Abstract

Query-oriented summarization has been considered as an important extension for text summarization. It aims to generate a concise highlight for a given query. Different from text summarization, query-oriented summarization has long been plagued by the problem of lacking high-quality large-scale datasets. In this paper, we investigate the idea that whether we can integrate and transfer the knowledge of text summarization and question answering to assist the few-shot learning in query-oriented summarization. Meanwhile, we draw inspiration from prefix-tuning, whose prefix is considered as containing task-specific knowledge. Here, we propose prefix-merging, a prefix-based pretraining strategy for few-shot learning in natural language generation tasks. It allows us to control and integrate the task knowledge across multiple basic tasks through a proper prefix design and apply the merged prefix to the downstream task. With only a small amount of trainable parameters, prefix-merging outperforms fine-tuning on the query-oriented summarization task. We further discuss the influence of different prefix designs and propose a visualized explanation for how prefix-merging works.

1 Introduction

Query-oriented summarization aims to generate a concise highlight by summarizing the source document(s) with respect to a given query. It has been a classic research problem in the text summarization field. It can also be considered as generating a concise but informative answer in question answering (QA). Although text summarization has been widely studied in recent years, there are fewer attempts on exploring query-oriented summarization (Deng et al., 2020; Su et al., 2020; Xu and Lapata, 2020; Su et al., 2021). We believe one main reason is the lack of datasets. For text summarization, nature summaries such as titles or headlines are easy to obtain from news articles, while it is difficult for query-oriented summarization to find such type of large-scale data in real life. Meanwhile, human-written reference summaries have always been costly. Therefore, it is important to explore few-shot learning in query-oriented summarization.

Knowledge transferring is a solution for few-shot learning. For the human, after understanding the definition of text summarization and QA, we can quickly learn how to do query-oriented summarization with only a few examples. Such ability to integrate and transfer the knowledge of known tasks to relevant new tasks is crucial for human beings to solve problems. It is also interesting to explore whether the machine has a similar ability. In parameter-transfer learning, previous work are usually one-to-one (pre-train then fine-tune (Yosinski et al., 2014)) or one-to-many (domain/task adaptation (Houlsby et al., 2019; Lin et al., 2020)), and seldom of them focus on many-to-one (integrate basic tasks to a complex one). Considering query-oriented summarization like an integration of text summarization and QA, we believe it is the chance to explore such task integration problem. In this case, the large-scale data in the two tasks can be used to assist the learning of query-oriented summarization.

Recently, prompt-based approaches have attracted a lot of attention. In some of these works, the prompt/prefix is considered as containing the knowledge of the given task, which provides us an explicit way to control the task-specific knowledge previously dispersed in the language model (LM). For example, prefix-tuning (Li and Liang, 2021) achieved a similar result with fine-tuning by training only the task-specific prefix, a sequence of continuous vectors that prepend to the input. Inspired by this, an intuitive idea is whether we can integrate the task knowledge from basic tasks to a complex task through a proper prefix design.

In this paper, we propose prefix-merging, a pre-trained strategy for few-shot learning in natural language generation tasks. Following the framework
proposed by prefix-tuning, we focus on merging the knowledge from several basic tasks as a single prefix. Generally, there are two straightforward ideas for this problem: concatenate the separated prefix for different tasks as a whole or adopt a shared prefix for all the tasks. Considering there exist both similarities and differences across the tasks, a more flexible prefix design composed of both task-specific part and shared part is used in further investigation. Moreover, we propose a self-adaptive prefix merging that allows the basic tasks themselves to decide the prefix design. Drawn the inspiration from (Xu et al., 2021), we adopt Fisher Information to calculate the importance scores of the prefix embeddings (basic units for the prefix) for each basic task. For one task, only the prefix embeddings with top scores are activated in the following training. Hence, different tasks can adapt to different parts of prefix automatically. After finishing training the merged prefix, it is transferred to a downstream task for few-shot learning. In the experiment, we explore prefix merging in the context of query-oriented summarization, taking PubMedQA (Jin et al., 2019) as the test dataset.

