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Abstract

For classical PDE solvers, adjusting the spatial resolution and time step offers a
trade-off between speed and accuracy. Neural emulators often achieve better speed-
accuracy trade-offs by operating accurately on a compact representation of the PDE
system. Coarsened PDE fields are a simple and effective representation, but cannot
exploit fine spatial scales in the high-fidelity numerical solutions. Alternatively,
unstructured latent representations provide efficient autoregressive rollouts, but
cannot enforce local interactions or physical laws as inductive biases. To overcome
these limitations, we introduce hybrid representations that augment coarsened
PDE fields with spatially structured latent variables extracted from high-resolution
inputs. Hybrid representations provide efficient rollouts, can be trained on a simple
loss defined on coarsened PDE fields, and support hard physical constraints. When
predicting fine- and coarse-scale features across multiple PDE emulation tasks,
they outperform or match the speed-accuracy trade-offs of the best convolutional,
attentional, Fourier neural operator-based and autoencoding baselines.

1 Introduction

Integrating partial differential equations (PDEs) can be computationally expensive, particularly for
chaotic and turbulent systems with fine-scale structures requiring high spatiotemporal resolution.
For traditional solvers, discarding fine-scale details reduces both cost and accuracy, but data-driven
emulators can push the cost–accuracy frontier beyond conventional limits. State-of-the-art emulators
[Kochkov et al., 2021, Stachenfeld et al., 2021, Li et al., 2021] employ supervised training on PDE
fields coarsened by local averaging, a straightforward approach emphasizing speed and stability. But
are local averages an optimal representation for emulation? Fine-scale information is crucial for
convolutional network accuracy [Wang et al., 2020a], and emulators tend to neglect low-amplitude
spatial frequencies [Rahaman et al., 2019, Lippe et al., 2023]. Fine-scale features could potentially
reduce emulation errors, which tend to accumulate and amplify over autoregressive rollouts. The main
alternative to coarsening is unstructured latent representations [Wiewel et al., 2020], but problems
with scalability, generalization and physical consistency hinder widespread adoption.
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We introduce compact hybrid representations of fine-scale PDE fields, combining local averages
with spatially structured latent variables. Hybrid representations exploit fine-scale information, allow
efficient coarse-scale emulation and admit hard physical constraints [McGreivy and Hakim, 2023].
Hybrid representations provide more favorable cost-accuracy trade-offs than strong baselines on
challenging emulation tasks, maintain accuracy at higher coarsening factors and benefit more from
unrolled training. After time stepping, they can be used to reconstruct high-resolution PDE fields
more accurately than super-resolution or high-resolution rollouts with baseline emulators.

2 PDE Emulation

For a 2D PDE with m variable fields, the space- and time-discretized system state at time step t is
Xt ∈ Rm×H×W . A reference solver S updates Xt, starting from prior-drawn initial conditions:

X0 ∼ p(X0) (1)
Xt = S(Xt−1), 1 ≤ t ≤ T (2)

We assume a fixed time step length δ between solver outputs. The reference solver runs slowly but
accurately at the reference resolution H ×W to generate training and testing data for emulation tasks.
For some PDEs and solvers, S can be slow due to adaptive time steps that require many internal steps
to produce outputs every δ time units, or because a system of equations must be solved iteratively at
each time step.

Coarsening Let Ar : Xt → xt ∈ Rm×H/r×W/r denote the coarsening operator reducing spatial
resolution by a coarsening factor r on each spatial axis. The nature of Ar depends on the PDE and
discretization (appendix A, Fig. 6); we choose Ar to respect conservation laws where possible. Most
emulation studies use coarsening in some way, but consider it a detail of data preparation. Since we
compare different representations and resolutions deriving from the same reference simulation, we
denote coarsening explicitly and consider it part of the emulator.

Problem statement We aim to predict coarsened future PDE fields quickly and accurately. We assume
high resolution reference simulations {X0, X1, . . . , XT } are available as training data, and that the
coarsening operator Ar is known. A PDE emulator is a method that predicts future PDE fields from
known initial conditions, with accuracy to be evaluated at a target resolution h∗×w∗ = H/r∗×W/r∗

that may be coarser than the simulations (r∗ ≥ 1). That is, given Xt we wish to predict Ar∗(Xt+k).
The training data, reference resolution H×W , target resolution h∗×w∗ and rollout length k together
define an emulation task.

Accuracy Metrics We measure correlation and mean-squared-error (MSE) for the PDE’s m fields.
In some cases, we also compare the emulator’s velocity and energy spectra to those of the reference
solver, or compare the time evolution of the L1 norm of emulators’ one-step updates to those of PDE
fields at the target resolution [Kochkov et al., 2021, Kohl et al., 2024].

Inference speed Since comparison to reference solutions defines accuracy, only emulators with
inference faster than S are useful. An emulator more accurate than alternatives with equal or faster
inference speed is the best method for the given speed and task. We measure inference speed as the
slope of wall-clock time as a function of k. We report additional details on timing overheads relevant
for low k in appendix B.

2.1 Fixed-resolution Neural Emulation

Most emulation studies trained fixed-resolution neural emulators (FRNEs) to operate autoregressively
on coarsened PDE fields xt = Ar(Xt). A loss defined on output fields is optimized, such as MSE:

LFRNE =

K∑
k=1

∥∥∥M(k)(xt)− xt+k

∥∥∥2
2
=

K∑
k=1

∥∥∥M(k) ◦ Ar(Xt)−Ar(Xt+k)
∥∥∥2
2

(3)

M(k) is emulator autoregressively applied to the input fields k times. K = 1 trains on single-step
predictions, while K > 1 uses autoregressive rollouts. The rollout resolution h× w = H/r ×W/r
is used by the emulator to advance the coarsened PDE fields in time.

A common choice is matching the rollout and target resolutions (r = r∗), but in general r is an
adjustable hyperparameter, and together with M’s neural architecture can be chosen to emphasize
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accuracy or speed. r = 1 trains at the reference resolution, but for most tasks and architectures, this
results in inference slower than S [McGreivy and Hakim, 2024]. Instead, FNREs for chaotic and
turbulent PDEs have been applied most effectively with 4 ≤ r ≤ 64 [Zhou et al., 2024a, Stachenfeld
et al., 2021, Gupta and Brandstetter, 2023, Kohl et al., 2024, Zhang et al., 2024, Wang and Wang,
2024, Wang et al., 2020b]. While our focus here is on PDEs defined on regular grids, this approach
has also been successful on irregular meshes [Brandstetter et al., 2022a] or for weather forecasting
[Lam et al., 2023].

FRNEs exploit neural networks’ better tolerance for coarsening than numerical solvers, and have
employed a wide range of architectures incorporating convolutional, Fourier, attention or graph-based
layers [Gupta and Brandstetter, 2023, Li et al., 2021, Hao et al., 2024, Brandstetter et al., 2023,
Horie and Mitsume, 2024, 2022, Sanchez-Gonzalez et al., 2020]. Because the learned time stepping
operator M operates on coarsened PDE fields, it can be constructed to impose physical constraints
such as incompressibility [Wandel et al., 2021, Wiewel et al., 2020] or conservation laws [Watt-Meyer
et al., 2025, Verma et al., 2024, Horie and Mitsume, 2024]. Ideally, M should be faster than S but
only slightly less accurate, and more accurate than decreasing the reference solver’s resolution to
obtain the same inference speed. A disadvantage of FRNEs is that Ar destroys information, so Xt

may contain fine-scale features useful for predicting xt+k that are unavailable in xt.

2.2 Unstructured Latent Space Emulation

Unstructured Latent Space Emulators (ULSEs) learn time stepping for a compact, unstructured
latent representation of PDE fields. They are commonly trained in an encoder-processor-decoder
framework: PDE fields coarsened to an encoding resolution H/r ×W/r are encoded to a vector zt,
autoregressively rolled out, and decoded back to PDE fields at the encoding resolution. This results
in the loss function:

LULSE =
∥∥∥D ◦M(K)

z ◦ E(xt)− xt+K

∥∥∥2
2
=

∥∥∥D ◦M(K)
z ◦ E ◦ Ar(Xt)−Ar(Xt+K)

∥∥∥2
2

(4)

Where E is the encoder, D is the decoder and Mz is the propagator operating on latent representations.
LULSE is efficient since it is only calculated once after an efficient K-step rollout in latent space. For
r = 1, the encoder operates directly on reference PDE fields, and can learn to exploit any features
of Xt, but in most studies r > 1 [Hao et al., 2024, Li et al., 2023, Serrano et al., 2024, Alkin et al.,
2024, Wu et al., 2022, Knigge et al., 2024, Wang and Wang, 2024].

