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Abstract

We study the implicit bias of flatness / low (loss) curvature and its effects on general-
ization in two-layer overparameterized ReLU networks with multivariate inputs—a
problem well motivated by the minima stability and edge-of-stability phenomena
in gradient-descent training. Existing work either requires interpolation or focuses
only on univariate inputs. This paper presents new and somewhat surprising theo-
retical results for multivariate inputs. On two natural settings (1) generalization
gap for flat solutions, and (2) mean-squared error (MSE) in nonparametric function
estimation by stable minima, we prove upper and lower bounds, which establish
that while flatness does imply generalization, the resulting rates of convergence
necessarily deteriorate exponentially as the input dimension grows. This gives an
exponential separation between the flat solutions compared to low-norm solutions
(i.e., weight decay), which are known not to suffer from the curse of dimensionality.
In particular, our minimax lower bound construction, based on a novel packing
argument with boundary-localized ReLU neurons, reveals how flat solutions can
exploit a kind of “neural shattering” where neurons rarely activate, but with high
weight magnitudes. This leads to poor performance in high dimensions. We cor-
roborate these theoretical findings with extensive numerical simulations. To the
best of our knowledge, our analysis provides the first systematic explanation for
why flat minima may fail to generalize in high dimensions.

1 Introduction

Modern deep learning is inherently overparameterized. In this regime, there are typically infinitely
many global (i.e., zero-loss or interpolating) minima to the training objective, yet gradient-descent
(GD) training seems to successfully avoid “bad” minima, finding those that generalize well. Un-
derstanding this phenomenon boils down to understanding the implicit biases of training algo-
rithms [Zhang et al., 2021]. A large body of work has focused on understanding this phenomenon
in the interpolation regime [Du et al., 2018, Liu et al., 2022], and the related concept of “benign
overfitting” [Belkin et al., 2019, Bartlett et al., 2020, Frei et al., 2022].

While these directions have been fruitful, there is increasing evidence that rectified linear unit (ReLU)
neural networks do not benignly overfit [Mallinar et al., 2022, Haas et al., 2023], particularly in the
case of learning problems with noisy data [Joshi et al., 2023, Qiao et al., 2024]. Furthermore, for
noisy labels, it takes many iterations of GD to actually interpolate the labels [Zhang et al., 2021].
This discounts theories based on interpolation to explain the generalization performance of practical
neural networks, which would have entered the so-called edge-of-stability regime [Cohen et al., 2020],
or stopped long before interpolating the training data.
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Figure 1: The “neural shattering” phenomenon: From empirical observations to its geometric origin
and theoretical consequences. Left panel: Training with a large learning rate and gradient descent
empirically results in “neural shattering”: Neurons develop large weights despite activating on very
few inputs, leading to a high MSE of ≈ 1.105 (red points). In contrast, explicit ℓ2-regularization
prevents this, achieving a much lower MSE of ≈ 0.055 (orange points). Middle panel: The number
of distinct directions, or “caps”, on a high-dimensional sphere grows exponentially. Consequently,
the data sites are spread thinly across these caps. This makes it trivial for a ReLU neuron to find a
direction that isolates only a few data points. This sparse activation pattern allows neurons to use large
weight magnitudes for this local fitting without impacting the global loss curvature, thus “tricking”
the flatness criterion. Right panel: Visualization of “hard-to-learn” function from our minimax lower
bound construction, built from localized ReLU neurons described in the middle panel.

To that end, it has been observed that an important factor that affects/characterizes the implicit bias
of GD training is the notion of dynamical stability [Wu et al., 2018]. Intuitively, the (dynamical)
stability of a particular minimum refers to the ability of the training algorithm to “stably converge” to
that minimum. The stability of a minimum is intimately related to the flatness of the loss landscape
about the minima [Mulayoff et al., 2021]. A number of recent works have focused on understanding
linear stability, i.e., the stability of an algorithm’s linearized dynamics about a minimum, in order
to characterize the implicit biases of training algorithms [Wu et al., 2018, Nar and Sastry, 2018,
Mulayoff et al., 2021, Ma and Ying, 2021, Nacson et al., 2023]. Minima that exhibit linear stability
are often referred to as stable minima. In particular, Mulayoff et al. [2021] and Nacson et al. [2023]
focus on the interpolation regime of two-layer overparameterized ReLU neural networks in the
univariate input and multivariate input settings, respectively. Roughly speaking, the main takeaway
from their work is that stability / flatness in parameter space implies a bounded-variation-type of
smoothness in function space.

Moving beyond the interpolation regime, Qiao et al. [2024] extend the framework of Mulayoff
et al. [2021] and provide generalization and risk bounds for stable minima in the non-interpolation
regime for univariate inputs. They show that for univariate nonparametric regression, the functions
realized by stable minima cannot overfit in the sense that the generalization gap vanishes as the
number of training examples grows. Furthermore, they show that the learned functions achieve
near-optimal estimation error rates for functions of second-order bounded variation on an interval
strictly inside the data support. While this work is a good start, it begs the questions of (i) what
happens in the multivariate / high-dimensional case and (ii) what happens off of this interval (i.e.,
how does the network extrapolate). Indeed, these are key to understanding the implicit bias of
GD trained neural networks, especially since learning high dimensions seems to always amount to
extrapolation [Balestriero et al., 2021]. These two questions motivate the present paper in which we
provide a precise answer to the following fundamental question.

How well do stable minima of two-layer overparameterized ReLU neural networks perform in the
high-dimensional and non-interpolation regime?

We provide several new theoretical results for stable minima in this scenario, which are corroborated
by numerical simulations. Some of our findings are surprising given the current state of understanding
of stable minima. Notably, we show that, while flatness does imply generalization, the resulting sam-
ple complexity grows exponentially with the input dimension. This gives an exponential separation
between flat solutions and low-norm solutions (weight decay) which are known not to suffer from the
curse of dimensionality [Bach, 2017, Parhi and Nowak, 2023b].
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1.1 Contributions

In this paper, we provide new theoretical results for stable minima of two-layer ReLU neural networks,
particularly in the high-dimensional and non-interpolation regime. Our primary contributions lie in
the rigorous analysis of the generalization and statistical properties of stable minima and the resulting
insights into their high-dimensional behavior. In particular, our contributions include the following.

1. We establish that the functions realized by stable minima are regular in the sense of a weighted
variation norm (Theorem 3.2 and Corollary 3.3). This norm defines a data-dependent function
class that captures the inductive bias of stable minima.1 Furthermore, this regularity admits an
analytic description as a form of weighted total variation in the domain of the Radon transform.
These results synthesize and extend previous work [cf., Nacson et al., 2023, Qiao et al., 2024]
by removing interpolation assumptions and generalizing them to multivariate inputs.

2. We analyze the generalization properties of stable minima in both a statistical learning setting
and a nonparametric regression setting defined using the smoothness class above.

• We establish that stable minima provably cannot overfit in the sense that their generalization
gap (i.e., a uniform convergence bound) tends to 0 as the number of training examples
n→ ∞ at a rate n−

1
2d+4 up to logarithmic factors (Theorem 3.5).

• For high-dimensional (d > 1) nonparametric regression, we show that stable minima (up to
logarithmic factors) achieve an estimation error rate, in mean-squared error (MSE), upper
bounded by n−

1
2d+4 (Theorem 3.6).

• We prove a minimax lower bound of rate n−
2

d+1 up to a constant (Theorem 3.7) on both
the MSE and the generalization gap, which certifies that stable minima are not immune to
the curse of dimensionality. This gives an exponential separation between flat solutions
and low-norm solutions (weight decay) [Bach, 2017, Parhi and Nowak, 2023b].

• By specializing the MSE upper bound to the univariate case (d = 1), we show that stable
minima (up to logarithmic factors) achieve an upper bound of n−

1
6 . Furthermore, by a

construction specific to the univariate case, we have a sharper lower bound of n−
1
2 when

d = 1. These results should be contrasted to those of Qiao et al. [2024], who derive
matching upper and lower bounds of n−

4
5 on an interval strictly inside the data support.

Note that our results hold over the full domain, therefore capturing how the networks
extrapolate. Thus, our results provide a more realistic characterization of the statistical
properties of stable minima in the univariate case than in prior work.

3. In Section 4, we corroborate our theoretical results with extensive numerical simulations. As
a by-product, we uncover and characterize a phenomenon we refer to as “neural shattering”
that is inherent to stable minima in high dimensions. This refers to the observation that each
neuron in a flat solution has very few activated data points, which means that the activation
boundaries of the ReLU neurons in the solutions shatter the data set into small pieces. This
leads to poor performance in high dimensions. We also highlight that this observation exactly
matches the construction of “hard-to-learn” functions for our minimax lower bound. Thus,
our empirical validation combined with our theoretical analysis offers fresh insights into how
high-dimensionality impacts neural network optimization and generalization. Indeed, our results
reveal a subtle mechanism that leads to poor performance specifically in high dimensions.

These results are based on two novel technical innovations in the analysis of minima stability in
comparison to prior works, which we summarize below.

Statistical bounds on the full input domain. The data-dependent nature of the stable minima
function class implies that there are regions of the input domain where neuron activations are sparse
for stable minima. This is because the functions in this class have local smoothness that can become
arbitrarily irregular near the boundary of the data support. This makes it challenging to study the
statistical performance of stable minima in the irregular regions. This was bypassed in the univariate
case by Qiao et al. [2024] by restricting their attention to an interval strictly inside the data support,
completely ignoring these hard-to-handle regions. Our analysis overcomes this via a novel technique

1More specifically, this quantity defines a seminorm which correspondingly defines a kind of Banach space
of functions called a weighted variation space [DeVore et al., 2025].
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that balances the error strictly inside the data support with the error close to the boundary. This allows
us to establish meaningful statistical bounds on the full input domain.

ReLU-specific minimax lower bound construction. We develop a novel minimax lower bound
construction (see proof of Theorem 3.7) using functions built from sums of ReLU neurons. These neu-
rons are strategically chosen to have activation regions near the boundary of the input domain. This ex-
ploits the “on/off” nature of ReLUs and high-dimensional geometry to create “hard-to-learn” functions.
The data-dependent weighting allows these sparsely active, high-magnitude neurons to exist within
the stable minima function class. This construction is fundamentally different from classical nonpara-
metric techniques and is tightly linked to our experimental findings on neural shattering (see Figure 1).

1.2 Related Work

Stable minima and function spaces. Many works have investigated characterizations of the implicit
bias of GD training from the perspective of dynamical stability [Wu et al., 2018, Nar and Sastry,
2018, Mulayoff et al., 2021, Ma and Ying, 2021, Nacson et al., 2023, Wang et al., 2022, Qiao et al.,
2024]. In particular, Mulayoff et al. [2021] characterized the function-space implicit bias of minima
stability for two-layer overparameterized univariate ReLU networks in the interpolation regime. This
was extended to the multivariate case by Nacson et al. [2023] and, in the univariate case, this was
extended to the non-interpolation regime by Qiao et al. [2024] with the addition of generalization
guarantees. In this paper, we extend these works to the high-dimensional and non-interpolation
regime and characterize the generalization and statistical properties of stable minima.

Nonparametric function estimation with neural networks. It is well known that neural networks
are minimax optimal estimators for a wide variety of functions [Suzuki, 2018, Schmidt-Hieber, 2020,
Kohler and Langer, 2021, Parhi and Nowak, 2023b, Zhang and Wang, 2023, Yang and Zhou, 2024,
Qiao et al., 2024]. Outside of the univariate work of Qiao et al. [2024], all prior works construct
their estimators via empirical risk minimization problems. Thus, they do not incorporate the training
dynamics that arise when training neural networks in practice. Thus, the results of this paper provide
more practically relevant results on nonparametric function estimation, providing estimation error
rates achieved by local minima that GD training can stably converge to.

Loss curvature and generalization. A long-standing theory to explain why overparameterized
neural networks generalize well is that the flat minima found by GD training generalize well [Hochre-
iter and Schmidhuber, 1997, Keskar et al., 2017]. Although there is increasing theoretical evidence
for this phenomenon in various settings [Ding et al., 2024, Qiao et al., 2024], there is also evidence
that sharp minima can also generalize [Dinh et al., 2017]. Thus, this paper adds complementary
results to this list where we establish that, while flatness does imply generalization for two-layer
ReLU networks, the resulting sample complexity grows exponentially with the input dimension.

2 Preliminaries, Notation, and Problem Setup

We investigate learning with two-layer ReLU neural networks. Our focus is on understanding the
generalization and statistical performance of solutions obtained through GD training, particularly
those that are stable.

Neural networks. We consider two-layer ReLU neural networks with K neurons. Such a network
implements a function fθ : Rd → R of the form

fθ(x) =

K∑
k=1

vkϕ(w
T
kx− bk) + β, (1)

where θ = {K} ∪ {vk,wk, bk}Kk=1 ∪ {β} denotes the collection of all neural network parameters,
including the width K ∈ N. Here, vk ∈ R denotes the output-layer weights, wk ∈ Rd denotes the
input-layer weights, bk ∈ R denotes the input-layer biases, and β ∈ R denotes the output-layer bias.

Data fitting and loss function. We consider the problem of fitting the data D = {(xi, yi)}ni=1,
where xi ∈ Rd and yi ∈ R. We consider the empirical risk minimization problem with squared-error
loss L(θ) = 1

2n

∑n
i=1(yi − fθ(xi))

2.
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Gradient descent and minima stability. We aim to minimize L(·) via GD training, i.e., we
consider the iteration θt+1 = θt − η∇θL(θt), for t = 0, 1, 2, . . ., where η > 0 is the step size /
learning rate, ∇θ denotes the gradient operator with respect to θ, ∇2

θ denotes the Hessian operator
with respect to θ, and the iteration is initialized with some initial condition θ0. The analysis of these
dynamics in generality is intractable in most cases. Thus, following the work of Wu et al. [2018],
many works [e.g., Nar and Sastry, 2018, Mulayoff et al., 2021, Ma and Ying, 2021, Wang et al.,
2022, Nacson et al., 2023, Qiao et al., 2024] have considered the behavior of this iteration using
linearized dynamics about a minimum. Following Mulayoff et al. [2021], we consider the Taylor
series expansion of the loss function about a minimum θ⋆.2 That is,

L(θ) ≈ L(θ⋆) + (θ − θ⋆)T∇θL(θ⋆) +
1

2
(θ − θ⋆)T∇2

θL(θ⋆)(θ − θ⋆). (2)

As the GD iteration approaches a minimum θ⋆, it is well approximated by the linearized dynamics

θt+1 = θt − η
[
∇θL(θ⋆) +∇2

θL(θ⋆)(θt − θ⋆)
]
, t = 0, 1, 2, . . . . (3)

A minimum is said to be linearly stable if the GD iterates are “trapped” once they enter a neighborhood
of the minimum. See Wu et al. [2018], Ma and Ying [2021], or Chemnitz and Engel [2025] for
various rigorous definitions of linear stability that have appeared in the literature. It turns out that
stability is tightly connected to the flatness of the minimum. Indeed, many equivalences have been
proven, e.g., Mulayoff et al. [2021, Lemma 1], Qiao et al. [2024, Lemma 2.2], or Chemnitz and Engel
[2025, Section 2.3]. We have the following proposition from Chemnitz and Engel [2025, p. 7].
Proposition 2.1. Suppose that η < 2. A minimum θ⋆ is linearly stable3 if and only if

λmax(∇2
θL(θ⋆)) ≤ 2

η
. (4)

Thus, we see that the stability of a minimum is equivalent to the flatness of the minimum under the
assumption that the step size η satisfies η < 2. Thus, we make this assumption in the remainder of
this paper. Given a data set D, we refer to the class of neural network parameters

Θflat(η;D) :=

{
θ : λmax(∇2

θL(θ)) ≤
2

η

}
, (5)

as the collection of flat / stable minima or flat / stable solutions. This parameter class is further
motivated by empirical observations that GD often operates in the edge-of-stability regime, where
λmax(∇2

θL(θt)) hovers around 2/η [Cohen et al., 2020, Damian et al., 2024].

3 Main Results

In this section, we characterize the implicit bias of stable solutions. It turns out that every function
fθ, with θ ∈ Θflat(η;D), is regular in the sense of a weighted variation norm. In particular, the
weight function is a data-dependent quantity. This weight function reveals that neural networks
can learn features that are intrinsic within the structure of the training data. To that end, given a
data set D = {(xi, yi)}ni=1 ⊂ Rd × R, we consider a weight function g : Sd−1 × R → R, where
Sd−1 := {u ∈ Rd : ∥u∥ = 1} denotes the unit sphere. This weight is defined by g(u, t) :=
min{g̃(u, t), g̃(−u,−t)}, where

g̃(u, t) := P(XTu > t)2 · E[XTu− t | XTu > t] ·
√

1 + ∥E[X | XTu > t]∥2. (6)

2Technically, we require that the loss is twice differentiable at θ⋆. Due to the ReLU activation, there is a
measure 0 set in the parameter space where this is not true. However, if we randomly initialize the weights
with a density and use gradient descent with non-vanishing learning rate, then with probability 1 the GD
iterations do not visit such non-differentiable points. For the interest of generalization bounds, the behaviors of
non-differentiable points are identical to their infinitesimally perturbed neighbor, which is differentiable. For
these reasons, this assumption will be implicitly assumed at each candidate θ in the remainder of the paper.

3In particular, this holds for the definition of linear stability where µ(θ⋆) ≤ 0 in the notation of Chemnitz
and Engel [2025, p. 7], which is a strictly weaker notion of linear stability than that of Wu et al. [2018] and Ma
and Ying [2021] [see the discussion in Chemnitz and Engel, 2025, Appendix A].
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Here, X is a random vector drawn uniformly at random from the training examples {xi}ni=1. Note
that the distribution PX from which {xi}ni=1 are drawn i.i.d. controls the regularity of g.

With this weight function in hand, we define a (semi)norm on functions of the form

fν,c,c0(x) =

∫
Sd−1×[−R,R]

ϕ(uTx− t) dν(u, t) + cTx+ c0, x ∈ Rd, (7)

where R > 0, c ∈ Rd, and c0 ∈ R. Functions of this form are “infinite-width” neural networks. We
define the weighted variation (semi)norm as

|f |Vg
:= inf

ν∈M(Sd−1×[−R,R])

c∈Rd,c0∈R

∥g · ν∥M s.t. f = fν,c,c0 , (8)

where, if there does not exist a representation of f in the form of (7), then the seminorm4 is understood
to take the value +∞. Here, M(Sd−1 × [−R,R]) denotes the Banach space of (Radon) measures
and, for µ ∈ M(Sd−1 × [−R,R]), ∥µ∥M :=

∫
Sd−1×[−R,R]

d|µ|(u, t) is the measure-theoretic
total-variation norm.

With this seminorm, we define the Banach space of functions Vg(Bd
R) on the ball Bd

R := {x ∈
Rd : ∥x∥2 ≤ R} as the set of all functions f such that |f |Vg is finite. When g ≡ 1, | · |Vg and
Vg(Bd

R) coincide with the variation (semi)norm and variation norm space of Bach [2017].

Example 3.1. Since we are interested in functions defined on Bd
R, for a finite-width neural network

fθ(x) =
∑K

k=1 vkϕ(w
T
kx − bk) + β, we observe that it has the equivalent implementation as

fθ(x) =
∑J

j=1 ajϕ(u
T
j x− tj)+cTx+ c0, where aj ∈ R, uj ∈ Sd−1, tj ∈ R, c ∈ Rd, and c0 ∈ R.

Indeed, this is due to the fact that the ReLU is homogeneous, which allows us to absorb the magnitude
of the input weights into the output weights (i.e., each aj = |vkj

∥wkj
∥2 for some kj ∈ {1, . . . ,K}).