Prefix-merging provides a potential solution for the few-shot learning in complex tasks that can be integrated by the basic tasks. Benefited by the universality of the prompt-based approach, prefix-merging is not limited by the model architecture and can be used in both autoregressive LM and encoder-decoder based LM. We believe this shows a possible direction to the application of prompt-based approaches. Our contribution can be summarized as follow:

- We provide a new solution for few-shot query-oriented summarization utilizing the large-scale data from text summarization and question answering.

- We propose prefix-merging that integrates the task-specific knowledge from basic tasks to assist the learning of a more complex task, which provides a new solution to many-to-one parameter-transfer learning.

- We further expand the application of prompt-based approaches by applying the prefix to multi-task situation, realizing the interaction between different task knowledge through prefix.

2 Related Work

2.1 Query-oriented Summarization

Query-oriented summarization aims to generate a concise highlight from the source document(s) according to a specific topic or query, which is considered as a more complex extension of text summarization. Early works (Lin et al., 2010; Shen and Li, 2011) focus on extracting query-related sentences as summaries, while further works (Wang et al., 2016; Li and Li, 2014) improve it by rewriting the extracted sentences with sentence compression. (Nema et al., 2017; Hasselqvist et al., 2017) propose neural-abstractive models with an additional query attention mechanism to generate the summaries with respect to the given query. (Deng et al., 2020) consider the relation among the query and source sentences as a multi-hop inference process and generate the summaries by integrating information from different inference steps. Meanwhile, researchers also utilized QA models to find the possible query-related evidence in query-oriented summarization. (Su et al., 2020; Xu and Lapata, 2020) adopts QA models for sentence-level or paragraph-level answer evidence ranking. (Su et al., 2021) incorporate answer relevance scores generated by QA model as explicit fine-grained query relevance to a transformer-based abstractive summarization model. Therefore, we believe the text summarization and QA are the foundation for query-oriented summarization and choose them as the auxiliary tasks in this work.

2.2 Prompt-based Approaches

Prompting originally refers to adding instructions and several examples to a task input and generating the output from the LM. A fundamental idea for prompt-based approaches is that let the tasks adapt to the LM. Some researchers tend to utilize the idea to improve the performance of the model by making the form of the task closer to the LM. A series of works (Petroni et al., 2019; Jiang et al., 2020; Shin et al., 2020) explore the prompt engineering and prompt ensemble in natural language understanding tasks. For instance, instead of manually designing prompt, AutoPrompt (Shin et al., 2020) automatically search for a sequence of discrete words as prompt to extract knowledge from pre-trained LMs. Other works choose to optimize the prompt in a continuous space. (Qin and Eisner, 2021; Liu et al., 2021) adopt hand-designed prompt as initialization and add learnable perturbation on
the prompt. Other researchers choose to find a parameter-efficient adaption from LM to a specific task. GPT-3 (Brown et al., 2020) adopts manually designed task-specific prompts to adapt the LM for different generation tasks. Prefix-tuning proposes “prefix tuning” for language generation task: learning a sequence of continuous prefixes that are inserted to every transformer layer. (Lester et al., 2021) provides a simplified version of “prefix tuning” with fewer parameters and more robust prompt initialization on the SuperGLUE tasks. In this work, following the framework of prefix-tuning, we aim to integrate basic tasks to a more complex one by merging the task knowledge through the prefix.

3 Method

3.1 Problem Statement

Given a target task with limited data and several related auxiliary tasks, we aim to utilize the task-specific knowledge from these relevant tasks to assist the learning in the target task. There are two steps: a model is first trained on the auxiliary tasks with a large number of labeled data to obtain the potentially useful knowledge for the target task; then the trained model is fine-tuned on the target task with only a small amount of data. Considering prefix-tuning has provided an effective approach for prompt-based text generation 3.3 to 3.6. eration tasks, we follow its framework and further extend it to prefix-merging. In section 3.2, we have a brief introduction about prefix-tuning. And our approach is shown in 3.2 Prefix-tuning.

