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Abstract

Query-oriented summarization has been consid-
ered as an important extension for text summa-
rization. It aims to generate a concise highlight
for a given query. Different from text sum-
marization, query-oriented summarization has
long been plagued by the problem of lacking
high-quality large-scale datasets. In this pa-
per, we investigate the idea that whether we
can integrate and transfer the knowledge of text
summarization and question answering to assist
the few-shot learning in query-oriented summa-
rization. Meanwhile, we draw inspiration from
prefix-tuning, whose prefix is considered as
containing task-specific knowledge. Here, we
propose prefix-merging, a prefix-based pretrain-
ing strategy for few-shot learning in natural lan-
guage generation tasks. It allows us to control
and integrate the task knowledge across multi-
ple basic tasks through a proper prefix design
and apply the merged prefix to the downstream
task. With only a small amount of trainable
parameters, prefix-merging outperforms fine-
tuning on the query-oriented summarization
task. We further discuss the influence of dif-
ferent prefix designs and propose a visualized
explanation for how prefix-merging works.

1 Introduction

Query-oriented summarization aims to generate a
concise highlight by summarizing the source docu-
ment(s) with respect to a given query. It has been
a classic research problem in the text summariza-
tion field. It can also be considered as generating a
concise but informative answer in question answer-
ing (QA). Although text summarization has been
widely studied in recent years, there are fewer at-
tempts on exploring query-oriented summarization
(Deng et al., 2020; Su et al., 2020; Xu and Lapata,
2020; Su et al., 2021). We believe one main rea-
son is the lack of datasets. For text summarization,
nature summaries such as titles or headlines are
easy to obtain from news articles, while it is diffi-
cult for query-oriented summarization to find such

type of large-scale data in real life. Meanwhile,
human-written reference summaries have always
been costly. Therefore, it is important to explore
few-shot learning in query-oriented summarization.

Knowledge transferring is a solution for few-
shot learning. For the human, after understanding
the definition of text summarization and QA, we
can quickly learn how to do query-oriented sum-
marization with only a few examples. Such ability
to integrate and transfer the knowledge of known
tasks to relevant new tasks is crucial for human be-
ings to solve problems. It is also interesting to ex-
plore whether the machine has a similar ability. In
parameter-transfer learning, previous work are usu-
ally one-to-one (pre-train then fine-tune (Yosinski
et al., 2014)) or one-to-many (domain/task adap-
tion (Houlsby et al., 2019; Lin et al., 2020)), and
seldom of them focus on many-to-one (integrate
basic tasks to a complex one). Considering query-
oriented summarization like an integration of text
summarization and QA, we believe it is the chance
to explore such task integration problem. In this
case, the large-scale data in the two tasks can be
used to assist the learning of query-oriented sum-
marization.

Recently, prompt-based approaches have at-
tracted a lot of attention. In some of these works,
the prompt/prefix is considered as containing the
knowledge of the given task, which provides us
an explicit way to control the task-specific knowl-
edge previously dispersed in the language model
(LM). For example, prefix-tuning (Li and Liang,
2021) achieved a similar result with fine-tuning by
training only the task-specific prefix, a sequence
of continuous vectors that prepend to the input. In-
spired by this, an intuitive idea is whether we can
integrate the task knowledge from basic tasks to a
complex task through a proper prefix design.

In this paper, we propose prefix-merging, a pre-
trained strategy for few-shot learning in natural lan-
guage generation tasks. Following the framework



proposed by prefix-tuning, we focus on merging
the knowledge from several basic tasks as a single
prefix. Generally, there are two straightforward
ideas for this problem: concatenate the separated
prefix for different tasks as a whole or adopt a
shared prefix for all the tasks. Considering there
exist both similarities and differences across the
tasks, a more flexible prefix design composed of
both task-specific part and shared part is used in
further investigation. Moreover, we propose a self-
adaptive prefix merging that allows the basic tasks
themselves to decide the prefix design. Drawn the
inspiration from (Xu et al., 2021), we adopt Fisher
Information to calculate the importance scores of
the prefix embeddings (basic units for the prefix)
for each basic task. For one task, only the prefix
embeddings with top scores are activated in the fol-
lowing training. Hence, different tasks can adapt
to different parts of prefix automatically. After fin-
ishing training the merged prefix, it is transferred
to a downstream task for few-shot learning. In
the experiment, we explore prefix merging in the
context of query-oriented summarization, taking
PubMedQA (Jin et al., 2019) as the test dataset.