Alternatively, E and D can first be trained as an autoencoder, and then time stepping can be learned
using fixed latent vectors zt:

Lz =
K∑
k=1

∥∥∥M(k)
z (zt)− zt+k

∥∥∥2
2
=

K∑
k=1

∥∥∥M(k)
z ◦ E ◦ Ar(Xt)− E ◦ Ar(Xt+k)

∥∥∥2
2

(5)

Lz efficiently computes a loss at each time step without involving PDE fields, but appropriately
weighting the dimensions of z is challenging. Fluid dynamics have been emulated using Lz [Wiewel
et al., 2019, HAN et al., 2022, Yin et al., 2023, Li et al., 2025], albeit with few competitive results on
challenging benchmark tasks.

ULSEs provide fast training and inference with long rollouts, as their compact latent spaces lack
spatial structure. However, ULSEs lack the spatial inductive biases that improve performance and
robustness in many computer vision tasks, and xt and xt+1 might not be close in the latent space.
Furthermore, constructing Mz to obey physical constraints defined for xt is usually not possible.

3 Emulation with Hybrid Representations

We introduce hybrid representations (Fig. 1a), which extend coarsened PDE fields with additional
channels of learned latent variables to combine the advantages of FRNEs and ULSEs. Like the
coarsened PDE fields used by FRNEs, they are spatially structured and support physical constraints
on the learned time stepping operator. Like ULSE latent variables, they extract information with
a trained encoder instead of relying solely on Ar, before rolling out cost-effectively. Emulation
with hybrid representations jointly trains an encoder and processor as in eq. 4, but does so using
an efficient loss that has more in common with eq. 3 and 5. We first describe this strategy in full
generality, reserving architectural details for sec. 4.
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Encoder Hybrid representations consist of coarsened PDE fields xt ∈ Rm×w×h, together with n
latent variables fields ct ∈ Rn×w×h. xt is computed by Ar and ct by an encoder Ec applied to
Ar′(Xt), with 1 ≤ r′ < r.

(xt, ct) = (Ar(Xt), Ec ◦ Ar′(Xt)) = EHR(Xt) (6)

Ec is trained to extract latent variables from Ar′(Xt) while maintaining spatial structure. Its encoding
resolution H/r′ ×W/r′ is higher than its rollout resolution H/r ×W/r.

Processor A second network MHR carries out time stepping on the hybrid representation:

(x̃t+1, c̃t+1) = MHR(xt, ct) = (Mx(xt, ct),Mc(xt, ct)) (7)

MHR computes autoregressive rollouts entirely within the hybrid representation at the rollout resolu-
tion H/r ×W/r. As the representation advances in time, coarsened PDE fields and latent variables
mutually influence each other. The notation x̃t, c̃t marks these variables as having been time-stepped
by the processor, as opposed to xt and ct which are computed by Ar and Ec ◦ Ar′ respectively.

Loss We wish to avoid costly loss calculations at the encoding resolution (eq. 4) or over the numerous,
non-physical channels of ct (eq. 5). We therefore jointly train all encoder and processor parameters
by minimizing prediction errors only over coarsened PDE fields xt at the lower rollout resolution:

LHR =

K∑
k=1

∥∥∥Mx ◦M(k−1)
HR ◦ EHR(Xt)− xt+k

∥∥∥2
2

(8)

While LHR does not include error terms on ct, minimizing it still encourages Ec and MHR to generate
latent variables that improve prediction of future states xt+k, especially for a long training rollout
length K. We reasoned that while ct ought to improve prediction of xt+k, it would be unrealistic to
expect the processor to accurately predict ct+k without access to Xt+k. We found this simple and
efficient loss more effective in practice than alternatives involving error terms on ct+k or Xt+k. Since
LHR only includes error terms for variables with the same units as the original PDE fields, it can use
data normalizations independent of the training process and architecture.

Physical Constraints An advantage of explicitly including xt in hybrid representations is that Mx

can be constructed to respect physical constraints. For example, for a conserved PDE field such as
energy or density, we can learn fluxes between neighboring grid cells [LeVeque, 2002]. Similarly, for
a pair of channels (ut, vt) ⊂ xt representing the velocity of an incompressible fluid, we can learn a
vector potential at+1 whose curl yields the desired divergence-free field (ũt+1, ṽt+1) = ∇× at+1

[Wandel et al., 2021]. Hybrid representations allow these physical principles to be enforced as hard
constraints, while nonetheless improving the time stepping of xt with additional information from ct.
Together with a physically consistent local averaging operator Ex (Fig. 6), this provides end-to-end
physical consistency from Xt to x̃t+k.

Decoder When the rollout resolution exceeds the target resolution, we can predict Ar∗(Xt+k) by
coarsening x̃t+k. Otherwise, we train a decoder DHR to reconstruct X∗

t ≈ Ar∗(Xt), using a fixed
interpolation operator Dx (Fig. 7) and learned correction Bc:

X∗
t = DHR(x̃t, c̃t) = Dx(x̃t) + Bc(x̃t, c̃t) (9)

Dx and the output layer of Bc are chosen in a PDE-specific way to enforce conservation laws and/or
incompressibility as hard constraints (appendix A.3).

To train DHR we minimize:

LD =

K∑
k=1

∥∥Ar∗(Xt+k)−X∗
t+k)

∥∥2
2
=

K∑
k=1

∥∥Ar∗(Xt+k)−DHR ◦Mk
HR ◦ EHR(Xt)

∥∥2
2

(10)

For efficiency, and so ct emphasizes accurate rollouts of x̃t+k over decoding of X∗
t+k, we train DHR

with the encoder and processor frozen after training. Thus, DHR is trained on triplets (x̃t, c̃t, Xt)
without backpropagation through time, and is not used to train the encoder and processor (eq. 8).

While standard super-resolution maps x̃t → X∗
t and a ULSE decoder maps zt → X∗

t , our decoder
DHR takes both x̃t and c̃t as inputs. c̃t provides information unavailable in x̃t, while the presence of
x̃t allows physical constraints to be imposed.
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Figure 1: (a) Top: hybrid representation emulators combine locally averaged PDE fields with latent
variables. A processor network evolves both coarsened and latent fields in time, and an optional
decoder reconstructs high-resolution fields. Teal arrows and boxes respect conservation laws and
incompressibility. Middle: fixed-resolution neural emulators. Bottom: unstructured compact latent
space emulators. (b) Reference solver vs. HREs and mUnet baseline (with super-resolution) with
rollouts at 642 for KF and 322 for ID and encoding from 5122. KF is shown after 8.5 and ID after
7.75 seconds. (c) Violation of incompressibility for HREs and mUnet. (d) Correlation with reference
solver vs. inference speed for HREs and baselines. Multiple points on each cost-accuracy frontiers
were obtained by adjusting the resolution used to advance rollouts (HREs/FRNEs) or to provide
encoder input (ULSEs).

4 Emulation Architectures

Here we describe architectural details for baseline emulation approaches operating on coarsened and
high-resolution PDE fields, alongside our hybrid representation-based emulators. FRNEs and HREs
learn additive updates estimating xt − xt−1. We did not seek to match parameter counts (Table 3)
across emulators, instead choosing one or more hyperparameter settings for each emulator to obtain
overlapping ranges of inference speeds and facilitate comparison of cost-accuracy trade-offs across
architectures. Full architectural details appear in appendix A.

Modern U-Net with Attention (mUnet) the U-Net architecture [Ronneberger et al., 2015] has been
optimized for use as an FRNE, and performed well in many emulation tasks and benchmark studies
[Gupta and Brandstetter, 2023, Kohl et al., 2024]. We also examined the SineNet variant [Zhang
et al., 2024], but found it to have a less favorable cost-accuracy trade-off (Fig. 16).

FactFormer [Li et al., 2023] is a Transformer [Vaswani et al., 2017] designed for operator learning.
It uses axial factorized attention to learn integral operators while maintaining model scalability. We
train FactFormer as a ULSE at encoding resolutions 322, 642, 2562 and 5122.

DPOT [Hao et al., 2024] is an attention-based FRNE, trained on diverse datasets and tasks as
a foundation model using 1-step prediction loss and input noise. It aggregates coarsened fields
from multiple input time steps, and its Fourier attention layers use an MLP for parameter-efficient
approximation of frequency space computations. DPOT-S (31M parameters, matching our HREs)
was fine-tuned in few-shot mode at resolutions 322 and 642 on each task before evaluation.