3.2 Prefix-tuning

Consider there is a transformer-based encoder-decoder LM $p(y|x)$ such as Bart (Lewis et al., 2019) and it is parametrized by ϕ. Taking the encoder layer in transformer as an example, let $z = [x]$ denote the sequence of indices that corresponds to encoder input tokens.

We use h_i to represent the concatenation of all activation layers at the index i. And each activation consists of a key-value pair. The h_i for all $i \in x$ in encoder layer is a function of z_i and the other activations in the context based on the LM, as follows:

$$h_i = LM_{\phi}(z_i, h_{\neq i}) \quad (1)$$

Prefix-tuning prepends a prefix for the encoder layer to obtain $z = [prefix;x]$, or prepends prefixes for cross-attention layer or self-attention layer in the decoder to obtain $z = [prefix;x;y]$ or $z = [prefix;y]$. Here, P_{idx} refers to the sequence of prefix embedding indices, and $|P_{idx}|$ is used to represent the length of the prefix. A trainable matrix $P_{\theta} \in |P_{idx}| \times dim(h_i)$ is initialized to store the prefix parameters.

Hence, h_i becomes a function of the trainable P_{θ} and it allows the prefix parameters to control the model by affecting the activations in every layer of the transformer. The training objective maintains the same as normal task, but only the prefix parameters θ are trainable and the parameters of the LM ϕ are fixed.

To avoid the unstable optimization problem when directly optimizing the prefix parameters, prefix-tuning reparametrize the matrix $P_{\theta}[i,:] = MLP_{\theta}(P'_{\theta}[i,:])$ by passing a seed matrix P'_{θ} through a feedforward neural network MLP_{θ}. After the training, only the prefix matrix P_{θ} needs to be saved and the other parameters can be dropped.

3.3 Intuition for Prefix-merging

Based on the definition of prompt-based approaches, it is believe that having a proper context or a set of continuous vector can control the generation of LM without changing its parameters. This idea is further extended to using proper prompt or prefix allows the LM to adapt to different tasks. In this case, these prompts or prefix is considered to contain the task-specific knowledge.

Intuitively, to merge the task knowledge from different tasks, the simplest way is to concatenate their prefix as one. Another way is to use a shared prefix that is updated by all the tasks. Instead of using either of the two ways, we choose a more flexible prefix design for further investigation of the problem. For each task, its prefix consists of a shared sub-prefix and a task-specific sub-prefix whose lengths are controlled by two hyperparameters. We believe the shared sub-prefix tends to represent the similarities between all merged tasks, while the task-specific sub-prefix refers to the uniqueness of each task. Meanwhile, the two mentioned intuitive methods can also be restored when any of the two hyperparameters is set to 0.
3.4 Prefix-merging

Similar to prefix-tuning, a trainable matrix \(P_\theta \) is used to store the prefix parameters. The difference is that there are \(n \) different tasks denoted as \(\{\text{task}_1, \text{task}_2, ..., \text{task}_n\} \) in the prefix-merging stage and only part of the matrix parameters will be used for a single task. The prefix for each task is composed of a task-specific unique sub-prefix with a length of \(l_s \) and a shared sub-prefix with a length of \(l_u \). In this way, the \(P_\theta \) has the dimension of \((l_s + l_u \times n) \times \text{dim}(h_i)\). Meanwhile, we use \(P^n_{idx} \) to represent the the sequence of prefix embedding indices of \(\text{task}_n \) and its length \(|P^n_{idx}| \) is equal to \(l_s + l_u \). As follow, the \(h_i \) for \(\text{task}_n \) is calculated based on the following equation:

\[
P^n_{idx} = [0 : l_s] + [l_s + n \times l_u : l_s + (n + 1) \times l_u] \quad (3)
\]

\[
h_i = \begin{cases}
P^n_{idx}[i], & \text{if } i \leq |P^n_{idx}| \\
LM_z(z_i, h_{\phi i}), & \text{otherwise} \end{cases} \quad (4)
\]

Figure 1 shows an example of training two auxiliary tasks, text summarization and QA, for prefix-merging. Here, both the shared sub-prefix length and unique sub-prefix length are set to 2. The prefix embedding indices for text summarization is \([1,2,3,4] \), and it changes to \([1,2,5,6] \) for QA.

