
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ENHANCING MULTILINGUAL REASONING IN LLMS:
INSIGHTS FROM CROSS-LINGUISTIC CORRELATIONS
AND OPTIMAL DATA PROPORTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) typically rely on fine-tuning to enhance their rea-
soning capabilities across various languages. However, limited research has been
conducted on the optimal balance of language proportions within multilingual rea-
soning datasets. To fill this gap, we performed a systematic study to examine how
different proportions of language data in multilingual reasoning datasets influ-
ence fine-tuning performance. Our study revealed a clear relationship between
language proportions in datasets and the fine-tuning performance of LLMs. By
fine-tuning multiple LLMs using the appropriate language distributions and data
volumes identified in our study, we achieved state-of-the-art performance in both
multilingual mathematical reasoning and solving mathematical problems using
Python code. Furthermore, our approach significantly reduced data volume re-
quirements and translation costs compared to existing methods, providing a valu-
able reference for future research.

1 INTRODUCTION

Despite recent significant advancements in LLMs (OpenAI, 2023; Chowdhery et al., 2023; Tou-
vron et al., 2023; Brown et al., 2020; Workshop et al., 2023), LLMs still encounter considerable
challenges in reasoning tasks for non-English languages, particularly low-resource languages (Shi
et al., 2022b; Huang et al., 2023b; Qin et al., 2023b). A common scenario is that during the post-
training process of LLMs, it is necessary to simultaneously enhance their reasoning capabilities
across multiple languages (Zhu et al., 2024a). A critical research question thus emerges: how can
LLMs, predominantly trained on high-resource languages like English, effectively generalize their
reasoning capabilities to low-resource languages that suffer from insufficient training data? Ad-
dressing this question is essential for developing more inclusive and globally applicable AI systems.

Fine-tuning has been the commonly adopted solution to this issue. Prior studies have primarily
focused on fine-tuning models using translated mathematical reasoning datasets across multiple lan-
guages Yoon et al. (2024). For instance, one approach enhanced LLMs’ multilingual reasoning ca-
pabilities using translated datasets (Chen et al., 2023), while another improved model performance
through question alignment (Zhu et al., 2024b;a). While these methods have improved multilingual
reasoning performance, they still exhibit significant limitations. First, previous work often involved
translating English datasets into multiple languages in equal proportions for fine-tuning. This ap-
proach is costly, overlooks the impact of language proportions in the fine-tuning datasets Zhu et al.
(2024b). Second, in scenarios requiring extensive multilingual data, it is impractical to translate
English data into multiple languages in equal amounts Hendrickson et al. (2013). Thus, the key is
to efficiently leverage a small amount of low-resource language data to broadly enhance the multi-
lingual reasoning capabilities of LLMs.

Moreover, earlier studies mainly focused on a limited number of languages and rarely tested gen-
eralization capabilities across more than 20 languages Zhang et al. (2024b); Zhu et al. (2024b);
Yoon et al. (2024). Additionally, most prior research was conducted on only a few LLMs, and it
remains unclear whether these approaches generalize well to other, more advanced models Zhang
et al. (2024a); Zhu et al. (2024b); Yoon et al. (2024).
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Figure 1: Two charts represent the proportion
of data for different languages in the multilin-
gual mathematical reasoning dataset. In previ-
ous methods, the amount of data for each lan-
guage was the same (as shown in the left chart).
Through our research, we determined the opti-
mal proportion for each language (as shown in the
right chart).

Figure 2: Following Toshniwal et al.
(2024)’s study, we use this data format
to teach model to solve mathematical
reasoning task with executable code.

In this paper, we address these challenges through a systematic investigation of how varying lan-
guage proportions in multilingual mathematical reasoning datasets affect fine-tuning outcomes, and
determine the optimal amount of data needed for fine-tuning, as illustrated in Figure 1.Directly
exploring the optimal ratio among tens of languages is extremely challenging, as it requires deter-
mining the optimal proportions among tens of variables, which results in an extremely large search
space. So we adopted an innovative approach to effectively reduce the search space and determined
the appropriate ratio for the 10 languages commonly used in previous works (Zhu et al., 2024b;a),
which was further extended to 25 languages. Additionally, we explored the impact of data volume
on the fine-tuning performance of LLMs. Ultimately, building on previous research, we created the
largest multilingual mathematical reasoning dataset, HighMath-350k, alongside a multilingual code
reasoning dataset(Figure 2), HighCode-350k. Fine-tuning multiple LLMs on these datasets resulted
in state-of-the-art performance, clearly demonstrating the efficacy of our approach.