Furthermore, any ReLUs in the original parameterization whose activation threshold5 is outside
Bd
R can be implemented by an affine function on Bd

R, which gives rise to the cTx+ c0 term in the
implementation. If this new implementation is in “reduced form”, i.e., the collection {(uj , tj)}Jj=1

are distinct, then we have that |fθ|Vg
=
∑J

j=1 |aj |g(uj , tj).

This example reveals that this seminorm is a weighted path norm of a neural network and, in fact,
coincides with the path norm when g ≡ 1 [Neyshabur et al., 2015]. It also turns out that the data-
dependent regularity induced by this seminorm is tightly linked to the flatness of a neural network
minimum. We summarize this fact in the next theorem.

Theorem 3.2. Suppose that fθ is a two-layer neural network such that the loss L(·) is twice
differentiable at θ. Then, |fθ|Vg

≤ λmax(∇2
θL(θ))

2 − 1
2 + (R+ 1)

√
2L(θ).

The proof of this theorem appears in Appendix C. This theorem reveals that flatness implies regularity
in the sense of the variation space Vg(Bd

R). In particular, we also have an immediate corollary for
stable minima thanks to Proposition 2.1.

Corollary 3.3. For any θ ∈ Θflat(η;D), |fθ|Vg
≤ 1

η − 1
2 + (R+ 1)

√
2L(θ).

The main takeaway messages from Theorem 3.2 and Corollary 3.3 are that flat / stable solutions are
smooth in the sense of Vg(Bd

R). In particular, we see that the Banach space Vg(Bd
R) is the natural

function space to study stable minima. This framework provides the mathematical foundation and
sets the stage to investigate the generalization and statistical performance of stable minima.

We also note that, from Corollary 3.3 and Example 3.1, for stable solutions fθ, as the step size η
grows, the function fθ becomes smoother, eventually approaching an affine function as η → ∞. This
can be viewed as an example of the simplicity bias phenomenon of GD training [Arpit et al., 2017,
Kalimeris et al., 2019, Valle-Perez et al., 2019].

4We use the notation | · | instead of ∥ · ∥ to highlight that this quantity is a seminorm. This quantity is a
seminorm since affine functions are in its null space. See Kůrková and Sanguineti [2001, 2002], Mhaskar [2004],
Bach [2017], Siegel and Xu [2023], Shenouda et al. [2024] for more details about variation spaces.

5The activation threshold of a neuron ϕ(wTx− b) is the hyperplane {x ∈ Rd : wTx = b}.
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Finally, we note that the function-space regularity induced by Vg(Bd
R) has an equivalent analytic

description via a weighted norm in the domain of the Radon transform of the function. This analytic
description is based on the R-(semi)norm/second-order Radon-domain total variation inductive bias
of infinite-width two-layer neural networks [Ongie et al., 2020, Parhi and Nowak, 2021, Bartolucci
et al., 2023]. Before stating our theorem, we first recall the definition of the Radon transform. The
Radon transform of a function f ∈ L1(Rd) is given by

R{f}(u, t) =
∫
uTx=t

f(x) dx, (u, t) ∈ Sd−1 × R, (9)

where the integration is against the (d−1)-dimensional Lebesgue measure on the hyperplane uTx = t.
Thus, we see that the Radon transform integrates functions along hyperplanes.
Theorem 3.4. For every f ∈ Vg(Bd

R), consider the canonical extension6 fext : Rd → R via its
integral representation (7). It holds that |f |Vg = ∥g · R(−∆)

d+1
2 fext∥M, where fractional powers

of the Laplacian are understood via the Fourier transform.

The proof of this theorem appears in Appendix D. We remark that the operators that appear in the
theorem must be understood in the distributional sense (i.e., by duality). We refer the reader to Parhi
and Unser [2024] for rigorous details about the distributional extension of the Radon transform. We
also remark that a version of this theorem also appeared in Nacson et al. [2023, Theorem 1], but we
note that their problem setting was the implicit bias of minima stability in the interpolation regime.

3.1 Stable Solutions Generalize But Suffer the Curse of Dimensionality

In the remainder of this paper, we focus on the scenario where inputs {xi}ni=1 are drawn i.i.d.
uniformly from the unit ball Bd

1 (i.e., R = 1). Under this assumption, the population version of the
weight function, which we denote as gP , has a well-defined asymptotic behavior. As detailed in
Appendix E, for |t| ≥ 1, gP (u, t) = 0, and as |t| → 1−, gP (u, t) ≍ (1− |t|)d+2. While the actual
weight function g in our analysis remains the empirical one derived from the data, this population
behavior serves as a crucial analytical guide. Our proofs will show that the empirical g concentrates
around this population version (Appendix E.2). For clarity in expressing our main results and their
dependence on dimensionality, we will characterize the function space of stable minima with respect
to a canonical weight function g(u, t) := (1 − |t|)d+2, which captures this essential asymptotic
property.

With this in hand, we can now characterize the generalization gap of stable minima, which is defined
to be the absolute difference between the training loss and the population risk. We are able to
characterize the generalization gap under mild conditions on the joint distribution of the training
examples and the labels.
Theorem 3.5. Let P denote the joint distribution of (x, y). Assume that P is supported on Bd

1 ×
[−D,D] for some D > 0 and that the marginal distribution of x is Uniform(Bd

1). Fix a data set
D = {(xi, yi)}ni=1, where each (xi, yi) is drawn i.i.d. from P . Then, with probability ≥ 1− δ we
have that for the plug-in risk estimator R̂(f) := 1

n

∑n
i=1 (f(xi)− yi)

2

sup
θ∈Θflat(η;D)

GeneralizationGap(fθ; R̂) :=

∣∣∣∣∣ E
(x,y)∼P

[
(fθ(x)− y)

2
]
− R̂(fθ)

∣∣∣∣∣
⪅d

(1
η
− 1

2
+ 4M

) d
d2+4d+3

M2 n−
1

2d+4 , (10)

where M := max{D, ∥fθ∥L∞(Bd
1)
, 1} and ⪅d hides constants (which could depend on d) and

logarithmic factors in n and (1/δ). Furthermore, for any L ≥ D, it holds that

inf
R̃

sup
P

E
D∼P⊗n

 sup
θ∈Θflat(η;D)

∥fθ∥L∞(Bd1)
≤L

GeneralizationGap(fθ; R̃)

 ≳d L
2n−

2
d+1 , (11)

6Since functions in Vg(Bd
R) are only defined on Bd

R, we must consider their extension to Rd when working
with the Radon transform. See Parhi and Nowak [2023b, Section IV] for more details.
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where the inf is over all risk estimators, ≳d hides constants (which could depend on d), and the sup
is over all distributions that satisfy the above hypotheses.

The proof of this theorem appears in Appendix F. While this theorem does show that as n→ ∞, the
generalization gap vanishes, it reveals that the sample complexity grows exponentially with the input
dimension (as seen by the n−

1
2d+4 term in the upper bound and the n−

2
d+1 term in the lower bound).

This suggests that the curse-of-dimensionality is intrinsic to the stable minima set Θflat(η;D)—
not an artifact of our mathematical analysis nor the naive plug-in empirical risk estimator being
suboptimal. On the other hand, for low-norm solutions (in the sense that they minimize the weight-
decay objective), it can be shown that the generalization gap decays at a rate of Õ(n−

1
4 ), where Õ(·)

hides logarithmic factors [cf., Bach, 2017, Parhi and Nowak, 2023b]. This uncovers an exponential
gap between flat and low-norm solutions, and, in particular, that stable solutions suffer the curse of
dimensionality. When d = 1, this result also provides a strict generalization of Qiao et al. [2024,
Theorem 4.3], as they measure the error strictly inside the input domain, rather than on the full input
domain. Thus, our result also characterizes how stable solutions extrapolate.

3.2 Nonparametric Function Estimation With Stable Minima

We now turn to the problem of nonparametric function estimation. As we have seen that Vg(Bd
1)

is a natural model class for stable minima, this raises two fundamental questions: (i) How well do
stable minima estimate functions in Vg(Bd

1) from noisy data? and (ii) What is the best performance
any estimation method could hope to achieve for functions in Vg(Bd

1). In this section we provide
answers to both these questions by deriving a mean-squared error upper bound for stable minima and
a minimax lower bound for this function class.
Theorem 3.6. Fix a step size η > 0 and noise level σ > 0. Given a ground truth function
f0 ∈ Vg(Bd

1) such that ∥f0∥L∞ ≤ B and |f0|Vg
≤ Õ

(
1
η − 1

2 + 2σ
)

, suppose that we are given a

data set yi = f0(xi) + εi, where xi are i.i.d. Uniform(Bd
1) and εi are i.i.d. N (0, σ2). Then, with

probability ≥ 1− δ, we have that

1

n

n∑
i=1

(fθ(xi)− f0(xi))
2 ⪅d

(
1

η
− 1

2
+ 2σ

) d
(2d2+6d+3)(d+2)

B2

(
σ2

n

) 1
2d+4

, (12)

for any θ ∈ Θflat(η;D) that is optimized, i.e., (fθ(xi)− yi)
2 ≤ (f0(xi)− yi)

2, for i = 1, . . . , n.

The proof of this theorem appears in Appendix G. This theorem shows that optimized stable minima
incur an estimation error rate that decays as Õ(n−

1
2d+4 ), which suffers the curse of dimensionality.

The optimized assumption is mild as it only asks that the error for each data point is smaller
than the label noise σ2, which is easy to achieve in practice with GD training, especially in the
overparameterized regime. The next theorem shows that the curse of dimensionality is actually
necessary for this function class.
Theorem 3.7. Consider the same data-generating process as in Theorem 3.6. We have the following
minimax lower bounds.

inf
f̂

sup
f∈Vg(Bd

1)
∥f∥L∞≤B,|f |Vg≤C

E∥f̂ − f∥2L2 ≳d

min(B,C)2
(

σ2

n

) 2
d+1

, d > 1,

min(B,C)2
(

σ2

n

) 1
2

, d = 1.
(13)

where ≳d hides constants (that could depend on d).

The proof of this theorem appears in Appendix H. Our proof relies on two high-dimensional construc-
tions. The first construction is to pack the unit sphere Sd−1 with M = exp(Ω(d)) pairwise-disjoint
spherical caps, each specified by a unit vector ui as its center. Then, for every center ui the ReLU
neuron φi(x) = cϕ(uT

i x − t) is active only on its outward-facing cap, and attains its peak value
min{B,C} by choosing a suitable t. The second construction is to observe that since the weight
function g(u, t) decreases quickly as |t| → 1 (see Appendix E), the regularity constraint | · |Vg ≤ C
allows us to combine an exponential number of such atoms to construct a family of “hard-to-learn”
functions. Traditional lower-bound constructions satisfy regularity by shrinking bump amplitudes
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(vertical changes), whereas our approach fundamentally differs by shifting and resizing bump sup-
ports (horizontal changes). Our experiments reveal that stable minima actually favor these kinds of
hard-to-learn functions and we refer to this as the neural shattering phenomenon.

4 Experiments

In this section, we empirically validate our claims that (i) stable minima are not immune to the curse
of dimensionality and (ii) the “neural shattering” phenomenon occurs. All synthetic data points are
generated by uniformly sampling x from Bd

1 and yi = f0(xi) +N (0, σ2), where the ground-truth
function f0(x) = wTx for some fixed vector w with ∥w∥ = 1. All the models are two-layer ReLU
neural networks with width four times the training data size. The networks are randomly initialized
by the standard Kaiming initialization [He et al., 2015]. We also use gradient clipping with threshold
50 to avoid divergence for large learning rates.7

Curse of dimensionality. In this experiment, we train neural networks with GD and vary the data set
sizes in {32, 64, 128, 256, 512} and dimensions in {1, 2, 3, 4, 5}, with noise level σ = 1. For each
data set size, dimension, and training parameters (η = 0.2 without weight decay and η = 0.01 with
weight-decay 0.1), we conduct 5 experiments and take the median. The log-log curves are displayed
in Figure 2.

32 64 128 256 512

10 2

10 1

100

MSE vs n (Stable Minima)

D=1( =0.2,Slope=-0.38)
D=2( =0.2,Slope=-0.42)
D=3( =0.2,Slope=-0.25)
D=4( =0.2,Slope=-0.14)
D=5( =0.2,Slope=-0.10)

32 64 128 256 512

10 2

10 1

100

MSE vs n (Weight Decay)
D=1( =0.1,Slope=-0.64)
D=2( =0.1,Slope=-0.91)
D=3( =0.1,Slope=-0.98)
D=4( =0.1,Slope=-0.75)
D=5( =0.1,Slope=-1.00)

Figure 2: Empirical validation of the curse of dimensionality. Left panel: The slope of logMSE
versus log n for training with vanilla gradient descent rapidly decreases with dimension, falling to
about 0.1 at d = 5. Right panel: Training with ℓ2 (weight decay) results in slopes above 0.5 in the
log–log scale.

Neural shattering. As briefly illustrated in the right panel of Figure 1, Figure 3 presents more
detailed experiments. We train a two-layer ReLU network of width 2048 on 512 noisy samples
(σ = 1) of a 10-dimensional linear target. Under a large step size η = 0.9 (no weight decay), gradient
descent enters a flat / stable minimum (λmax(∇2

θL(θ)) oscillates around 2/η ≈ 2.2, signaling edge-
of-stability dynamics). This drastically reduces each neuron’s data-activation rate to ≤ 10%, rather
than reducing their weight norms. The network overfits (train MSE ≈ 1.105, matching the noise
level). In contrast, with η = 0.01 plus ℓ2-weight-decay λ = 0.1, all neurons remain active and weight
norms stay tightly bounded, so the model avoids overfitting (train MSE ≈ 0.055).

5 Discussion and Conclusion

This paper presents a nuanced conclusion on the link between minima stability and generalization:
Stable solutions do generalize, but when data is distributed uniformly on a ball, this generalization
ability is severely weakened by the Curse of Dimensionality (CoD). Our analysis pinpoints the
mechanism behind this failure. The implicit regularization from GD is not uniform across the input

7We monitor clipping during the training, and the clipping only occurs in the first 10 epochs. Gradient
clipping does not prevent the training dynamics from entering edge-of-stability regime.
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Figure 3: The top-left plot illustrates the neural shattering phenomenon: after large-step training
each ReLU neuron (orange) is active on only a tiny fraction of the data (small horizontal support)
yet its weight norm remains large, exactly as in our sphere-packing lower-bound construction where
each outward-facing ReLU atom fires on very few inputs but retains full peak amplitude.

domain. While it imposes strong regularity in the strict interior of the data support, this guarantee
collapses at the boundary. This localized failure of regularization is precisely what enables “neural
shattering”, a phenomenon where neurons satisfy the stability condition not by shrinking their weights,
but by minimizing their activation frequency. This causes the CoD: The intrinsic geometry of a
high-dimensional ball provides an exponential increase in available directions for shattering to occur,
while the boundary regularization simultaneously weakens exponentially as the input dimension d
grows. This mechanism, confirmed by both our lower bounds and experiments, explains why stable
solutions exhibit poor generalization in high dimensions.

Several simplifications limit the scope of these results. The theory treats only two-layer ReLU
networks and relies on the idealized assumption that samples are drawn uniformly from the unit ball.
For more general distributions, the induced weight function g inherits the full geometry of the data
and becomes harder to describe and interpret. Understanding this effect, together with extending the
analysis to deeper architectures and adaptive algorithms, will take substantial effort, which we leave
as future work.

6 Acknowledgments

The research was partially supported by NSF Award # 2134214. The authors acknowledge early
discussion with Peter Bartlett at the Simons Foundation that motivated us to consider the problem.
Tongtong Liang thanks Zihan Shao for providing helpful suggestions on the implementation of the
experiments.

References
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A Additional Experiments

A.1 Empirical Evidence: High Dimensionality Yields Neural Shattering
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Figure 4: Comparison across input dimension d for a two-layer ReLU network of width 1024 trained
on 512 samples for 20000 epochs with learning rate η = 0.5. At d = 1, all neurons extrapolate
(0% active), while as d increases the fraction of neurons surviving training rises dramatically (up to
65% at d = 6). Simultaneously, the training loss monotonically decreases whereas the training MSE
increases with d, demonstrating that neural shattering under large learning rates may be the key driver
of the curse of dimensionality in stable minima.
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A.2 Neural Shattering and Learning Rate (dim=5)
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Figure 5: Effect of increasing learning rate η on shattering (η × epochs = 10000): as η grows, the
stability/flatness constraint forces an ever larger fraction of neurons to activate only on a small subset
of the data (neural shattering). To further decrease the training loss, gradient descent correspondingly
increases the weight norms of the remaining active neurons.
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A.3 Neural Shattering in the Underparametrized Regime
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Figure 6: Persistence of neural shattering across width in the underparametrized regime. Each panel
plots per-neuron activation rate versus weight norm after training a two-layer ReLU network on
n = 1024 samples with learning rate η = 0.5. Columns correspond to widths W ∈ {32, 48, 64};
the top row uses no weight decay, and the bottom row uses mild decay (λ = 0.05). The parameter
count is Wd +W + 1, so W = 64 is mildly overparameterized while W = 32, 48 are strictly
underparameterized. Across all widths, we observe clear neural shattering: neurons with smaller
activation fractions carry larger weight norms. This monotone trend is especially visible in the
stable-minima panels (λ = 0), exactly as predicted by our theory. The weight-decay panels serve
only as a high-activation baseline to calibrate what “few activations” means, underscoring how
exceptionally low the activation rates are at stable minima.
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Figure 7: Each panel shows the relation between neuron activation rate and weight norm after training
a two-layer ReLU network of width W = 16 on n = 1024 samples drawn from a linear target with
learning rate η = 0.5 for d ∈ {64, 48, 32}. This observation indicates that neural shattering is a
generic feature of stable minima, robust even when in small network.
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A.4 Neural Shattering for GELU Networks

This set of stable minima serves as a prism through which we can understand the emergent behaviors
of the learning process. The data-dependent weight function g(u, t), which is central to our analysis,
arises directly from the structure of the loss Hessian and provides a static characterization of the
implicit bias of gradient dynamics. A smaller value of g(u, t) for a neuron (u, t) implies that the
stability condition imposes a weaker regularization, allowing for larger weight magnitudes for that
neuron.

This static view is intimately connected to the underlying learning dynamics. In high-dimensional
spaces, a neuron’s activation boundary can easily drift to a region where it activates on only a small
fraction of the data points. For such a neuron, the gradients it receives are sparse and localized.
If the few data points it activates on are already well-fitted, the local gradient signal can vanish,
causing the neuron’s parameters to become effectively “stuck” or stable. The small value of g(u, t)
in these boundary regions creates “space” within the class of stable functions for these trapped,
high-magnitude, yet sparsely-activating neurons to exist, a possibility our lower bound construction
then formalizes and exploits.

The ReLU activation function is analytically convenient for this analysis because its hard-sparsity
property: a strictly zero gradient for non-activating inputs. This leads to a sparse loss Hessian,
allowing for a clean derivation of the weight function g(u, t). However, the underlying “stuck neuron”
dynamic is not necessarily unique to ReLU. Activations like GELU provide a non-zero gradient for
negative inputs, but this signal is weak and decays quickly away from the activation boundary. It
is therefore plausible that this weak gradient is insufficient to pull a “stuck” neuron back from the
data boundary once it has drifted there and its activation rate has diminished. This suggests that
the fundamental mechanism enabling “neural shattering” may persist. This hypothesis motivates
an empirical investigation into whether the same phenomena of neural shattering also manifests in
networks trained with GELU activations.
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Figure 8: Comparison across input dimension d for a two-layer GELU network of width 1024 trained
on 512 samples for 20000 epochs with learning rate η = 0.5. The neural shattering behavior observed
for ReLU networks in Figure 4 also appears here with GeLU activations. In particular, we can see
the trend more clearly: neurons with lower activation rates tend to develop larger weight norms,
highlighting that the neural shattering mechanism extends beyond piecewise-linear activations.
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A.5 Empirical Analysis of the Curse of Dimensionality (I)

We conduct the following experiments in the setting where the ground-truth function is linear with
Gaussian noise σ2 = 1. The width of neural network is 4 times of the number of samples.