To distinguish the different tasks during the training, we add a task-specific prompt before the original input tokens following T5 (Raffel et al., 2019). As shown in Figure 1, the prompt is “summarize” for the text summarization and the prompt is “answer the question” for QA.

We also adopt the similar reparametrize strategy to stabilize the training process. One thing that is worth noticing is that all the sub-prefixes share the same MLP, and the seed matrices are different. In preliminary experiments, we find that using multiple MLP for different sub-prefixes also leads to unstable optimization. During the training, we adopt a mixed-task training strategy where instances from different tasks equally exist in the same training batch.

3.5 Self-adaptive Prefix-merging

Considering that manual design does not always lead to the best results, we further propose a self-adaptive prefix merging. Instead of setting lengths of shared sub-prefix and unique sub-prefix manually, we aim to let the auxiliary tasks decide the
prefix design. The idea is based on Fisher Information, a evaluation metric that reflects how much changing the parameter will change the model’s output. It can be considered as the importance of a parameter for the model on a certain set of data (Xu et al., 2021). In this way, we can find the most important sub-prefix for each auxiliary task based on Fisher Information.

\[
F_i = \frac{1}{pq} \sum_{j=1}^{p} \sum_{k=1}^{q} \left(\frac{\partial \log(p(y_k|x_k; \theta))}{\partial \theta_j} \right)^2
\]

where \(F(i)\) refers to the average Fisher information of the \(i\)-th prefix embedding, \(p\) denotes the number of parameters in the embedding and \(q\) represents the number of data. \(x\) and \(y\) refer to the data in a auxiliary task.

During the training, we first initialize the prefix as a shared prefix trained by all auxiliary task for one epoch. Taking \(task_{n}\) as an example, we then conduct a complete forward propagation and back propagation (one epoch) for all data in \(task_{n}\), and calculate the Fisher Information for prefix embeddings. Only the top-\(n\) prefix embeddings will be used in the later training for \(task_{n}\), and others will be masked. In other words, the \(P^n_{idx}\) is the indices of the top-\(n\) prefix embeddings. After obtaining the important sub-prefix for each task, naturally, some prefix embeddings are shared by different tasks while others are task-specific. At last, we continue the training with the selected sub-prefix.

3.6 Applying the Merged Prefix to the Target Task

After training on the auxiliary tasks, we obtain the prefix parameters that contain its task knowledge. We apply the knowledge to the target task by using the trained prefix as initialization and continuing prefix-tuning on the target task, but with a few differences. As shown in Figure 1, all the prefix parameters are used for the target task including the shared sub-prefix and all the unique sub-prefixes. For self-adaptive prefix-merging, only the prefix embedding that is used for at least one auxiliary task can be applied for the target task. We also adopt a new prompt that suggests the relation between the target task and auxiliary tasks. For query-oriented summarization, we simply concatenate the prompt of text summarization and QA as “summarize and answer the question”.

4 Experiment

4.1 Datasets

To evaluate the idea of prefix-merging, we take query-oriented summary as the target task, text summarization and QA as two auxiliary tasks. We focus on a commonly used dataset for single-document query-oriented summarization: PubMedQA (Jin et al., 2019). The dataset requires the model to generate a summary containing 1-3 sentences as an answer to a question based on a medical related document. Since we train the target task under a few-shot situation, only part of the training set is used in the experiment and we test the model on the full testing set containing more than 20000 data samples. For the text summarization, we adopt the XSum dataset (Narayan et al., 2018), a highly abstractive single-document summarization dataset that uses the first sentence of news articles as summaries. For the QA, we use the classic machine reading comprehension dataset SQUAD 1.1 (Rajpurkar et al., 2016). Since the output of QA is too short for a generation task, we transform the output from phrases to declarative sentences by combining the answer and the question. For example, given a question “who is B” and an answer “A”, the transformed output will be “A is B”.

