et al. (2019); Jung et al. (2023); Zhou et al. (2022a), we distill at the fine-tuning
stage. More experimental details are in Appendix D.

Table 6: Results on the dev set of GLUE. The results of knowledge distillation methods for BERT4

and BERT6 are reported by Jung et al. (2023); Zhou et al. (2022a) and the †results reported by us.

Method #P(M) Speedup MNLI-m
acc.

MNLI-mm
acc.

MRPC
f1/acc.

QNLI
acc.

QQP
f1/acc.

RTE
acc.

STS-2
acc.

STS-B
pear./spear.

BERT†
Base 110 1.0× 84.4 85.3 88.6/84.1 89.7 89.6/91.1 67.5 92.5 88.8/88.5

BERT6-BKD 66 2.0× 82.2 82.9 86.2/80.8 88.5 88.0/91.0 65.4 90.9 88.2/87.8
BERT6-PKD 66 2.0× 82.3 82.6 86.4/81.0 88.6 87.9/91.0 63.9 90.8 88.5/88.1
BERT6-MiniLM 66 2.0× 82.2 82.6 84.6/78.1 89.5 87.2/90.5 61.5 90.2 87.8/87.5
BERT6-RKD 66 2.0× 82.4 82.9 86.9/81.8 88.9 88.1/91.2 65.2 91.0 88.4/88.1
BERT6-FSD 66 2.0× 82.4 83.0 87.1/82.2 89.0 88.1/91.2 66.6 91.0 88.7/88.3
BERT4-BKD 55 2.9× 80.5 80.9 87.2/83.1 87.5 86.6/90.4 65.2 90.2 84.5/84.2
BERT4-PKD 55 2.9× 80.9 81.3 87.0/82.9 87.7 86.8/90.5 66.1 90.5 84.3/84.0
BERT4-MetaDistil 55 2.9× 82.4 82.7 88.4/84.2 88.6 87.8/90.8 67.8 91.8 86.3/86.0
BERT-HAT† 54 2.0× 70.8 71.6 81.2/74.8 65.3 76.1/80.4 52.7 84.3 79.6/80.1
BERT-MED 54 2.0× 82.7 83.3 88.0/84.0 86.8 89.1/90.7 67.2 91.9 87.6/87.2

BERT-HAT† 17.5 4.7× 63.6 64.2 68.4/78.4 61.1 69.0/79.7 47.2 82.9 74.1/75.8
BERT-MED 17.5 4.7× 81.2 82.4 86.1/82.0 86.4 83.8/86.2 64.6 88.2 86.1/86.4

BERT-HAT† 6.36 5.2× 59.9 60.0 66.5/77.3 60.1 66.5/77.1 46.2 81.7 71.9/70.4
BERT-MED 6.36 5.2× 72.6 73.7 84.1/78.1 86.0 79.6/82.7 61.7 86.9 82.8/81.6

Table 6 shows the results on the development set of GLUE Wang et al. (2019). We
compare MED with other KD models under similar speedup or a comparable number

500 1000 1500 2000
epoch

0.1

0.2

0.3

0.4

M
RR

10d
40d

160d
640d

Figure 4: Sub-models’
MRR during training on
WN18RR with RotatE.

of parameters. MED achieves competitive performance on most tasks
compared to BERT-specialized KD methods. In addition, when com-
pared to HAT Wang et al. (2020a), which shares the most similar
model architecture to ours, sub-models of MED outperform HAT across
three different parameter quantities. Specifically, sub-models with 54M,
17.5M, and 6.36M parameters achieve average 16.3%, 21.7% and 19.7%
improvements respectively.

5.6 ANALYSIS OF MED

5.6.1 TRAINING EFFICIENCY

Table 7: Training time (hours).
TransE SimplE RotatE PairRE

WN

DT 74.0 (9.49×) 68.0 (12.14×) 141.0 (11.10×) 67.4 (10.06×)
Ext-based 1.5 (0.19×) 1.3 (0.23×) 2.5 (0.20×) 1.6 (0.24×)
BKD 91.5 (11.73×) 72.0 (12.86×) 163.0 (12.83×) 87.5 (13.06×)
TA 172.0 (22.05×) 142.0 (25.36×) 272.0 (21.42×) 166.0 (24.78×)
DualDE 151.0 (19.36×) 133.0 (23.75×) 240.0 (18.90×) 133.0 (19.85×)
IterDE 140.9 (18.06×) 118.0 (21.07×) 216.0 (17.01×) 124.0 (18.51×)
MED 7.8 (1.00×) 5.6 (1.00×) 12.7 (1.00×) 6.7 (1.00×)

FB

DT 218.0 (10.23×) 179.0 (10.65×) 381.0 (10.73×) 179.0 (9.37×)
Ext-based 4.7 (0.22×) 5.1 (0.30×) 9.5 (0.27×) 3.7 (0.19×)
BKD 248.0 (11.64×) 227.0 (13.51×) 443.0 (12.48×) 231.0 (12.09×)
MED 21.3 (1.00×) 16.8 (1.00×) 35.5 (1.00×) 19.1 (1.00×)