32 64 128 256 512

10 2

10 1

100

MSE vs n (Dim=1, =0)

=0.1 (Slope: -0.32, R2: 0.38)
=0.2 (Slope: -0.38, R2: 0.72)
=0.4 (Slope: -0.49, R2: 0.78)
=0.6 (Slope: -0.07, R2: 0.14)

32 64 128 256 512

10 2

10 1

100

MSE vs n (Dim=1, >0)

=0.1 (Slope: -0.64, R2: 0.92)

32 64 128 256 512

10 2

10 1

100

MSE vs n (Dim=2, =0)

=0.1 (Slope: -0.47, R2: 0.94)
=0.2 (Slope: -0.42, R2: 0.95)
=0.4 (Slope: -0.51, R2: 0.97)
=0.6 (Slope: 0.01, R2: 0.00)

32 64 128 256 512

10 2

10 1

100

MSE vs n (Dim=2, >0)

=0.1 (Slope: -0.91, R2: 0.95)

32 64 128 256 512

10 2

10 1

100

MSE vs n (Dim=3, =0)

=0.1 (Slope: -0.27, R2: 0.87)
=0.2 (Slope: -0.25, R2: 0.81)
=0.4 (Slope: -0.18, R2: 0.77)
=0.6 (Slope: -0.25, R2: 0.99)

32 64 128 256 512

10 2

10 1

100

MSE vs n (Dim=3, >0)

=0.1 (Slope: -0.98, R2: 0.97)

Figure 9: Log–log plots of the mean squared error (MSE) versus sample size n (Part I). Each curve is
regressed by the median result over five random initializations (lighter markers), while the shallow
markers denote the other runs. As the input dimension increases, the slope of the fitted regression
line becomes progressively shallower, indicating slower error decay.
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Figure 10: Log–log plots of the mean squared error (MSE) versus sample size n, illustrating the curse
of dimensionality in stable minima (Part II). We can see in dimension 5, the slope is almost flat and
even the large-step size cannot save the results (even worse than small step-size).

A.6 Empirical Analysis of the Curse of Dimensionality (II)

We conduct the following experiments in the setting where the ground-truth function is linear with
Gaussian noise σ2 = 0.25. The width of neural network is 2 times of the number of samples.
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Figure 11: Log–log plots of the mean squared error (MSE) versus sample size n (Part III). Compared
to the previous experiments, this setup reduces the noise level to σ = 0.5, applies weight decay
λ = 0.01, and constrains the model width to 2n.
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Figure 12: Log–log plots of the mean squared error (MSE) versus sample size n (Part IV). The
log–log MSE vs. n curves still exhibit progressively flattening slopes as the input dimension grows,
demonstrating the enduring curse of dimensionality in stable minima.
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A.7 Empirical Analysis of the Curse of Dimensionality (III)

We conduct the following experiments in the setting where the ground-truth function is Hölder(1/2)
f(x) = 1

d

∑d
i=1 |uT

j x|1/2 + 1 with Gaussian noise σ2 = 0.25, where uj is uniformly sampled from
Sd−1. The width of neural network is 2 times of the number of samples.
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Figure 13: Log–log plots of the mean squared error (MSE) versus sample size n (Part V). We can see
the generalization slopes of stable minima degrades as dimension increase from 1 to 4.
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Figure 14: Log–log plots of the mean squared error (MSE) versus sample size n (Part VI). The panels
on the left are the log-log plots for stable minima trained in η ∈ {0.05, 0.1, 0.2, 0.4}, while the panels
on the left are the log-log plots for low-norm solutions trained in weight decay λ = 0.01.
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Figure 15: Log–log plots of the mean squared error (MSE) versus sample size n (Part VII). The
panels on the left are the log-log plots for stable minima trained in different learning rate η ∈
{0.05, 0.1, 0.2, 0.4}, while The panels on the left are the log-log plots for low-norm solutions trained
in weight decay λ = 0.01.

23



B Overview of the Proofs

In this section, we provide an overview of the proofs of the claims in the paper. The full proofs are
deferred to later appendices. We introduce the following notations we use in our proofs and their
overviews.

• Let φ(ε) and ψ(ε) be two functions in variable of ε. For constants a, b ∈ R (independent of
ε), the notation

φ(ε)
a≍
b
ψ(ε)

means that φ(ε) ≤ aψ(ε) and b ψ(ε) ≤ φ(ε). We may directly use the notation ≍ if the
constants are hidden (we may use the simplified version when the constants are justified).

• f(x) = O(g(x)) means there exist constants c > 0 and x0 > 0 such that

0 ≤ f(x) ≤ c g(x), ∀ x ≥ x0.

Intuitively, for sufficiently large x, f(x) grows at most as fast as g(x), up to a constant factor.
We may also use f(x) ≲ g(x).

• f(x) = Ω(g(x)) means there exist constants c′ > 0 and x1 > 0 such that

0 ≤ c′ g(x) ≤ f(x), ∀ x ≥ x1.

Intuitively, for sufficiently large x, f(x) grows at least as fast as g(x), up to a constant factor.

• f(x) = Θ(g(x)) means there exist constants c1, c2 > 0 and x2 > 0 such that

0 ≤ c1 g(x) ≤ f(x) ≤ c2 g(x), ∀ x ≥ x2.

Equivalently,

f(x) = Θ(g(x)) ⇐⇒ [f(x) = O(g(x))] and [f(x) = Ω(g(x))].

Intuitively, for sufficiently large x, f(x) grows at the same rate as g(x), up to constant
factors.

B.1 Proof Overview of Theorem 3.2.

We consider the neural network of the form:

fθ(x) =

K∑
k=1

vk ϕ(w
T
kx− bk) + β. (14)

The Hessian matrix of the loss function, obtained through direct computation, is expressed as:

∇2
θL(θ) =

1

n

n∑
i=1

(∇θfθ(xi)) (∇θfθ(xi))
T
+

1

n

n∑
i=1

(fθ(xi)− yi)∇2
θfθ(xi). (15)

Consider v to be the unit eigenvector (i.e., ∥v∥2 = 1) corresponding to the largest eigenvalue of the
matrix 1

n

∑n
i=1(∇θfθ(xi))(∇θfθ(xi))

T. Consequently, the maximum eigenvalue of the Hessian of
the loss can be lower-bounded as follows:

λmax(∇2
θL(θ)) ≥ vT∇2

θL(θ)v

= λmax

(
1

n

n∑
i=1

(∇θfθ(xi))(∇θfθ(xi))
T

)
︸ ︷︷ ︸

(Term A)

+
1

n

n∑
i=1

(fθ(xi)− yi)v
T∇2

θfθ(xi)v︸ ︷︷ ︸
(Term B)

.

(16)
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Regarding (Term A), its maximum eigenvalue at a given θ can be related to the Vg seminorm of the
associated function f = fθ . Letting Ω = Bd(0, R), Nacson et al. [2023, Appendix F.2] demonstrate
that:

(Term A) = λmax

(
1

n

n∑
i=1

(∇θfθ(xi))(∇θfθ(xi))
T

)
≥ 1 + 2

K∑
k=1

|vk|∥wk∥2 g̃(w̄k, b̄k), (17)

where w̄k = wk/∥wk∥2 ∈ Sd−1, b̄k = bk/∥wk∥2 and

g̃(w̄, b̄) = P(XTw̄ > b̄)2 · E[XTw̄ − b̄ | XTw̄ > b̄] ·
√

1 + ∥E[X | XTw̄ > b̄]∥2. (18)

For (Term B), an upper bound can be established using the training loss L(θ) via the Cauchy-Schwarz
inequality. This also employs a notable uniform upper bound for vT∇2

θfθ(xn)v, as detailed in
Lemma C.1:

|(Term B)| ≤

√√√√ 1

n

n∑
i=1

(fθ(xi)− yi)
2 ·

√√√√ 1

n

n∑
i=1

(vT∇2
θfθ(xi)v)

2 ≤ 2(R+ 1)
√
2L(θ). (19)

B.2 Proof Overview of Theorem 3.5

This proof establishes an upper bound on the generalization gap for stable minima in Θflat(η;D). The
strategy leverages the structural properties of these solutions, which are captured by a data-dependent
weighted variation norm.

First, we recall from Corollary 3.3 that any stable solution fθ has a bounded norm, |fθ|Vg
≤ A. The

weight function g is determined by the training data. This data-dependent nature is central to our
analysis. To bound the generalization gap, we must translate the constraint on the weighted norm
|f |Vg

into a bound on the standard, unweighted norm |f |V. This is possible only in regions where
the weight function g is bounded away from zero. This naturally suggests a decomposition of the
input domain into two parts: a “well-behaved” region where g has a positive lower bound, and the
remaining region where g may be arbitrarily close to zero.

To facilitate a tractable analysis, we introduce the deterministic population weight function gP as a
reference. We then bridge the two using empirical process theory. As established in Appendix E.2
(Theorem E.5), the uniform deviation between g and its population counterpart is bounded by a
statistical error term ϵn = Õ(

√
d/n) with high probability. This allows us to leverage the well-

behaved properties of gP to characterize the behavior of the empirical function g.

For inputs from Uniform(Bd
1), this population function behaves like (1− |t|)d+2 (see Appendix E),

where |t| is the distance of a neuron’s activation boundary from the origin. This behavior motivates a
specific geometric decomposition: an inner core Bd

1−ε (where |t| < 1− ε) and an outer annulus Ad
ε .

For the inner core Bd
1−ε, the key step is to translate the bound on |f |Vg to a bound on the standard

(unweighted) norm |f |V. To do this, we need a lower bound on the empirical weight g within the
core. Using gP as our analytical proxy, we establish that gmin ≥ gP,min − εn ≈ εd+2 − εn. This step
requires a validity condition: ε must be large enough such that the geometric term εd+2 dominates
the statistical error εn. With the unweighted norm now bounded, we utilize metric entropy arguments
(e.g., Proposition F.4 and results from Parhi and Nowak [2023b]) to bound the generalization error in
the core that scales with O

(
ε−

d(d+2)
2d+3 n−

d+3
4d+6

)
. In the annulus Ad

ε , the contribution is small, scaling
with O(ε).

B.3 Proof Overview of Theorem 3.6

The proof for Theorem 3.6 establishes an upper bound on the mean squared error (MSE) for estimating
a true function f0 using a stable minimum fθ . The overall strategy shares similarities with the proof
of the generalization gap, particularly in its treatment of the data-dependent function class.

The argument begins by leveraging the property that a stable minimum θ ∈ Θflat(η;D) corresponds
to a neural network fθ with a bounded weighted variation norm |fθ|Vg

, where g is the empirical

25



weight function. The theorem also assumes the ground truth f0 lies in a similar space. A key condition
is that fθ is “optimized” such that its empirical loss is no worse than that of f0. This is crucial as it
allows us to bound the empirical MSE primarily by an empirical process term involving the noise
terms εi.

To bound this empirical process, the proof again decomposes the input domain Bd
1 into a strict interior

ball Bd
1−ε and an annulus Ad

ε . In the outer shell, the contribution to the MSE is controlled by the
function’s L∞ bound. For the strict interior Bd

1−ε, we analyze the difference function f∆ = fθ − f0.
Consistent with our generalization analysis, we use the results from Appendix E.2 to ensure the
empirical weight function g can be reliably analyzed via its population counterpart. This allows us to
bound the unweighted variation norm of f∆ over the core, which is then used to bound the empirical
process via local Gaussian complexities (as detailed in Appendix G).

The bounds from the annulus and the core are then summed. The resulting expression for the total
MSE is minimized by choosing an optimal ε. This balancing yields the final estimation error rate
presented in Theorem 3.6, connecting the stability-induced regularity and the “optimized” nature of
the solution to its statistical performance.

B.4 Proof Overview of Theorem 3.7

The proof establishes the minimax lower bound by constructing a packing set of functions within
the specified function class Vg(Bd

1) and then applying Fano’s Lemma. The construction differs for
multivariate (d > 1) and univariate (d = 1) cases.

Multivariate Case (d > 1) The core idea is to use highly localized ReLU atoms that have a small
Vg norm due to the weighting g(u, t) vanishing near the boundary (|t| → 1), yet can be combined to
form a sufficiently rich and separated set of functions.

1

0

1

1

0

1

0.0

0.5

1.0

Figure 16: The ReLU atoms only activate on the localized spherical cap and with L∞(Bd
1)-norm

equal to 1. As dimension increases, more data points will concentrate on the boundary region and the
choice of directions increase exponentially.

1. Atom Construction: We utilize ReLU atoms Φu,ε2(x) = ε−2ϕ(uTx − (1 − ε2)) as
defined in Construction H.4 (see Eq. (105) for the unnormalized version). These atoms are
L∞-normalized, have an L2(Bd

1)-norm ∥Φu,ε2∥L2 ≍ ε
d+1
2 (Lemma H.1), and a weighted

variation norm |Φu,ε2 |Vg
= ε2d+2 (Lemma H.2, Eq. (116)). The small Vg norm is crucial.

2. Packing Set: Using a packing of K ≍ ε−(d−1) disjoint spherical caps on Sd−1 (Lemma
H.3), we construct a family of functions fξ(x) =

∑K
i=1 ξiΦui,ε2(x) for ξ ∈ {−1, 1}K .

By Varshamov-Gilbert lemma (Lemma J.2), we can find a subset Ξ ⊂ {−1, 1}K such
that log |Ξ| ≍ K ≍ ε−(d−1) and for any distinct fξ, fξ′ ∈ {fζ}ζ∈Ξ, their L2-distance is
∥fξ−fξ′∥L2 ≳ ε. The total variation norm |fξ|Vg

≤ Kε2d+2 ≍ εd+3, which is significantly
smaller than 1 when ε < 1.
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3. Leveraging Fano’s Lemma: (Proposition H.5) The KL divergence between distributions
induced by fξ and fξ′ is KL(Pξ∥Pξ′) ≍ nε2/σ2. To apply Fano’s Lemma (see Lemma J.1),
we need to satisfy the condition (141) that nε2/σ2 ≲ log |Ξ| ≍ ε−(d−1), which implies
ε ≍ (σ2/n)

1
d+1 and the minimax risk is then given by E ∥f̂ − f∥2L2 ≳ ε2 ≍ (σ2/n)

2
d+1 .

Univariate Case (d = 1) The high-dimensional spherical cap packing is not applicable. Instead,
we use scaled bump functions and exploit the simplified 1D Vg norm.

1. Function Class: For d = 1, if we assume f is smooth, then |f |Vg
= ∥f ′′ · g∥M =∫ 1

−1
|f ′′(x)|(1− |x|)3 dx (from Theorem 3.4 and leading to the class in Eq. (121)).

2. Atom Construction: We construct functions Φk(x) as smooth bump functions, each
supported on a distinct interval of width ε2 near the boundary (e.g., x ∈ [1−ε+(k−1) ε2, 1−
ε+ kε2]). These are scaled such that ∥Φk∥L2 ≍ ε. Due to the (1− |x|)3 ≲ ε3 factor in the
Vg norm and

∫ 1

−1
|Φ′′

k(x)|dx ≍ 1/ε2, the weighted variation is |Φk|Vg
≍ ε3 · (1/ε2) = ε.

3. Packing Set: A family fξ(x) =
∑K

k=1 ξkΦk(x) is formed with K ≍ 1/ε terms. Using
Varshamov-Gilbert (Lemma J.2), we find a subset Ξ with log |Ξ| ≍ K ≍ 1/ε such that for
distinct fξ, fξ′ , the L2-distance is ∥fξ − fξ′∥L2 ≳

√
Kε ≍

√
1/ε · ε =

√
ε.

4. Leveraging Fano’s Lemma: The KL divergence is KL(Pξ∥Pξ′) ≍ n(
√
ε)2/σ2 = nε/σ2.

Fano’s condition (141) nε/σ2 ≲ log |Ξ| ≍ 1/ε implies ε ≍ (σ2/n)1/2. The minimax risk
is then E∥f̂ − f∥2L2 ≳ (

√
ε)2 = ε ≍ (σ2/n)1/2.

B.5 Discussion of the Proofs

A notable feature in the proofs for the generalization gap upper bound (Theorem 3.5) and the MSE
upper bound (Theorem 3.6) is the strategy of decomposing the domain Bd

1 into an inner core Bd
1−ε and

an annulus Ad
ε . This decomposition, involving a trade-off by treating the boundary region differently,

is not merely a technical convenience but is fundamentally motivated by the characteristics of the
function class Vg(Bd

1) and the nature of “hard-to-learn” functions within it.

The necessity for this approach is starkly illustrated by our minimax lower bound construction
in Theorem 3.7 (see Appendix H for construction details) and Proposition I.1. The hard-to-learn
functions used to establish this lower bound are specifically constructed using ReLU neurons that
activate only near the boundary of the unit ball (i.e., for x such that uTx ≈ 1). The crucial insight
here is the behavior of the weight function g(u, t) ≍ (1 − |t|)d+2 (see Appendix E). For these
boundary-activating neurons, |t| is close to 1, making g(u, t) exceptionally small. This allows for
functions that are potentially complex or have large unweighted magnitudes near the boundary (the
annulus) to still possess a small weighted variation norm |f |Vg , thus qualifying them as members of
the function class under consideration. Our lower bound construction focuses almost exclusively on
these boundary phenomena, as they represent the primary source of difficulty for estimation within
this specific weighted variation space.

The upper bound proofs implicitly acknowledge this. By isolating the annulus Ad
ε , the analysis

effectively concedes that this region might harbor complex behavior. The error contribution from this
annulus is typically bounded by simpler means, often proportional to its small volume (controlled by
ε) and the L∞ norm of the functions. The more sophisticated analysis, involving metric entropy or
Gaussian complexity arguments (which depend on an unweighted variation norm that becomes large
as |f |Vg/ε

d+2 when restricted to the strict interior Bd
1−ε), is applied to the “better-behaved” interior

region. The parameter ε is then chosen optimally to balance the error from the boundary (which
increases with ε) against the error from the interior (where the complexity term effectively increases
as ε shrinks).

This methodological alignment between our upper and lower bounds underscores a self-consistency
in our analysis. Both components of the argument effectively exploit the geometric properties
stemming from the uniform data distribution on a sphere and the specific decay characteristics of
the data-dependent weight function g near the boundary. The strategy of “sacrificing the boundary”
in the upper bounds is thus a direct and necessary consequence of where the challenging functions
identified by the lower bound constructions.
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C Proof of Theorem 3.2: Stable Minima Regularity

In this section, we prove the regularity constraint of stable minima. We begin by upper bounding
the operator norm of the Hessian matrix. In other words, we upper bound |vT∇2

θfθ(x)v| under the
constraint that ∥v∥2 = 1.