4.2 Experiment Setting

Our implementation is based on the BART-large model from HuggingFace Transformer and all the input is truncated to 512 tokens. For the prefix-tuning based method, a default setting is a learning rate of \(5 \times 10^{-5}\) and a prefix length of 30. The batch size is set to 48 when conducting prefix-merging, and for few-shot prefix-tuning, it changes with the size of the training data. In the experiment, we also use fine-tune based method as a comparison, and the default setting for it is a learning rate of \(2 \times 10^{-5}\) and a batch size of 48. At training time, we adopt the AdamW optimizer with default hyperparameters. At inference time, we use beam search with a beam size of 2 and the length limitation for the output is set from 30 to 75 tokens. Since few-shot learning is sensitive to the training data, we train the models with three sets of random extracted data and report the average result.

As for evaluation metric, following previous works, we apply ROUGE (Lin, 2004) including Rouge-1 (R-1), Rouge-2 (R-2) and Rouge-L (R-L) for the query-oriented summarization. We adopt...
Table 1: Evaluation result (higher is better) for query-oriented summarization on PubMedQA. We compare the result on three different training data size: 50, 150, 300.

<table>
<thead>
<tr>
<th>Data Size</th>
<th>50</th>
<th>150</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>R-1</td>
<td>R-2</td>
<td>R-L</td>
</tr>
<tr>
<td>Random</td>
<td>30.33</td>
<td>9.96</td>
<td>28.00</td>
</tr>
<tr>
<td>Unq(30)</td>
<td>30.81</td>
<td>10.97</td>
<td>26.52</td>
</tr>
<tr>
<td>Unq(20)+Sha(10)</td>
<td>32.36</td>
<td>11.40</td>
<td>28.30</td>
</tr>
<tr>
<td>Unq(10)+Sha(20)</td>
<td>32.64</td>
<td>11.84</td>
<td>28.17</td>
</tr>
<tr>
<td>Sha(30)</td>
<td>32.44</td>
<td>11.48</td>
<td>28.17</td>
</tr>
<tr>
<td>Self-adaptive</td>
<td>33.18</td>
<td>12.01</td>
<td>28.45</td>
</tr>
</tbody>
</table>

Table 2: The comparison between prefix-merging and fine-tuning with a training data size of 50.

<table>
<thead>
<tr>
<th>Model</th>
<th>R-1</th>
<th>R-2</th>
<th>R-L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine+Fine</td>
<td>31.65</td>
<td>10.75</td>
<td>28.18</td>
</tr>
<tr>
<td>Fine+Prefix</td>
<td>31.64</td>
<td>10.79</td>
<td>27.57</td>
</tr>
<tr>
<td>Prefix+Fine</td>
<td>32.03</td>
<td>11.30</td>
<td>28.12</td>
</tr>
<tr>
<td>Prefix+Prefix</td>
<td>33.18</td>
<td>12.01</td>
<td>28.45</td>
</tr>
</tbody>
</table>

Table 3: The comparison between using different auxiliary tasks with a training data size of 50.

<table>
<thead>
<tr>
<th>Model</th>
<th>R-1</th>
<th>R-2</th>
<th>R-L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unrelated Task</td>
<td>31.34</td>
<td>10.77</td>
<td>27.08</td>
</tr>
<tr>
<td>Only Sum</td>
<td>32.38</td>
<td>11.56</td>
<td>27.75</td>
</tr>
<tr>
<td>Only QA</td>
<td>31.78</td>
<td>11.39</td>
<td>28.43</td>
</tr>
<tr>
<td>Sum and QA</td>
<td>33.18</td>
<td>12.01</td>
<td>28.45</td>
</tr>
</tbody>
</table>

Py-rouge, a full Python implementation of the ROUGE-1.5.5, to conduct the experiment.