Prefix-merging provides a potential solution for
the few-shot learning in complex tasks that can
be integrated by the basic tasks. Benefited by the
universality of the prompt-based approach, prefix-
merging is not limited by the model architecture
and can be used in both autoregressive LM and
encoder-decoder based LM. We believe this shows
a possible direction to the application of prompt-
based approaches. Our contribution can be summa-
rized as follow:

* We provide a new solution for few-shot query-
oriented summarization utilizing the large-
scale data from text summarization and ques-
tion answering.

* We propose prefix-merging that integrates the
task-specific knowledge from basic tasks to
assist the learning of a more complex task,
which provides a new solution to many-to-one
parameter-transfer learning.

* We further expand the application of prompt-
based approaches by applying the prefix to
multi-task situation, realizing the interaction
between different task knowledge through pre-
fix.

2 Related Work

2.1 Query-oriented Summarization

Query-oriented summarization aims to generate a
concise highlight from the source document(s) ac-
cording to a specific topic or query, which is consid-
ered as a more complex extension of text summa-
rization. Early works (Lin et al., 2010; Shen and Li,
2011) focus on extracting query-related sentences
as summaries, while further works (Wang et al.,
2016; Li and Li, 2014) improve it by rewriting
the extracted sentences with sentence compression.
(Nema et al., 2017; Hasselqvist et al., 2017) pro-
pose neural-abstractive models with an additional
query attention mechanism to generate the sum-
maries with respect to the given query. (Deng et al.,
2020) consider the relation among the query and
source sentences as a multi-hop inference process
and generate the summaries by integrating infor-
mation from different inference steps. Meanwhile,
researchers also utilized QA models to find the pos-
sible query-related evidence in query-oriented sum-
marization. (Su et al., 2020; Xu and Lapata, 2020)
adopts QA models for sentence-level or paragraph-
level answer evidence ranking. (Su et al., 2021)
incorporate answer relevance scores generated by
QA model as explicit fine-grained query relevance
to a transformer-based abstractive summarization
model. Therefore, we believe the text summariza-
tion and QA are the foundation for query-oriented
summarization and choose them as the auxiliary
tasks in this work.

2.2 Prompt-based Approaches

Prompting originally refers to adding instructions
and several examples to a task input and generat-
ing the output from the LM. A fundamental idea
for prompt-based approaches is that let the tasks
adapt to the LM. Some researchers tend to utilize
the idea to improve the performance of the model
by making the form of the task closer to the LM.
A series of works (Petroni et al., 2019; Jiang et al.,
2020; Shin et al., 2020) explore the prompt engi-
neering and prompt ensemble in natural language
understanding tasks. For instance, instead of man-
ually designing prompt, AutoPrompt (Shin et al.,
2020) automatically search for a sequence of dis-
crete words as prompt to extract knowledge from
pre-trained LMs. Other works choose to optimize
the prompt in a continuous space. (Qin and Eisner,
2021; Liu et al., 2021) adopt hand-designed prompt
as initialization and add learnable perturbation on



the prompt. Other researchers choose to find a
parameter-efficient adaption from LM to a specific
task. GPT-3 (Brown et al., 2020) adopts manually
designed task-specific prompts to adapt the LM
for different generation tasks. Prefix-tuning pro-
poses “prefix tuning” for language generation task:
learning a sequence of continuous prefixes that are
inserted to every transformer layer. (Lester et al.,
2021) provides a simplified version of “prefix tun-
ing” with fewer parameters and more robust prompt
initialization on the SuperGLUE tasks. In this
work, following the framework of prefix-tuning,
we aim to integrate basic tasks to a more complex
one by merging the task knowledge through the
prefix.