Lemma C.1. Assume fθ(x) =
∑K

k=1 vkϕ(w
T
kx+ bk) + β is a two-layer ReLU network with input

x ∈ Rd such that ∥x∥2 ≤ R. Let θ represent all parameters {wk, bk, vk, β}Kk=1. Assume fθ(x) is
twice differentiable with respect to θ at x. Then for any vector v corresponding to a perturbation in
θ such that ∥v∥2 = 1, it holds that:

|vT∇2
θfθ(x)v| ≤ 2(R+ 1). (20)

Proof. Let the parameters be θ = (wT
1 , ...,w

T
K , b1, ..., bK , v1, ..., vK , β)

T. The total number of
parameters is N = K × d+K +K +1 = K(d+2)+ 1. Let the corresponding perturbation vector
be v ∈ RN , structured as: v = (αT

1 , ...,α
T
K , δ1, ..., δK , γ1, ..., γK , ι)

T, where αk ∈ Rd corresponds
to wk, δk ∈ R corresponds to bk, γk ∈ R corresponds to vk, and ι ∈ R corresponds to β. The
normalization constraint is

∥v∥22 =

K∑
k=1

∥αk∥22 +
K∑

k=1

δ2k +

K∑
k=1

γ2k + ι2 = 1 (21)

We need to compute the Hessian matrix ∇2
θfθ(x). Let zk = wT

kx+ bk and 1k = 1(zk > 0). Since
we assume twice differentiability, zk ̸= 0 for all k, the Hessian ∇2

θfθ(x) is block diagonal, with K
blocks corresponding to each neuron. The k-th block, ∇2

(θk)
fθ(x), involves derivatives with respect

to θk = (wT
k , bk, vk)

T. The relevant non-zero second partial derivatives defining this block are:

• ∂2fθ
∂wk∂vk

= ∂
∂vk

(∇wk
fθ) =

∂
∂vk

(vkϕ
′(zk)x) = ϕ′(zk)x = 1kx

• ∂2fθ
∂bk∂vk

= ∂
∂vk

(∂fθ∂bk
) = ∂

∂vk
(vkϕ

′(zk)) = ϕ′(zk) = 1k

All other second derivatives within the block are zero, as are derivatives between different blocks or
involving β. The k-th block of the Hessian is thus:

∇2
(θk)

fθ(x) =


∂2fθ

(∂wk)2
∂2fθ

∂wk∂bk

∂2fθ
∂wk∂vk

∂2fθ
∂bk∂wk

∂2fθ
(∂bk)2

∂2fθ
∂bk∂vk

∂2fθ
∂vk∂wk

∂2fθ
∂vk∂bk

∂2fθ
(∂vk)2

 =

0d×d 0d 1kx
0T
d 0 1k

1kx
T 1k 0

 (22)

where 0d×d is the d× d zero matrix and 0d is the d-dimensional zero vector.

The quadratic form vT∇2
θfθ(x)v becomes:

vT∇2
θfθ(x)v =

K∑
k=1

(
αT

k δk γk
)0d×d 0d 1kx

0T
d 0 1k

1kx
T 1k 0

(αk

δk
γk

)

=

K∑
k=1

(
αT

k (1kx)γk + δk(1k)γk + γk(1kx
T)αk + γk(1k)δk

)
=

K∑
k=1

2 · 1k · γk(αT
kx+ δk)

(23)
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Now, we bound the absolute value:

|vT∇2
θfθ(x)v| =

∣∣∣∣∣
K∑

k=1

2 · 1k · γk(αT
kx+ δk)

∣∣∣∣∣ ≤
K∑

k=1

2 · 1k · |γk||αT
kx+ δk|

≤
K∑

k=1

2|γk|(|αT
kx|+ |δk|) ≤

K∑
k=1

2|γk|(∥αk∥2∥x∥2 + |δk|) (Cauchy-Schwarz)

= 2R

K∑
k=1

|γk|∥αk∥2 + 2

K∑
k=1

|γk||δk|

≤ 2R

√√√√ K∑
k=1

γ2k

√√√√ K∑
k=1

∥αk∥22 + 2

√√√√ K∑
k=1

γ2k

√√√√ K∑
k=1

δ2k (Cauchy-Schwarz on sums)

≤ 2R
√∑

γ2k ·
√
1 + 2

√∑
γ2k ·

√
1

= 2(R+ 1)
√∑

γ2k ≤ 2(R+ 1).

Now we are ready to prove Theorem 3.2.

Proof of Theorem 3.2. Without loss of generality, we consider neural networks of the following form:

fθ(x) =

K∑
k=1

vk ϕ(w
T
kx− bk) + β. (24)

The Hessian matrix of the loss function, obtained through direct computation, is expressed as:

∇2
θL(θ) =

1

n

n∑
i=1

(∇θfθ(xi)) (∇θfθ(xi))
T
+

1

n

n∑
i=1

(fθ(xi)− yi)∇2
θfθ(xi). (25)

Let v be the unit eigenvector (i.e., ∥v∥2 = 1) corresponding to the largest eigenvalue of the matrix
1
n

∑n
i=1(∇θfθ(xi))(∇θfθ(xi))

T, the maximum eigenvalue of the Hessian matrix of the loss can be
lower-bounded as follows:

λmax(∇2
θL(θ)) ≥vT∇2

θL(θ)v

=λmax

(
1

n

n∑
i=1

(∇θfθ(xi))(∇θfθ(xi))
T

)
︸ ︷︷ ︸

(Term A)

+
1

n

n∑
i=1

(fθ(xi)− yi)v
T∇2

θfθ(xi)v︸ ︷︷ ︸
(Term B)

.

(26)

Regarding (Term A), its maximum eigenvalue at a given θ can be related to the Vg norm of the
associated function f = fθ. Considering the domain Bd

R, Nacson et al. [2023, Appendix F.2]
demonstrate that:

(Term A) = λmax

(
1

n

n∑
i=1

(∇θfθ(xi))(∇θfθ(xi))
T

)
≥ 1 + 2

K∑
k=1

|vk|∥wk∥2 g̃(w̄k, b̄k), (27)

where w̄k = wk/∥wk∥2 ∈ Sd−1, b̄k = bk/∥wk∥2 and

g̃(w̄, b̄) = P(XTw̄ > b̄)2 · E[XTw̄ − b̄ | XTw̄ > b̄] ·
√

1 + ∥E[X | XTw̄ > b̄]∥2. (28)
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For (Term B), an upper bound can be established using the training loss L(θ) via the Cauchy-Schwarz
inequality. This also employs a notable uniform upper bound for |vT∇2

θfθ(xn)v|, as detailed in
Lemma C.1:

|(Term B)| ≤

√√√√ 1

n

n∑
i=1

(fθ(xi)− yi)
2 ·

√√√√ 1

n

n∑
i=1

(vT∇2
θfθ(xi)v)

2 ≤ 2(R+ 1)
√
2L(θ). (29)

Finally, the proof of Theorem 3.2 is complete by plugging (27) and (29) into (26).

D Proof of Theorem 3.4: Radon-Domain Characterization of Stable Minima

In this part, we prove Theorem 3.4 by extending the unweighted case to the weighted one.

Proof of Theorem 3.4. In the unweighted scenario, i.e., g ≡ 1, it was established by Parhi and Nowak
[2023b, Lemma 2] that if f ∈ V(Bd

R) := V1(Bd
R) with integral representation

f(x) =

∫
Sd−1×[−R,R]

ϕ(uTx− t) dν(u, t) + cTx+ c0, x ∈ Bd
R, (30)

where ν, c, and c0 solve (8) (with g ≡ 1) that

ν = R(−∆)
d+1
2 fext, (31)

where we recall that fext is the canonical extension of f from Bd
R to Rd via the formula (30) and

ν ∈ M(Sd−1 × R) with supp ν = Sd−1 × [−R,R] (i.e., we can identify ν with a measure in
M(Sd−1 × [−R,R]). Since the weighted variation seminorm | · |Vg is simply (cf., (8))

|f |Vg
= inf

ν∈M(Sd−1×[−R,R])

c∈Rd,c0∈R

∥g · ν∥M s.t. f = fν,c,c0 , (32)

we readily see that |f |Vg
= ∥g · R(−∆)

d+1
2 fext∥M.

Remark D.1. The unweighted variation seminorm exactly corresponds to the second-order Radon-
domain total variation of the function [Ongie et al., 2020, Parhi and Nowak, 2021, 2022, 2023b,a].
Thus, the weighted variation seminorm is a weighted variant of the second-order Radon-domain total
variation.

E Characterization of the Weight Function for the Uniform Distribution

Recall that, given a data set D = {(xi, yi)}ni=1 ⊂ Rd × R, we consider a weight function g :
Sd−1 × R → R, where Sd−1 := {u ∈ Rd : ∥u∥ = 1} denotes the unit sphere. This weight is
defined by g(u, t) := min{g̃(u, t), g̃(−u,−t)}, where

g̃(u, t) := P(XTu > t)2 · E[XTu− t | XTu > t] ·
√

1 + ∥E[X | XTu > t]∥2. (33)

Here, X is a random vector drawn uniformly at random from the training examples {xi}ni=1. Note
that the distribution PX for which the {xi}ni=1 are drawn i.i.d. from controls the regularity of g.

In this section, We first analyze the properties of the population version gP by assuming that the
random vector X is uniformly sampled from the d-dimensional unit ball Bd

1 = {x ∈ Rd : ∥x∥2 ≤ 1}.
Then we analyze the gap between the empirical g and the population gP using the empricial process.

E.1 The Computation of the Population Weight Function

We focus on the marginal distribution of a single coordinate and related conditional expectations.
Let X1 be the first coordinate of X . Due to symmetry, all coordinates have the same marginal
distribution.

The following proposition calculates the marginal probability density function of the first coordinate
(and also other coordinates) of the random vector X .
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Proposition E.1 (Marginal PDF of a Coordinate). Let X follow the uniform distribution in Bd
1. The

probability density function (PDF) of its first coordinate X1 is given by:

fX1(t) = c1(d) (1− t2)α, t ∈ [−1, 1] (34)

where α = d−1
2 and the normalization constant is

c1(d) =
Γ
(
d
2 + 1

)
√
π Γ
(
d+1
2

) . (35)

Proof. The volume of the unit ball is Vd = πd/2

Γ(d/2+1) . The uniform density is fX(x) = 1/Vd for
x ∈ Bd

1. The marginal PDF is found by integrating out the other coordinates:

fX1
(t) =

∫
{x′∈Rd−1:∥x′∥2≤1−t2}

1

Vd
dx′ =

Vold−1(
√
1− t2)

Vd

where Vold−1(R) is the volume of a (d − 1)-ball of radius R. Using Vd−1 = π(d−1)/2

Γ((d−1)/2+1) =

π(d−1)/2

Γ((d+1)/2) , we get

fX1
(t) =

Vd−1(1− t2)(d−1)/2

Vd
=

π(d−1)/2

Γ((d+ 1)/2)

Γ(d/2 + 1)

πd/2
(1− t2)(d−1)/2

which simplifies to the stated result. For d = 2, α = 1/2, c1(2) =
Γ(2)√
πΓ(3/2)

= 1√
π(

√
π/2)

= 2
π . For

d = 3, α = 1, c1(3) =
Γ(5/2)√
πΓ(2)

= 3
√
π/4√
π

= 3
4 .

Given the marginal probability density function, the tail probability follows from direct calculation.

Proposition E.2 (Tail Probability). Let X be a random vector uniformly distributed in the d-
dimensional unit ball Bd

1 = {x ∈ Rd : ∥x∥2 ≤ 1}. Let X1 be its first coordinate whose tail
probability is defined as Q(x) = P(X1 > x) for x ∈ [−1, 1]. Then there exists a fixed x0 ∈ [0, 1)
(specifically, we choose x0 = 3/4, which implies (1− x) ∈ (0, 1/4]) such that for all x ∈ [x0, 1):

Q(x)
c3(d)≍
c2(d)

(1− x)
d+1
2 .

Or equivalently,
c2(d)(1− x)

d+1
2 ≤ Q(x) ≤ c3(d)(1− x)

d+1
2 ,

where the constants c2(d) and c3(d) are given by:

c2(d) =
c1(d)

d+ 1

(
7

4

) d+1
2

c3(d) =
c1(d)

d+ 1
2

d+2
2

and c1(d) =
Γ( d

2+1)
√
π Γ( d+1

2 )
is the normalization constant from the marginal PDF of X1.

Proof. The tail probabilityQ(x) is given by the integral of the marginal PDF fX1
(t) = c1(d)(1−t2)α

for t ∈ [−1, 1], where α = d−1
2 .

Q(x) =

∫ 1

x

c1(d)(1− t2)α dt

Let s = t2, so dt = ds/(2
√
s). The limits of integration for s become x2 to 1.

Q(x) = c1(d)

∫ 1

x2

(1− s)α
ds

2
√
s
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Now, let u = 1− s. Then s = 1− u and ds = −du. Let δs = 1− x2. The limits for u become δs
to 0.

Q(x) =
c1(d)

2

∫ δs

0

(1− u)−1/2uα du

For u ∈ [0, δs], we have 1 ≤ (1 − u)−1/2 ≤ (1 − δs)
−1/2, because (1 − u) is decreasing and

non-negative. The integral
∫ δs
0
uα du =

δα+1
s

α+1 . Substituting these bounds for the term (1− u)−1/2:

c1(d)

2(α+ 1)
δα+1
s ≤ Q(x) ≤ c1(d)

2(α+ 1)
(1− δs)

−1/2δα+1
s

We use α = d−1
2 , so 2(α+ 1) = 2(d−1

2 + 1) = 2(d+1
2 ) = d+ 1. The exponent α+ 1 = d+1

2 . Thus,

c1(d)

d+ 1
δ

d+1
2

s ≤ Q(x) ≤ c1(d)

d+ 1
(1− δs)

−1/2δ
d+1
2

s

We choose x0 = 3/4, so we consider x ∈ [3/4, 1), which means (1−x) ∈ (0, 1/4]. For x ∈ [3/4, 1),
we have 1 + x ∈ [7/4, 2). The term δs = 1− x2 = (1− x)(1 + x). Given the range for 1 + x, for
(1− x) ∈ (0, 1/4]:

7

4
(1− x) ≤ δs < 2(1− x)

• Lower Bound for Q(x): Using δs ≥ 7
4 (1− x) from the above range:

Q(x) ≥ c1(d)

d+ 1

(
7

4
(1− x)

) d+1
2

=
c1(d)

d+ 1

(
7

4

) d+1
2

(1− x)
d+1
2

This establishes the lower bound with c2(d) =
c1(d)
d+1

(
7
4

) d+1
2 .

• Upper Bound forQ(x): For the term δ
d+1
2

s , we use δs < 2(1−x), so δ
d+1
2

s < (2(1−x)) d+1
2 .

For the term (1− δs)
−1/2: Since (1− x) ∈ (0, 1/4], δs < 2(1− x) ≤ 2(1/4) = 1/2. So,

1− δs > 1− 1/2 = 1/2. This implies (1− δs)
−1/2 < (1/2)−1/2 =

√
2. Combining these

for the upper bound of Q(x):

Q(x) ≤ c1(d)

d+ 1
21/2 · 2

d+1
2 (1− x)

d+1
2 =

c1(d)

d+ 1
2

d+2
2 (1− x)

d+1
2

This establishes the upper bound with c3(d) =
c1(d)
d+1 2

d+2
2 .

Thus, for x ∈ [3/4, 1) (i.e., 1− x ∈ (0, 1/4]):

c2(d)(1− x)
d+1
2 ≤ Q(x) ≤ c3(d)(1− x)

d+1
2

This corresponds to Q(x)≍c3(d)
c2(d)

(1 − x)
d+1
2 . The constants c2(d) and c3(d) depend only on the

dimension d (via c1(d) and the exponents derived from d) and are valid for the specified range of
x.

Based on the tail probability, we calculate the expectation conditional on the tail events.
Proposition E.3 (Conditional Expectation). For x ∈ [3/4, 1), the conditional expectation E[X1 |
X1 > x] is bounded by

1− c5(d)(1− x) ≤ E[X1 | X1 > x] ≤ 1− c4(d)(1− x), (36)

where the constants c4(d) and c5(d) are given by:

c4(d) =
2(d+ 1)

d+ 3

(7/4)(d−1)/2

2(d+2)/2
,

c5(d) =
2(d+ 1)

d+ 3

2(d−1)/2

(7/4)(d+1)/2
.
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Proof. We consider 1− E[X1 | X1 > x] = E[1−X1 | X1 > x].

E[1−X1 | X1 > x] =
1

Q(x)

∫ 1

x

(1− t)fX1
(t) dt

=
c1(d)

Q(x)

∫ 1

x

(1− t)(1− t2)αdt

=
c1(d)

Q(x)

∫ 1

x

(1− t)α+1(1 + t)α dt

Let I1(x) =
∫ 1

x
(1 − t)α+1(1 + t)αdt. We consider x ∈ [3/4, 1). For t ∈ [x, 1], we have 1 + t ∈

[1 + x, 2]. Since x ≥ 3/4, 1 + x ≥ 7/4. Thus, (7/4)α ≤ (1 + t)α ≤ 2α for t ∈ [x, 1] (assuming

α ≥ 0, which holds for d ≥ 1). The integral
∫ 1

x
(1 − t)α+1 dt =

[
− (1−t)α+2

α+2

]1
x
= (1−x)α+2

α+2 . So,

I1(x) is bounded by:

(7/4)α
(1− x)α+2

α+ 2
≤ I1(x) ≤ 2α

(1− x)α+2

α+ 2
Let N1(x) = c1(d)I1(x). Then, using α+ 2 = (d+ 3)/2:

2c1(d)(7/4)
(d−1)/2

d+ 3
(1− x)

d+3
2 ≤ N1(x) ≤

2c1(d)2
(d−1)/2

d+ 3
(1− x)

d+3
2

From Proposition E.2 , for x ∈ [3/4, 1), Q(x) is bounded by:

c2(d)(1− x)
d+1
2 ≤ Q(x) ≤ c3(d)(1− x)

d+1
2

where c2(d) =
c1(d)
d+1 (

7
4 )

d+1
2 and c3(d) =

c1(d)
d+1 2

d+2
2 . Therefore, E[1 − X1 | X1 > x] = N1(x)

Q(x) is
bounded by:

• Lower bound:
2c1(d)(7/4)

(d−1)/2

d+3 (1− x)
d+3
2

c3(d)(1− x)
d+1
2

=
2c1(d)(7/4)

(d−1)/2/(d+ 3)
c1(d)
d+1 2

d+2
2

(1− x)

=
2(d+ 1)

d+ 3

(7/4)(d−1)/2

2(d+2)/2
(1− x) = c4(d)(1− x)

• Upper bound:
2c1(d)2

(d−1)/2

d+3 (1− x)
d+3
2

c2(d)(1− x)
d+1
2

=
2c1(d)2

(d−1)/2/(d+ 3)
c1(d)
d+1 (

7
4 )

d+1
2

(1− x)

=
2(d+ 1)

d+ 3

2(d−1)/2

(7/4)(d+1)/2
(1− x) = c5(d)(1− x)

So, for x ∈ [3/4, 1):
c4(d)(1− x) ≤ E[1−X1 | X1 > x] ≤ c5(d)(1− x)

This implies:
1− c5(d)(1− x) ≤ E[X1 | X1 > x] ≤ 1− c4(d)(1− x)

This completes the proof.

Finally, we combine the results and characterize the asymptotic behavior of the weight function g.
Proposition E.4 (Asymptotic Behavior of g+(x)). Let the function g+(x) be defined as: for x ∈
(−1, 1),

g+(x) = P(X1 > x)2 · E[X1 − x | X1 > x] ·
√
1 + (E[X1 | X1 > x])

2
. (37)

Then for x ∈ [3/4, 1), we have:

c
(g)
L (d)(1− x)d+2 ≤ g+(x) ≤ c

(g)
U (d)(1− x)d+2, (38)

where c(g)L (d) and c(g)U (d) are positive constants depending on dimension d, defined in the proof (39).
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Proof. Let Q(x) = P(X1 > x) and E(x) = E[X1 | X1 > x]. The function is g+(x) = Q(x)2 ·
(E(x)− x) ·

√
1 + E(x)2. Now, we establish precise bounds for x ∈ [3/4, 1). Let (1− x) be the

variable.

1. Bounds for Q(x)2: From Propostion E.2, c2(d)(1 − x)
d+1
2 ≤ Q(x) ≤ c3(d)(1 − x)

d+1
2 .

So, AL(d)(1− x)d+1 ≤ Q(x)2 ≤ AU (d)(1− x)d+1, where

AL(d) = (c2(d))
2 =

(
c1(d)

d+ 1

(
7

4

) d+1
2

)2

,

AU (d) = (c3(d))
2 =

(
c1(d)

d+ 1
2

d+2
2

)2

.