In summary, our key contributions are as follows:

• Through more than 600 groups of experiments, we analyzed and modeled how the pro-
portions of different languages in multilingual reasoning datasets affect fine-tuning perfor-
mance, and determined the appropriate volume of fine-tuning data.

• We constructed multilingual chain-of-thought mathematical reasoning dataset, HighMath-
350k, as well as the multilingual code reasoning dataset, HighCode-350k.

• Based on multiple LLMs, we trained state-of-the-art multilingual chain-of-thought reason-
ing models and code reasoning models.

2 RELATED WORK

2.1 MULTILINGUAL MATHEMATICAL REASONING

Mathematical reasoning is a core task for assessing the intelligence of LLMs (Zhang et al., 2024b;a),
requiring them to understand mathematical problems and generate answers through step-by-step
reasoning (Ahn et al., 2024; Zhang et al., 2022; Liu et al., 2023). (Shi et al., 2022b) expanded
this evaluation to a multilingual setting by translating English math questions from the GSM8K test
set (Cobbe et al., 2021) into various non-English languages, introducing the multilingual benchmark
MGSM. Efforts to improve LLMs’ multilingual reasoning performance have been continuing.For
example, (Huang et al., 2023a) and (Qin et al., 2023a) explored prompting ChatGPT (OpenAI,
2023) to translate non-English questions into English and generate answers based on the translations.
However, (Hu et al., 2024) found that this prompting strategy is not consistently effective for open-
source LLMs. To enhance the multilingual capabilities of these models, researchers like (Nguyen
et al., 2024) have explored continued pretraining on large-scale non-English corpora. However,
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this approach is resource-intensive and data-inefficient, highlighting the need for more optimized
fine-tuning strategies—a gap our study aims to address.

2.2 LLM’S LANGUAGE PREFERENCE

LLMs, with their large-scale parameters (Aki, 1967; Huo & Kassab, 2009; Wang et al., 2006; Rosen-
feld, 1999), pre-trained on vast corpora and fine-tuned on comprehensive instruction datasets (Huang
et al., 2016; Zhao et al., 2020; Lindström & Abraham, 2022; Koncel-Kedziorski et al., 2016), have
demonstrated impressive intelligence (Touvron et al., 2023; Floridi & Chiriatti, 2020; Kalyan, 2023;
Lagler et al., 2013). However, empirical studies show that LLMs still struggle with multilingual
scenarios, particularly for low-resource languages (Shi et al., 2022a; Zhu et al., 2024b; Weyssow
et al., 2024). This issue is mainly due to the dominance of English in both pretraining (Blevins &
Zettlemoyer, 2022) and instruction datasets (Wang et al., 2023). In this work, we focus on a core
capability of LLMs—their reasoning ability—and aim to push the boundaries of their performance
in multilingual reasoning tasks.

3 METHODOLOGY

This section describes the systematic method used to determine the appropriate language proportions
in the dataset and the required data volume for effective fine-tuning. Our method is divided into three
phases, as detailed below, with the experimental setup provided in Section 4.1.

3.1 PHASE ONE: LANGUAGE ALIGNMENT ANALYSIS

Directly determining the optimal ratio among 10 languages is also unrealistic, as directly exploring
the optimal proportions among 10 variables would result in a huge search space. To address this
issue and better generalize the reasoning capabilities of LLMs to different language contexts, we
first examined the correlation between LLMs’ alignment with English and other languages, and their
mathematical reasoning capabilities.Through this experiment, we aim to reduce the search space to
an acceptable size.

This alignment was assessed through a Non-English to English translation task. First, several
LLMs were fine-tuned on the English mathematical reasoning dataset, MetaMathQA-395k (Yu et al.,
2024), to evaluate their translation capabilities from Non-English to English, both before and after
fine-tuning. These models were then fine-tuned on translation data from non-English to English, and
their performance on multilingual mathematical reasoning tasks was evaluated.Our results showed
a positive correlation between LLMs’ reasoning abilities and their alignment between English and
French, German, and Russian, while no significant correlation was found with other languages.This
finding will greatly help the subsequent experiments.