3 Method
3.1 Problem Statement

Given a target task with limited data and several
related auxiliary tasks, we aim to utilize the task-
specific knowledge from these relevant tasks to
assist the learning in the target task. There are two
steps: a model is first trained on the auxiliary tasks
with a large number of labeled data to obtain the
potentially useful knowledge for the target task;
then the trained model is fine-tuned on the target
task with only a small amount of data. Considering
prefix-tuning has provided an effective approach
for prompt-based text genection 3.3 to 3.6. eration
tasks, we follow its framework and further extend
it to prefix-merging. In section 3.2, we have a brief
introduction about prefix-tuning. And our approach
is shown in s

3.2 Prefix-tuning

Consider there is a transformer-based encoder-
decoder LM p(y|z) such as Bart(Lewis et al., 2019)
and it is parametrized by ¢. Taking the encoder
layer in transformer as an example, let z = [z]
denote the sequence of indices that corresponds to
encoder input tokens.

We use h; to represent the concatenation of all
activation layers at the index ¢. And each activa-
tion consists of a key-value pair. The h; for all
7 € z in encoder layer is a function of z; and the
other activations in the context based on the LM,
as follows:

hi = LMz, hoss) (M

Prefix-tuning prepends a prefix for the encoder
layer to obtain z = [prefix; x|, or prepends pre-

fixes for cross-attention layer or self-attention layer
in the decoder to obtain z = [prefiz;x;y] or
z = [prefiz;y|. Here, Py, refers to the sequence
of prefix embedding indices, and | P;4, | is used to
represent the length of the prefix. A trainable ma-
trix Py € |Pygz| x dim(h;) is initialized to store
the prefix parameters.

B = { Byli. ) if i <|Pasl o

LMy (2, hy;), otherwise

Hence, h; becomes a function of the trainable Py
and it allows the prefix parameters to control the
model by affecting the activations in every layer of
the transformer. The training objective maintains
the same as normal task, but only the prefix param-
eters 6 are trainable and the parameters of the LM
¢ are fixed.

To avoid the unstable optimization problem
when directly optimizing the prefix parameters,
prefix-tuning reparametrize the matrix FPy[i,:] =
MLPy(P,[i,:]) by passing a seed matrix P,
through a feedforward neural network M L FPy. Af-
ter the training, only the prefix matrix Py needs to
be saved and the other parameters can be dropped.

3.3 Intuition for Prefix-merging

Based on the definition of prompt-based ap-
proaches, it is believe that having a proper context
or a set of continuous vector can control the gener-
ation of LM without changing its parameters. This
idea is further extended to using proper prompt or
prefix allows the LM to adapt to different tasks. In
this case, these prompts or prefix is considered to
contain the task-specific knowledge.

Intuitively, to merge the task knowledge from dif-
ferent tasks, the simplest way is to concatenate their
prefix as one. Another way is to use a shared prefix
that is updated by all the tasks. Instead of using ei-
ther of the two ways, we choose a more flexible pre-
fix design for further investigation of the problem.
For each task, its prefix consists of a shared sub-
prefix and a task-specific sub-prefix whose lengths
are controlled by two hyperparameters. We be-
lieve the shared sub-prefix tends to represent the
similarities between all merged tasks, while the
task-specific sub-prefix refers to the uniqueness of
each task. Meanwhile, the two mentioned intuitive
methods can also be restored when any of the two
hyperparameters is set to 0.
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Figure 1: Focusing on the encoder layer of BART, the figure shows annotated examples and comparison between
the prefix-merging (top, mid) on the two auxiliary tasks and applying the merged prefix on the target task with

prefix-tuning (bottom).