DINo [Yin et al., 2023] is a ULSE combining implicit neural representations [Sitzmann et al., 2020,
Tancik et al., 2020] with neural ODEs [Chen et al., 2018]. Input fields are used to compute an
unstructured latent vector through an auto-decoding framework, propagated through time by a neural
ODE and decoded to predict PDE fields. DINo can produce outputs anywhere along a continuous
time axis, predict PDE fields from incomplete initial conditions and generalize across resolutions.

Dilated ResNet (DilResNet) [Stachenfeld et al., 2021] is an FRNE designed for turbulent flows
using dilated convolutions. We train it using either input noise (DilResNet-NT) or unrolled training
(DilResNet-UT). In the main text, we use DilResNet-NT and refer to it simply as DilResNet.

Fourier Neural Operator (FNO) [Li et al., 2021] is an FRNE that combines filtering in Fourier
space with local linear operations, and was originally introduced for PDE emulation.
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Hybrid Representation Emulators (HREs, ours) employ encoder, processor and decoder modules
(Fig. 1, sec. 3). Their design closely follows mUnet, our strongest baseline, to evaluate specific
benefits of hybrid representations instead of architectural differences. The encoder Ec uses log2(r/r

′)
mUnet downsampling blocks to reach the desired coarsening factor. The processor is an mUnet with
n extra input/output channels. Except where otherwise stated, we use n = 16 learned latent variable
fields. The decoder corrects interpolation Dx using a physics-constrained additive update (eq. 14, 16)
from a network Bψ constructed from mUnet upsampling blocks. The encoder, processor and decoder
use flux/vector potential outputs to impose physical constraints.

LatRoll We implemented an HRE-like baseline with only learned variables in its latent representation.
This model used the same encoder to calculate ct, the same mUnet processor to compute latent space
rollouts, the same decoder to compute X∗

t+k from c̃t+k and the same physical constraints but did not
include coarsend PDE fields xt as input to the processor or decoder. We trained LatRoll using a loss
on Xt, obtaining best results when first training and freezing an autoencoder (LatRoll-FAE). We also
report results for end-to-end training (LatRoll-E2E).

Super-resolution To evaluate baselines at higher target resolutions than their outputs, we trained
super-resolution networks [Harder et al., 2023, Stengel et al., 2020, Esmaeilzadeh et al., 2020]. These
took only xt as input and their outputs directly estimated Xt, but their architectures were otherwise
identical to the Bψ of HREs, and were not trained jointly with emulators (Table 3).

5 Training

Loss and Optimization We train baselines as described in the respective studies. We standardize
reference fields Xt. We normalize both components of each velocity field jointly, so the momen-
tum conservation and incompressibility enforced by flux- and vector potential-based output layers
are not violated. We use the AdamW optimizer [Loshchilov and Hutter, 2019] except on DINo
which uses Adam [Kingma and Ba, 2015]. A cosine scheduler decays learning rate from 10−4 to
10−6 [Loshchilov and Hutter, 2017] for our HREs, mUnet, FNO and DilResNet, while DINo and
FactFormer used their original schedulers. Further training details appear in appendix A.1.

Unrolled Training and Input Noise We train mUnet, FNO, and hybrid representations on a rollout
curriculum of lengths K = [1, 2, 4, 8, 16], each for 100 epochs with early stopping and patience of
75 epochs. We did not observe benefits from unrolled training with DilResNet, but instead added
Gaussian noise (µ = 0, σ = 10−4) to coarse inputs xt as previously described [Stachenfeld et al.,
2021]. For DINo and FactFormer, we follow the original papers’ training schedules.

6 Datasets

We generated 5 datasets with numerical solvers chosen to respect physical laws of the integrated
PDEs. Each dataset employs a fixed time step δ longer than the solver’s internal time step; we choose
δ based on previous studies where possible (details in appendix C). Table 10 lists all model-dataset
combinations we employed.

2D Kolmogorov Flow (KF) consists of solutions to the 2D incompressible Navier-Stokes equations:

∂tu+∇ · (u⊗ u)− 1

Re
∆u+

1

ρ
∇p− f = 0 ∇ · u = 0 (11)

for velocity u, constant density ρ, pressure p, forcing f and Reynolds number Re. We set (ρ,Re, ν) =
(1, 103, 10−3) and f = sin(4y)ê1 − 0.1u, resulting in statistically stationary turbulent flow.

2D Kolmogorov Flow with Re = 4000 (KFHR) As the smallest eddies scale with 1/
√
Re, we

quadruple the Re to halve eddy size. This produces finer-scale structures in high-resolution fields.

2D Incompressible Decaying Turbulence (ID) has the same dynamics as KF but no forcing, resulting
in transient rather than stationary dynamics. Larger structures develop as small eddies dissipate.

2D Compressible Decaying Turbulence (CD) solves the compressible Navier-Stokes equations:
∂tρ+∇ · (ρv) = 0 (12a)

∂t(ρv) +∇ · (ρv ⊗ v) = −∇p+∇ · τ (12b)
∂tE +∇ · [(E + p)v − v · τ ] = 0 (12c)
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for density ρ, velocity v, pressure p, viscous stress tensor τ and total energy E = ϵ + (ρv2)/2.
We use (ζ, η,M) = (10−8, 10−8, 0.4), with M the initial Mach number, resulting in decaying
turbulence as small eddies coalesce through an energy cascade. This dataset is challenging due to a
CFL (Courant-Friedrichs-Levy) condition of 60, and nonlocal behavior of density and energy fields
and the presence of shockwaves.

1D Kuramoto-Sivashinsky Equation (KS) models chaotic stationary dynamics of a scalar field u:

∂tu+ ∂x(u
2/2 + ∂xu+ ν∂xxxu) = 0 (13)

Nonlinear advection transfers energy between low and high energy modes. KS is a common bench-
mark task for neural emulators [Stachenfeld et al., 2021, Lippe et al., 2023, Schiff et al., 2024].

7 Experiments

Cost vs. Accuracy of Neural Emulators We first evaluated HREs and baselines on emulation
tasks at target resolution 322 (r∗ = 64). Where possible, we trained emulators at multiple rollout and
encoding resolutions to obtain multiple points on their cost-accuracy curves (Fig. 1d). For all tasks,
at 642 rollout resolution HRE rollouts were equally or more correlated to reference simulations than
all baselines. Similarly, HREs with 322 encoding resolution were more accurate than all baselines
except mUnet at 64× 64 rollout resolution, which was slower. Only mUnet matched or approached
the accuracy of HREs on any task, though DilresNet was sometimes comparable for shorter rollouts.
When comparing methods at a common rollout or encoding resolution of 322, the gap between HRE
and baselines widened: HREs had 30-50% lower RMSE after 64 time steps (Table 1). Since hybrid
representations use a processor architecture nearly identical to mUnet, they achieve a nearly identical
inference speed. All emulators were faster than numerical simulations, and FactFormer and FNO
were the fastest but considerably less accurate than HREs and slightly less accurate than mUnet on
almost all tasks. A comprehensive quantitative comparison is provided in Tables 5-6.

HREs showed the greatest benefit over baselines on the KF task (Fig. 2-left, 9-8), where they exhibited
higher correlation and lower MSE than mUnet by a wide margin across 64-step rollouts at both
resolutions. HREs also tracked the average ℓ1 norm velocity tendencies more closely than other
methods (Fig. 2-bottom left). For the ID and KFHR tasks, HRE was more accurate at 322 rollout
resolution but comparable to mUnet at 642. For the challenging CD task we analyzed only up to
32-step rollouts at inference time, revealing that HREs were more accurate than other baselines at
both resolutions (Fig. 11-12). However, the improvement from using hybrid representations was less
prominent compared to ID and KF cases. The weaker performance of HREs on CD may arise from
discontinuities in the density and energy fields, making the extracted fine-scale information from
high-resolution inputs harmful for longer rollouts. Moreover, the dataset’s high CFL number and
the limited receptive field of the propagators could exacerbate instabilities. Notably, DilResNet and
FNO’s non-local nature might be the reason for their ability to match the performance of mUnet on
this task.

Table 1: Rollout performance across emulators for KF
and ID experiments at rollout resolution 322 (encoding
resolution for DINo and FactFormer). We report MSE
and correlation (Corr.) of field variable u after 64 rollout
steps. Best model performance in bold and second
underlined.

KF ID

RMSE ↓ CORR. ↑ RMSE CORR.