3.2 PHASE TWO:LANGUAGE GROUP OPTIMIZATION

Building on the insights from Phase One, we constructed a multilingual mathematical reasoning
dataset encompassing 10 languages and grouped these 10 languages into three groups(as shown in
Table 3) based on the findings from Phase One, treating them as three variables for further explo-
ration. By systematically varying the proportions of data for each group, we utilized five models and
conducted over 600 experiments to identify the optimal distribution of three groups. The findings
indicate that, given a fixed total data volume, the optimal language ratio for enhancing the multilin-
gual reasoning capabilities of LLMs is group1:group2:group3 = 4:4:1 (en:ru:de:fr:es:ja:zh:bn:sw =
24:8:8:8:1:1:1:1:1:1). Additionally, we employed Gaussian Process Regression (GPR) to model the
relationship between data proportions and fine-tuning outcomes. This statistical approach allows us
to predict optimal language distributions based on experimental data, thereby guiding efficient data
allocation in subsequent phases. We also evaluated the contribution of each language to the overall
improvement of multilingual reasoning.
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3.3 PHASE THREE: DATA VOLUME DETERMINATION

To determine the appropriate volume of fine-tuning data, we first conducted experiments with 10
languages and later extended the study to 25 languages. We tested varying data volumes and com-
pared the results with previous approaches that used equal data volumes across languages. The
experiments included fine-tuning data volumes up to 9.875M and scaling model parameters to 70B,
demonstrating the clear advantages of our proposed methodology.

4 EXPERIMENT

4.1 OPTIMAL PROPORTION AND DATA VOLUME SELECTION FOR MULTILINGUAL
FINE-TUNING

This section describes the experimental setup and key results for the three phases outlined in the
methodology.

4.1.1 EXPERIMENTAL SETUP

Base LLMs

Different base LLMs were selected for each phase based on the research objectives. The specific
models are listed in Table 1. We employed the FMT fine-tuning method by default, with training
conducted for 3 epochs.

Table 1: Base LLMs used in different phases

Phase Base LLMs
Phase 1 LLaMA3.1-8B, LLaMA3-8B, Phi3.5-mini-instruct, Mistral-7B-v0.3, Qwen2-7B
Phase 2 LLaMA3.1-8B, LLaMA3-8B, Phi3.5-mini-instruct, Qwen2-7B
Phase 3 LLaMA3-8B, LLaMA3-70B

Experimental Languages

The selection of test languages for each phase was guided by specific research objectives and com-
putational constraints. In Phase One, the objective was to investigate the relationship between align-
ment with English and the mathematical reasoning capabilities of various non-English languages.
To achieve this, We primarily selected several high-resource non-English languages. Phase Two
employed the 10 languages from the MGSM dataset, while Phase Three aimed to assess the gen-
eralizability of our approach across 25 widely spoken languages. The languages chosen for each
phase are detailed in Table 2.

Table 2: Experimental languages used in different phases

Phase Experimental Languages
Phase 1 en, ru, de, fr, es, ja, zh, sw, th, bn, lt, cs, ka, ar
Phase 2 en, ru, de, fr, es, ja, zh, sw, th, bn
Phase 3 zh, en, es, hi, ar, pt, bn, ru, ja, pa, jv, de, ko, fr, te, vi, tr, ta, it, fa, ur, mr, sw, th, pl

We translated both the questions and answers in the multilingual chain-of-thought mathematical rea-
soning dataset. To ensure that the generated multilingual data effectively enhanced the model’s rea-
soning capabilities, we used the powerful open-source model DeepSeek-Chat-v2-236B (DeepSeek-
AI, 2024) for high-quality translations, adjusting its hyperparameters for this task. To maintain
translation quality and consistency, we implemented the following strategies:

• Mathematical formulas were preserved, and all numbers were converted to Arabic numerals
to facilitate cross-linguistic prediction.

• To improve translation accuracy, we included two examples in the prompts for each lan-
guage.
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For the mathematical reasoning with code dataset, we only translated the question parts since the
solution involves Python code.

To ensure consistency across languages, we extracted all mathematical expressions from the trans-
lated questions and answers. If the calculations were correct and matched the English version, the
translation was deemed accurate. If errors persisted across five consecutive translations, the corre-
sponding data was discarded.

This approach ensures coherence and accuracy in the translation process, enabling comprehensive
evaluation and application of the dataset in a multilingual context, while maintaining both linguistic
and mathematical integrity.

Tasks and Datasets

In terms of test task selection, in Phase One, we used a translation task to assess the alignment
between English and non-English languages within the LLM. In the subsequent phases, chain-of-
thought mathematical reasoning tasks were used to evaluate the LLM’s reasoning abilities.

For the training datasets, Phase One used the MetaMathQA-395k and WMT datasets. In later phases,
we translated the 395k entries from MetaMathQA into 25 languages, generating a total of 9.875M
entries. In Phase Two, 200k entries from each language were selected, totaling 1M entries. Phase
Three used the full 9.875M dataset.