2. Bounds for E(x) − x = E[X1 − x | X1 > x]: From Propostion E.3, we have (1 − x) −
c5(d)(1 − x) ≤ E(x) − x ≤ (1 − x) − c4(d)(1 − x). So, BL(d)(1 − x) ≤ E(x) − x ≤
BU (d)(1− x), where

BL(d) = 1− c5(d) = 1− 2(d+ 1)

d+ 3

2(d−1)/2

(7/4)(d+1)/2
,

BU (d) = 1− c4(d) = 1− 2(d+ 1)

d+ 3

(7/4)(d−1)/2

2(d+2)/2
.

Since E(x)− x = E[X1 − x | X1 > x] must be positive (as X1 > x), we take BL(d) =
max(0, 1− c5(d)).

3. Bounds for
√
1 + E(x)2: We know 1 − c5(d)(1 − x) ≤ E(x) ≤ 1 − c4(d)(1 − x). For

x ∈ [3/4, 1), (1− x) ∈ (0, 1/4] and the upper bound of E(x) is given by

E(x) ≤ 1− c4(d)(1− x) < 1.

The lower bound is also given in this way

E(x) = E[X1 | X1 > x] ≥ x ≥ 3/4.

Therefore, we deduce that

CL(d) ≤
√
1 + E(x)2 ≤ CU (d),

where
CL(d) =

5

4
, CU (d) =

√
2.

Combining these bounds, for x ∈ [3/4, 1):

g+(x) ≥ AL(d)BL(d)CL(d)(1− x)d+1(1− x) = c
(g)
L (d)(1− x)d+2,

g+(x) ≤ AU (d)BU (d)CU (d)(1− x)d+1(1− x) = c
(g)
U (d)(1− x)d+2.

The constants are:
c
(g)
L (d) = (c2(d))

2 · (1− c5(d)) · 5/4,

c
(g)
U (d) = (c3(d))

2 · (1− c4(d)) ·
√
2.

(39)

E.2 Empirical Process for the Weight Function

In this section, we discuss the empirical process of gP . Now we may relax the assumption by just
assuming that X is random variable with supp(X) ⊆ Bd

1. Fix dimension d ∈ N, sample size n ∈ N,
and let X1, . . . ,Xn be i.i.d. copies of X . We use the notation ĝn to denote empirical weight function
g as we defined previously.

For u ∈ Sd−1 and t ∈ [−1, 1], define

p(u, t) := P
(
XTu > t

)
, s(u, t) := E

[
(XTu− t)+

]
,
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and recall the population weight gP (u, t). By the bounds 0 ≤ (XTu− t)+ ≤ 2 and ∥E[X | XTu >
t]∥ ≤ 1 (valid on Bd

1), we have the pointwise comparison

gP (u, t) ≍ p(u, t) s(u, t) with absolute constants, (40)

i.e., there exist universal c, C ∈ (0,∞) such that c p s ≤ gP ≤ C p s for all (u, t) ∈ Sd−1 × [−1, 1].
Consider the empirical plug-ins

p̂n(u, t) :=
1

n

n∑
i=1

1{XT
i u > t}, ŝn(u, t) :=

1

n

n∑
i=1

(XT
i u−t)+, ĝn(u, t) := p̂n(u, t) ŝn(u, t).

Note that ĝn involves no division by p̂n, hence avoids any small-mass instability. We now give a
self-contained proof of a sharp, distribution-free uniform deviation bound.

Theorem E.5 (Distribution-free uniform deviation for ĝn). There exists a universal constant C > 0
such that, for every δ ∈ (0, 1),

P

(
sup

u∈Sd−1, t∈[−1,1]

∣∣ĝn(u, t)− gP (u, t)
∣∣ > C

√
d+ log(2/δ)

n

)
≤ δ.

Proof. Using (40), it is enough (up to absolute constants) to control
∣∣p̂n(u, t)ŝn(u, t) −

p(u, t)s(u, t)
∣∣ uniformly over (u, t) ∈ Sd−1 × [−1, 1]. Observe that 0 ≤ s, ŝn ≤ 2 and

0 ≤ p, p̂n ≤ 1, so∣∣p̂nŝn − p s
∣∣ ≤ |p̂n − p| s+ |ŝn − s| p̂n ≤ 2 |p̂n − p|+ |ŝn − s|. (41)

We thus seek uniform bounds for the two empirical processes appearing on the right-hand side. The
argument proceeds in two steps:

• Halfspaces. The class {x 7→ 1{xTu > t} : u ∈ Sd−1, t ∈ R} has VC-dimension d + 1.
Hence, by the VC uniform convergence inequality for {0, 1}-valued classes (e.g., [Vapnik,
1998]), there exists a universal constant C1 > 0 such that, for all δ ∈ (0, 1),

P

(
sup

u∈Sd−1, t∈[−1,1]

∣∣p̂n(u, t)− p(u, t)
∣∣ > C1

√
d+ log(1/δ)

n

)
≤ δ. (42)

• ReLU class. Let F := {fu,t(x) = (uTx− t)+ : u ∈ Sd−1, t ∈ [−1, 1]}. Since ∥x∥ ≤ 1
and t ∈ [−1, 1], we have f ∈ [0, 2]. Consider the subgraph family

subG(F) =
{
(x, y) ∈ Rd × R : y ≤ (uTx− t)+

}
.

For y ≤ 0 membership is automatic; for y > 0 it is equivalent to the affine halfspace
condition uTx−t−y ≥ 0 in Rd+1. Thus VCdim(subG(F)) ≤ d+2, whence Pdim(F) ≤
d + 2. Standard pseudo-dimension bounds (see [Haussler, 1992, Thm. 3, 6, 7]) give a
universal C2 > 0 with

P

(
sup

u∈Sd−1, t∈[−1,1]

∣∣ŝn(u, t)− s(u, t)
∣∣ > C2

√
d+ log(1/δ)

n

)
≤ δ. (43)

Combining Step (I) and Step (II) with a union bound and the previous inequality yields

P

(
sup
u,t

∣∣p̂nŝn − p s
∣∣ > C ′

√
d+ log(2/δ)

n

)
≤ δ (44)

for an absolute constantC ′ > 0. Finally, the equivalence (40) transfers this bound to supu,t

∣∣ĝn−gP ∣∣,
up to a universal multiplicative factor and the same failure probability.
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F Proof of Theorem 3.5: Generalization Gap of Stable Minima

Let P denote the joint distribution of (x, y). Assume that P is supported on Bd
1 × [−D,D] for some

D > 0. Let f be a function. The population risk or expected risk of f is defined to be

R(f) = E
(x,y)∼P

[
(f(x)− y)

2
]

(45)

Let D = {(xi, yi)}ni=1 be a data set where each (xi, yi) is drawn i.i.d. from P . Then the empirical
risk is defined to be

R̂(f) =
1

n

n∑
i=1

(f(xi)− yi)
2 (46)

The generalization gap is defined to be

GeneralizationGap(f ; R̂) := |R(f)− R̂(f)|. (47)

The generalization gap measures the difference between the train loss and the expected testing error.
The smaller the generalization gap, the less likely the model overfits.

F.1 Definition of the Variation Space of ReLU Neural Networks

Recall the notion in Section 3, the weighted variation (semi)norm is defined to be

|f |Vg
:= inf

ν∈M(Sd−1×[−R,R])

c∈Rd,c0∈R

∥g · ν∥M s.t. f = fν,c,c0 , (48)

and now we define the unweighted variation norm or simply variation norm to be

|f |V := inf
ν∈M(Sd−1×[−R,R])

c∈Rd,c0∈R

∥ν∥M s.t. f = fν,c,c0 . (49)

This definition is identical to the one in [Parhi and Nowak, 2023b, Section V.B]. The following
example for unweighted variation norm is similar to Example 3.1.

Example F.1. Since we are interested in functions defined on Bd
R, for a finite-width neural network

fθ(x) =
∑K

k=1 vkϕ(w
T
kx − bk) + β, we observe that it has the equivalent implementation as

fθ(x) =
∑J

j=1 ajϕ(u
T
j x− tj)+cTx+ c0, where aj ∈ R, uj ∈ Sd−1, tj ∈ R, c ∈ Rd, and c0 ∈ R.

Indeed, this is due to the fact that the ReLU is homogeneous, which allows us to absorb the magnitude
of the input weights into the output weights (i.e., each aj = |vkj∥wkj∥2 for some kj ∈ {1, . . . ,K}).
Furthermore, any ReLUs in the original parameterization whose activation threshold8 is outside
Bd
R can be implemented by an affine function on Bd

R, which gives rise to the cTx+ c0 term in the
implementation. If this new implementation is in “reduced form”, i.e., the collection {(uj , tj)}Jj=1

are distinct, then we have that |fθ|V =
∑J

j=1 |aj |.

The bounded variation function class is defined w.r.t. the unweighted variation norm.

Definition F.2. For the compact region Ω = Bd
R, we define the bounded variation function class as

VC(Ω):=

{
f : Ω → R

∣∣∣∣∣ f =

∫
Sd−1×[−R,R]

ϕ(uTx− t) dν(u, t) + cTx+ b, |f |V ≤ C

}
. (50)

F.2 Metric Entropy and Variation Spaces

Metric entropy quantifies the compactness of a set A in a metric space (X, ρX). Below we introduce
the definition of covering numbers and metric entropy.

8The activation threshold of a neuron ϕ(wTx− b) is the hyperplane {x ∈ Rd : wTx = b}.
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Definition F.3 (Covering Number and Entropy). LetA be a compact subset of a metric space (X, ρX).
For t > 0, the covering number N(A, t, ρX) is the minimum number of closed balls of radius t
needed to cover A:

N(t, A, ρX) := min

{
N ∈ N : ∃x1, . . . , xN ∈ X s.t. A ⊂

N⋃
i=1

B(xi, t)

}
, (51)

where B(xi, t) = {y ∈ X : ρX(y, xi) ≤ t}. The metric entropy of A at scale t is defined as:
Ht(A)X := logN(t, A, ρX). (52)

The metric entropy of the bounded variation function class has been studied in previous works. More
specifically, we will directly use the one below in future analysis.
Proposition F.4 (Parhi and Nowak 2023b, Appendix D). The metric entropy of VC(Bd

R) (see
Definition F.2) with respect to the L∞(Bd

R)-distance ∥ · ∥∞ satisfies

logN(t,VC(Bd
R), ∥ · ∥∞) ⪅d

(
C

t

) 2d
d+3

. (53)

where ⪅d hides constants (which could depend on d) and logarithmic factors.

F.3 Generalization Gap of Unweighted Variation Function Class

As a middle step towards bounding the generalization gap of the weighted variation function class,
we first bound the generalization gap of the unweighted variation function class according to a metric
entropy analysis.
Lemma F.5. Let FM,C = {f ∈ VC(Bd

R) | ∥f∥∞ ≤ M} with M ≥ D where D refers to
Theorem 3.5. Then with probability at least 1− δ:

sup
f∈FM,C

∣∣R(f)− R̂n(f)
∣∣ ⪅d C

d
2d+3 M

3(d+2)
2d+3 n−

d+3
4d+6 . (54)

Proof. According to Proposition F.4, one just needs N(t) balls to cover F in ∥ · ∥∞ with radius t > 0
such that where

logN
(
t) ⪅d

(
C

t

) 2d
d+3

.

Then for any f, g ∈ FM,C and any (x, y),∣∣(f(x)− y)2 − (g(x)− y)2
∣∣ = |f(x)− g(x)| |f(x) + g(x)− 2y| ≤ 4M ∥f − g∥∞.

Hence replacing f by a centre fi within t changes both the empirical and true risks by at most 4Mt.

For any fixed centre f̄ in the covering, Hoeffding’s inequality implies that with probability at least
≥ 1− δ, we have

|R(f̄)− R̂(f̄)| ≤ 4M2

√
log(2/δ)

n
(55)

because each squared error lies in [0, 4M2]. Then we take all the centers with union bound to deduce
that with probability at least 1− δ/2, for any center f̄ in the set of covering index, we have

|R(f̄)− R̂(f̄)| ≤ 4M2

√
log(4N(t)/δ)

n

⪅d M
2 ·
(
C

t

) d
d+3

n−
1
2 .

(56)

According to the definition of covering sets, for any f ∈ FM,C , we have that ∥f − f̄∥∞ ≤ t for some
center f̄ . Then we have

|R(f)− R̂(f)|
≤ |R(f̄)− R̂(f̄)|+O(Mt)

≤M2 ·
(
C

t

) d
d+3

n−
1
2 +O(Mt).

(57)

After tuning t to be the optimal choice, we deduce that (54).

37



F.4 Concentration Property on the Ball: Uniform Distribution

In the following analysis, we will handle the interior and boundary of the unit ball separately. In this
part, we define the annulus of a ball rigorously and provide a high-probability bound on the number
of samples falling in the annulus.
Definition F.6. Let Bd

1 be the unit ball. The ε-annulus is a subset of Bd
1 defined as

Ad
ε := {x ∈ Bd

1 | ∥x∥2 ≥ 1− ε}

and the closure of its complement is called ε-strict interior and denoted by Idε .
Lemma F.7 (High-Probability Upper Bound on Annulus). Let d ∈ N and ε ∈ (0, 1). Let

x1, . . . ,xn ∼ Uniform
(
Bd
1

)
.

Define nA := |{ i | xi ∈ Ad
ε}| and p = P

(
X ∈ Ad

ε

)
= 1 − (1 − ε)d = Θ(ε). Then for any

δ ∈ (0, 1), with probability at least 1− δ,

nA
n

≤ p+

√
3 p log

(
1/δ
)

n
. (58)

Proof. For each i = 1, . . . , n, consider a Bernoulli random variable

U = 1{X ∈ Ad
ε},

so that E[U ] = p and regardsUi as a sample. Then we may take nA =
∑n

i=1 Ui. By the multiplicative
Chernoff bound for the upper tail of a sum of independent Bernoulli variables,

P
(
nA > (1 + γ)n p

)
≤ exp

(
−γ2

3 n p
)
, ∀ γ > 0.

Set the right-hand side equal to δ and solve for γ:

exp
(
−γ2

3 n p
)
= δ =⇒ −γ2

3 n p = ln δ =⇒ γ =

√
3 ln(1/δ)

n p
.

If γ > 1, note that trivially nA/n ≤ 1 ≤ p+
√

3 p ln(1/δ)
n , so the claimed bound holds in all cases.

Otherwise, plugging this choice of γ into the Chernoff bound gives

P
(
nA ≤ n p (1 + γ)

)
≥ 1− δ,

i.e. with probability at least 1− δ,

nA ≤ n p+
√
3n p ln(1/δ),

and dividing by n yields the stated inequality.

F.5 Upper Bound of Generalization Gap of Stable Minima

Let f = fθ be a stable solution of the loss function L(θ), trained by gradient descent with learning
rate η. Then we have

2

η
≥ λmax(∇2

θL(θ)) ≥ vT∇2
θL(θ)v

= λmax

(
1

n

n∑
i=1

(∇θfθ(xi))(∇θfθ(xi))
T

)
︸ ︷︷ ︸

(Term A)

+
1

n

n∑
i=1

(fθ(xi)− yi)v
T∇2

θfθ(xi)v︸ ︷︷ ︸
(Term B)

.

(59)
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For (Term A), we have

λmax

(
1

n

n∑
i=1

(∇θfθ(xi))(∇θfθ(xi))
T

)
≥ 1 + 2|fθ|Vg

. (60)

For (Term B), we have

|(Term B)| ≤

√√√√ 1

n

n∑
i=1

(fθ(xi)− yi)
2 ·

√√√√ 1

n

n∑
i=1

(vT∇2
θfθ(xi)v)

2 ≤ 4
√

2L(θ). (61)

Let M = max{∥f∥∞, D, 1}. Then we have

√
2L(θ) =

√√√√ 1

n

n∑
i=1

(fθ(xi)− yi)
2 ≤ 2M.

Combining these inequalities together, we may deduce that

|fθ|Vg ≤ 1

η
− 1

2
+ 4M. (62)

With all the preparations, we are ready to prove the generalization gap upper bound for stable minima.
Theorem F.8. (First part of Theorem 3.5) Let P denote the joint distribution of (x, y). Assume
that P is supported on Bd

1 × [−D,D] for some D > 0 and that the marginal distribution of x is
Uniform(Bd

1). Fix a data set D = {(xi, yi)}ni=1, where each (xi, yi) is drawn i.i.d. from P , and D
yields the empirical weight function g defined in (6). Then, with probability at least 1− δ, we have
that for the plug-in risk estimator R̂(f) := 1

n

∑n
i=1 (f(xi)− yi)

2,

sup
f∈Vg(Bd

1)
|f |Vg≤A, ∥f∥L∞≤B

GeneralizationGap(f ; R̂) := |R(f)− R̂(f)| ⪅d A
d

d2+4d+3 B2 n−
1

2d+4 ,

where B is assumed > 1 and ⪅d hides constants (which could depend on d) and logarithmic factors
in n and (1/δ). In particular, Theorem 3.2 and (62) imply that that

fθ ∈
{
f ∈ Vg(Bd

1)

∣∣∣∣ |f |Vg ≤ 1

η
− 1

2
+ 4M, ∥f∥L∞(Bd

1)
≤M

}
(63)

for every
θ ∈

{
θ ∈ Θflat(η;D)

∣∣∣ ∥f∥L∞(Bd
1)

≤M
}
. (64)

Therefore, we may conclude that

sup
θ∈Θflat(η;D)

GeneralizationGap(fθ; R̂) := |R(fθ)− R̂(fθ)|

⪅d

(1
η
− 1

2
+ 4M

) d
d2+4d+3

M2 n−
1

2d+4 , (65)

where M := max
{
D, ∥fθ∥L∞(Bd

1)
, 1
}

.

Proof. For any fixed ε < 1/4, we may decompose Bd
1 into ε-annulus and ε-strict interior

Bd
1 = Ad

ε ∪ Idε .

According to the law of total expectation, the population risk is decomposed into

E
(x,y)∼P

[
(f(x)− y)

2
]
= P(x ∈ Ad

ε) · EA

[
(f(x)− y)

2
]
+ P(x ∈ Idε) · EI

[
(f(x)− y)

2
]
, (66)
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where EA means that {x, y} is a new sample from the data distribution conditioned on x ∈ Ad
ε and

EI means that (x, y) is a new sample from the data distribution conditioned on x ∈ Idε .

Similarly, we also have this decomposition for empirical risk

1

n

n∑
i=1

(f(xi)− yi)
2 =

1

n

∑
i∈I

(f(xi)− yi)
2 +

∑
j∈A

(f(xj)− yj)
2


=
nI
n

1

nI

∑
i∈I

(f(xi)− yi)
2 +

nA
n

1

nA

∑
j∈A

(f(xj)− yj)
2,

(67)

where I is the set of data points with xi ∈ Idε and A is the set of data points with xi ∈ Ad
ε . Then the

generalization gap can be decomposed into

|R(f)− R̂(f)| ≤ P(x ∈ Ad
ε) · EA

[
(fθ(x)− y)

2
]
+
nA
n

1

nA

∑
j∈A

(f(xj)− yj)
2+ (68)

+
∣∣∣P(x ∈ Idε)−

nI
n

∣∣∣ 1

nI

∑
i∈I

(f(xi)− yi)
2 (69)

+ P(x ∈ Idε) ·

∣∣∣∣∣EI

[
(f(x)− y)

2
]
− 1

nI

∑
i∈I

(f(xi)− yi)
2

∣∣∣∣∣ . (70)

Using the property that the marginal distribution of x is Uniform(Bd
1) and its concentration property

(see Lemma F.7), with probability at least 1− δ/2:

(68) ⪅d O(B2ε), (71)

where ⪅d hides the constants that could depend on d and logarithmic factors of 1/δ.