We report the training time of obtaining
64 models of all sizes (d=10, 20, ..., 640)
by different methods in Table 7. Figure 4
showing how the MRR of different sub-
models changes during training. For DT,
the training time cost is the sum of the
time of directly training 64 KGE models
of all sizes in turn. For the Ext-based base-
lines, the training time cost is the same
and is equal to the time of training a dn-
dimensional KGE model since the time of arranging dimensions is very short and negligible. For
the KD-based baselines, the training time cost is the sum of the time of training the dn-dimensional
teacher model and distilling 63 student models (d=10, 20, ..., 630) in turn. All training is performed
on a single NVIDIA Tesla A100 40GB GPU for fair comparison. For TA, DualDE and IterDE on
FB15K237, we don’t train student models of all 63 sizes, which is estimated to take more than 400
hours on each KGE method. Compared with directly trained (DT) models of all sizes in turn, MED
accelerates by up to 10× for 4 KGE methods. Although Ext-based baselines spend the shortest
training time, they perform particularly poorly and lack practical value. Except for BKD, KD-based
methods need to optimize both the student model and larger teacher model, which greatly increases
the training parameters and time cost.

5.6.2 EFFECT OF THE NUMBER OF SUB-MODELS Table 8: Results of different n.
10d 40d 160d 640d

n train time MRR H10 MRR H10 MRR H10 MRR H10

64 12.7h 0.324 0.469 0.466 0.561 0.471 0.574 0.476 0.574
16 6.2h 0.322 0.467 0.465 0.561 0.473 0.575 0.477 0.576
4 3.3h 0.319 0.463 0.463 0.561 0.475 0.577 0.480 0.578

We set the number of different sub-models, i.e. n= 64,
16, 4 on WN18RR with RotatE. And Table 8 shows
that when the number of sub-models is reduced, the
performance of high-dimensional (d=160 and 640)
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models improves, while the performance of low-dimensional (d=10 and 40) models decreases (still
exceeds the best result of baselines in Table 3 that MRR=0.299 of Ext with d=10, MRR=0.462 of
DualDE with d=40). The training efficiency is almost linearly related to the number of models.

5.6.3 WHETHER HIGH-DIMENSIONAL SUB-MODELS COVER THE CAPABILITIES OF
LOW-DIMENSIONAL ONES

If a high-dimensional model retains the ability of lower-dimensional models, it should correctly pre-
dict all triples that the lower-dimensional model can predict. We count the percentage of triples in test
set that meet the condition that if the smallest sub-model that can correctly predict a given triple is Mi,
all higher-dimensional sub-models (Mi+1, Mi+2, ..., Mn) also correctly predict it, and denote the re-
sult as the ability retention ratio (ARR). We use Hit@10 to judge whether a triple is correctly predicted,
that is, Mi correctly predicts a triple if Mi scores this triple in the top 10 among all candidate triples.

Figure 5: The ability retention ratio (ARR).

From Fig. 5, ARR of MED is always much higher
than baselines, especially on FB15K237, indicat-
ing that high-dimensional sub-models in MED suc-
cessfully cover the power of low-dimensional ones,
contributed by the mutual learning mechanism that
helps high-dimensional sub-models review what low-
dimensional sub-models have learned. Based on this
advantage of MED, we can provide a simple way
to judge how easy or difficult a triple is for KGE

methods to learn: the triple that low-dimensional sub-models can correctly predict may be easy
since high-dimensional models can also predict it, while triples that can only be predicted by high-
dimensional sub-models are difficult.

5.6.4 VISUAL ANALYSIS OF EMBEDDING

Figure 6: Clustering on FB15K237 with RotatE.

We select four primary entity categories (‘orga-
nization’, ‘sports’, ‘location’, and ‘music’) that
contain more than 300 entities in FB15K237,
and randomly select 250 entities for each. We
cluster these entities’ embeddings of 3 different
dimensions (d=10, 100, 600) by the t-SNE algo-
rithm, and the clustering results are visualized in
Fig. 6. Under the same dimension, the clustering
result of MED is always the best, followed by
DualDE, while the result of Ext-V is generally
poor, which is consistent with the conclusion in
Section 5.2. We also find some special phenomenons for MED when dimension increases: 1) the
nodes of the ‘sports’ gradually become two clusters meaning MED learns more fine-grained category
information as dimension increases. and 2) the relative distribution among different categories hardly
changes and shows a trend of “inheritance” and “improvement”. This further proves MED achieves
our expectation that high-dimensional sub-models retain the ability of low-dimensional sub-models,
and can learn more knowledge than low-dimensional sub-models.

6 CONCLUSION

In this work, we propose a novel KGE training framework, MED, that trains a croppable KGE at once,
and then sub-models of various required dimensions can be cropped out from it and used directly
without additional training. In MED, we propose the mutual learning mechanism to improve low-
dimensional sub-models performance and make the high-dimensional sub-models retain the ability of
the low-dimensional ones, the evolutionary improvement mechanism to motivate high-dimensional
sub-models to master more knowledge that low-dimensional ones cannot, and the dynamic loss
weight to adaptively balance multiple losses. The experimental results show the effectiveness and
high efficiency of our method, where all sub-models achieve promising performance, especially the
performance of low-dimensional sub-models is greatly improved. In future work, we will further
explore the more fine-grained information encoding ability of each sub-model.
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A MORE RESULTS OF LINK PREDICTION

More results of link prediction are shown in Table 9 and Table 10 for WN18RR, and Table 11 and
Table 12 for FB15K237. All comparison results of sub-models of MED to the directly trained KGEs
(DT) of 10- to 640-dimension are shown in Fig. 7.
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Table 9: MRR and Hit@10 of some representative dimensions on WN18RR.