4.3 Result

We first evaluate the different prefix designs within three different few-shot learning data sizes (50, 150, 300) for the target task in Table 1. "Unq(n)" stands for the prefix contains the unique sub-prefix with a length n, while "Sha(n)" refer to the shared sub-prefix. For example, "Unq(10)+Sha(20)" represent the merged prefix consists of unique sub-prefix with length 10 (5 for each task) and the shared sub-prefix with length 20. In terms of the self-adaptive prefix merging, we initialize the prefix length as 40 and select the top-25 prefix embeddings for each tasks. For a better comparison, we also add a baseline “random”: randomly initialize the prefix and conduct few-shot prefix-tuning on the query-oriented summarization dataset.

In Table 2, we compare the prefix-merging with fine-tuning. Since it is a two-step training process (training on auxiliary tasks then applying on the target task), each step can adopt prefix-based (only the prefix parameters are trained) or fine-tuning (all parameters are trained). Therefore, we report four variants in total: (1) fine-tuning + fine-tuning (Fine+Fine); (2) fine-tuning + prefix-tuning (Fine+Prefix); (3) prefix-merging + fine-tuning (Prefix+Fine); (4) prefix-merging + prefix-tuning (Prefix+Prefix), which is our proposed approach in Section 3. Despite the variant (1), we add a prefix of length 30 to the model. Taking variant (2) as an example, firstly, both the prefix and the LM are updated by the training data from auxiliary tasks and then only the prefix parameter is trained on the target task. For all the variants, we add the prompt described in section 3.4 and apply the same mixed-task training strategy for a fair comparison.

Table 3 displays the result of using different auxiliary tasks for query-oriented summarization. “Sum+QA” refers to the best result when using both text summarization and QA; “Only Sum” and “only QA” are designed for ablation study where only one of the two tasks is used in step 1. Moreover, we also import a baseline “Unrelated Task” that takes sentence copying as the auxiliary task, which contains no useful task knowledge for query-oriented summarization. We use prefix-tuning to train the model when there is only one auxiliary task.

We summarize the experiment result with the following conclusions.

Merging the auxiliary tasks with a shared prefix is better than concatenating them, but
reserving a small amount of unique sub-prefix leads to a better result. As shown in Table 1, we find that merging different auxiliary tasks in a shared prefix is more effective than concatenating independent task prefix for the downstream task. Such a trend applies to all three data sizes. This suggests that a shared prefix has the ability to cover multiple tasks without any specific design. Another advantage of using the shared prefix is that it maintains a coherent distribution across the prefix. Meanwhile, reserving a small amount of unique sub-prefix, Unq(10)+Sha(20), leads to a better result. Considering there exist both similarities and differences among various tasks, we believe this provides the opportunity to separate the task-specific knowledge into a unique sub-prefix and preserve the common knowledge in the shared sub-prefix. Finally, we find that the performance of different prefix designs becomes closer with the increase of available training data.

The self-adaptive prefix-merging achieves a comparable result with the best manually prefix design. It is not a surprise that self-adaptive prefix-merging outperforms most of the prefix designs and achieves the best result. One thing that is worth noticing is that the effective length for self-adaptive prefix-merging is also around 30 (initialized as 40 and 10 are masked by all tasks), which means the number of parameter maintains equal with other prefix design. Meanwhile, its proportion of shared sub-prefix and unique sub-prefix is similar to the best manual design Unq(10)+Sha(20). This suggests that self-adaptive prefix-merging has the ability to find the best prefix design.

Prefix-merging is better than fine-tuning for integrating and transferring task knowledge to the downstream task. In Table 2, prefix-merging outperforms fine-tuning with two different downstream training approaches. On the one hand, this is because the generalization ability of the LM is preserved when its parameters are frozen. On the other hand, we believe using prefix as the container of new task knowledge is more similar to the natural form of LM. We believe this shows the potential of prefix-merging in many-to-one parameter-transfer learning.

The merged prefix contains effective task knowledge from both auxiliary tasks. The initialization of prefix is believed to have a huge effect on the prefix-tuning based approaches. Here, “unrelated task” stands for the performance when the prefix is well-initialized while containing no knowledge for the target task. Compared to it, using one auxiliary task, either text summarization or QA, achieve a better result. This suggests that the two tasks contribute useful knowledge to query-oriented summarization. More importantly, prefix-merging gets the best performance. And this can be achieved only when the prefix-merging allows the prefix to integrate effective task knowledge from both tasks.