For the term (69), with probability 1− δ/3{∣∣P(x ∈ Idε)− nI

n

∣∣ ≲
√

ε log(3/δ)
n , (Lemma F.7)

1
nI

∑
i∈I(f(xi)− yi)

2 ≤ 4B2
(72)

so we may also conclude that

(69) ≲M2

√
ε log(3/δ)

n
(73)

For the part of the interior (70), the scalar P(x ∈ Idε) is less than 1 with high-probability. Therefore,
we just need to deal with the term

EI

[
(f(x)− y)

2
]
− 1

nI

∑
i∈I

(f(xi)− yi)
2. (74)

Since both the distribution and sample points only support in Idε , we may consider f by its restrictions
in Idε , which are denoted by fε. Furthermore, according to the definition, we have

f(x) =

∫
Sd−1×[−1,1]

ϕ(uTx− t) dν(u, t) + cTx+ b

=

∫
Sd−1×[−1+ε,1−ε]

ϕ(uTx− t) dν(u, t) +

∫
Sd−1×[−1,−1+ε)∪(1−ε,1]

ϕ(uTx− t) dν(u, t)︸ ︷︷ ︸
Annulus ReLU

+ cTx+ b
(75)

where the Annulus ReLU term is totally linear in the strictly interior i.e. there exists c′, b′ such that

c′Tx+ b′ =

∫
Sd−1×[−1,−1+ε)∪(1−ε,1]

ϕ(uTx− t) dν(u, t), ∀x ∈ Idε . (76)
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Therefore, we may write

f(x) = fε(x) =

∫
Sd−1×[−1+ε,1−ε]

ϕ(uTx− t) dν(u, t) + (c+ c′)Tx+ b+ b′, x ∈ Idε . (77)

The core of the argument is to rigorously bound the interior generalization gap. Recall that a
stable minima θ ∈ Θflat(η;D) satisfies |f |Vg

≤ A with respect to the empirical weight function
g. To analyze the complexity of its restriction fε on the core Idε , we need a lower bound on
gεmin := inf |t|≤1−ε g(u, t). This quantity is a random variable.

From empirical process we discussed in Section E.2, especially Theorem E.5, we know that with
probability at least 1− δ/3,

sup
u,t

|g(u, t)− gP (u, t)| ≲d

√
d+ log(6/δ)

n
=: ϵn. (78)

This implies a lower bound on the empirical minimum weight in the core with probability at least
1− δ/3,

gεmin = inf
|t|≤1−ε

g(u, t) ≥ inf
|t|≤1−ε

gP (u, t)︸ ︷︷ ︸
gε
P,min

−ϵn = gεP,min − ϵn. (79)

Here, gεP,min ≍ εd+2 is the minimum of the population weight function in the core.

For the bound |fε|V ≤ A/gεmin ≤ A/(gP,min − ϵn) to be meaningful with high probability, we must
operate in a regime where gmin ≥ ϵn. We enforce a stricter validity condition for our proof

gmin ≥ 2ϵn =⇒ εd+2 ⪆d n
− 1

2 . (80)

Therefore, we may choose

ε ≍

(
A

d
d2+4d+3 ·

√
d+ log(6/δ)

n

) 1
d+2

(81)

Under this condition, we have gεmin ≥ gεP,min − ϵn ≥ gεP,min/2 ≍ εd+2. Thus, for any stable solution
f , its restriction fε has a controlled unweighted variation norm with high probability:

|fε|V(Bd
1−ε)

≤ A

gεmin

≤ A

gεP,min/2
≍ A

εd+2
=: Cε.

We can now apply the generalization bound from Lemma F.5 to the class VCε
(Bd

1−ε) by plugging in
(81), with probability 1− δ/3,

Interior Gap (70) ⪅d (Cε)
d

2d+3 B
3(d+2)
2d+3 n−

d+3
4d+6 (82)

=

(
A

1− d
d2+4d+3

√
n

d+ log(6/δ)

) d
2d+3

B
3(d+2)
2d+3 n−

d+3
4d+6 (83)

⪅d A
d

d2+4d+3B
3(d+2)
2d+3 n−

3
4d+6 (84)

where ⪅d hides the constants that could depend on d and logarithmic factors of 1/δ.

Now we combine the upper bounds (71), (73) and (84) to deduce an upper bound of the generalization
gap. With probability 1− δ, we have

|R(f)− R̂(f)| ⪅d A
d

d2+4d+3B2n−
1

2d+4 +A
d

d2+4d+3B
3(d+2)
2d+3 n−

3
4d+6 . (85)

Since n−
1

2d+4 > n−
3

4d+6 and B2 > B
3(d+2)
2d+3 with the assumption M ≥ 1, we conclude that

|R(f)− R̂(f)| ⪅d

(1
η
− 1

2
+ 4B

) d
d2+4d+3

M2 n−
1

2d+4 , (86)

which finishes the proof.

Remark F.9. For the generalization gap lower bound (second part of Theorem 3.5), we defer the
proof to Appendix I as it relies on a construction that is used to prove Theorem 3.7 from Appendix H.
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G Proof of Theorem 3.6: Estimation Error Rate for Stable Minima

G.1 Computation of Local Gaussian Complexity

It is known from Wainwright 2019 that a tight analysis of MSE results from local gaussian complexity.
We begin with the following proposition that connects the local gaussian complexity to the critical
radius.
Proposition G.1 (Wainwright 2019, Chapter 13). Let F be a convex model class that contains the
constant function 1. Fix design points x1, . . . ,xn in the region of interest and denote the empirical
norm

∥f∥2n :=
1

n

n∑
i=1

f(xi)
2.

For any radius r > 0 write

F(r) :=
{
f ∈ F : ∥f∥n ≤ r

}
, Ĝn(r,F) := sup

f∈F(r)

1

n

n∑
i=1

εif(xi),

where ε1, . . . , εn
i.i.d.∼ N (0, σ2) and Gn(r,F) := E Ĝn(r,F).

If δ satisfies the integral inequality
16√
n

∫ r

0

√
logN

(
t, ∂F , ∥ · ∥n

)
dt ≤ r

4
, (87)

where ∂F :=
{
f1 − f2 : f1, f2 ∈ F

}
, then the local empirical Gaussian complexity obeys

Gn(r,F)

r
≤ r

2σ
. (88)

Moreover, with probability at least 1− δ one has

Ĝn(r,F) ≤ r2

2σ
+ r

√
log(1/δ)√

n
(δ > 0). (89)

As a result, we can derive an upper bound for the local empirical Gaussian complexity of the variation
function class through a careful analysis of the critical radius.
Lemma G.2. Let FB,C(Bd

R) = {f ∈ VC(Bd
R) | ∥f∥L∞(Bd

R) ≤ B}. Then with probability at least
1− δ, we have

1

n

n∑
i=1

εi(f1(xi)− f2(xi)) ≲d C
2d

2d+3 n−
d+3
2d+3 + C

d
2d+3 n−

3d+6
4d+6

√
log(1/δ), (90)

for any two f1, f2 ∈ FB,C .

Proof. As ∂FB,C = 2FB,C ⊂ F2B,2C , bounding the entropy of F2B,2C suffices. Using ∥f∥n ≤
∥f∥L∞(Bd

1)
and referring to Proposition F.4, we have, up to logarithmic factors,

logN
(
t, F2B,2C , ∥ · ∥n

)
⪅d

(C
t

) 2d
d+3

.

Plugging this entropy bound into the left side of (87) and integrating,

16√
n

∫ r

0

(C
t

) d
d+3

dt ≲d
C

d
d+3

√
n

∫ r

0

t−
d

d+3 dt =
C

d
d+3 r

3
d+3

√
n

.

Hence inequality (87) is met provided

C
d

d+3 r
3

d+3

√
n

≲d
r

4
, ⇐⇒ r

d
d+3 ≳d C

d
d+3 n−1/2.

Solving for r2 (and keeping only dominant terms) yields

r2n ≍d C
2d

2d+3 n−
d+3
2d+3 .

With this choice of rn, Proposition G.1 guarantees
Gn

(
FB,C(rn)

)
≲d rn,

and the high-probability version (89) holds verbatim.
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G.2 Proof of the Estimation Error Upper Bound

Given the local gaussian complexity upper bound, together with the assumption of solutions being
“optimized”, we can prove the following MSE upper bound.
Theorem G.3 (Restate Theorem 3.6). Fix a step size η > 0 and noise level σ > 0. Given a ground
truth function f0 ∈ Vg(Bd

1) such that ∥f0∥L∞ ≤ B and |f0|Vg ≤ Õ
(

1
η − 1

2 + 2σ
)

, suppose that

we are given a data set yi = f0(xi) + εi, where xi are i.i.d. Uniform(Bd
1) and εi are i.i.d. N (0, σ2).

Then, with probability at least 1− δ, we have that

1

n

n∑
i=1

(fθ(xi)− f0(xi))
2 ⪅d

(
1

η
− 1

2
+ 2σ

) d
(2d2+6d+3)(d+2)

B2

(
σ2

n

) 1
2d+4

, (91)

for any θ ∈ Θflat(η;D) that is optimized, i.e., (fθ(xi) − yi)
2 ≤ (f0(xi) − yi)

2, for i = 1, . . . , n.
Here, ⪅d hides constants (that could depend on d) and logarithmic factors in n and (1/δ).

Proof of Theorem 3.6. The empirical Mean Squared Error (MSE) we want to bound is
MSE(fθ, f0) =

1
n

∑n
i=1(fθ(xi)− f0(xi))

2.

First, we establish bounds on the regularity of fθ(x) − f0(x). The condition that fθ is "opti-
mized" means (fθ(xi) − yi)

2 ≤ (f0(xi) − yi)
2 for all i. Summing over i and dividing by n,

we have 1
n

∑n
i=1(fθ(xi) − yi)

2 ≤ 1
n

∑n
i=1(f0(xi) − yi)

2 = 1
n

∑n
i=1 ε

2
i . Since εi ∼ N (0, σ2),

E[ 1n
∑n

i=1 ε
2
i ] = σ2. Standard concentration inequalities (e.g., for sums of χ2(1) scaled variables)

show that 1
n

∑n
i=1 ε

2
i ≲ σ2 with high probability (hiding logarithmic factors in 1/δ, which are

absorbed into ⪅d). Thus, 2L(θ) ≲ σ2. For θ ∈ Θflat(η;D), by Corollary 3.3 (with R = 1 for Bd
1,

so R+ 1 = 2), we have

|fθ|Vg
≤ 1

η
− 1

2
+ 2
√
2L(θ) ≤ 1

η
− 1

2
+ 2σ. (92)

Let C := 1
η −

1
2 +2σ. The theorem assumes |f0|Vg

≤ C. Thus, we have |f0|Vg
≲ C. The difference

fθ(x)− f0(x) then satisfies

|fθ − f0|Vg
≤ |fθ|Vg

+ |f0|Vg
≤ 2C. (93)

Also, ∥fθ − f0∥L∞(Bd
1)

≤ ∥fθ∥L∞(Bd
1)

+ ∥f0∥L∞(Bd
1)

≤ B +B = 2B.

The optimized condition (fθ(xi)− yi)
2 ≤ (f0(xi)− yi)

2 implies ((fθ(xi)− f0(xi))− εi)
2 ≤ ε2i .

Expanding this gives (fθ(xi)− f0(xi))
2 − 2(fθ(xi)− f0(xi)) εi + ε2i ≤ ε2i , which simplifies to

(fθ(xi)− f0(xi))
2 ≤ 2(fθ(xi)− f0(xi)) εi. (94)

This inequality is crucial and holds for each data point.

We decompose the MSE based on the location of data points. Let Ad
ε := {x ∈ Bd

1 : ∥x∥2 ≥ 1− ε}
be the annulus and Bd

1−ε be the inner core. Let SA := {i : xi ∈ Ad
ε} and SI := {i : xi ∈ Bd

1−ε}.
The total empirical MSE is

MSE(fθ, f0) =
1

n

∑
i∈SA

(fθ(xi)− f0(xi))
2 +

1

n

∑
i∈SI

(fθ(xi)− f0(xi))
2

≤ nA
n

(
1

nA

∑
i∈SA

(fθ(xi)− f0(xi))
2

)
+
nI
n

(
1

nI

∑
i∈SI

(fθ(xi)− f0(xi))
2

)

≤ nA
n

(
1

nA

∑
i∈SA

(fθ(xi)− f0(xi))
2

)
︸ ︷︷ ︸

MSES

+
1

nI

∑
i∈SI

(fθ(xi)− f0(xi))
2

︸ ︷︷ ︸
MSEI

(95)

The contribution from the shell, MSES , is bounded using the L∞ norm of fθ − f0 and the concentra-
tion of points in the shell. Let nA := |SA|. By Lemma F.7, nA/n ⪅ ε with high probability.

MSES ≤ nA
n

∥fθ − f0∥2L∞ ≤ nA
n

(2B)2 ⪅d B
2ε. (96)
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For the inner core’s contribution, MSEI , we use Equation (94):

MSEI =
1

n

∑
i∈SI

(fθ(xi)− f0(xi))
2 ≤ 2

n

∑
i∈SI

(fθ(xi)− f0(xi)) εi. (97)

Let nI := |SI |. The empirical process term is 2nI

n

(
1
nI

∑
i∈SI

(fθ(xi)− f0(xi)) εi

)
. The function

fθ − f0 restricted to Bd
1−ε has an unweighted variation norm. As shown in Appendix E, for x ∈

Uniform(Bd
1), the population weight function gP (u, t) ≍ (1− |t|)d+2. For activation hyperplanes

relevant to Bd
1−ε (i.e., |t| ≤ 1− ε), gP (u, t) ≳ εd+2. Thus, the unweighted variation of fθ − f0 on

Bd
1−ε is

|fθ − f0|V(Bd
1−ε)

≲ |fθ − f0|VgP
/εd+2 ≲ C/εd+2. (98)

We apply Lemma G.2 to bound 1
nI

∑
i∈SI

(fθ(xi)−f0(xi)) εi. The function h(x) = fθ(x)−f0(x)
has unweighted variation ≲ C/εd+2 and L∞ norm ≤ 2B. Therefore, we have that

MSEI ≲

(
C

εd+2

) 2d
2d+3

(
σ2

n

) d+3
2d+3

. (99)

Combining the bounds for MSES and MSEI :

MSE(fθ, f0) ≲ B2ε+ C
2d

2d+3 ε−(d+2) 2d
2d+3

(
σ2

n

) d+3
2d+3

. (100)

Similarly to the proof of Theorem 3.5 in Appendix F.5, we require that

1

inf |t|≤1−ε gP (u, t)
≍ εd+2 ⪆d

√
1

n
. (101)

to filling the gap between the empirical weighted function g and the population gP with high
probability, becase with high probability,

sup
u,t

|g(u, t)− gP (u, t)| ⪅d

√
1

n
(102)

where ⪅d hides constants (which could depend on d) and logarithmic factors, as stated by by Theorem
E.5 in Section E.2. Therefore, we may choose

ε ≍
(
C

2d
2d2+6d+3 · σ

2

n

) 1
2d+4

, (103)

and plug it into (100) to have

MSE(fθ, f0) ⪅d

(
1

η
− 1

2
+ 2σ

) d
(2d2+6d+3)(d+2)

(
B2

(
σ2

n

) 1
2d+4

+

(
σ2

n

) 3
2d+3

)
. (104)

Since 1
2d+4 <

3
2d+3 , we conclude that

MSE(fθ, f0) ⪅d

(
1

η
− 1

2
+ 2σ

) d
(2d2+6d+3)(d+2)

B2

(
σ2

n

) 1
2d+4

,

which completes the proof.

H Proof of Theorem 3.7: Minimax Lower Bound

H.1 The Multivariate Case

In this section, we assume that d > 1 and all the norms and semi-norms are restricted to the unit ball
Bd
1. Let u ∈ Sd−1 be a unit vector. Let ε ∈ R+ be a constant with ε ≤ 1/2. Consider the ReLU

atom:
φu,ε2(x) = ϕ(uTx− (1− ε2)). (105)
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Lemma H.1. The L2-norm of φu,ε2 over Bd
1 is given by

∥φu,ε2∥L2(Bd
1)

c8(d)≍
c7(d)

ε
d+5
2 , (106)

where c7(d) and c8(d) are constants depends on d (the conconcrete definition is (113)). Recall that
≍c8(d)

c7(d)
means

c7(d) ε
d+5
2 ≤ ∥φu,ε2∥L2(Bd

1)
≤ c8(d) ε

d+5
2 .

Proof. The squared L2 norm of φu,ε2 over the unit ball Bd
1 is defined as:

∥φu,ε2∥2L2(Bd
1)

=

∫
Bd
1

|φε2(x)|2 dx

Substituting the definition of φε2(w,x) and using the property of the ReLU function that ϕ(z) = z
for z > 0 and ϕ(z) = 0 for z ≤ 0, we get:

∥φu,ε2∥2L2(Bd
1)

=

∫
Bd
1

[ϕ(uTx− (1− ε2))]2 dx

=

∫
{x∈Bd

1 :uTx>1−ε2}
(uTx− (1− ε2))2 dx

(107)

To simplify the integral, we perform a rotation of the coordinate system such that w aligns with the
d-th standard basis vector ed = (0, . . . , 0, 1). In these new coordinates, uTx = Xd. The unit ball
remains the unit ball under rotation. The integral becomes:

I = ∥φu,ε2∥2L2(Bd
1)

=

∫
{X∈Bd

1 :Xd>1−ε2}
(Xd − (1− ε2))2 dX

We can write the volume element dX as dX ′ dXd, where X ′ ∈ Rd−1 represents the first d − 1

coordinates. The condition X ∈ Bd
1 translates to ∥X ′∥22 +X2

d ≤ 1. The integral can be written as an
iterated integral:

I =

∫ 1

1−ε2

(∫
∥X′∥2

2≤1−X2
d

(Xd − (1− ε2))2 dX ′

)
dXd

The inner integral is over a (d − 1)-dimensional ball in Rd−1 with radius R =
√
1−X2

d . The
integrand (Xd − (1− ε2))2 is constant with respect to X ′. Therefore, the inner integral evaluates to:

(Xd − (1− ε2))2 · Vold−1(R)

where Vold−1(R) is the volume of the (d− 1)-dimensional ball of radius R. This volume is given by
Vd−1R

d−1, with Vd−1 = π(d−1)/2

Γ( d+1
2 )

. So, the inner integral is (Xd − (1− ε2))2Vd−1(1−X2
d)

(d−1)/2,
and the outer integral becomes:

I = Vd−1

∫ 1

1−ε2
(Xd − (1− ε2))2(1−X2

d)
d−1
2 dXd (108)

Let Xd = 1− δ performing a change of variable. Then dXd = −dδ. The integration limits change

I = Vd−1

∫ 0

ε2
((1− δ)− (1− ε2))2(1− (1− δ)2)

d−1
2 (−dδ)

= Vd−1

∫ ε2

0

(ε2 − δ)2(1− (1− 2δ + δ2))
d−1
2 dδ

= Vd−1

∫ ε2

0

(ε2 − δ)2(2δ − δ2)
d−1
2 dδ

(109)

45



Since we assumed ε2 < 1
4 , for the integration range [0, ε2], we may write 2δ−δ2 = (2−δ)δ≍2

7/4 2δ.