10d 20d 40d 80d 160d 320d 640d

TransE

Method MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10

DT 0.121 0.287 0.176 0.453 0.214 0.496 0.227 0.524 0.233 0.531 0.235 0.534 0.237 0.537
Ext 0.125 0.298 0.172 0.423 0.199 0.468 0.213 0.495 0.225 0.515 0.226 0.521 0.237 0.537
Ext-L 0.139 0.315 0.196 0.461 0.224 0.497 0.232 0.516 0.236 0.534 0.236 0.535 0.237 0.537
Ext-V 0.139 0.309 0.198 0.458 0.222 0.494 0.234 0.525 0.236 0.532 0.236 0.536 0.237 0.537
BKD 0.141 0.323 0.207 0.480 0.226 0.513 0.232 0.527 0.233 0.531 0.236 0.533 - -
TA 0.144 0.335 0.211 0.483 0.226 0.512 0.233 0.527 0.234 0.533 0.236 0.535 - -
DualDE 0.148 0.337 0.213 0.488 0.225 0.514 0.234 0.530 0.235 0.533 0.238 0.535 - -
IterDE 0.143 0.332 0.211 0.484 0.224 0.511 0.232 0.528 0.236 0.531 0.237 0.533 - -
MED 0.170 0.388 0.219 0.491 0.232 0.518 0.232 0.523 0.236 0.529 0.237 0.536 0.237 0.537

SimplE

Method MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10
DT 0.061 0.126 0.257 0.372 0.316 0.389 0.382 0.446 0.409 0.459 0.417 0.474 0.421 0.481
Ext 0.004 0.007 0.051 0.107 0.160 0.249 0.219 0.314 0.357 0.401 0.407 0.451 0.421 0.481
Ext-L 0.005 0.006 0.048 0.078 0.169 0.244 0.369 0.435 0.398 0.454 0.417 0.481 0.421 0.481
Ext-V 0.004 0.006 0.047 0.076 0.246 0.317 0.368 0.402 0.398 0.461 0.413 0.472 0.421 0.481
BKD 0.075 0.156 0.285 0.381 0.343 0.399 0.394 0.450 0.414 0.468 0.418 0.475 - -
TA 0.089 0.189 0.316 0.386 0.368 0.418 0.405 0.456 0.415 0.472 0.421 0.481 - -
DualDE 0.083 0.175 0.328 0.388 0.386 0.423 0.407 0.454 0.419 0.475 0.422 0.482 - -
IterDE 0.077 0.162 0.321 0.378 0.375 0.419 0.404 0.452 0.416 0.469 0.421 0.482 - -
MED 0.111 0.224 0.335 0.395 0.385 0.431 0.407 0.457 0.418 0.477 0.421 0.481 0.421 0.482

RotatE

Method MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10
DT 0.172 0.418 0.409 0.504 0.456 0.556 0.465 0.564 0.471 0.567 0.474 0.573 0.476 0.575
Ext 0.299 0.378 0.379 0.464 0.437 0.516 0.458 0.544 0.467 0.549 0.471 0.552 0.476 0.575
Ext-L 0.206 0.277 0.336 0.424 0.399 0.487 0.423 0.515 0.445 0.541 0.466 0.564 0.476 0.575
Ext-V 0.261 0.377 0.304 0.433 0.337 0.471 0.366 0.497 0.416 0.532 0.451 0.561 0.476 0.575
BKD 0.175 0.434 0.424 0.540 0.457 0.556 0.471 0.565 0.472 0.570 0.474 0.572 - -
TA 0.177 0.438 0.424 0.542 0.459 0.558 0.470 0.567 0.473 0.572 0.474 0.572 - -
DualDE 0.179 0.440 0.425 0.542 0.462 0.559 0.471 0.567 0.473 0.573 0.475 0.573 - -
IterDE 0.176 0.436 0.421 0.538 0.459 0.560 0.470 0.567 0.471 0.569 0.474 0.572 - -
MED 0.324 0.469 0.456 0.543 0.466 0.561 0.471 0.568 0.471 0.574 0.476 0.573 0.476 0.574

PairRE

Method MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10
DT 0.220 0.321 0.342 0.381 0.415 0.472 0.435 0.516 0.449 0.534 0.452 0.542 0.453 0.544
Ext 0.152 0.209 0.261 0.379 0.334 0.463 0.375 0.493 0.419 0.526 0.438 0.545 0.453 0.544
Ext-L 0.162 0.220 0.281 0.360 0.363 0.442 0.417 0.495 0.437 0.523 0.446 0.544 0.453 0.544
Ext-V 0.172 0.260 0.306 0.374 0.389 0.456 0.420 0.498 0.441 0.529 0.446 0.541 0.453 0.544
BKD 0.228 0.336 0.375 0.413 0.421 0.483 0.443 0.525 0.451 0.536 0.453 0.542 - -
TA 0.245 0.340 0.381 0.427 0.426 0.487 0.448 0.534 0.452 0.537 0.453 0.543 - -
DualDE 0.242 0.336 0.377 0.424 0.428 0.495 0.451 0.536 0.453 0.540 0.454 0.544 - -
IterDE 0.235 0.336 0.379 0.423 0.426 0.495 0.449 0.533 0.450 0.538 0.452 0.543 - -
MED 0.317 0.376 0.408 0.467 0.433 0.502 0.449 0.537 0.451 0.541 0.451 0.542 0.451 0.542

(a) TransE on WN18RR (b) SimplE on WN18RR (c) RotatE on WN18RR (d) PairRE on WN18RR

(e) TransE on FB15K237 (f) SimplE on FB15K237 (g) RotatE on FB15K237 (h) PairRE on FB15K237

Figure 7: Performance of sub-models of MED and the directly trained (DT) KGEs of dimensions
from 10 to 640.