For the test datasets, Phase One used the MGSM dataset to evaluate the LLMs’ multilingual math-
ematical reasoning capabilities, and 3,000 entries from the WMT dataset were selected to assess
translation performance. The WMT dataset is a collection of parallel texts designed to advance ma-
chine translation systems. In the subsequent phases, the MGSM dataset was used as the primary test
dataset.

4.1.2 MAIN RESULTS

Figure 3: The figure shows the average performance across four LLMs; for detailed experimental
data and descriptions of evaluation metrics, please refer to the appendix.

Phase 1

Figure 3 illustrates the changes in translation performance across different languages before and
after fine-tuning the LLMs on the MetaMathQA-395k dataset. Significant improvements were ob-
served for German, Russian, and French, while performance in other languages remained mostly
unchanged.

Figure 4 presents the model’s performance on the MGSM dataset after fine-tuning with different
non-English to English translation pairs. Since no additional measures were taken to enhance rea-
soning ability, mathematical reasoning performance declined post-fine-tuning. However, German,
Russian, and French still outperformed other languages in reasoning tasks.

These results suggest a positive correlation between the LLM’s reasoning ability and its alignment
with languages like French, German, and Russian.

5
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Figure 4: The score in the image represents the average of the LLM’s scores across the 10 languages.

Table 3: Language Groups for the Experiment

Group Languages
Group 1 en
Group 2 de, ru, fr
Group 3 es, ja, zh, th, bn, sw

Phase 2

Based on the conclusions from the first phase, we divided the 10 languages selected for the second
phase into three groups, as shown in Table 3. In each group, the amount of mathematical reasoning
data for each language was kept consistent. By adjusting the overall data ratio among these three
groups, we explored the optimal distribution of languages. As shown in Figure 5, although the
pretraining corpora for each model differ, all five models demonstrated optimal performance when
the ratio of the three language groups was around 24:24:6.(4:4:1)

To refine the optimal data ratio, we conducted further experiments to assess the relative importance
of languages in the second and third groups. As shown in Figure 6, increasing the proportion of a
single language did not lead to any clear improvement in prediction accuracy. Even when improve-
ment occurred, the gains were minimal.

Mathematical Modeling

To better model the patterns observed in Figure 5 and provide suggestions for data allocation in
future studies, we used the Gaussian Process Regression method (GPR). GPR is employed to model
the underlying function f(x) from the observed data, assuming that any finite set of function values
follows a multivariate Gaussian distribution. The model can be expressed as:

y = f(X) + ϵ, ϵ ∼ N (0, σ2I),

where X represents the input features, y is the observed output, and ϵ is Gaussian noise with variance
σ2.

We experimented with various mathematical models and computational methods, with detailed anal-
yses provided in the appendix. Ultimately, we finalized the following kernel:
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Figure 5: The relative proportion of English is fixed at 24. The horizontal axis represents the relative
proportion of the second group of languages, while the vertical axis represents the relative proportion
of the third group of languages. The results are averaged across the 10 languages.

Figure 6: The proportions in the figure are represented as en:ru:de:fr:es:ja:zh:bn:sw:th in sequence.

kRQ(X,X ′) = σ2
f

(
1 +

∥X −X ′∥2

2αl2

)−α

Phase 3

This phase of the experiment was divided into two groups. The first group used the original 10 lan-
guages to construct different sizes of the multilingual mathematical reasoning dataset, HighMath,
with a language ratio of en:ru:de:fr:es:ja:zh:bn:sw:th = 24:8:8:8:1:1:1:1:1:1. The second group
included 25 languages and constructed different sizes of the HighMath dataset, using a ratio of
en:de:ru:fr:others = 24:8:8:8:12. It should be noted that our adjustment of proportions - increasing
the ratios for German, French, and Russian - was qualitative in nature and may not represent the
optimal distribution.
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We conducted a series of experiments, with the results shown in Figure 7. HighMath-350k and
HighMath-1.5M was identified as a relatively optimal size.

(a) LLaMA3-8B based on 10 lan-
guages

(b) LLaMA3-8B based on 25 lan-
guages

(c) LLaMA3-70B based on 25
languages

Figure 7: The x-axis represents the size of the dataset, while the line graphs show the results using
equal amounts of data for each language. The horizontal lines indicate the fine-tuning results after
optimizing the data proportions across different languages. The vertical axis shows the mean score
across all languages. For detailed experimental data, please refer to the Appendix.