(
7

4

) d−1
2

δ
d−1
2 ≤ (2δ − δ2)

d−1
2 ≤ 2

d−1
2 δ

d−1
2

The integral is approximated by:

Vd−1

(
7

4

) d−1
2
∫ ε2

0

(ε2 − δ)2δ
d−1
2 dδ ≤ I ≤ Vd−12

d−1
2

∫ ε2

0

(ε2 − δ)2δ
d−1
2 dδ (110)

Consider another change of variable: δ = ε2s. Then dδ = ε2 ds. The limits change∫ ε2

0

(ε2 − δ)2δ
d−1
2 dδ =

∫ 1

0

(ε2 − ε2s)2(ε2s)
d−1
2 (ε2 ds)

=

∫ 1

0

(ε2)2(1− s)2(ε2)(d−1)/2s
d−1
2 ε2 ds

= (ε2)2+
d−1
2 +1

∫ 1

0

(1− s)2s
d−1
2 ds

= εd+5

∫ 1

0

(1− s)2s
d−1
2 ds

=

(∫ 1

0

(1− s)2s
d−1
2 ds

)
︸ ︷︷ ︸

constant

εd+5

(111)

The L2 norm is the square root of I is given by

c7(d) ε
d+5
2 ≤

∥∥φu,ε2
∥∥
L2(Bd

1)
=

√
I ≤ c8(d) ε

d+5
2 (112)

where c7(d) and c8(d) are constants defined by

c7(d) =

√
Vd−1

(
7

4

) d−1
2
(∫ 1

0

(1− s)2s
d−1
2 ds

)

c8(d) =

√
Vd−12

d−1
2

(∫ 1

0

(1− s)2s
d−1
2 ds

) (113)

This completes the proof.

Lemma H.2. Let φu,ε2 be a ReLU atom defined in (105). Then

|φu,ε2 |Vg
= ε2d+4. (114)

Proof. We decode the definiton (see Example 3.1) and compute directly the weighted function
g(u, 1− ε2) = (ε2)d+2 = ε2d+4.

Let Sd−1 be the unit sphere in Rd. For 0 < ε < 1 and w ∈ Sd−1, define the spherical cap C(u, ε2)
as

C(u, ε2) = {x ∈ Sd−1 : uTx ≥ 1− ε2}. (115)

Lemma H.3. Let Nmax(ε, d) denote the maximum number of points u1, . . . ,uN ∈ Sd−1 such that
the caps C(ui, ε

2) are mutually disjoint. Then, as ε→ 0,

Nmax(ε, d) ≍ ε−(d−1)

where the implicit constants depend only on the dimension d.
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Proof. The spherical capC(u, ε2) has an angular radius ϑ = arccos(1−ε2), satisfying ϑ = Θ(ε) for
small ε. The condition that caps C(ui, ε

2) and C(uj , ε
2) are disjoint requires the angular separation

ϕij between their centers wi and wj to be at least 2ϑ. Thus, Nmax(ε, d) is the maximum size
M(Sd−1, 2ϑ) of a 2ϑ-separated set (packing number) on Sd−1.

The upper bound Nmax(ε, d) = O(ε−(d−1)) follows from a surface area argument: N disjoint caps
C(ui, ε

2), each with surface area Θ(ϑd−1) = Θ(εd−1), must fit within the total surface area of Sd−1.

For the lower bound, we relate the packing number M(Sd−1, α) to the covering number N(Sd−1, α),
the minimum number of caps of angular radius α needed to cover Sd−1. It is a standard result
that these quantities are closely related, for instance, M(Sd−1, α) ≥ N(Sd−1, α) can be shown
via a greedy packing argument [Vershynin, 2018, see discussions in Chapter 4]. Furthermore, the
asymptotic behavior of the covering number is known to be N(Sd−1, α) ≍ α−(d−1) for small α
[Vershynin, 2018, Corollary 4.2.14]. Setting the minimum separation α = 2ϑ = Θ(ε), we obtain the
lower bound:

Nmax(ε, d) =M(Sd−1, 2ϑ) ≥ N(Sd−1, 2ϑ) ≍ (2ϑ)−(d−1) = Ω(ε−(d−1)),

where the implicit constants depend only on the dimension d. Combining the upper and lower bounds,
we conclude that Nmax(ε, d) ≍ ε−(d−1).

Construction H.4. We construct a suitable packing set in F = {f ∈ Vg(Bd
1) : ∥f∥L∞ ≤ 1, |f |Vg ≤

1} based on a weighted ReLU atoms. Let φu,ε2 be the ReLU atom defined in (105), and according to
Lemma H.1 and Lemma H.2:

Φu,ε2 := ε−2 φu,ε2 =⇒


∥Φu,ε2∥L∞(Bd

1)
= 1,

∥Φu,ε2∥L2(Bd
1)

≍ ε
d+1
2 ,

|Φu,ε2 |Vg
= ε2d+2.

(116)

According to Lemma H.1, there exists N = cN (d)ε−d+1 spherical caps u1, · · · ,uN such that the
caps C(ui, ε

2) are mutually disjoint, for some constant cN (d) ≤ 1 that may depend on the dimension
d. For convenience, we simply denote Φi = Φui,ε2 . Therefore, we have |N Φi|Vg

= cN (d) εd+3 < 1

referring to (116). For each ξ = (ξ1, . . . , ξN ) ∈ {−1, 1}N , define

fξ(x) =

N∑
i=1

ξi Φi(x).

According to the conventions, each fξ belongs to F . Since the supports of the ridge functions are
disjoint, for any ξ, ξ′ ∈ {−1, 1}N we have

∥fξ − fξ′∥2L2(Bd
1)

=
∑
i∈S

∥2Φi∥2L2(Bd
1)

≍ ε
d+1
2 dH(ξ, ξ′),

where dH(ξ, ξ′) denotes the Hamming distance between ξ and ξ′, and S is the set of indices where
ξi ̸= ξ′i. By the Varshamov–Gilbert lemma, there exists a subset Ξ ⊂ {−1, 1}N with

log |Ξ| = K ≍ ε−d+1.

for some constant, and such that for any distinct ξ, ξ′ ∈ Ξ, the Hamming distance dH
dH(ξ, ξ′) ≳ K.

Thus, for any distinct ξ, ξ′ ∈ Ξ, we obtain

∥fξ − fξ′∥L2(Bd
1)

≳ ε
d+1
2

√
K ≍ ε

d+1
2 ε

−d+1
2 = ε.

Proposition H.5 (Minimax Lower Bound via Fano’s Lemma). Consider the problem of estimating a
function f ∈ F = {f ∈ Vg(Bd

1) : ∥f∥L∞ ≤ 1, |f |Vg
≤ 1} with

yi = f(xi) + εi, i = 1, . . . , n

where {εi}ni=1 are i.i.d. N (0, σ2) random variables and {xi}ni=1 ⊂ Bd
1 are i.i.d. uniform random

variables on Bd
1. The lower bound of the minimax non-parametric risk is given by

inf
f̂

sup
f∈F

E ∥f̂ − f∥2L2(Bd
1)

≳

(
σ2

n

) 2
d+1

.
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Proof. We use the standard Fano’s lemma argument. By our Construction (105), we have a packing
set {fξ : ξ ∈ Ξ} in F with the following properties:

1. The L2-distance between any two distinct functions is at least δ, where δ ≍ ε.

2. The size of the packing set satisfies log |Ξ| ≳ K ≍ ε−(d−1).

For Gaussian noise with variance σ2, the Kullback–Leibler divergence between the distributions
induced by two functions fξ and fξ′ is

KL(Pξ∥Pξ′) =
n

2σ2
∥fξ − fξ′∥2L2(Bd

1)
=
n δ2

2σ2
.

In order to use Fano’s lemma J.1 effectively, we need to satisfy the requirement (141), where in this
context is

n δ2

2σ2
≲ log |Θ|

for some small constant α > 0, then the minimax risk is bounded from below by a constant multiple
of δ2.

Substituting δ ≍ ε and log |Ξ| ≳ ε−(d−1), the condition becomes

n ε2

σ2
≲ ε−(d−1),

or equivalently,

n ≲
σ2

εd+1
.

Solving for ε, we have

εd+1 ≍ σ2

n
=⇒ ε ≍

(
σ2

n

) 1
d+1

. (117)

Then, the separation becomes

δ ≍ ε ≍
(
σ2

n

) 1
d+1

.

Therefore, Fano’s lemma J.1 (particularly (140)) yields

inf
f̂

sup
f∈F

E ∥f̂ − f∥2L2(Bd
1)

≳ δ2 ≍
(
σ2

n

) 2
d+1

,

which is the desired result.

Corollary H.6. Let {f ∈ Vg(Bd
1) : ∥f∥L∞ ≤ B, |f |Vg ≤ C}. Then

inf
f̂

sup
f∈F

E ∥f̂ − f∥2L2 ≳ min(B,C)2
(
σ2

n

) 2
d+1

.

Proof. We just need to replace fξ in Construction 105 by min(B,C)fξ and adapt it to the the proof
of Proposition H.5.

H.2 Why Classical Bump-Type Constructions Are Ineffective

The minimax lower bound construction in this paper crucially hinges on exploiting the properties
of the data-dependent weighted variation norm, denoted as | · |Vg , where the weight function is
g(u, t). A key characteristic of g(u, t) (when data is, for instance, uniform on the unit ball Bd

1)
is that g(u, t) ≍ (1 − |t|)d+2. This implies that g(u, t) becomes very small as |t| → 1, i.e., for
activations near the boundary of the domain. This property allows for the construction of functions
with significant magnitudes near the boundary using a relatively small variation norm. Therefore, any
effective construction for the lower bound must create functions that are highly localized near this
boundary.
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Figure 17: Isotropic Locality is Costly: An isotropic bump function, by definition, must be localized
(decay rapidly) in all directions around its center. Suppose we place such a bump centered at a
point x0 near the boundary in direction u0 (i.e., uT

0x0 ≈ 1 − ε2, here u0 = (1, 0)). To achieve
localization in directions orthogonal to u0, one would need to combine ReLU activations whose
ridges are oriented appropriately. More critically, to achieve localization in the direction parallel
to u0 (i.e., to ensure the bump decays as we move radially inward from x0), we would need ReLU
activations whose ridges {x : uT

0x = t} have t < 1 − ε2 and are potentially much closer to the
origin (i.e., t is significantly smaller than 1).

For these ReLU activations whose ridges are not very close to the boundary (i.e., t is not close to 1),
the weight function g(u0, t) will not be small. Consequently, constructing a sharply localized bump
isotropically would require a substantial sum of weighted coefficients in the Vg norm to cancel out
the function in regions away from its intended support while maintaining a significant peak. This
large variation norm would make such functions "too regular" or "too expensive" to serve as effective
elements in a packing set for Fano’s Lemma, especially when aiming to show a rate degradation due
to dimensionality.

In essence, isotropic bump functions do not efficiently leverage the anisotropic nature of the ReLU
activation and the specific properties of the g(u, t) weighting. The construction used in this paper,
which employs ReLU atoms active only on thin spherical caps near the boundary (an anisotropic
construction), is far more effective. It allows for localization and significant function magnitude
primarily by choosing the activation threshold t to be very close to 1 (making g(u, t) small), rather
than by intricate cancellations of many neurons with large weighted coefficients. This is why such
anisotropic, boundary-localized constructions are essential for revealing the curse of dimensionality
in this setting.

H.3 The Univariate Case

The minimax lower bound construction detailed above, which leverages a packing argument with
boundary-localized ReLU neurons exploiting the multiplicity of available directions on Sd−1, is
particularly effective in establishing the curse of dimensionality for d > 1. However, the geometric
foundation of this approach, specifically the ability to pack an exponential number of disjoint spherical
caps, does not directly translate to the univariate case (d = 1) where the notion of distinct directional
activation regions fundamentally changes. Consequently, the lower bound for d = 1 necessitates a
separate construction or modification of the argument. Fortunately, in the one-dimensional setting,
the distinction between isotropic and anisotropic function characteristics, which posed challenges for
classical approaches in higher dimensions under the specific data-dependent weighted norm, becomes
moot. This simplification allows us to directly employ classical bump function constructions, suitably
adapted to the function class, to establish the minimax rates in one dimension.

According to Theorem 3.4, we have

|f |Vg
= ∥g · R(−∆)

d+1
2 f∥M (118)
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When d = 1 and f is smooth, (118) is simplified to be

|f |Vg
= ∥f ′′ · g∥M =

∫ 1

−1

|f ′′(x)|g(x) dx =

∫ 1

−1

|f ′′(x)|(1− |x|)3 dx (119)

and so is the unweighted variation seminorm

|f |V = ∥f ′′∥M =

∫ 1

−1

|f ′′(x)|dx =: TV2(f) (120)

which is also known as the second-order total variation seminorm. Therefore, the function class of
stable minima in univariate case is characterized into

FB,C :=
{
f : [−1, 1] → R

∣∣ ∥f∥L∞ ≤ B, ∥f ′′ · (1− | · |)3∥M ≤ C
}
. (121)

Using this characterization, it is more convenient to smooth bump functions to construct a minimax
risk lower bound for stable minima class.
Construction H.7. Consider a smooth compact support function:

Φ(x) =

{
c exp(− 1

1−x2 ) |x| < 1

0 otherwise
. (122)

By adjusting the constant c, we may assume

TV2(Φ) :=

∫ 1

−1

|Φ′′(t)|dt = 1 (123)

and let D be a constant such that ∥Φ(x)∥L2 =
√
2D. We can construct a translated and scaled

version:

Φa,b(x) = Φ

(
2x− (a+ b)

b− a

)
for a < b. (124)

and in particular, Φa,b has the following properties by directly computations:
supp(Φa,b) = (a, b),

TV2(Φa,b) = 1
b−a ,

∥Φa,b∥L2([−1,1]) =
√
b− aD.

(125)

Proposition H.8. Consider the problem of estimating a function f ∈ F1,1 with

yi = f(xi) + εi, i = 1, . . . , n

where {εi}ni=1 are i.i.d. N (0, σ2) random variables and {xi}Ni=1 ⊂ [−1, 1] are i.i.d. uniform random
variables on [−1, 1]. The lower bound of the minimax non-parametric risk is given by

inf
f̂

sup
f∈F1,1

E ∥f − f̂∥2L2([−1,1]) ≳

(
σ2

n

) 1
2

Proof. For any ε > 0, we may construct a family. Let ak = 1− ε+ kε2, k = 0, ..., ⌊ 1
ε⌋. We denote

K = ⌊ 1
ε⌋. For each k = 1, ...,K, we define Φk := Φak−1,ak

Since ak − ak−1 = ε2, we have the
following properties

• ∥Φk∥L2 = D · ε;

• TV2(Φk) ≍ 1
ε2 =⇒

∫ 1

−1
|f ′′(t)|g(t) dx ≲ ε because g(t) < ε3, ∀t ∈ [ak−1, ak].

Let {Φ1, ...,ΦK}, K ≍ ⌊ 1
ε⌋ be such a family of function classes, and any K-terms combination

{Φ1, ...,ΦK} is in F1,1. Then we let

ϕ : {±1}K → F1,1, ξ = (ak)
K
k=1 7→

K∑
k=1

akΦk =: fξ. (126)
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For any two indexes ξ1, ξ2 in {±1}K , we have that

∥fξ1 − fξ2∥L2 = ε
√
dH(ξ1, ξ2). (127)

where dH is the Hamming distance. Then, using Varshamov-Gilbert’s lemma (Lemma J.2), the
pruned cube of {f1, ..., fM} has a size M ≥ 2K/8, and each has the property that if i ̸= j,

∥fi − fj∥L2([−1,1]) ≥ D ·
√
K

8
· ε ≍

√
ε,

and thus for any i ̸= j

KL(Pfi∥Pfj ) =
nε

2σ2

On the other hand, to satisfy the Fano inequality (141):

nε

2σ2
= KL(Pfi∥Pfj ) ≲ logM ≍ 1

ε

we let

ε ≍
(
σ2

n

) 1
2

.

and thus Fano’s lemma (Lemma J.1, particularly (140)) implies that

inf
f̂

sup
f∈F1,1

E ∥f − f̂∥2L2([−1,1]) ≳

(
σ2

n

) 1
2

.

Note that by rescale the functions in the lower bound construction, we can deduce a more general
result.
Corollary H.9. For general case FB,C , we can scale the construction functions by min(B,C) to
deduce the result:

inf
f̂

sup
f∈FB,C

E ∥f − f̂∥2L2([−1,1]) ≳ min(B,C)2
(
σ2

n

) 1
2

(128)

I Lower Bound on Generalization Gap

In this section, we derive a lower bound for the generalization gap.

I.1 The Lower Bound Construction Can be Realized by Stable Minima

Recall the notations in Construction H.4, for ε ∈ (0, 1) and a unit vector u ∈ Sd−1, define the (ball)
cap

C(u, ε) := {x ∈ Bd
1 : uTx ≥ 1− ε}.

Fix a dimension d ≥ 2 and a fixed cap C = C(u, ε2), the mass under Uniform(Bd
1) satisfies the

two–sided bound

2

d+ 1

vd−1

vd︸ ︷︷ ︸
Lcap

d

ε d+1 ≤ PX∼Uniform(Bd
1)
(X ∈ C) ≤ 2

d+1
2

d+ 1

vd−1

vd︸ ︷︷ ︸
Ucap

d

ε d+1. (129)

where writing vk := Vol(Bbk1).

Indeed, writing h = ε2 and parameterizing x = t u+
√
1− t2 z with t ∈ [1− h, 1] and z ∈ Sd−2,

we have

Vol(C) = vd−1

∫ 1

1−h

(1− t2)
d−1
2 dt = vd−1

∫ h

0

(
s(2− s)

) d−1
2 ds,
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where s = 1− t. Using 1 ≤ 2− s ≤ 2 on [0, h] yields

vd−1

∫ h

0

s
d−1
2 ds ≤ Vol(C) ≤ vd−1 2

d−1
2

∫ h

0

s
d−1
2 ds =

2

d+ 1
vd−1 h

d+1
2 ≤ 2

d+1
2

d+ 1
vd−1 h

d+1
2 .

Dividing by vd = Vol(Bd
1) and recalling h = ε2 gives the stated probability bounds.

Proposition I.1 (Many caps does not have a sample point w.h.p. via Poissonization). Fix d ≥ 2
and ε = κn−1/(d+1) with a constant κ ∈ (0, 1]. Let {C(uj , ε

2)}mj=1 be any family of pairwise-

disjoint caps as in (129), and draw X1, . . . ,Xn
i.i.d.∼ Uniform(Bd

1). For each j, write Zj := #{i ≤
n : Xi ∈ C(uj , ε

2)} and pj := P(X ∈ C(uj , ε
2)). Then there exist absolute constants c∗, C∗ > 0

(depending only on d and κ) such that, for any δ ∈ (0, 1),

P
(
#{1 ≤ j ≤ m : Zj = 0} ≥

(
q∗ − δ

)
m
)

≥ 1− exp(−c∗ δ2m) − C∗mε2(d+1),

where q∗ = e−λ+ and λ+ = U cap
d κd+1 is a constant independent of n. In particular, with probability

at least 1− exp(−cm) (for some c > 0), there exists a subset Γ ⊂ {1, . . . ,m} with |Γ| ≥ c0m such
that Zj ≤ 1 for every j ∈ Γ, where c0 ∈ (0, q∗) depends only on d, κ.

Proof. Introduce a Poisson variable N ∼ Poi(n) independent of the data. Conditionally on N , draw
X1, . . . ,XN

i.i.d.∼ Uniform(Bd
1). Let Z̃j := #{i ≤ N : Xi ∈ C(uj , ε

2)}. By standard Poisson
thinning, Z̃1, . . . , Z̃m are independent with Z̃j ∼ Poi(λj) and

λj = E[Z̃j ] = n pj , nLcap
d εd+1 ≤ λj ≤ nU cap

d εd+1.

At the critical scaling ε = κn−1/(d+1), we thus have constants

Lcap
d κd+1︸ ︷︷ ︸

λ−

≤ λj ≤ U cap
d κd+1︸ ︷︷ ︸

λ+

.

For each j, set Aj := 1{Z̃j = 0}. Then A1, . . . , Am are independent Bernoulli random variables
with

E[Aj ] = P(Poi(λj) = 0) = e−λj ≥ e−λ+︸ ︷︷ ︸
q∗

.

Therefore, by Hoeffding’s inequality for independent bounded variables,

P

 1

m

m∑
j=1

Aj < q∗ − δ

 ≤ exp(−2δ2m) for all δ ∈ (0, 1).