B ABLATION STUDY

We conduct ablation studies to evaluate the effect of three modules in MED: the mutual learning
mechanism (MLM), the evolutionary improvement mechanism (EIM), and the dynamic loss weight
(DLW). Table 13 shows the MRR and Hit@k (k = 1, 3, 10) of MED removing these modules
respectively on WN18RR and TransE.
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Table 10: Hit@3 and Hit@1 of some representative dimensions on WN18RR.

10d 20d 40d 80d 160d 320d 640d

TransE

Method Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1
DT 0.202 0.011 0.291 0.016 0.385 0.018 0.401 0.025 0.403 0.027 0.407 0.033 0.412 0.034
Ext 0.201 0.016 0.285 0.023 0.338 0.023 0.364 0.028 0.384 0.033 0.388 0.028 0.412 0.034
Ext-L 0.218 0.029 0.317 0.025 0.361 0.039 0.403 0.046 0.405 0.036 0.408 0.033 0.412 0.034
Ext-V 0.218 0.029 0.314 0.045 0.391 0.051 0.407 0.047 0.408 0.036 0.411 0.027 0.412 0.034
BKD 0.216 0.035 0.331 0.040 0.392 0.033 0.401 0.031 0.404 0.030 0.407 0.032 - -
TA 0.224 0.040 0.343 0.043 0.395 0.037 0.408 0.030 0.407 0.030 0.410 0.034 - -
DualDE 0.226 0.037 0.346 0.043 0.394 0.037 0.408 0.031 0.408 0.031 0.411 0.034 - -
IterDE 0.217 0.032 0.345 0.044 0.392 0.036 0.407 0.030 0.408 0.031 0.407 0.033 - -
MED 0.269 0.040 0.369 0.045 0.399 0.038 0.404 0.042 0.407 0.037 0.410 0.033 0.412 0.031

SimplE

Method Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1
DT 0.061 0.028 0.297 0.193 0.361 0.289 0.406 0.343 0.420 0.382 0.428 0.386 0.433 0.391
Ext 0.003 0.001 0.055 0.023 0.181 0.114 0.249 0.168 0.377 0.329 0.422 0.381 0.433 0.391
Ext-L 0.004 0.003 0.051 0.031 0.187 0.128 0.389 0.333 0.413 0.365 0.429 0.384 0.433 0.391
Ext-V 0.004 0.002 0.050 0.029 0.269 0.205 0.378 0.349 0.409 0.372 0.426 0.382 0.433 0.391
BKD 0.077 0.034 0.331 0.225 0.384 0.311 0.415 0.358 0.426 0.371 0.431 0.385 - -
TA 0.093 0.042 0.349 0.269 0.375 0.349 0.412 0.384 0.425 0.388 0.431 0.389 - -
DualDE 0.086 0.038 0.361 0.285 0.391 0.368 0.416 0.383 0.427 0.389 0.434 0.392 - -
IterDE 0.079 0.033 0.355 0.279 0.382 0.356 0.415 0.379 0.424 0.383 0.433 0.389 - -
MED 0.119 0.048 0.366 0.292 0.395 0.359 0.419 0.380 0.429 0.389 0.435 0.391 0.434 0.390

RotatE

Method Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1
DT 0.304 0.005 0.436 0.357 0.475 0.393 0.487 0.420 0.489 0.423 0.491 0.428 0.493 0.429
Ext 0.315 0.257 0.399 0.335 0.452 0.395 0.472 0.415 0.480 0.413 0.470 0.418 0.493 0.429
Ext-L 0.224 0.166 0.359 0.288 0.420 0.352 0.441 0.373 0.461 0.396 0.481 0.417 0.493 0.429
Ext-V 0.289 0.197 0.336 0.234 0.377 0.263 0.402 0.293 0.442 0.357 0.467 0.397 0.493 0.429
BKD 0.312 0.009 0.452 0.361 0.479 0.403 0.487 0.421 0.490 0.424 0.492 0.425 - -
TA 0.314 0.010 0.452 0.363 0.481 0.408 0.489 0.420 0.488 0.422 0.492 0.425 - -
DualDE 0.320 0.011 0.452 0.364 0.483 0.412 0.489 0.423 0.488 0.426 0.491 0.425 - -
IterDE 0.311 0.013 0.439 0.356 0.479 0.407 0.484 0.423 0.488 0.425 0.493 0.424 - -
MED 0.354 0.277 0.476 0.409 0.486 0.418 0.490 0.422 0.492 0.424 0.493 0.427 0.495 0.428