OURS 0.71±.23 0.68±.21 0.29±.08 0.96±.03
MUNET 1.07±.20 0.35±.21 0.58±.34 0.78±.25
FNO 1.29±.21 0.12±.19 0.71±.27 0.74±.20
DILRESNET 1.16±.20 0.26±.20 1.77±.72 0.50±.17
FACTFORMER 1.12±.21 0.28±.20 0.58±.25 0.79±.51
DINO 1.00±.10 0.20±.17 1.10±.27 0.30±.30
DPOT-S 1.85±.24 0.20±.17 1.65±.64 0.18±.24
DILRESNET-UT 1.19±.22 0.26±.22 0.84±.19 0.72±.16
LATROLL-32-FAE 1.15±.17 0.14±.16 0.96±.22 0.39±.35
LATROLL-32-E2E 1.23±.17 0.20±.16 1.20±.38 0.27±.43

We further compared the frequency spec-
tra of TKE fields for both reference sim-
ulations and emulators (Fig. 3), follow-
ing previous work [Kochkov et al., 2021]
by normalizing with the fifth power of
the wavenumber. After 64-step rollouts,
hybrid representations produced spectra
closer to the reference simulations than
baselines relying solely on coarsened PDE
fields. This improvement suggests that in-
formation from high spatial frequencies en-
coded in the ct fields (Figs. 13-14) enables
the low-resolution emulator to capture the
higher-frequency components of the TKE
fields more accurately (additional results in
Figs. 18-19).

To test generalization to data outside the
training distributions, we compared HREs and mUnet on the IC task with the initial peak wave
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number changed from 4.2 to 3, 5 or 6. As expected, performance on out-of-distribution (OOD) inputs
worsened as peak wave number increased, but HREs continued to outperform mUnet in every case
(Table 9). Thus, the representation learned by the HRE encoder does not become a liability when
encountering OOD data.

The Role of the Coarsening Ratio HREs retain information in ct that FRNEs at the same rollout
resolution lack, so does their performance gap widen as r increases? KF and ID experiments at
rollout resolutions 322 and 642 confirm this (r = 16 and 8, Fig. 8-9, 11-12), and in general HREs
were better suited to large r than baselines (Fig. 1d). FNOs showed the smallest accuracy decreases
when doubling r, but were among the least accurate FRNEs overall. For KF, HREs outperformed
mUnets at both resolutions, but for ID did so only at 322, while for 642 their performance was similar.
To summarize, we observe that: (i) latent fields allow HREs to cope with higher r increases, (ii)
HREs outperform FRNEs only for sufficiently large r (emphasizing speed over accuracy), and (iii)
the minimum r for which HREs beat FRNEs varies across tasks.

Figure 2: Emulator accuracy on KF and ID tasks
(testing data, 16 ICs) at 322 rollout/encoding res-
olution. Mean ± s.d. over ICs of RMSE (top)
and correlation (middle), and tendency ℓ1 norm
(bottom) vs. rollout length.

Since HREs benefit from latent features ex-
tracted from high-resolution PDE fields, why
not simply train FRNEs on high resolution data?
To test this, we trained mUnet with rollout res-
olution 5122, resulting in inference > 30 times
slower than for rollouts at 642. Somewhat coun-
terintuitively, mUnet rollouts at 5122 were less
accurate than at 322 or 642 rollouts, despite ac-
cess to additional information from Xt (Fig. 1d).
One possible reason is that the physical size
of receptive fields for a fixed mUnet architec-
ture shrinks as r decreases. Training on high
resolution data also emphasizes fine scales not
reflected in accuracy measures at the target reso-
lution. In contrast, HREs work efficiently across
resolutions by encoding 5122 PDE fields to pre-
dict future fields at 322.

To test whether the trend would continue at still
higher coarsening ratio, we trained HREs and
mUnet on data from the KS task with a reference
resolution of 2048 and rollout resolution 32 (r =
64). In contrast to other tasks for which HREs
used an encoding resolution of 5122, here we
used no coarsening before the encoder (r′ = 1). HREs outperformed mUnet by a wider margin than
in previous experiments, achieving near-perfect predictions after 16 time steps in this challenging
chaotic system, while mUnet’s correlation dropped to 0.5 over the same rollout length (Fig. 15).

Figure 3: Scaled TKE
values for high spatial fre-
quencies on KF (322).

Benefits of Unrolled Training Consistent with previous studies [List
et al., 2024, Lam et al., 2023, Kohl et al., 2024], we observed improved
rollout performance for emulators trained autoregressively. However,
while accuracy for 64-step rollouts plateaued as a function of training
rollout length for mUnet, hybrid representations continued to benefit from
training on curricula of longer sequences, up to at least 16 steps (Fig.
4). When training on shorter rollout lengths, mUnet exhibits superior
performance, suggesting that the encoder Ec requires long-rollout training
to learn features in ct useful for longer prediction horizons.

Latent Space Dimensionality We investigated how the dimensionality
n of ct affects HRE accuracy on KF and ID tasks. n too small could
lose useful information from Ar′(Xt), while n too large could overfit or
produce unstable rollouts; we tested n = 4 and n = 16 (Table 7). For KF
at 642 rollout resolution, reducing n from 16 to 4 roughly doubled RMSE and decreased correlation
by 2/3. However, KF at 322 rollout resolution was similar for n = 4 and 16. For ID n = 16 gave
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RMSE 3 times lower, but had a smaller and less consistent effect on correlation (Fig. 8). n negligibly
impacted inference speed.

Figure 4: Correlation of predicted and reference
PDE fields vs. rollout length during training and
prediction on KF (322). Our HREs benefit from
longer training rollouts, and achieve higher accu-
racy, while mUnet plateaus after 8-step training.

Prediction at High Resolution To evaluate
PDE emulation of high-resolution input fields,
we computed accuracy for KF and ID tasks at
target resolution 5122 (r∗ = 4, Fig. 21-22). Our
HRE used encoding resolution 5122 (r′ = 4),
rollout resolution 642 for KF (r = 32) and 322

for ID (r = 32), and a physics-constrained de-
coder. As baselines, we considered mUnet at
r = 32 and r = 64 followed by learned super-
resolution (essentially the same decoder with
only xt as an input), mUnet with r = 4 and
FactFormer with r = 4 and r = 8. HRE out-
performed all baselines at all rollout lengths on
both tasks (Fig. 5, 20). Consistent with previous
results at r∗ = 64, mUnet with super-resolution
consistently outperformed mUnet trained on
5122 for all but the shortest rollouts, and mUnet
with r = 4 completely decorrelated with the
reference solution before 64 steps. Both Fact-
Former models performed slightly better than
mUnet with r = 4.

Ablations To identify benefits of hard phys-
ical constraints and learned latent fields for
HREs, we trained a physics-constrained mUnet with no ct, and an HRE without physical con-
straints (Fig. 17, Table 8). For 64-step rollouts, both models surpassed mUnet in accuracy but fell
short of HREs. Unconstrained HREs yielded RMSE and correlation values only ≈ 20% worse and
≈ 12% lower respectively, but the physics-constrained mUnet had RMSE nearly ≈ 40% higher and
correlation ≈ 30% lower. Despite its relatively strong quantitative performance, the unconstrained
hybrid model produced oscillatory tendency norms and led to oscillatory behavior in the predicted
ct fields during propagation (Fig. 17). This suggests that physical constraints can regularize latent
representations.

8 Related Work

Figure 5: Accuracy at 5122 target resolution.

Learning for Long Rollouts A key challenge
for neural PDE emulation is error accumulation
over autoregressive rollouts, causing distribution
shift for network inputs, instability or high gradi-
ent variance. To mitigate this, unrolled training
and noise-injection strategies [List et al., 2024,
Metz et al., 2021, Mikhaeil et al., 2022, Stachen-
feld et al., 2021, Sanchez-Gonzalez et al., 2020,
Kochkov et al., 2021, Lam et al., 2023, Hao et al.,
2024] expose networks to their own outputs or
corrupted inputs to enhance robustness. The
pushforward trick [Brandstetter et al., 2022a,
List et al., 2025] trains with rollouts but no back-
propagation over time.

Multiple Coarse Timesteps we use ct to
augment xt, but other studies provide multi-
ple coarsened states xt−i as additional inputs
[Wang, 2021, Li et al., 2023] or via specialized
aggregation layers [Buitrago et al., 2025, Hao
et al., 2024] to predict xt+1. This can improve performance, but incurs a computational cost and
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cannot learn which features to extract from Xt. Temporal bundling [Brandstetter et al., 2022a,
Buitrago et al., 2025] instead predicts several output steps at once.

Physics-derived Losses minimizing a known PDE’s residuals [Wandel et al., 2021, Tompson et al.,
2017, Raissi et al., 2019] removes or reduces the need for reference simulations, but does not allow
spatiotemporal coarsening for efficiency. Hybrid Solvers use machine learning to accelerate classical
solvers or partial-physics models, or to correct discretization errors [Kochkov et al., 2021, Um et al.,
2020, Pathak et al., 2020, Tompson et al., 2017, Paliard et al., 2022, Bar-Sinai et al., 2019].