Equivalently,
P
(
#{j : Z̃j = 0} ≥ (q∗ − δ)m

)
≥ 1− exp(−2δ2m).

To proceed de-Poissonization, we compare (Z1, . . . , Zm) under the fixed-n model (a multinomial
random variable) to the corresponding joint Poisson variable (Z̃1, . . . , Z̃m). By Le Cam’s inequality
for Poisson approximation, the total variation distance between the joint law of the Bernoulli multi-
variables (Z1, . . . , Zm) and that of independent Poi(λj) variables is bounded by

sup
E

∣∣∣Pmulti

(
(Z1, . . . , Zm) ∈ E

)
− PPoi

(
(Z̃1, . . . , Z̃m) ∈ E

)∣∣∣ ≤ m∑
j=1

p2j ≤ m (U cap
d εd+1)2.

(130)

Applying this to the event E = {#{j : Zj = 0} ≥ (q∗ − δ)m} and combining with (130) yields

P
(
#{j : Zj = 0} ≥ (q∗ − δ)m

)
≥ 1− exp(−2δ2m) − (U cap

d )2mε2(d+1).

Setting c∗ := 2 and C∗ := (U cap
d )2 gives the stated bound. In particular, choosing any fixed

δ ∈ (0, q∗) and defining c0 = q∗ − δ ∈ (0, q∗) proves that with probability at least 1− exp(−cm)−
C∗mε

2(d+1) there exists Γ ⊂ {1, . . . ,m}, |Γ| ≥ c0m, such that Zj ≤ 1 for all j ∈ Γ.
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Proposition I.1 ensures that, at the critical scaling ε ≍ n−1/(d+1), there exists (with overwhelmingly
high probability) a large subcollection of caps, each containing no sample.

We now show that if a neural network does not have any activated datapoint, the operator norm of its
Hessian is constantly 1.

Proposition I.2. Let fθ(x) =
∑K

k=1 vkϕ(w
T
kx − bk) + β be network defined in (1). Let D =

{(xi, yi)}ni=1 be a data set such that each neuron of fθ contains no activated datapoint, i.e for each
k,
∑n

i=1 1{wT
kxi − bk} = 0, and fθ interpolates D in the sense that fθ(xi) = yi = 0 for each i.

Then λmax

(
∇2

θL
)
= 1.

Proof. By direct computation, the Hessian ∇2
θL is given by

∇2
θL =

1

n

n∑
i=1

∇θfθ(xi)∇θfθ(xi)
T +

1

n

n∑
i=1

(fθ(xi)− yi)∇2
θfθ(xi). (131)

Since the model interpolates fθ(xi) = yi for all i, we have

∇2
θL =

1

n

n∑
i=1

∇θfθ(xi)∇θfθ(xi)
T. (132)

Consider the tangent features matrix that is defined by

Φ = [∇θfθ(x1),∇θfθ(x2), · · · ,∇θfθ(xn)] . (133)

Then we have ∇2
θL = ΦΦT/n, and the operator norm is computed by

λmax(∇2
θL) = max

γ∈S(d+2)K

1

n
∥ΦTγ∥2 = max

u∈Sn−1

1

n
∥Φu∥2 (134)

Furthermore, we have

∇θfθ(x) =

∇W (fθ)
∇b(fθ)
∇v(fθ)
∇β(fθ)

 (135)

For the parameters [wk, bk, vk] associated to the neuron of index k,

∂fθ(x)

∂vk
= 1{wT

kx > bk}
(
wT

kx− bk
)
,

∂fθ(x)

∂wk
= 1{wT

kx > bk} vk x,

∂fθ(x)

∂bk
= 1{wT

kx > bk} vk,
∂fθ(x)

∂β
= 1.

Since there is no data point activating, we have that

∇(wk,bk,vk,β)fθ(xk) =

(
0

1

)
, (136)

After subsistion by (136), (134) is of the form

Φ =


0 0 · · · 0
...

... · · ·
...

0 0 · · · 0

1 1 · · · 1

 . (137)

Let u = (u1, · · · , un) ∈ Sn−1 and plug (137) in (134) to have

λmax(∇2
θL) = max

u∈Sn−1

1

n
∥Φu∥2 = max

u∈Sn−1

(
∑n

i=1 ui)
2

n
= 1.
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We now establish that such a specially constructed interpolation solution is indeed stable. As shown
in the proof, for an interpolation solution where none of the hidden neurons are active on the training
data, the Hessian of the loss has an operator norm of exactly 1, i.e., λmax(∇2L(θ)) = 1. The primary
contribution to this norm comes from the gradient of the output layer bias. According to the stability
condition defined in Proposition 2.1 (λmax ≤ 2/η), this solution is guaranteed to be in Θflat(η;D) so
long as the step size satisfies η ≤ 2. Since we assume that η < 2 in this paper (cf. Proposition 2.1
and the discussion below it), we have that this interpolating solution is indeed stable.

For brevity, we write Fflat(η;D) := {fθ | θ ∈ Θflat(η;D)} in the sequel.

Corollary I.3 (Stronger Version of Minimax Lower Bound). Consider the problem of estimating a
function f ∈ F = {f | f ∈ Fflat(η;D), ∥f∥L∞(Bd

1)
≤ L} with

yi = f(xi)

where {xi}ni=1 ⊂ Bd
1 are i.i.d. uniform random variables on Bd

1. The lower bound of the minimax
nonparametric risk is given by

inf
f̂

sup
f∈F

E
D∼P⊗n

∥f̂(D)− f∥2L2(Bd
1)

≳d L
2

(
1

n

) 2
d+1

.

where f̂ refers to a estimator and f̂(D) means the estimation based on the data set D.

Proof. The core of the proof is to construct two functions, f1 and f2, which belong to the function
class F but are far apart in L2 norm. We will show that for a typical random data set {xi}ni=1, any
estimator f̂(D) cannot distinguish between them, as they produce identical observations on D. This
implies a lower bound on the minimax risk.

We set the critical scaling for our construction to be:

ε = n−1/(d+1). (138)

Following the geometric packing argument from Lemma H.3, we can find a set of N ≍ ε−(d−1)

pairwise-disjoint spherical caps {Cj}Nj=1, where each cap Cj = C(uj , ε
2) is defined by a unique

direction uj ∈ Sd−1.

Let {xi}ni=1 be the randomly drawn data set’s inputs. Let E be the event that there exists a subset of
indices Γ ⊂ {1, . . . , N} such that:

(i) |Γ| ≥ c0N for some constant c0 > 0.

(ii) For every j ∈ Γ, the cap Cj is empty, i.e., Cj ∩ {xi}ni=1 = ∅.

According to Proposition I.1, this event E occurs with high probability, i.e., P(E) ≥ 1− exp(−c1N)
for some constant c1 > 0. From now on, we condition our entire analysis on this high-probability
event E occurring.

Conditioned on the event E , we now define two functions. Let j ∈ Γ be an index corresponding to
one of the empty caps, Cj .

1. Let the first function be the zero function:

f1(x) = 0.

Clearly, f1 ∈ Fflat(η;D) and ∥f1∥L∞ = 0 ≤ 1.

2. Let the second function be a combination appropriately scaled ReLU atoms supported on
the empty cap Cj :

f2(x) = L
∑
j∈Γ

ε−2ϕ(uT
j x− (1− ε2)).
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On the event E , both functions produce the exact same observations. For any xi:

yi,1 = f1(xi) = 0 and yi,2 = f2(xi) = 0.

Therefore, the data set generated by both functions is identical: D = {(x1, 0), . . . , (xn, 0)}.

Since the data set D is fixed by the condition E and the cap Cj is empty for j ∈ Γ, the neuron
implementing fΓ is never active on any data point xi ∈ {xi}ni=1. This implies f2(xi) = 0 for all xi.
The corresponding labels are yi = 0. Therefore, f2 perfectly interpolates the data (xi, 0). According
to Proposition I.2, any such network that interpolates the data and has no active neurons on the data
set has λmax(∇2L(θ2)) = 1, where θ2 is the parameter vector that implements f2. Since η < 2, this
solution is stable. Thus, f2 ∈ Fflat(η;D). Moreover, ∥f2∥L∞ = L , since the spherical caps {Cj}
are disjoint, at any point x at most one of the scaled ReLU atoms is non-zero. In summary, both f1
and f2 are valid functions in the class F .

An estimator f̂ takes as input the data set D, which is identical for both potential ground-truth
functions f1 and f2, and produces an estimate function, which we denote by f̂(D). The performance
of this estimator is measured by its population risk. The estimator’s objective is to minimize this risk
under a worst-case choice of the ground truth from the set {f1, f2}.

For a given estimate f̂(D), the worst-case risk over this set is

Risk(f̂(D)) = max

{∥∥∥f̂(D)− f1

∥∥∥2
L2(Bd

1)
,
∥∥∥f̂(D)− f2

∥∥∥2
L2(Bd

1)

}
,

The minimax risk for this problem is the minimal possible worst-case risk achievable by any estimator.
It is lower-bounded by considering the optimal decision rule conditioned on the event E :

inf
f̂

sup
f∈{f1,f2}

ED

[∥∥∥f̂(D)− f
∥∥∥2
L2(Bd

1)

]
≥ inf

f̂
Risk(f̂(D)) · P(E).

The function f̂(D)∗ that minimizes max

{∥∥∥f̂(D)− f1

∥∥∥2
L2(Bd

1)
,
∥∥∥f̂(D)− f2

∥∥∥2
L2(Bd

1)

}
is the average

of f1 and f2 in the Hilbert space L2(Bd
1). This optimal estimate is f̂(D)∗ = (f1 + f2)/2. The

minimal possible worst-case risk is thus achieved at this midpoint:

inf
f̂(D)∈F

Risk(f̂(D)) =
∥∥∥f̂(D)∗ − f1

∥∥∥2
L2(Bd

1)
=

∥∥∥∥f1 + f2
2

− f1

∥∥∥∥2
L2(Bd

1)

=

∥∥∥∥f2 − f1
2

∥∥∥∥2
L2(Bd

1)

.

According to the computation in Construction H.4, we may conclude that

∥f2 − f1∥2L2(Bd
1)

=

∥∥∥∥∥∥L
∑
j∈Γ

ε−2ϕ(uT
j x− (1− ε2))

∥∥∥∥∥∥
2

L2(Bd
1)

≍ L2ε2 ≍ L2

(
1

n

) 2
d+1

This completes the proof.

Theorem I.4. Let P denote any joint distribution of (x, y) where the marginal distribution of x is
Uniform(Bd

1) and y satisfies the PP [−D ≤ y ≤ D] = 1.

Let D = {(xj , yj)}nj=1 be a data set of n i.i.d. samples from P , and that R̃ is any risk estimator
that takes any f and D as input, then outputs a scalar that aims at estimating the risk RP(f) :=
E(x,y)∼P

[
(f(x)− y)2)

]
. Moreover, let F be the function class we defined in Corollary I.3.

Then

inf
R̃

sup
P

E

 sup
f∈Fflat(η;D)
∥f∥

L∞(Bd1)
≤L

∣∣∣RP(f)− R̃(f ;D)
∣∣∣
 ≳d L

2n−
2

d+1 . (139)

where we assume that L ≥ D.
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Proof. Let the E[·] be the short-hand for the expectation over the random training data set D.

inf
R̃

sup
P

E

[
sup

f∈Fflat(η;D)

∣∣∣RP(f)− R̃(f ;D)
∣∣∣]

≥ inf
R̃

sup
P=Unif(Bd

1)×f0
f0∈Fflat(η;D)

E

[
sup

f∈Fflat(η;D)

∣∣∣RP(f)− R̃(f ;D)
∣∣∣]

≥ inf
R̃

sup
P=Unif(Bd

1)×f0
f0∈Fflat(η;D)

1

2
E
[
RP(f̂ERM(R̃(·,D)))−RP(f0)

]

≥ inf
f̂

sup
P=Unif(Bd

1)×f0
f0∈Fflat(η;D)

1

2
E
[
RP(f̂(D))−RP(f0)

]

=
1

2
inf
f̂

sup
P=Unif(Bd

1)×f0
f0∈Fflat(η;D)

E
[
∥f̂(D)− f0∥2L2(Bd

1)

]
(Corollary I.3) −→ ≳d L

2n−
2

d+1 .

The first inequality restricts P further to deterministic labels with labeling functions in F . Check
that any function in F is bounded between [−M,M ]. The second inequality uses the fact that
f0 ∈ Fflat(η;D), and the following decomposition

RP(f̂ERM(R̃))−RP(f0)

= RP(f̂ERM(R̃))− R̃(f̂ERM;D) + R̃(f̂ERM;D)− R̃(f0;D) + R̃(f0;D)−RP(f0)

≤
∣∣∣RP(f̂ERM(R̃))− R̃(f̂ERM;D)

∣∣∣+ ∣∣∣R̃(f0;D)−RP(f0)
∣∣∣

≤ 2 sup
f∈Fflat(η;D)

∣∣∣RP(f)− R̃(f ;D)
∣∣∣ ,

where we used R̃(f̂ERM;D)− R̃(f0;D) ≤ 0 from the definition of f̂ERM

f̂ERM(R̃(·,D)) := argmin
f∈Fflat(η;D)

R̃(f ;D).

The third inequality enlarges the set of ERM estimators to any function of the data f̂ that output. The
subsequent identity uses the fact that RP(f0) = 0.

This completes the proof for the lower bound on generalization gap stated in Theorem 3.5.

J Technical Lemmas

J.1 Information-Theoretic tools

Fano’s Lemma provides a powerful method for establishing such minimax lower bounds by relating
the estimation problem to a hypothesis testing problem. It leverages information-theoretic concepts,
particularly the Kullback-Leibler (KL) divergence.
Lemma J.1 (Fano’s Lemma (Statistical Estimation Context)). Consider a finite set of functions
(or parameters) {f1, f2, . . . , fM} ⊂ F , with N ≥ 2. Let Pfj denote the probability distribution
of the observed data D when the true underlying function is fj . Suppose that for any estimator f̂ ,
the loss function L(fj , f̂) satisfies L(fj , f̂) ≥ s2/2 > 0 if f̂ is not close to fj (e.g., if we make
a wrong decision in a multi-hypothesis test where closeness is defined by a metric d(fj , fk) ≥ s).
More specifically, for function estimation with squared L2-norm loss, if we have a packing set
{f1, . . . , fM} ⊂ F such that ∥fj − fk∥2L2 ≥ s2 for all j ̸= k, then the minimax risk is bounded as:

inf
f̂

sup
f∈F

E∥f̂ − f∥2L2 ≥ s2

4

(
1−

maxj ̸=k KL(Pfj∥Pfk) + log 2

logM

)
, (140)
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provided the term in the parenthesis is positive. KL(Pfj∥Pfk) denotes the Kullback-Leibler diver-
gence between the distributions Pfj and Pfk . For this bound to be non-trivial (e.g., ≳ s2), we
typically require that the number of well-separated functions M is large enough such that

log
M

2
> max

j ̸=k
KL(Pfj∥Pfk). (141)

One can refer to Wasserman [2020, Theorem 12, Corollary 13] or Tsybakov [2009, Chapter 2] for
more details.

Our application of Fano’s Lemma (for proving Proposition H.5) involves:

1. Constructing a suitable finite subset of functions {f1, . . . , fM} within the class F such that
they are well-separated in the metric defined by the loss function (e.g., pairwise L2-distance
s). This is often achieved using techniques like the Varshamov-Gilbert lemma (Lemma J.2) for
constructing packings.

2. Bounding the KL divergence (or another information measure like χ2-divergence) between the
probability distributions generated by pairs of these functions. For n i.i.d. observations with
additive Gaussian noise N (0, σ2), and if using the empirical L2 norm ∥ · ∥L2(Pn) based on fixed
data points xi, this divergence is often related to 1

2σ2

∑n
i=1(fj(xi)− fk(xi))

2. More generally,

for population norms, it’s often
n∥fj−fk∥2

L2

2σ2 .
3. Choosing M and s (or the parameters defining the packing) to maximize the lower bound,

typically by ensuring that the KL divergence term does not dominate logM .
Lemma J.2 (Varshamov–Gilbert Lemma). Let

Ξ =
{
ξ = (ξ1, . . . , ξN ) : ξj ∈ {0, 1}

}
.

Suppose N ≥ 8. Then there exist
ξ0, ξ1, . . . , ξM ∈ Ξ

such that

1. ξ0 = (0, . . . , 0),

2. M ≥ 2N/8,

3. for all 0 ≤ j < k ≤M , the Hamming distance satisfies

dH(ξj , ξk) ≥ N

8
.

We call {ξ0, ξ1, . . . , ξM} a pruned hypercube.

One can refer to Tsybakov [2009, Lemma 2.9] and Wasserman [2020, Lemma 15] for more details.

J.2 Poissonization and Le Cam’s Inequality

For a random variable S on a probability space (Ω,F ,P) with values in a measurable space (E, E),
the law is L(S) := P ◦ S−1. For two laws µ, ν on the same space, define the total variation distance

dTV(µ, ν) := sup
A∈E

|µ(A)− ν(A)|.

When E is countable, dTV(µ, ν) =
1
2

∑
x∈E |µ({x})− ν({x})|.

Lemma J.3 (Poissonization [Barbour et al., 1992, Ch. 1]). Let N ∼ Poi(λ) and, conditional on N ,
let W1, . . . ,WN be i.i.d. taking values in {0, 1, . . . ,m} with P{W = j} = pj for j = 0, 1, . . . ,m,
where p0 := 1 −

∑m
j=1 pj ≥ 0. Define Z̃j := #{1 ≤ i ≤ N : Wi = j} for j = 1, . . . ,m. Then

Z̃1, . . . , Z̃m are independent and Z̃j ∼ Poi(λpj).
Remark J.4. This standard Poissonization trick replaces the fixed sample size n by a Poisson random
size N ∼ Poi(n), making the cell counts independent. See Barbour, Holst and Janson [Barbour et al.,
1992, Ch. 1] for a general treatment and applications in occupancy problems.
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Lemma J.5 (Le Cam’s inequality for Poisson approximation [Cam, 1960, Arratia et al., 1989, Barbour
et al., 1992]). Let (Z1, . . . , Zm) ∼ Mult(n; p1, . . . , pm, p0) with p0 = 1−

∑m
j=1 pj . Let Y1, . . . , Ym

be independent with Yj ∼ Poi(npj). Then there exists a universal constant C > 0 such that

dTV

(
L(Z1, . . . , Zm), L(Y1)⊗ · · · ⊗ L(Ym)

)
≤ C

m∑
j=1

p2j .

Remark J.6. Lemma J.5 is a classical result of Le Cam [Cam, 1960], with modern proofs and
refinements given by [Arratia et al., 1989] and by [Barbour et al., 1992, Sec. 1.3]. It provides a
quantitative control of the total variation distance between the multinomial occupancy vector and the
independent Poisson approximation. We use this bound to justify the de-Poissonization step in the
proof of Proposition I.1.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims in the abstract and introduction accurately reflect the paper’s
contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to the last paragraph in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The assumptions are clearly stated in the theorems while the proof is stated in
the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The details can be found in Section 5 and Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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• The answer NA means that the paper does not include experiments.
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that is necessary to appreciate the results and make sense of them.
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material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
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Answer: [Yes]

Justification: We sweep the random seeds for the initializations of neural networks and take
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Guidelines:
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All the experiments can run on Mac Air M1.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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Justification: The research conducted in the paper conform, in every respect, with the Neuips
Code of Ethics.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This is a paper about theory of neural network, where we believe there is no
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• The answer NA means that there is no societal impact of the work performed.
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(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
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Justification: The paper does have have such risks.
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• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [No]
Justification: This paper does not involve this.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines: The paper does not involve crowdsourcing nor research with human subjects.

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development of this paper comes from human brains.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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