PairRE

Method Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1
DT 0.271 ,0.174 0.368 0.313 0.428 0.384 0.450 0.399 0.463 0.405 0.462 0.406 0.464 0.407
Ext 0.163 0.120 0.292 0.198 0.366 0.267 0.398 0.314 0.437 0.364 0.452 0.388 0.464 0.407
Ext-L 0.175 0.129 0.302 0.237 0.383 0.319 0.431 0.377 0.450 0.395 0.455 0.400 0.464 0.407
Ext-V 0.192 0.124 0.323 0.269 0.407 0.352 0.435 0.379 0.452 0.398 0.458 0.400 0.464 0.407
BKD 0.279 0.184 0.388 0.334 0.435 0.372 0.452 0.405 0.460 0.405 0.463 0.407 - -
TA 0.293 0.197 0.387 0.332 0.437 0.380 0.460 0.404 0.462 0.409 0.463 0.408 - -
DualDE 0.281 0.175 0.389 0.330 0.437 0.381 0.463 0.409 0.463 0.410 0.465 0.410 - -
IterDE 0.285 0.172 0.390 0.331 0.435 0.377 0.461 0.405 0.463 0.411 0.464 0.410 - -
MED 0.314 0.259 0.426 0.367 0.443 0.392 0.462 0.405 0.464 0.406 0.465 0.407 0.464 0.406
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Table 11: MRR and Hit@10 of some representative dimensions on FB15K237.

10d 20d 40d 80d 160d 320d 640d

TransE

Method MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10
DT 0.150 0.235 0.277 0.440 0.299 0.477 0.313 0.484 0.315 0.499 0.318 0.501 0.322 0.508
Ext 0.115 0.211 0.191 0.324 0.236 0.392 0.266 0.436 0.286 0.462 0.299 0.479 0.322 0.508
Ext-L 0.109 0.194 0.175 0.293 0.232 0.381 0.263 0.424 0.285 0.462 0.301 0.484 0.322 0.508
Ext-V 0.139 0.256 0.200 0.348 0.237 0.396 0.270 0.437 0.293 0.466 0.308 0.488 0.322 0.508
BKD 0.176 0.293 0.279 0.446 0.303 0.480 0.315 0.500 0.315 0.501 0.320 0.502 - -
TA 0.175 0.246 0.281 0.441 0.303 0.484 0.314 0.498 0.319 0.504 0.321 0.504 - -
DualDE 0.179 0.301 0.281 0.443 0.306 0.483 0.316 0.502 0.319 0.505 0.322 0.508 - -
IterDE 0.176 0.285 0.276 0.446 0.307 0.482 0.315 0.503 0.317 0.505 0.319 0.505 - -
MED 0.196 0.341 0.290 0.472 0.308 0.486 0.317 0.502 0.320 0.505 0.321 0.507 0.322 0.507

SimplE

Method MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10
DT 0.097 0.179 0.176 0.321 0.236 0.390 0.271 0.431 0.285 0.458 0.291 0.467 0.295 0.472
Ext 0.037 0.068 0.069 0.107 0.090 0.144 0.159 0.258 0.229 0.372 0.269 0.432 0.295 0.472
Ext-L 0.045 0.059 0.056 0.062 0.083 0.146 0.114 0.205 0.196 0.316 0.258 0.421 0.295 0.472
Ext-V 0.049 0.069 0.066 0.101 0.105 0.149 0.138 0.224 0.224 0.369 0.261 0.414 0.295 0.472
BKD 0.113 0.204 0.182 0.315 0.244 0.412 0.275 0.439 0.287 0.463 0.293 0.470 - -
TA 0.124 0.221 0.192 0.329 0.254 0.416 0.276 0.448 0.290 0.465 0.295 0.471 - -
DualDE 0.120 0.213 0.195 0.346 0.258 0.429 0.279 0.443 0.293 0.466 0.296 0.468 - -
IterDE 0.120 0.215 0.193 0.338 0.257 0.427 0.281 0.440 0.293 0.465 0.297 0.468 - -
MED 0.143 0.267 0.233 0.384 0.261 0.427 0.279 0.448 0.291 0.466 0.293 0.468 0.294 0.470

RotatE

Method MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10
DT 0.254 0.424 0.297 0.477 0.312 0.495 0.317 0.502 0.322 0.506 0.323 0.510 0.325 0.515
Ext 0.138 0.245 0.203 0.340 0.251 0.410 0.276 0.443 0.291 0.465 0.305 0.485 0.325 0.515
Ext-L 0.135 0.243 0.188 0.319 0.221 0.365 0.246 0.402 0.280 0.453 0.299 0.477 0.325 0.515
Ext-V 0.160 0.281 0.198 0.340 0.238 0.393 0.265 0.427 0.288 0.458 0.302 0.478 0.325 0.515
BKD 0.277 0.442 0.305 0.485 0.314 0.503 0.321 0.508 0.322 0.510 0.323 0.509 - -
TA 0.280 0.447 0.306 0.485 0.313 0.501 0.319 0.507 0.323 0.510 0.323 0.509 - -
DualDE 0.282 0.449 0.307 0.486 0.315 0.502 0.318 0.507 0.322 0.512 0.324 0.514 - -
IterDE 0.276 0.445 0.306 0.482 0.317 0.504 0.319 0.508 0.323 0.512 0.324 0.513 - -