Neural Operators emulate PDEs with autoregressive mappings between function spaces, allowing
adaptation to different resolutions and geometries [Li et al., 2021, Alkin et al., 2024, Bonev et al.,
2023, Lu et al., 2021]. [Hagnberger et al., 2024] take a similar approach to the time axis, encoding
initial conditions and decoding at desired output times non-autoregressively. Likewise, foundation
models use pretraining across diverse data and tasks to enable few- or zero-shot inference [Herde
et al., 2024, Hao et al., 2024].

Climate and Weather Prediction drive PDE emulation research, as large-scale turbulence and chaos
demand high spatiotemporal resolution, large domains and physical coherence [Kochkov et al., 2024,
Keisler, 2022, Verma et al., 2024, Lam et al., 2023, Watt-Meyer et al., 2023, 2025, Price et al., 2024,
Nguyen et al., 2023]. Some emulators enforce conservation laws and symmetries [McGreivy and
Hakim, 2023, Verma et al., 2024, Wandel et al., 2021, Beucler et al., 2021, Lee and Carlberg, 2021,
Yuval and O’Gorman, 2020, Lee and Carlberg, 2021, Brandstetter et al., 2022b, 2023].

9 Discussion and Outlook

By storing and propagating both coarsened and learned latent fields, HREs outperform diverse
baselines with remarkable consistency across tasks and resolutions. We hope that this strategy will
prove useful for tasks requiring long rollouts and physical consistency, such as predicting atmospheric
or ocean dynamics.

Architectures and Hyperparameters HREs proved effective with mUnet processors on rectangular
grids, but our approach is orthogonal to MHR’s architecture so long as physics-respecting coarsening
and interpolation operators are available. Which architectures benefit most from the HRE framework
remains an open question, but a first step could be to consider our baselines and other successful
emulators. Tuning of processor hyperparameters could prove benefiical, and the optimal values might
not be the same as for the corresponding FNREs. HREs could also be combined with hybrid solvers
or numerical advection of ct.

Spatial Structure Weather forecasting models operating on spherical mesh data [Lam et al., 2023,
Oskarsson et al., 2024, Price et al., 2024] compute coarsened internal representations using graph-
based message passing across resolutions, an approach compatible with physical and symmetry
constraints [Horie and Mitsume, 2024]. However, mesh-based weather models have not yet included
coarsened input fields, hard physical constraints, or multistep rollouts within a latent space. Similarly,
cross-attention-based perceiver layers can drastically decrease token counts relative to the input
dimensionality [Alkin et al., 2024]. These ‘coarsening-like’ operators for meshes and point clouds
could be used to extend HREs beyond regular grids.

Domains and Boundaries Our PDEs werecomplex, but used simple spatial domains with periodic
boundaries. Boundary conditions and geometric information could be provided as additional network
inputs [Wandel et al., 2021, Lam et al., 2023, Watt-Meyer et al., 2025, Horie and Mitsume, 2024] to
an HRE encoder. Such a general-purpose encoder could allow for an HRE foundation model.

Generative Modeling Our HREs and baselines use MSE losses. For long rollouts of chaotic
dynamics, this can produce blurry outputs, distribution shift and instability. Generative models
remedy this somewhat [Lippe et al., 2023, Kohl et al., 2024, Price et al., 2024, Zhou et al., 2024b],
but reduce inference speed. Generative modeling with a loss like eq. 8 remains an open challenge.

Further Constraints and Applications HREs could also support hard symmetry constraints [Huang
and Greenberg, 2025] or stability-inducing loss terms [Schiff et al., 2024]. Beyond our 2D fluid
dynamics tasks, HREs could also be applied to 3D systems, higher field counts, solid mechanics,
mixed-phase flows or spatially extended chemical and biological systems.
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A Detailed model and training descriptions

A.1 Additional training details

Figure 6: Coarsening operations for staggered and collocated grids. For staggered grids, we em-
ploy the face averaging approach for velocities described in [Kochkov et al., 2021]. This method
conserves momentum and maintains incompressibility. In contrast, for collocated grids, we apply
non-overlapping averaging that adheres to conservation laws.

We provide the summary of the training parameters in Table 2.

Training of our decoder and Super-resolution (SR) models We train the SR models separately
for upsampling tasks without unrolling in time. Since the rolled-out auxiliary variables c̃t+k are not
expected to match the encoded variables Eϕ(Xt+k), our decoder is trained on rolled-out trajectories
of (x̃t, c̃t). However, we stop gradient propagation to both the processor and encoder during decoder
training, and thereby avoid propagating gradients backward in time. We note that there are no
technical obstacles to training the HRE end-to-end in an encoder-processor-decoder framework as in
eq. 4, we found this to be more costly and less effective in initial experiments.

A.2 Additional model details

In this section, we give additional model details that are not present in the main text or Table 2. We
also describe our modifications to the official implementations of FactFormer and DINo.
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Figure 7: Upsampling methods for staggered variables and collocated grids. For staggered variables,
face values are copied and velocity values in inner cells are linearly interpolated, preserving momen-
tum conservation and incompressibility. Corrections are learned through a vector potential az . We
either fix the corner values of az to satisfy Equation 15 or relax this assumption to obtain continuous
upsampled velocity fields. For collocated grids, upsampling is performed by copying pixels from the
low-resolution input or by bilinearly interpolating them.

mUnet Our implementation of mUnet uses an initial convolution layer to lift the channel dimension
to 32. The 3 up/downsampling blocks contain 2 ConvNeXt blocks, linear attention [Shen et al.,
2021] and a residual connection from the block inputs. The bottleneck layer includes multi-head
self-attention [Vaswani et al., 2017], and skip connections join downsampling outputs to upsampling
inputs at each resolution. At each level of the downsampling, two consecutive ConvNeXt layers
[Woo et al., 2023] are followed by a 2D convolution using a stride 2 and a group norm with 32
groups. The channel dimensions for each level of downsampling are [32, 64, 128, 256]. Each skip
connection incorporates linear self-attention operations. The bottleneck of the mUnet consists of a
ConvNeXt layer followed by full self-attention and another ConvNeXt layer. The upsampling blocks
are designed to be symmetric to the down blocks (We use transpose convolutions for upsampling).

HRE ours Our implementation uses the up and down blocks of the mUnet without the skip
connections. The encoder Ec’s channel counts are [32, 64, 128, 16] with corresponding norm groups
of [32, 32, 32, 8]. The processor maintains the same hyperparameters as the mUnet but uses a different
initial lifting convolution that operates on (xt, ct) pairs. ct fields are passed through ConvNeXt layers
before and after the processor, while xt fields are passed through a physical constraint layer after
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the processor. Since in our high-resolution tasks the encoding and target resolutions are the same,
the decoder is symmetric to the encoder except that the inputs are (xt, ct) pairs and the first group
normalization uses 9 groups for ID, KF and KFHR tasks and 10 groups for the CD task.

FactFormer We use the official FactFormer implementation, with a hidden dimension of 128, 4
layers, 8 heads, and kernel dimension 128. The input encoder is a 2D convolutional layer and the
output decoder is an MLP. We increase the input channel count to 2. For rollout resolutions of 2562
and 5122, to prevent out-of-memory errors, we decrease the number of latent steps from 4 to 2, the
output window from 16 to 10 and the batch size from 32 to 8. We also decrease the maximum rollout
length for the pushforward trick in our training curriculum from 4 to 2. When evaluating accuracy
for FactFormer-256 in Fig. 5, we compare to reference simulations coarsened to 2562. We note
that despite this unfair advantage, FactFormer-256 remains less accurate than mUnet-64+HR and
HRE-64.

DINo We use a 3 layer decoder with 64 channels and a latent size of 100. ODE tendencies are
computed with a 4-layer MLP with 512 hidden units. We adjust the number of input channels based
on the emulation task. We observed that the performance of DINo after 12K epochs is not competitive,
and instead trained it for 60K epochs with early stopping patience of 20K epochs.

LatRoll-FAE and LatRoll-E2E Both models have the same setup as ours for rollout resolutions
of 322 and 642. The only difference is that we remove the coarse xt fields and corresponding
encoder-decoder pairs, and lift the latent fields to the same size before passing them to the propagator.
During training and inference, these models take high-resolution inputs (5122) and encode them into
the latent space as ct = E(Xt). The propagator advances the latent representation as c̃t+k = Mk(ct),
and the decoder maps the propagated fields to a high-resolution vector potential At+k = D(c̃t+k). A
curl layer at the output then calculates the high-resolution velocity fields 5122 as X ′

t+k = ∇×At+k,
satisfying the incompressibility condition. This approach maintains zero momentum in the output
field, which is consistent with the initial conditions in the ID and KF cases where momentum is
nearly zero. For the FAE model, we train the encoder-decoder pairs in autoencoder mode on the
entire training set, then freeze these weights during unrolled training. All parameters of the E2E
model are trained at each rollout step. We only minimize a loss between the network predictions
and the ground truth at the final rollout step to keep the models trainable in a reasonable time. We
use the same curriculum K ∈ [1, 2, 4, 8, 16], with each curriculum step trained for 100 epochs. As a
result, after the last curriculum step is completed, RMSE decreases for this model until 16 steps, then
increases thereafter.