Figure 8: Evaluation results on the MGSM dataset. The score in the image represents the average of
the LLM’s scores across the 10 languages.

Figure 9: In the left image, the baseline represents (Zhu et al., 2024a), and non-English refers to the
average performance across 9 non-English languages. In the right image, the baseline represents the
fine-tuning results using an equal amount of data, but with the proportion of different languages in
the dataset being balanced. The scores are averaged across 10 languages.

4.2 MODEL EVALUATION

In this section, we fine-tune several LLMs on the HighMath-350k dataset and compare their per-
formance against baseline models. We also extend our approach to solving mathematical problems
using python code, demonstrating the generalizability and effectiveness of our method.
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Figure 10: The score in the image represents the average of the LLM’s scores across the 10 lan-
guages. For our baseline, we adopted the state-of-the-art model proposed by Zhu et al. (2024a).

4.2.1 MATHEMATICAL REASONING

Baseline Models For the MGSM dataset, we selected state-of-the-art fine-tuned baselines from
(Zhu et al., 2024b;a). Additionally, for the MSVAMP evaluation, we included baselines derived from
fine-tuning LLaMA2 series models. Where direct comparisons were not feasible, we established an
additional baseline using a dataset of 350k samples evenly distributed across 10 languages to ensure
consistency.

Main Results The results, depicted in Figures 8 and 9, demonstrate that models fine-tuned on the
HighMath-350k dataset achieved an average accuracy improvement of 12% on the MGSM evalua-
tion dataset compared to the baselines. Furthermore, these models outperformed larger parameter
models from the LLaMA3 and Mistral series by 8%, despite using only 70% of the training data
volume required by baseline models.Furthermore, compared to methods that uniformly translate
English data into multiple languages, our approach saves over 70% in translation costs.

4.2.2 SOLVING MATHEMATICAL REASONING TASKS USING PYTHON CODE

Using the HighCode-350k dataset, which focuses on solving mathematical problems through Python
code, our models consistently outperformed the baselines across multiple base models. This demon-
strates that optimized language proportions enhance both natural and code-based reasoning, high-
lighting the versatility of our fine-tuning approach.

5 CONCLUSION

For scenarios that require simultaneously enhancing LLMs’ reasoning capabilities across multiple
languages through fine-tuning methods, we propose an innovative three-phase approach and conduct
extensive experiments to investigate the impact of different language data proportions in multilin-
gual training datasets on LLM fine-tuning for multilingual mathematical reasoning tasks. Addi-
tionally, we establish a mathematical model to illustrate the relationship between these factors. We
also perform large-scale experiments to explore the correlation between fine-tuning effectiveness
and the amount of training data in multilingual mathematical reasoning datasets. Using an optimal
data scale, we construct the multilingual chain-of-thought reasoning dataset HighMath-350k and
the HighCode-350k dataset, designed for solving mathematical problems using Python code in a
multilingual context. Leveraging these datasets, we fine-tuned several LLMs to achieve outstanding
performance, providing insights for future research.
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Empirical slant delay model for radio space geodetic techniques. Geophysical research letters,
40(6):1069–1073, 2013.

Adam Dahlgren Lindström and Savitha Sam Abraham. Clevr-math: A dataset for compositional
language, visual and mathematical reasoning. arXiv preprint arXiv:2208.05358, 2022.

Xiangyang Liu, Tianqi Pang, and Chenyou Fan. Federated prompting and chain-of-thought reason-
ing for improving llms answering. In International Conference on Knowledge Science, Engineer-
ing and Management, pp. 3–11. Springer, 2023.

Xuan-Phi Nguyen, Wenxuan Zhang, Xin Li, Mahani Aljunied, Zhiqiang Hu, Chenhui Shen,
Yew Ken Chia, Xingxuan Li, Jianyu Wang, Qingyu Tan, Liying Cheng, Guanzheng Chen, Yue
Deng, Sen Yang, Chaoqun Liu, Hang Zhang, and Lidong Bing. Seallms – large language models
for southeast asia, 2024. URL https://arxiv.org/abs/2312.00738.

OpenAI. Gpt-4 technical report, 2023.

Libo Qin, Qiguang Chen, Fuxuan Wei, Shijue Huang, and Wanxiang Che. Cross-lingual prompt-
ing: Improving zero-shot chain-of-thought reasoning across languages. In Houda Bouamor,
Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 2695–2709, Singapore, December 2023a. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.163. URL https:
//aclanthology.org/2023.emnlp-main.163.