3.4 Prefix-merging

Similar to prefix-tuning, a trainable matrix Fjy is
used to store the prefix parameters. The differ-
ence is that there are n different tasks denoted
as [taski,tasks, .., task,] in the prefix-merging
stage and only part of the matrix parameters will
be used for a single task. The prefix for each task
is composed of a task-specific unique sub-prefix
with a length of [,, and a shared sub-prefix with a
length of /5. In this way, the Py has the dimension
of (Is+1y,*n) x dim(h;). Meanwhile, we use P},
to represent the the sequence of prefix embeddlng
indices of task,, and its length | P, | is equal to
ls + 1. As follow, the h; for task,, is calculated
based on the following equation:

e = [0 L]+ [ls+nxly s s+ (n+1)x1l,] (3)

o

Figure 1 shows an example of training two aux-
iliary tasks, text summarization and QA, for prefix-
merging. Here, both the shared sub-prefix length

P[P, [, 1],
LMg(zi, hzi),

if i < | Pyl
otherwise

“4)

and unique sub-prefix length are set to 2. The pre-
fix embedding indices for text summarization is
[1,2,3,4], and it changes to [1,2,5,6] for QA.

To distinguish the different tasks during the train-
ing, we add a task-specific prompt before the origi-
nal input tokens following T5 (Raffel et al., 2019).
As shown in Figure 1, the prompt is “summarize”
for the text summarization and the prompt is “an-
swer the question” for QA.

We also adopt the similar reparametrize strat-
egy to stabilize the training process. One thing
that is worth noticing is that all the sub-prefixes
share the same MLP, and the seed matrices are dif-
ferent. In preliminary experiments, we find that
using multiple MLP for different sub-prefixes also
leads to unstable optimization. During the train-
ing, we adopt a mixed-task training strategy where
instances from different tasks equally exist in the
same training batch.

3.5 Self-adaptive Prefix-merging

Considering that manual design does not always
lead to the best results, we further propose a self-
adaptive prefix merging. Instead of setting lengths
of shared sub-prefix and unique sub-prefix manu-
ally, we aim to let the auxiliary tasks decide the



prefix design. The idea is based on Fisher Infor-
mation, a evaluation metric that reflects how much
changing the parameter will change the model’s
output. It can be considered as the importance of
a parameter for the model on a certain set of data
(Xu et al., 2021). In this way, we can find the most
important sub-prefix for each auxiliary task based
on Fisher Information.

zq:(ﬁlog(p(yklxk;é’)))z 5)

p
= 99

1
Fi=—
pq

j=1k=1
where F{4) refers to the average Fisher information
of the ¢-th prefix embedding, p denotes the number
of parameters in the embedding and q represents
the number of data. = and y refer to the data in a
auxiliary task.

During the training, we first initialize the prefix
as a shared prefix trained by all auxiliary task for
one epoch. Taking task,, as an example, we then
conduct a complete forward propagation and back
propagation (one epoch) for all data in task,, and
calculate the Fisher Information for prefix embed-
dings. Only the top-n prefix embeddings will be
used in the later training for task,, and others will
be masked. In other words, the P} is the indices
of the top-n prefix embeddings. After obtaining
the important sub-prefix for each task, naturally,
some prefix embeddings are shared by different
tasks while others are task-specific. At last, we
continue the training with the selected sub-prefix.

3.6 Applying the Merged Prefix to the Target
Task

After training on the auxiliary tasks, we obtain the
prefix parameters that contain its task knowledge.
We apply the knowledge to the target task by using
the trained prefix as initialization and continuing
prefix-tuning on the target task, but with a few
differences. As shown in Figure 1, all the prefix
parameters are used for the target task including the
shared sub-prefix and all the unique sub-prefixes.
For self-adaptive prefix-merging, only the prefix
embedding that is used for at least one auxiliary
task can be applied for the target task. We also
adopt a new prompt that suggests the relation be-
tween the target task and auxiliary tasks. For query-
oriented summarization, we simply concatenate the
prompt of text summarization and QA as “summa-
rize and answer the question”.

4 Experiment

4.1 Datasets

To evaluate the idea of prefix-merging, we take
query-oriented summary as the target task, text
summarization and QA as two auxiliary tasks.
We focus on a commonly used dataset for single-
document query-oriented summarization: Pub-
MedQA (Jin et al., 2019). The dataset requires
the model to generate a summary containing 1-3
sentences as an answer to a question based on a
medical related document. Since we train the tar-
get task under a few-shot situation, only part of the
training set is used in the experiment and we test
the model on the full testing set containing more
than 20000 data samples. For the text summariza-
tion, we adopt the XSum dataset (Narayan et al.,
2018), a highly abstractive single-document sum-
marization dataset that uses the first sentence of
news articles as summaries. For the QA, we use
the classic machine reading comprehension dataset
SQUAD 1.1 (Rajpurkar et al., 2016). Since the
output of QA is too short for a generation task, we
transform the output from phrases to declarative
sentences by combining the answer and the ques-
tion. For example, given a question “who is B” and
an answer “A”, the transformed output will be “A
is B”.