DPOT-S This model uses Fourier attention on 1024-dimensional internal representation at rollout
resolution 322 or 642, with 6 layers and 8 heads. We use the pretrained model and finetune it for the
downstream ID and KF tasks using batch size 32 on a single H100 GPU. We train the model for 500
epochs on the same set of simulation trajectories used for the other baselines. In each epoch, each
trajectory contributes a sample to one element of one batch, starting on a random time step of the
trajectory. This results in training on a total of 960000 samples for KF and 640000 samples for ID in
total, which is roughly equivalent to training for 35 epochs for ID and 20 epochs for KF on the whole
dataset. We consider this a reasonable (or somewhat generous) quantity of data when finetuning a
foundation model for few-shot inference. Attempts to use DPOT-S in zero-shot mode did not produce
useful results beyond 5-10 time steps.

DilResNet The architecture consists of a linear projection that maps PDE fields onto 48 channels,
followed by 4 blocks, of 7 convolutional layers with 3× 3 kernels. Each block uses kernel dilations
of 1, 2, 4, 8, 4, 2 and 1. A final convolution maps onto output predictions. We use Swish activations,
preceded by group normalization layers. For unrolled training, we use the same architecture on our
standard curriculum K ∈ [1, 2, 4, 8, 16]. The batch size per GPU is fixed at 32, and the number of
GPUs for each curriculum step is (4, 6, 6, 6, 16). All other parameters match the DilResNet baseline
with input noise training.

FNO We use the official FNO implementation from [Kossaifi et al., 2024] (version 0.3.0), with 4
Fourier layers including lifting, filtering and projection, and hidden layers with 128 channels. We use
16 x- and y-modes for a parameter count close to the mUnet.
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A.3 Physics-constrained decoders for hybrid representations

Here we describe the construction of decoders with hard physical constraints. We consider two cases:
conservation of multiple quantities on a collocated grid, and incompressibility with conservation of
momentum on a staggered grid. In each case, we learn a correction Bc that is added to an interpolation
operator Dx. Dx is the coarse-to-fine counterpart of Ex (Fig. 7), and obeys all relevant physical
constraints for each PDE.

A.3.1 Collocated grid

We enforce conservation of the field variable u for KS as well as conservation of mass, energy and
momentum for compressible flow on collocated grids by using an r × r local average as Ex, and
bilinear interpolation as Dx. The network learns an additive correction to the updated fields Bψ , from
which the local r × r average is removed to produce a conservative update Bc. To remove the local
average, this average is first computed using Ex, then removed at high resolution using Dx:

Bc(x̃t, c̃t) = Bψ(x̃t, c̃t)−Dx ◦ Ex ◦ Bψ(x̃t, c̃t) (14)

Here Dx, a fixed interpolation operator respecting physical constraints (e.g., bilinear or nearest
neighbor interpolation), is the coarse-to-fine counterpart of Ex (See Fig. (6, 7)-right). Bψ is an
unconstrained mapping from (x̃t, c̃t) onto an additive correction for X̃t. In eq. 14 the second term
ensures that Bc corrects the physically constrained quantity (e.g. density, momentum or energy) in a
way that respects physical constraints, and ensures the decoder satisfies the consistency condition:

∀xt, ct : Ex ◦ DHR(xt, ct) = xt (15)

For example, if Ex averages a density field over nonoverlapping r × r pixel squares, and Dx copies
each pixel r × r times, then Bc has 0 mean on each r × r square of outputs.

A.3.2 Staggered grid

Our KF, KFHR and ID tasks are based on incompressible flow on a staggered grid. In this case, Ex
applies face-averaging (Fig. 6) as in Kochkov et al. [2021]. To satisfy the divergence-free condition,
the decoder compute the curl of a learned high-resolution vector potential:

DHR(x̃t, c̃t) = ∇× (Dψ(x̃t, c̃t) · δr(i, j)) (16)

Here, i and j are pixel indices of the high-resolution output. Function δr(i, j) fixes the corners of
each r×r square on the learned vector potential to zero (Fig. 7-left). This guarantees that the decoder
satisfies the eq. 15 and is the counterpart of face-averaging Ex in Fig. 6-left. The function and δr(i, j)
is defined as:

δr(i, j) =

{
0 if i mod r = 0 and j mod r = 0,

1 otherwise.
(17)

Dx thus interpolates horizontal velocities horizontally and vertical velocities vertically (Fig. 7). Both
Ex and Dx trivially conserve the incompressibility condition (consider the divergence of each cell in
Fig. 7, upper left).

We observe that fixing the corner vector potential values introduces discontinuities that the correction
term cannot rectify. Therefore, we relax the assumption of Equation 15 and allow the decoder
to output continuous vector potential fields. This relaxation does not violate the conditions of
incompressibility or momentum conservation. However, the encoding and decoding processes
compromise the immutability of the coarse field variables, meaning that repeated decoding-encoding
changes the coarsened fields xt.

B Measurement of inference speed

We analyze inference times across varying batch sizes for the ID and KF cases at rollout resolutions
of 322 and 642 on an A100 GPU with 40GB memory. We exclude the data transfer and encoding
costs for DINo and our model to obtain the marginal rollout cost per time step. To obtain the scaling
behavior, we fit a linear regression using least squares to the largest three batch size measurements
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for each model and calculate the resulting slope (However, we use the inference speed for batch
size of 32 in Figure 1 due to GPU memory limitations). This slope approximates the per-batch-
element inference time under GPU saturation conditions (considering that the last three points lie
approximately on a line), while the y-intercept represents the computational overhead inherent to
each model. The complete results are presented in Figures 23 and 24. In both cases, DilResNet is
the slowest and DINo is the fastest model. Also, DINo has the smallest overhead while DilResnet
has the highest. Our model is slightly slower than mUnet and slightly faster than FactFormer. All
models are faster than the numerical solver operating in the native resolution, which takes ≈ 19.5
seconds to solve the system. However, the numerical solver operating in 5122 input size takes ≈ 0.6
seconds, meaning that models operating at 642 rollout resolution with batch size 1 can be slower than
this low-resolution numerical solver.

C Additional dataset details

In this section we give full details on the datasets used for each emulation task. All datasets are
stored in float32 precision. Additional information and dataset parameters are summarized in
Table 4. Initial conditions are taken from [Kochkov et al., 2021] for ID, and from [Takamoto et al.,
2022] for CD. For KF and KFHR, we take independent samples from the stationary distribution.
Training, validation and testing data consisted of nonoverlapping sets of samples drawn from the same
distributions (we use non-overlapping sets of random initialization keys for the training, validation,
and testing datasets when generating data from JAX solvers), except in cases where we specifically
measure generalization of trained emulators to out-of-distribution data (Table 9).

C.1 2D Kolmogorov Flow (KF)

We use the staggered conservative DNS solver from the jax-cfd package [Kochkov et al., 2021]
to integrate this system with periodic boundary conditions. We generate 128 experiments using
2048× 2048 cells for the solver. We set the numerical solver’s CFL [Courant et al., 1928] condition
to 0.5 and then uniformly subsample its solution, obtaining nt = 300 points in the interval [40, 80].
We then coarsen the data (velocities) to a 512 × 512 grid using the face-averaging approach to
maintain incompressibility and momentum conservation. This 512× 512 data then comprises the
high-resolution inputs Ar′(Xt) for HREs and other methods operating on inputs at 5122 resolution
for our emulation tasks, or are coarsened further as needed by other emulators. These spatial and
temporal coarsening steps result in a CFL number of 9.4 for the training dataset, far exceeding that of
the solver.

C.2 2D Kolmogorov Flow with Re = 4000 (KFHR)

The Reynolds number of KF scales as Re ∝ √
χL2/3/ν. χ is the forcing strength scale, L is the

domain size and ν is the kinematic viscosity. Following [Kochkov et al., 2021] we scale L → 2L,
ν → ν/2 and χ → χ/2 to increase the Reynolds number to 4000. Since the smallest eddy size scales
with 1/

√
Re, we get smaller eddy structures in the solution. We use a 4096× 4096 grid for the solver

and downsample the solution to a 512× 512 grid. All other parameters match KF.