Libo Qin, Qiguang Chen, Fuxuan Wei, Shijue Huang, and Wanxiang Che. Cross-lingual
prompting: Improving zero-shot chain-of-thought reasoning across languages. arXiv preprint
arXiv:2310.14799, 2023b.

Yaakov Rosenfeld. A quasi-universal scaling law for atomic transport in simple fluids. Journal of
Physics: Condensed Matter, 11(28):5415, 1999.

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang, Suraj Srivats, Soroush Vosoughi,
Hyung Won Chung, Yi Tay, Sebastian Ruder, Denny Zhou, Dipanjan Das, and Jason Wei. Lan-
guage models are multilingual chain-of-thought reasoners, 2022a. URL https://arxiv.
org/abs/2210.03057.

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang, Suraj Srivats, Soroush Vosoughi,
Hyung Won Chung, Yi Tay, Sebastian Ruder, Denny Zhou, et al. Language models are multi-
lingual chain-of-thought reasoners. arXiv preprint arXiv:2210.03057, 2022b.

Shubham Toshniwal, Ivan Moshkov, Sean Narenthiran, Daria Gitman, Fei Jia, and Igor Git-
man. Openmathinstruct-1: A 1.8 million math instruction tuning dataset, 2024. URL https:
//arxiv.org/abs/2402.10176.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

J Wang, HL Duan, ZP Huang, and Bhushan Lal Karihaloo. A scaling law for properties of nano-
structured materials. Proceedings of the Royal Society A: Mathematical, Physical and Engineer-
ing Sciences, 462(2069):1355–1363, 2006.

11

https://arxiv.org/abs/2312.00738
https://aclanthology.org/2023.emnlp-main.163
https://aclanthology.org/2023.emnlp-main.163
https://arxiv.org/abs/2210.03057
https://arxiv.org/abs/2210.03057
https://arxiv.org/abs/2402.10176
https://arxiv.org/abs/2402.10176


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Raghavi
Chandu, David Wadden, Kelsey MacMillan, Noah A. Smith, Iz Beltagy, and Hannaneh Hajishirzi.
How far can camels go? exploring the state of instruction tuning on open resources, 2023. URL
https://arxiv.org/abs/2306.04751.

Martin Weyssow, Aton Kamanda, and Houari Sahraoui. Codeultrafeedback: An llm-as-a-
judge dataset for aligning large language models to coding preferences. arXiv preprint
arXiv:2403.09032, 2024.

BigScience Workshop, :, Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić,
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APPENDIX: GAUSSIAN PROCESS REGRESSION MODEL FITTING AND
EVALUATION

INTRODUCTION TO GAUSSIAN PROCESS REGRESSION

A GAUSSIAN PROCESS REGRESSION: MATHEMATICAL FOUNDATION AND
KERNEL SELECTION

A.1 MATHEMATICAL FOUNDATION OF GAUSSIAN PROCESS REGRESSION

Gaussian Process Regression (GPR) is a non-parametric Bayesian method used for regression prob-
lems. It assumes that the observed data can be generated by a Gaussian process, which is a collection
of random variables such that any finite subset has a joint Gaussian distribution.

Given a training dataset {(Xi, yi)}ni=1, where Xi represents the input variables (in this case, two-
dimensional coordinates) and yi represents the corresponding observations, we assume:

yi = f(Xi) + εi

where f(X) is the latent true function, and εi ∼ N (0, σ2
n) is independent and identically distributed

Gaussian noise.

A Gaussian process prior is placed on f(X):

f(X) ∼ GP(m(X), k(X,X ′))

where m(X) is the mean function, typically set to zero, m(X) = 0, and k(X,X ′) is the covariance
function (kernel) that measures the similarity between input points.

A.1.1 PREDICTIVE DISTRIBUTION

For a new input point X∗, the predictive distribution is also a Gaussian distribution with mean and
variance given by:

µ∗ = k⊤∗ (K + σ2
nI)

−1y, σ2
∗ = k(X∗, X∗)− k⊤∗ (K + σ2

nI)
−1k∗

where:

• y = [y1, y2, . . . , yn]
⊤ is the vector of observed values.

• K is the kernel matrix, Kij = k(Xi, Xj).

• k∗ = [k(X∗, X1), k(X∗, X2), . . . , k(X∗, Xn)]
⊤ is the covariance vector between the new

input point and the training data.

• I is the identity matrix.