4.2 Experiment Setting

Our implementation is based on the BART-large
model from HuggingFace Transformer and all the
input is truncated to 512 tokens. For the prefix-
tuning based method, a default setting is a learning
rate of 5x 10~° and a prefix length of 30. The batch
size is set to 48 when conducting prefix-merging,
and for few-shot prefix-tuning, it changes with the
size of the training data. In the experiment, we
also use fine-tune based method as a comparison,
and the default setting for it is a learning rate of
2 x 107 and a batch size of 48. At training time,
we adopt the AdamW optimizer with default hy-
perparameters. At inference time, we use beam
search with a beam size of 2 and the length lim-
itation for the output is set from 30 to 75 tokens.
Since few-shot learning is sensitive to the training
data, we train the models with three sets of random
extracted data and report the average result.

As for evaluation metric, following previous
works, we apply ROUGE (Lin, 2004) including
Rouge-1 (R-1), Rouge-2 (R-2) and Rouge-L (R-L)
for the query-oriented summarization. We adopt



Data Size | 50 | 150 | 300

Model | Rl R2 RL | Rl R2 RL ]| Rl R2 RL
Random 3033 9.96 28.00 | 32.08 11.67 2897|3279 1192 29.51
Unq(30) 30.81 1097 2652|3213 11.73 2823 | 3237 11.86 2781
Unq(20)+Sha(10) | 3236 11.40 28.30 | 33.14 12.12 29.10 | 33.68 1239 29.81
Unq(10)+Sha(20) | 32.64 11.84 28.60 | 33.46 12.34 29.46 | 3390 1259 30.12
Sha(30) 3244 1148 28.17 | 3328 12.04 29.11 | 33.87 1241 29.83
Self-adaptive | 33.18 12.01 28.45 | 33.66 1240 28.98 | 34.19 12.65 29.53

Table 1: Evaluation result (higher is better) for query-oriented summarization on PubMedQA. We compare the

result on three different training data size: 50, 150, 300.

Model | R-1  R2 RL Model | R-1 R2 RL
Fine+Fine 31.65 10.75 28.18 Unrelated Task | 31.34 10.77 27.08
Fine+Prefix 31.64 10.79 27.57 Only Sum 32.38 11.56 27.75
Prefix+Fine 32.03 11.30 28.12 Only QA 31.78 11.39 2843
Prefix+Prefix | 33.18 12.01 28.45 Sum and QA 33.18 12.01 2845

Table 2: The comparison between prefix-merging and
fine-tuning with a training data size of 50.

Py-rouge, a full Python implementation of the
ROUGE-1.5.5, to conduct the experiment.

4.3 Result

We first evaluate the different prefix designs within
three different few-shot learning data sizes (50, 150,
300) for the target task in Table 1. "Unqg(n)" stands
for the prefix contains the unique sub-prefix with
a length n, while "Sha(n)" refer to the shared sub-
prefix. For example, "Unq(10)+Sha(20)" represent
the merged prefix consists of unique sub-prefix
with length 10 (5 for each task) and the shared
sub-prefix with length 20. In terms of the self-
adaptive prefix merging, we initialize the prefix
length as 40 and select the top-25 prefix embed-
dings for each tasks. For a better comparison, we
also add a baseline “random”: randomly initialize
the prefix and conduct few-shot prefix-tuning on
the query-oriented summarization dataset.

In Table 2, we compare the prefix-merging with
fine-tuning. Since it is a two-step training pro-
cess (training on auxiliary tasks then applying on
the target task), each step can adopt prefix-based
(only the prefix parameters are trained) or fine-
tuning (all parameters are trained). Therefore, we
report four variants in total: (1) fine-tuning + fine-
tuning (Fine+Fine); (2) fine-tuning + prefix-tuning

Table 3: The comparison between using different auxil-
iary tasks with a training data size of 50.