C.3 2D Incompressible Decaying Turbulence (ID)

This dataset, like the Kolmogorov flow, is governed by the incompressible Navier-Stokes equations
and solved with the same jax-cfd package. We generate 200 experiments using the same parameters
and spatial resolutions as KF except for the forcing term, which is set to f = 0. Time is uniformly
discretized to nt = 166 points in [4.5, 25]. The spectral density of the initial conditions is sampled
from a log-normal distribution with variance 0.25 that peaks at a wavenumber of umax = 4.2. We
then generate random initial conditions from a normal distribution and filter the fields using FFT to
match the desired spectral density.

C.4 Compressible Decaying Turbulence (CD)

We generate the dataset using direct numerical simulation (DNS) software provided by [Takamoto
et al., 2022]. Time integration uses a mass, momentum and energy-conserving finite volume scheme,
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whose implementation we slightly modified to avoid rounding errors when converting between
floating point representations of momentum and velocity. Our dataset consists of 200 different
simulations having varying initial conditions of density, momentum and energy. Space is uniformly
discretized to nx = ny = 512 cells in [0, 1]× [0, 1] with periodic boundary conditions and time is
uniformly discretized to nt = 100 points in [0, 5].

Initial velocities are generated as a superposition of sinusoidal waves, v(x, t = 0) =∑N
i=1 A sin(kx + ϕi) where N = 4, A = v̄/|k|, v̄ is maximum initial velocity determined us-

ing the Mach number as v̄ = csM , where cs is the speed of sound. Wavenumbers are given by
k = 2πi/L, where L is domain length, and the phases ϕi ∼ U [0, 2π]. Density and pressure are
initialized uniformly.

C.5 1D Kuramoto-Sivashinsky Equation

We generate the dataset using the jax-cfd package. The spatial domain (with length L = 256) is
discretized into 2048 points, while the temporal domain t ∈ [0, 150] is discretized into nt = 3000

time steps. Initial conditions are specified as u0(x) =
∑5
m=1 Am sin(2πℓmx/L + ϕm), where

{Am, ℓm, ϕm} are random parameters sampled as in [Lippe et al., 2023]. Boundary conditions are
specified as periodic. We use a spectral solver with an RK4 time integrator. To ensure statistical
stationarity, we discard solutions up to t = 80 as a burn-in period. We generate 1000 trajectories and
downsample the solutions by a factor of 5 along the temporal axis. Rollout resolution is chosen as
322 meaning that r = 64.

D Supplementary experimental results

KS and ID with multiple seeds To test the robustness of our HRE method to different initial seeds,
we initialized the network used in the KS case on a coarse version of the dataset using 5 different
random seeds and trained it on a next-step prediction task. We observed that the model’s performance
was consistent over seeds, with mean validation MSE of 5e− 8 and standard deviation of 1e− 8. We
also repeated the ID experiment on a rollout resolution of 322 with an additional seed, resulting in
similar accuracy. The additional experiment is conducted with seed 44 and resulted in a validation
rollout loss of 0.29. In comparison, the experiment we report was run with the seed 43 and achieved
a rollout error of 0.31.

TKE spectra We report the TKE spectra of PDE fields predicted by the trained models at a rollout
resolution of 322in Figures 18-19. We observe that the high-resolution information encoded in ct
fields enables our model to capture high-frequency features in the flow field. On the KF task, our
model consistently outperforms others in reproducing the TKE spectrum of the reference solver.
However, it occasionally produces unwanted oscillations at high frequencies for the ID case. For KF
at rollout resolution 322, we use the mUnet model trained on rollout length 16. The model trained on
rollout length 2 overshoots some TKE fields by a large margin; we believe that training on longer
rollouts helps the model in this case. However, for the stability plots on KF with rollout resolution
322, we use the model trained on 2 steps since it achieves the highest correlation with the ground
truth after 64 timesteps.

E Training Costs

For the ID case at rollout resolution 642 and rollout length 16, mUnet requires ≈ 7 hours to train
versus ≈ 9.5 hours for HRE on 8 A100s with batch size 16 per GPU. For long rollouts, most HRE
computations occur at coarse resolution, but for short rollouts, mUnet is considerably faster: at rollout
length 1, mUnet needs ≈ 1 hour for 100 epochs on 4 A100s, while HRE requires ≈ 5 hours on 8
A100s. FNO takes ≈ 20 minutes to train on 4 A100s for rollout length 1 and ≈ 90 minutes for rollout
length 16. DINo trains in ≈ 7 hours on a single V100 at the same input resolution with batch size
32. FactFormer takes ≈ 90 minutes on a single H100 with batch size 32; however, it requires ≈ 106
hours to train at rollout resolution 5122 with batch size 8. DilResNet takes ≈ 13 hours to train for
500 epochs on 4 H100s in noise training mode with batch size 32. Finetuning for DPOT-S takes ≈ 1
hour on an H100. LatRoll-FAE requires ≈ 9 hours on 8 A100s for the KF case at rollout resolution
16 when training on a single timestep and ≈ 15 hours on 16 timesteps, while LatRoll-E2E takes ≈ 15
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hours and ≈ 17 hours when training on rollouts of 1 and 16 timesteps, respectively. All batch sizes
are per GPU.

Figure 8: Rollout performance on the ID task at rollout/encoding resolutions 322 (left), 642.

Figure 9: Rollout performance on the KF task at rollout/encoding resolutions 322 (left) and 642.
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Figure 10: Rollout performance on the KFHR task at rollout/encoding resolutions 322 (left) and 642.

Figure 11: Rollout performance for 322 CD.
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Table 3: Number of parameters per model.

KF/ID KFHR CD

OUR PROCESSOR 19.492M 19.492M 19.493M
MUNET 19.430M 19.430M 19.433M
FNO 18.974M 18.974M 18.974M
DILRESNET 583680 583680 588096
FACTFORMER 3464834 3464834 -
DINO 769420 769420 -
DPOT-S 30M - -
LATROLL (FAE-E2E) (642) 23.8M - -
LATROLL (FAE-E2E) (322) 37.1M - -
OUR ENCODER (642) 2.156M 2.156M -
OUR ENCODER (322) 8.780M 8.780M -
OUR DECODER (642) 2.204M 2.204M -
OUR DECODER (322) 8.833M 8.833M -
SR DECODER (642) 2.153M 2.153M -
SR DECODER (322) 8.743M 8.743M -

Figure 12: Rollout performance for 642 CD.
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Table 5: Rollout performance across emulators and experiments. We report MSE and correlation
(Corr.) of field variable u for each method after 64 rollout steps (52 steps for KFHR at 322). Best
model performance in bold and second underlined.

KF ID KFHR

RMSE ↓ CORR. ↑ RMSE CORR. RMSE CORR.

ROLLOUT RESOLUTION 32× 32

OURS 0.71±.23 0.68±.21 0.29±.08 0.96±.03 0.50±.04 0.74±.05

MUNET 1.07±.20 0.35±.21 0.58±.34 0.78±.25 0.52±.05 0.69±.05

FNO 1.29±.21 0.12±.19 0.71±.27 0.74±.20 0.66±.05 0.48±.08

DILRESNET 1.16±.20 0.26±.20 1.77±.72 0.50±.17 0.55±.05 0.63±.07

FACTFORMER 1.12±.21 0.28±.20 0.58±.25 0.79±.51 0.53±.05 0.66±.05

DINO 1.00±.10 0.20±.17 1.10±.27 0.30±.30 0.99±.04 0.21±.04

DPOT-S 1.85±.24 0.20±.17 1.65±.64 0.18±.24 - -

DILRESNET-UT 1.19±.22 0.26±.22 0.84±.19 0.72±.16 - -

LATROLL-32-FAE 1.15±.17 0.14±.16 0.96±.22 0.39±.35 - -

LATROLL-32-E2E 1.23±.17 0.20±.16 1.20±.38 0.27±.43 - -

ROLLOUT RESOLUTION 64× 64

OURS 0.43±.17 0.88±.07 0.28±.15 0.93±.12 0.44±.05 0.79±.04

MUNET 0.69±.28 0.67±.29 0.28±.13 0.95±.04 0.41±.04 0.81±.03

FNO 1.27±.22 0.14±.19 0.78±.26 0.67±.20 0.76±.05 0.35±.07

DILRESNET 7.05±13.22 0.13±.12 20.80±31.37 0.04±.10 0.52±0.08 0.70±.10

FACTFORMER 1.15±.15 0.23±.16 0.66±.36 0.71±.37 0.58±.05 0.64±.05

DINO 1.07±.12 0.15±.12 1.09±.28 0.31±.33 1.67±.24 0.06±.10

DPOT-S 1.80±.40 0.09±.16 1.5±.27 0.17±.21 - -

DILRESNET-UT 3.32±1.62 0.07±.17 6.56±3.58 0.05±.20 - -

LATROLL-64-FAE 1.23±.23 0.21±.18 - - - -

LATROLL-64-E2E 1.07±.16 0.32±.13 - - - -
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Table 6: Rollout performance across different experiments for the field variable v for each method.
Model parameters are the same as Table 5.