A.2 KERNEL FUNCTION SELECTION AND PARAMETER TUNING

Choosing an appropriate kernel function k(X,X ′) is crucial for the effectiveness of Gaussian Pro-
cess Regression. Several kernel functions were considered:

Radial Basis Function (RBF) Kernel / Gaussian Kernel:

kRBF(X,X ′) = σ2
f exp

(
−∥X −X ′∥2

2l2

)
Reason: The RBF kernel is smooth and infinitely differentiable, making it suitable for predicting
smoothly varying functions. It is one of the most commonly used kernels.
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Matern Kernel (e.g., ν = 3
2 or ν = 5

2 ):

kMatern(X,X ′) = σ2
f

21−ν

Γ(ν)

(√
2ν∥X −X ′∥

l

)ν

Kν

(√
2ν∥X −X ′∥

l

)

where Kν is the modified Bessel function.

Reason: The Matern kernel is more flexible than the RBF kernel, allowing control over the smooth-
ness of the function, making it suitable for handling data with varying smoothness.

Rational Quadratic Kernel:

kRQ(X,X ′) = σ2
f

(
1 +

∥X −X ′∥2

2αl2

)−α

Reason: The Rational Quadratic kernel is a weighted sum of RBF kernels with different length
scales, making it suitable for data with multi-scale features.

A.2.1 PARAMETER TUNING

The hyperparameters of the kernel functions were adjusted as follows:

• Length Scale l: Values tested: l = 0.1, 1, 10.
Reason: The length scale controls the rate of change of the function. Smaller l values
allow greater changes over shorter distances, suitable for capturing local features; larger l
values result in smoother functions.

• Signal Variance σ2
f : Values tested: σ2

f = 1, 5, 10.
Reason: The signal variance determines the amplitude of function variation. Adjusting σ2

f

helps match the overall variability level of the data.
• Noise Variance σ2

n: Values tested: σ2
n = 0.01, 0.1, 1.

Reason: The noise variance reflects the level of noise in the observed data. Adjusting σ2
n

according to the actual data helps prevent overfitting or underfitting.

Combining Kernels: Multiple kernels were also combined, for example, a linear kernel plus an
RBF kernel:

k(X,X ′) = kLinear(X,X ′) + kRBF(X,X ′)

Reason: Combined kernels can capture different features in the data, such as global trends and local
variations.

A.3 RESULTS EVALUATION METHODS

To evaluate the performance of the GPR models with different kernel functions, several metrics were
used:

Mean Squared Error (MSE):

MSE =
1

N

N∑
i=1

(yi − µi)
2

Purpose: Measures the average squared difference between the predicted and actual values. The
smaller the MSE, the better the model performance.

Root Mean Squared Error (RMSE):
RMSE =

√
MSE

Purpose: RMSE is in the same units as the original data, making it easier to interpret the magnitude
of the error.
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Mean Absolute Error (MAE):

MAE =
1

N

N∑
i=1

|yi − µi|

Purpose: Measures the average absolute difference between the predicted and actual values, less
sensitive to outliers than MSE.

R-squared (Coefficient of Determination):

R2 = 1−
∑N

i=1(yi − µi)
2∑N

i=1(yi − ȳ)2

Purpose: Evaluates the proportion of variance in the dependent variable that is predictable from the
independent variables. The closer R2 is to 1, the better the model fits the data.

A.4 EXPERIMENTAL RESULTS AND ANALYSIS

The results for different kernel functions are summarized in Table 4. These results indicate the
performance of each kernel function in terms of MSE, RMSE, MAE, and R2 score.

Table 4: Performance of Different Kernels

Kernel MSE RMSE MAE R2

RBF 0.6929 0.8324 0.6692 0.8764
Matern (ν = 1.5) 0.3211 0.5666 0.4659 0.9427
Matern (ν = 2.5) 0.4152 0.6443 0.5265 0.9259
Rational Quadratic 0.3199 0.5656 0.4639 0.9429

Discussion:

• The RBF kernel showed relatively poor performance with the highest MSE and RMSE,
indicating it might not be flexible enough to handle the non-smooth data in this case.

• The Matern kernel (ν = 1.5) performed very well with a low MSE of 0.3211 and a high
R2 of 0.9427, suggesting a good balance between model complexity and generalization
ability.

• The Matern kernel (ν = 2.5) also performed well, but slightly worse than ν = 1.5,
indicating its smoothness might not fully match the data characteristics.

• The Rational Quadratic kernel achieved the best performance with the lowest MSE
(0.3199), RMSE (0.5656), and MAE (0.4639), indicating it is very well-suited to the multi-
scale characteristics of the data.