MED 0.288 0.459 0.311 0.492 0.318 0.504 0.322 0.509 0.323 0.510 0.324 0.512 0.324 0.514

PairRE

Method MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10
DT 0.182 0.314 0.243 0.395 0.284 0.452 0.307 0.476 0.319 0.505 0.328 0.518 0.332 0.522
Ext 0.148 0.222 0.177 0.289 0.217 0.353 0.259 0.416 0.294 0.469 0.321 0.506 0.332 0.522
Ext-L 0.150 0.249 0.196 0.294 0.219 0.333 0.271 0.436 0.309 0.489 0.326 0.513 0.332 0.522
Ext-V 0.176 0.277 0.192 0.303 0.229 0.374 0.279 0.450 0.311 0.490 0.329 0.513 0.332 0.522
BKD 0.198 0.332 0.251 0.407 0.288 0.453 0.311 0.487 0.321 0.508 0.330 0.521 - -
TA 0.208 0.346 0.263 0.430 0.292 0.455 0.314 0.493 0.323 0.509 0.332 0.521 - -
DualDE 0.207 0.342 0.261 0.427 0.293 0.456 0.316 0.495 0.326 0.512 0.334 0.524 - -
IterDE 0.205 0.340 0.264 0.431 0.293 0.462 0.314 0.494 0.324 0.508 0.332 0.522 - -
MED 0.239 0.384 0.274 0.437 0.303 0.466 0.314 0.495 0.324 0.510 0.329 0.521 0.330 0.520

B.1 MUTUAL LEARNING MECHANISM (MLM)

We remove the mutual learning mechanism from MED and keep the other parts unchanged, where
equation 6 is rewritten as

L =

n∑
i=1

exp

(
w3 · di
dn

)
· Li

EI . (7)

From the result of “MED w/o MLM” in Table 13, we find that after removing the mutual learning
mechanism, the performance of low-dimensional sub-models deteriorates seriously since the low-
dimensional sub-models can not learn from the high-dimensional sub-models. For example, the
MRR of the 10-dimensional sub-model decreased by 12.4%, and the MRR of the 20-dimensional
sub-model decreased by 10%. While the performance degradation of the high-dimensional sub-model
is not particularly obvious, and the MRR of the highest-dimensional sub-model (dim = 640) is
not worse than that of MED, which is because to a certain degree, removing the mutual learning
mechanism also avoids the negative influence to high-dimensional sub-models from low-dimensional
sub-models. On the whole, this mechanism greatly improves the performance of low-dimensional
sub-models.

B.2 EVOLUTIONARY IMPROVEMENT MECHANISM (EIM)

In this part, we replace evolutionary improvement loss Li
EI in equation 6 with the regular KGE loss

Li
KGE :

Li
KGE =

∑
(h,r,t)∈T ∪T −

y log σ(si(h,r,t)) + (1− y) log(1− σ(si(h,r,t))). (8)

From the result of “MED w/o EIM” in Table 13, we find that removing the evolutionary improvement
mechanism mainly degrades the performance of high-dimensional sub-models. While due to the
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Table 12: Hit@3 and Hit@1 of some representative dimensions on FB15K237.

10d 20d 40d 80d 160d 320d 640d

TransE

Method Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1
DT 0.169 0.102 0.301 0.190 0.327 0.212 0.340 0.218 0.348 0.222 0.353 0.224 0.358 0.228
Ext 0.123 0.065 0.211 0.122 0.264 0.156 0.296 0.180 0.320 0.197 0.331 0.208 0.358 0.228
Ext-L 0.118 0.065 0.192 0.115 0.256 0.157 0.292 0.180 0.316 0.198 0.333 0.210 0.358 0.228
Ext-V 0.150 0.081 0.222 0.126 0.265 0.156 0.301 0.185 0.325 0.205 0.341 0.217 0.358 0.228
BKD 0.178 0.106 0.308 0.198 0.336 0.208 0.349 0.222 0.349 0.223 0.354 0.226 - -
TA 0.188 0.112 0.307 0.200 0.336 0.212 0.348 0.220 0.353 0.225 0.355 0.223 - -
DualDE 0.193 0.115 0.307 0.201 0.337 0.216 0.351 0.223 0.354 0.226 0.356 0.227 - -
IterDE 0.187 0.112 0.299 0.185 0.333 0.214 0.351 0.222 0.353 0.223 0.354 0.224 - -
MED 0.215 0.122 0.321 0.199 0.338 0.218 0.347 0.223 0.351 0.226 0.356 0.227 0.358 0.227

SimplE

Method Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1
DT 0.103 0.055 0.193 0.105 0.256 0.161 0.297 0.191 0.314 0.197 0.323 0.208 0.324 0.211
Ext 0.039 0.019 0.071 0.047 0.091 0.057 0.171 0.109 0.251 0.159 0.294 0.187 0.324 0.211
Ext-L 0.043 0.035 0.048 0.037 0.111 0.040 0.131 0.093 0.216 0.134 0.281 0.177 0.324 0.211
Ext-V 0.047 0.036 0.074 0.043 0.097 0.077 0.145 0.109 0.248 0.156 0.289 0.189 0.324 0.211
BKD 0.123 0.064 0.201 0.115 0.261 0.164 0.299 0.191 0.308 0.202 0.318 0.213 - -
TA 0.133 0.073 0.210 0.123 0.276 0.175 0.302 0.195 0.318 0.203 0.323 0.211 - -
DualDE 0.130 0.071 0.224 0.115 0.279 0.175 0.305 0.196 0.324 0.208 0.326 0.211 - -
IterDE 0.132 0.069 0.217 0.118 0.276 0.174 0.303 0.192 0.326 0.204 0.324 0.212 - -
MED 0.164 0.073 0.254 0.158 0.288 0.177 0.305 0.196 0.319 0.205 0.318 0.209 0.322 0.209