<table>
<thead>
<tr>
<th>Model</th>
<th>R-1</th>
<th>R-2</th>
<th>R-L</th>
</tr>
</thead>
<tbody>
<tr>
<td>–Prefix</td>
<td>26.56</td>
<td>8.19</td>
<td>22.16</td>
</tr>
<tr>
<td>–Prompt</td>
<td>32.48</td>
<td>11.63</td>
<td>28.57</td>
</tr>
<tr>
<td>Unq(10)+Sha(20)</td>
<td>32.64</td>
<td>11.84</td>
<td>28.60</td>
</tr>
<tr>
<td>Sha(40)</td>
<td>32.60</td>
<td>11.74</td>
<td>28.64</td>
</tr>
<tr>
<td>Self-adaptive</td>
<td>33.18</td>
<td>12.01</td>
<td>28.54</td>
</tr>
</tbody>
</table>

Table 4: The experiment result for ablation study with a training data size of 50.

4.4 Ablation Study

For more detailed analysis, we design an experiment to explore how different components contribute to our approach. We remove the prefix (-prefix) and the prompt (-prompt) from during the training of the query-oriented summarization. The prefix design used here is Unq(10)+Sha(20). We can observe that removing the prompt has a small negative influence on the result. We believe this is because the input form of text summarization and QA is different and the model can distinguish the two tasks even without the given prompt. We also find that the performance drops a lot once the prefix is removed. This indicates that the prompt only plays as guidance, while the prefix is the one containing the task-specific knowledge. For self-adaptive prefix-merging, we compare it with its base prefix design without self-adaption, Sha(40). Even with more trainable parameters, self-adaptive prefix-merging still outperforms it. The result shows that prefix embeddings selected by Fisher Information are crucial for the tasks.

4.5 Prefix Visualization

To have a more direct observation, we visualize the attention on the prefix during the inference for query-oriented summarization in Figure 2. We adopt the attention weights passing through the Softmax layer and further normalize the attention.
Attention on the encoder for query-oriented summarization

Attention on the decoder for query-oriented summarization

Figure 2: The attention score for query-oriented summarization in both encoder and decoder of model “Unq(20)+Sha(10)”.

weights only on the prefix embeddings. The final attention score is obtained by averaging attentions from all heads in all layers from 100 random samples. In Figure 2, the x axis refers to the indices of the prefix embedding and y axis is the normalized attention score. The straight lines with colors stand for the position of the three types of sub-prefix, shared sub-prefix (0-9), unique sub-prefix originated from QA (10-19) and unique sub-prefix originated from Summarization (20-29), and their heights refer to the average attention score, which can be considered as the prefix’s contribution to the query-oriented summarization. In this case, it explains how the merged prefix works for query-oriented summarization.

For the decoder, we display the attention in the cross-attention layer. In terms of the encoder, since the model needs to understand the query, we believe it is reasonable that the sub-prefix originated from QA plays the most important role. In terms of the decoder, the sub-prefix originated from QA has little effect on the model, while the shared sub-prefix and sub-prefix originated from summarization dominate. This is because generating the query-oriented summaries relies more on generation ability and summarization ability. These findings suggest that the knowledge from QA and summarization is properly used for query-oriented summarization through the merged prefix.

5 Conclusion

In this paper, we show that prefix-merging is an effective approach for transferring and integrating task knowledge from multiple auxiliary tasks to a target task with limited data. In the context of query-oriented summarization, integrating text summarization and QA, our approach outperforms the traditional approach fine-tuning. We further discuss the influence of different prefix designs and propose a self-adaptive prefix-merging. We also provide a visualize explanation for how the merged prefix works. Although this paper focuses on a specific task, we believe these findings suggest a new application for prompt-based approaches in multi-task situation, providing guidance for future progress in prompting language models.

References