METHOD KF ID KFHR

RMSE ↓ CORR. ↑ RMSE CORR. RMSE CORR.

ROLLOUT RESOLUTION 32× 32

OURS 0.76±.27 0.67±.20 0.30±.11 0.96±.03 0.50±.04 0.70±.04

MUNET 1.10±.24 0.34±.22 0.51±.21 0.86±.12 0.53±.05 0.62±.07

FNO 1.22±.21 0.20±.20 0.73±.29 0.76±.18 0.68±.05 0.37±.08

DILRESNET 1.24±.26 0.21±.22 2.18±.78 0.40±.16 0.57±.06 0.55±.10

FACTFORMER 1.17±.23 0.25±.25 0.54±.23 0.85±.13 0.55±.05 0.58±.08

DINO 1.11±.10 0.00±.12 1.27±.31 0.05±.36 0.98±.02 0.06±.08

DPOT-S 2.11±.40 0.15±.25 9.23±2.19 0.31±.27 - -

DILRESNET-UT 1.22±.19 0.20±.17 0.77±.19 0.80±.10 - -

LATROLL-32-FAE 2.10±.31 0.10±.18 1.25±.32 0.34±.31 - -

LATROLL-32-E2E 1.29±.24 0.13±.31 1.24±.36 0.43±.32 - -

ROLLOUT RESOLUTION 64× 64

OURS 0.45±.19 0.87±.10 0.27±.14 0.97±.03 0.46±.06 0.76±.05

MUNET 0.70±.25 0.72±.17 0.29±.10 0.97±.02 0.43±.43 0.77±.05

FNO 1.22±.20 0.18±.26 0.79±.38 0.72±.23 0.79±.05 0.21±.10

DILRESNET 5.02±8.14 0.11±.15 12.23±13.91 0.08±.12 0.53±.07 0.64±.08

FACTFORMER 1.19±.21 0.23±.23 0.54±.20 0.87±.08 0.61±.04 0.54±.06

DINO 1.12±.11 0.03±.16 0.99±.27 0.42±.30 1.40±.14 0.04±.05

DPOT-S 3.63±.53 0.03±.26 9.42±1.49 0.32±.22 - -

DILRESNET-UT 2.60±.96 0.12±.14 7.40±1.80 0.08±.11 - -

LATROLL-64-FAE 1.38±.36 0.17±.32 - - - -

LATROLL-64-E2E 1.02±.21 0.33±.22 - - - -

Table 7: Rollout performance across different numbers of learned latent fields n and coarsening
factors r. We report MSE and correlation (Corr.) of field variable u for each method. The rollout
length is 96 steps for KF and 128 for ID. Values in bold show the best result at each rollout resolution.

KF ID

RMSE ↓ CORR. ↑ RMSE CORR.

ROLLOUT RESOLUTION 32× 32

n = 4 1.263 ± 0.23 0.143 ± 0.157 0.6 ± 0.319 0.766 ± 0.332

n = 16 1.295 ± 0.188 0.147 ± 0.118 0.192 ± 0.227 0.658 ± 0.33

ROLLOUT RESOLUTION 64× 64

n = 4 1.23 ± 0.21 0.214 ± 0.215 1.17 ±0.26 0.868 ± 0.192

n = 16 0.69 ± 0.25 0.69 ± 0.24 0.28 ± 0.126 0.95 ± 0.039
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Figure 13: A snapshot of extracted ct fields for KF.

Figure 14: A snapshot of extracted ct fields for ID.
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Figure 15: Comparison of mUnet emulators and HREs on the KS task. The reference resolution
was 2048, and we used r = 64 for a rollout resolution of 32. We used r′ = 1, meaning our HREs
encoded full-resolution PDE fields from the reference simulation.

Figure 16: Comparison of SineNet, mUnet and HRE emulators on KF (322). We use the SineNet-8
model with the same training parameters as for their INS task [Zhang et al., 2024]. We excluded
this baseline from further analysis due to its unfavorable cost-accuracy trade-off. While it provides a
slight improvement in accuracy, it is several orders of magnitude slower than mUnet.
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Table 8: Physics and ct field ablations. We measure the rollout performance of the models on KF
(322) for 64 timesteps and compare the final RMSE and correlation values.

KF

RMSE CORR.

OUR MODEL 0.71 ± 0.23 0.68 ± 0.21

MUNET W PHYSICS 0.989 ± 0.208 0.455 ± 0.213

OURS W/O PHYSICS 0.881 ± 0.21 0.563 ± 0.215

MUNET 1.085 ± 0.22 0.345 ± 0.21

Figure 17: Performance of ablated models on KF 322.

Table 9: Rollout performance of HREs vs. mUnet for varying IC distributions. The in-distribution
training data were generated with umax = 4.2, and we vary this initial peak wavenumber to evaluate
the generalization performance of our model versus mUnet. The burn-in time is calculated by scaling
the default value for umax = 4.2 by the inverse ratio of the chosen peak wavenumber; all other
parameters remain the same. Rollout and target resolutions are 322. We report RMSE and correlation
(Corr.) of the field variable u after 64 rollout steps across increasing umax values. Best performance
in bold.

umax = 3 umax = 4.2 umax = 5 umax = 6

METHOD RMSE ↓ CORR. ↑ RMSE CORR. RMSE CORR. RMSE CORR.

HRE (OURS) 0.15±.05 0.98±.02 0.29±.08 0.96±.01 0.65±.31 0.85±.13 1.01±.55 0.71±.34

MUNET 0.30±.12 0.90±.06 0.58±.34 0.78±.25 0.74±.42 0.75±.35 1.05±.68 0.61±.50
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Figure 18: Additional TKE analysis for ID rollouts of 96 (Resolution 322).

Figure 19: Additional TKE analysis for KF rollouts of 64 (Resolution 322).

34



Figure 20: Comparison of our HRE with mUnet and FactFormer operating on high-resolution data
and mUnet with a super-resolution decoder for the KF (left) and ID (right) tasks. Rollout resolutions
are 642 for KF and 322 for ID for our model, mUnet+SR and Latroll models.
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Figure 21: HRE-based prediction of high-resolution KF fields with rollout resolution 642 and target
resolution 5122 with 32 timestep intervals.
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Figure 22: HRE-based prediction of high-resolution ID fields with rollout resolution 642 and target
resolution 5122 with 32 timestep intervals.
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Figure 23: Inference times for varying batch sizes. We choose rollout resolution (322) for ID, KF and
KFHR tasks and computed rollouts over 64 time steps.

Figure 24: Inference times for varying batch sizes. We choose rollout resolution (642) for ID, KF and
KFHR tasks and computed rollout for 64 time steps.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We give a detailed description of the state of the field, how our new hybrid
representations provide an advance, and what evidence demonstrates the improvements
achieved. We clearly state the scope of our achievements, which include 5 challenging tasks.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We explicitly include a section on limitations and future work. We discuss the
need for more tasks, other grids, other PDES, etc.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA] .

Justification: We do not introduce new theoretical results.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We give all hyperparameters for all methods and data generation procedures.
Upon acceptance we would release code including random seeds used to generate the paper

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We will release full source code, random seeds, and example notebooks upon
acceptance.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: all details are specified in the main and/or supplementary text. We use
established benchmark datasets in most cases.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide error bars over initial conditions and random seeds in several
instances, and indicate the nature of these in each case. We do not carry out statistical tests
of any null hypotheses.

8. Experiments compute resources
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

We provide training times and inference speeds, and specify the hardware resources used.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: we reviewed and abided by the NeuRIPS code of ethics.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA] .

Justification: we foresee no negative impacts specific to our work on hybrid PDE emulation,
in this sense it has the same position relative to potentila impacts as a generic optimzation
algorithm for neural networks as mentioned as an example in the guidelines.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: there are no such risks. We generate our own data by simulation.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: we cite the relevant papers for software packages and algorithms we used.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA] .

Justification: We do not currently introduce new assets. We will release code upon accep-
tance, and follow the guidelines.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .

Justification: no crowdsourcing or human subjects.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .
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Justification: no IRB approval required.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA] .
Justification: no LLMs used.
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