RotatE

Method Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1
DT 0.284 0.168 0.330 0.207 0.346 0.223 0.352 0.224 0.353 0.229 0.357 0.230 0.363 0.234
Ext 0.152 0.080 0.225 0.129 0.278 0.170 0.304 0.190 0.322 0.203 0.335 0.217 0.363 0.234
Ext-L 0.147 0.078 0.209 0.121 0.247 0.146 0.275 0.166 0.312 0.193 0.333 0.209 0.363 0.234
Ext-V 0.174 0.097 0.218 0.126 0.264 0.159 0.293 0.182 0.319 0.201 0.336 0.213 0.363 0.234
BKD 0.306 0.193 0.338 0.214 0.352 0.224 0.354 0.230 0.356 0.230 0.358 0.231 - -
TA 0.308 0.196 0.339 0.216 0.353 0.225 0.358 0.229 0.359 0.229 0.358 0.231 - -
DualDE 0.311 0.197 0.341 0.216 0.353 0.227 0.360 0.230 0.361 0.232 0.361 0.233 - -
IterDE 0.307 0.195 0.342 0.215 0.355 0.225 0.359 0.232 0.363 0.233 0.362 0.234 - -
MED 0.324 0.201 0.344 0.216 0.355 0.225 0.357 0.231 0.358 0.233 0.362 0.233 0.362 0.232

PairRE

Method Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1 Hit@3 Hit@1
DT 0.198 0.116 0.262 0.162 0.312 0.202 0.337 0.222 0.352 0.227 0.364 0.235 0.368 0.237
Ext 0.158 0.107 0.187 0.118 0.236 0.149 0.283 0.182 0.325 0.207 0.354 0.230 0.368 0.237
Ext-L 0.159 0.099 0.196 0.134 0.238 0.159 0.298 0.188 0.342 0.219 0.359 0.233 0.368 0.237
Ext-V 0.181 0.116 0.192 0.125 0.250 0.154 0.307 0.193 0.343 0.221 0.362 0.237 0.368 0.237
BKD 0.215 0.132 0.265 0.168 0.314 0.203 0.343 0.224 0.355 0.233 0.366 0.236 - -
TA 0.226 0.139 0.291 0.182 0.316 0.210 0.347 0.224 0.358 0.232 0.368 0.235 - -
DualDE 0.224 0.139 0.286 0.179 0.318 0.212 0.351 0.226 0.359 0.234 0.371 0.238 - -
IterDE 0.225 0.135 0.293 0.185 0.324 0.212 0.352 0.224 0.357 0.234 0.369 0.236 - -
MED 0.253 0.172 0.299 0.189 0.327 0.213 0.346 0.224 0.357 0.232 0.366 0.236 0.368 0.235

Table 13: Ablation study on WN18RR with TransE.

dim MED MED w/o MLM MED w/o EIM MED w/o DLW
MRR Hit@10 Hit@3 Hit@1 MRR Hit@10 Hit@3 Hit@1 MRR Hit@10 Hit@3 Hit@1 MRR Hit@10 Hit@3 Hit@1

10 .170 .388 .269 .036 .149 .335 .234 .032 .169 .388 .267 .037 .171 .387 .268 .035
20 .219 .491 .369 .042 .197 .437 .323 .032 .217 .488 .366 .044 .218 .487 .367 .039
40 .232 .518 .399 .048 .224 .496 .379 .029 .232 .517 .403 .042 .232 .517 .402 .037
80 .232 .523 .404 .042 .228 .521 .399 .033 .235 .529 .408 .037 .234 .523 .410 .041
160 .236 .529 .407 .037 .234 .525 .406 .034 .234 .527 .405 .032 .235 .527 .405 .032
320 .237 .536 .410 .033 .236 .532 .409 .035 .233 .530 .398 .031 .234 .533 .405 .029
640 .237 .537 .412 .031 .238 .535 .412 .042 .232 .528 .402 .029 .233 .530 .396 .025
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existence of the mutual learning mechanism, the low-dimensional sub-model can still learn from the
high-dimensional sub-model, so as to ensure the certain performance of the low-dimensional sub-
model. In addition, we also find that as the dimension increases to a certain extent, the performance
of the sub-model does not improve, and even begins to decline. We guess that this is because
the mutual learning mechanism makes every pair of neighbor sub-models learn from each other,
resulting in some low-quality or wrong knowledge gradually transferring from the low-dimensional
sub-models to the high-dimensional sub-models, and when the evolutionary improvement mechanism
is removed, the high-dimensional sub-models can no longer correct the wrong information from the
low-dimensional sub-models. The higher the dimension of the sub-model, the more the accumulated
error, so the performance of the high-dimensional sub-models is seriously damaged. On the whole,
this mechanism mainly helps to improve the effect of high-dimensional sub-models.