A.5 CONCLUSION

Based on the experimental results, the Rational Quadratic kernel is selected as the optimal kernel
function for the Gaussian Process Regression model. It shows the best fitting performance in terms
of MSE, RMSE, and MAE metrics. The Matern kernel (ν = 1.5) is also a recommended choice
when a slightly smoother function is needed.

ISO 639-1 LANGUAGE CODES AND THEIR CORRESPONDING FULL NAMES.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 5: ISO 639-1 Language Codes and Their Corresponding Full Names. This table presents a
comprehensive list of 25 major world languages, including their standardized two-letter codes (ISO
639-1) and full English names. Languages are arranged alphabetically by their ISO codes within
each column.

Code Full Name Code Full Name Code Full Name
zh Chinese (Mandarin) ja Japanese ta Tamil
en English pa Punjabi it Italian
es Spanish jv Javanese fa Persian (Farsi)
hi Hindi de German ur Urdu
ar Arabic ko Korean mr Marathi
pt Portuguese fr French sw Swahili
bn Bengali te Telugu th Thai
ru Russian vi Vietnamese pl Polish

tr Turkish

DETAILED RESULTS ON TRANSLATION TASKS

BLEU (Bilingual Evaluation Understudy) is a traditional reference-based metric that measures the
overlap of n-grams between the machine translation output and human reference translations. It
calculates precision for different n-gram lengths (typically 1-4) and combines them using a geomet-
ric mean, along with a brevity penalty to penalize overly short translations. Despite its limitations,
BLEU remains widely used as a baseline metric due to its simplicity and interpretability.

BLEURT (Bilingual Evaluation Understudy with Representations from Transformers) is a learned
metric that leverages pre-trained language models to evaluate translation quality. It is trained on
synthetic data and human judgments, using BERT-based architecture to capture semantic similari-
ties between translations and references. BLEURT demonstrates stronger correlation with human
judgments compared to traditional metrics, particularly in capturing meaning-preserving variations
and grammatical nuances.

COMET (Crosslingual Optimized Metric for Evaluation of Translation) is a neural-based metric
that utilizes multilingual pre-trained models to evaluate translation quality. It can operate in both
reference-based and reference-free modes, making it particularly versatile. COMET is trained on
human judgment data and employs a cross-lingual encoder to assess translation adequacy and flu-
ency. It has shown superior performance in WMT Metrics Shared Tasks, demonstrating strong
correlation with human evaluations across diverse language pairs.

Below are the performance trends across different models. We present the results for German (de),
French (fr), and Russian (ru), which show significant improvements. Results for other languages did
not demonstrate clear trends, and thus are not displayed.

Table 6: Performance Changes After Fine-tuning on LLaMA3-8B(Difference = After - Before)

Language COMET BLEURT BLEU
Russian 0.0246 0.0345 0.0652
French 0.0082 0.0233 0.0640
German 0.0307 0.0178 0.1240

Table 7: Performance Changes After Fine-tuning on Phi3.5(Difference = After - Before)

Language COMET BLEURT BLEU
Russian 0.0243 0.077 0.0645
French 0.064 0.0222 0.0686
German 0.034 0.0164 0.1411
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Table 8: Performance Changes After Fine-tuning on LLaMA3.1-8B(Difference = After - Before)

Language COMET BLEURT BLEU
Russian 0.0386 0.0297 0.0557
French 0.0166 0.0224 0.0648
German 0.0312 0.0153 0.1243

Table 9: Performance Changes After Fine-tuning on Qwen2-7B(Difference = After - Before)

Language COMET BLEURT BLEU
Russian 0.0379 0.0333 0.0664
French 0.0135 0.0235 0.0745
German 0.0357 0.0136 0.1198

DETAILED DATA CORRESPONDING TO FIGURE 7

We present the improvements achieved by the LLM across 25 languages illustrated in Figure 7, with
particular attention to low-resource languages. The results demonstrate that the model maintains
significant enhancement in reasoning capabilities even in low-resource language contexts.

Table 10: LLaMA3-8B

hi pt bn pa jv de ko th pl
+19.5 +21.9 +21.6 +14.4 +21.7 +26.0 +21.8 +19.1 18.6

te vi tr ta it fa ur mr sw
+22.1 +23.4 +15.6 +11.5 +16.3 +15.7 +15.4 +23.5 +17.2

Table 11: LLaMA3-70B

hi pt bn pa jv de ko th pl
+17.5 +20.9 +23.6 +15.4 +20.7 +21.0 +21.4 +17.4 17.9

te vi tr ta it fa ur mr sw
+21.1 +20.4 +13.6 +14.5 +13.7 +16.3 +15.4 +20.7 +15.8
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