B.3 DYNAMIC LOSS WEIGHT (DLW)

To study the effect of the dynamic loss weight, we fix the ratio of all mutual learning losses to all
evolutionary improvement losses as 1 : 1, and equation 6 is rewritten as

L =

n∑
i=2

Li−1,i
ML +

n∑
i=1

Li
EI . (9)

According to the result of “MED w/o DLW” in Table 13, the overall results of “MED w/o DLW”
are in the middle of the results of “MED w/o MLM” and “MED w/o EIM”: the performance of
the low-dimensional sub-model is better than that of “MED w/o MLM”, and the performance of
the high-dimensional sub-model is better than that of “MED w/o EIM”. On the whole, its results
are more similar to “MED w/o EIM”, that is, the performance of the low-dimensional sub-model
does not change much, while the performance of the high-dimensional sub-model decreases more
significantly. We believe that for the high-dimensional sub-model, the proportion of mutual learning
loss is still too large, which makes it more negatively affected by the low-dimensional sub-model.
This result indicates that the dynamic loss weight plays a role in adaptively balancing multiple losses
and contributes to improving overall performance.

C DETAILS OF APPLYING THE TRAINED KGE BY MED TO REAL
APPLICATIONS

The SKG is used in many tasks related to users, and injecting user embeddings trained over SKG into
downstream task models is a common and practical way.

User labeling is one of the common user management tasks that e-commerce platforms run on
backend servers. We model user labeling as a multiclass classification task for user embeddings with
a 2-layer MLP:

L = − 1

|U|

|U|∑
i=1

|CLS|∑
j=1

yij log(MLP(ui)), (10)

where ui is the i-th user’s embedding, the label yij = 1 if user ui belongs to class clsj , otherwise
yij = 0.

The product recommendation task is to properly recommend items to users that users will interact with
a high probability and it often runs on terminal devices. Following PKGM Zhang et al. (2021), which
recommends items to users using the neural collaborative filtering (NCF) He et al. (2017) framework
with the help of pre-trained user embeddings as service vectors, we add trained user embeddings
over SKG as service vectors to NCF. In NCF, the MLP layer is used to learn item-user interactions
based on the latent feature of the user and item, that is, for a given user-item pair useri − itemj , the
interaction function is

ϕMLP
1 (pi, qj) = MLP([pi; qj ]), (11)

where pi and qj are latent feature vectors of user and item learned in NCF. We add the trained user
embedding ui to NCF’s MLP layer and rewrite Equation equation 11 as

ϕMLP
1 (pi, qj , ui) = MLP([pi; qj ;ui]), (12)
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and the other parts of NCF stay the same as in PKGM Zhang et al. (2021).

We train entity and relation embeddings for SKG based on TransE Bordes et al. (2013) and input the
trained entity (user) embedding into Equation equation 10 and Equation equation 12.

D DETAILS OF EXTENDING MED TO LANGUAGE MODEL BERT-BASE

D.1 DATASET AND EVALUATION METRIC

For the experiments extending MED to BERT, we adopt the common GLUE Wang et al. (2019)
benchmark for evaluation. To be specific, we use the development set of the GLUE benchmark which
includes four tasks: Paraphrase Similarity Matching, Sentiment Classification, Natural Language
Inference, and Linguistic Acceptability. For Paraphrase Similarity Matching, we use MRPC Dolan &
Brockett (2005), QQP and STS-B Conneau & Kiela (2018) for evaluation. For Sentiment Classifica-
tion, we use SST-2 Socher et al. (2013). For Natural Language Inference, we use MNLI Williams
et al. (2018), QNLI Rajpurkar et al. (2016), and RTE for evaluation. In terms of evaluation metrics,
we follow previous work Devlin et al. (2019); Sun et al. (2019a). For MRPC and QQP, we report F1
and accuracy. For STS-B, we consider Pearson and Spearman correlation as our metrics. The other
tasks use accuracy as the metric. For MNLI, the results of MNLI-m and MNLI-mm are both reported
separately.

D.2 BASELINES

For comparison, we choose Knowledge Distillation (KD) models and Hardware-Aware Transformers
Wang et al. (2020a) (HAT) customized for transformers as baselines. For the KD models, we compare
MED with Basic KD (BKD) Hinton et al. (2015), Patient KD (PKD) Sun et al. (2019a), Relational
Knowledge Distillation (RKD) Park et al. (2019), Deep Self-attention Distillation (MiniLM) Wang
et al. (2020b), Meta Learning-based KD (MetaDistill) Zhou et al. (2022a) and Feature Structure
Distillation (FSD) Jung et al. (2023). For the comparability of the results, we choose 4-layer BERT
(BERT4) or 6-layer BERT (BERT6) as the student model architectures, which guarantees that the
number of model parameters (#P(M)) or speedup is comparable. For HAT, we use the same model
architecture as our MED for training and show the results of sub-models with three parameter scales.

D.3 IMPLEMENTATION

To implement MED on BERT, for the word embedding layer, all sub-models share the front portion
of embedding parameters in the same way as in KGE, and for the transformer layer, all sub-models
share the front portion of weight parameters as in HAT Wang et al. (2020a). Specifically, assuming
that the embedding dimension of the largest BERT model Bn is dn, and the embedding dimension
of the sub-model Bi is di, for any parameter matrix with the shape x × y in Bn, the front portion
sub-matrix of it with the shape di

dn
x× di

dn
y is the parameter matrix of the corresponding position in

Bi. Finally, it just need to replace the triple score s(h,r,t) in Equation equation 2, Equation equation 3,
Equation equation 4, and Equation equation 5 with the logits output for the corresponding category
of the classifier in the classification task.

We set n = 4 for BERT applying MED, and 4 sub-models have the following settings: [768, 512,
256, 128] for embedding dim and [768, 512, 256, 128] for hidden dim, [12, 12, 6, 6] for the head
number in attention modules, 12 for encoder layer number.
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