(Fine+Prefix); (3) prefix-merging + fine-tuning
(Prefix+Fine); (4) prefix-merging + prefix-tuning
(Prefix+Prefix), which is our proposed approach in
Section 3. Despite the variant (1), we add a prefix
of length 30 to the model. Taking variant (2) as
an example, firstly, both the prefix and the LM are
updated by the training data from auxiliary tasks
and then only the prefix parameter is trained on
the target task. For all the variants, we add the
prompt described in section 3.4 and apply the same
mixed-task training strategy for a fair comparison.

Table 3 displays the result of using different
auxiliary tasks for query-oriented summarization.
“Sum+QA” refers to the best result when using
both text summarization and QA; “Only Sum” and
“only QA” are designed for ablation study where
only one of the two tasks is used in step 1. More-
over, we also import a baseline “Unrelated Task”
that takes sentence copying as the auxiliary task,
which contains no useful task knowledge for query-
oriented summarization. We use prefix-tuning to
train the model when there is only one auxiliary
task.

We summarize the experiment result with the
following conclusions.

Merging the auxiliary tasks with a shared
prefix is better than concatenating them, but



reserving a small amount of unique sub-prefix
leads to a better result. As shown in Table 1,
we find that merging different auxiliary tasks in
a shared prefix is more effective than concatenat-
ing independent task prefix for the downstream
task. Such a trend applies to all three data sizes.
This suggests that a shared prefix has the ability
to cover multiple tasks without any specific de-
sign. Another advantage of using the shared prefix
is that it maintains a coherent distribution across
the prefix. Meanwhile, reserving a small amount
of unique sub-prefix, Unq(10)+Sha(20), leads to
a better result. Considering there exist both sim-
ilarities and differences among various tasks, we
believe this provides the opportunity to separate the
task-specific knowledge into a unique sub-prefix
and preserve the common knowledge in the shared
sub-prefix. Finally, we find that the performance
of different prefix designs becomes closer with the
increase of available training data.

The self-adaptive prefix-merging achieves a
comparable result with the best manually pre-
fix design. It is not a surprise that self-adaptive
prefix-merging outperforms most of the prefix de-
signs and achieves the best result. One thing that is
worth noticing is that the effective length for self-
adaptive prefix-merging is also around 30 (initial-
ized as 40 and 10 are masked by all tasks), which
means the number of parameter maintains equal
with other prefix design. Meanwhile, its proportion
of shared sub-prefix and unique sub-prefix is sim-
ilar to the best manual design Unq(10)+Sha(20).
This suggests that self-adaptive prefix-merging has
the ability to find the best prefix design.

Prefix-merging is better than fine-tuning for
integrating and transferring task knowledge to
the downstream task. In Table 2, prefix-merging
outperforms fine-tuning with two different down-
stream training approaches. On the one hand, this is
because the generalization ability of the LM is pre-
served when its parameters are frozen. On the other
hand, we believe using prefix as the container of
new task knowledge is more similar to the natural
form of LM. We believe this shows the potential of
prefix-merging in many-to-one parameter-transfer
learning.

The merged prefix contains effective task
knowledge from both auxiliary tasks. The ini-
tialization of prefix is believed to have a huge ef-
fect on the prefix-tuning based approaches. Here,
“unrelated task™ stands for the performance when

Model | R1  R2 RL
~Prefix 2656 8.19 2216
—Prompt 3248 11.63 28.57
Unq(10)+Sha(20) | 32.64 11.84 28.60
Sha(40) 3260 11.74 28.54
Self-adaptive 33.18 12.01 2845

Table 4: The experiment result for ablation study with a
training data size of 50.

the prefix is well-initialized while containing no
knowledge for the target task. Compared to it, us-
ing one auxiliary task, either text summarization
or QA, achieve a better result. This suggests that
the two tasks contribute useful knowledge to query-
oriented summarization. More importantly, prefix-
merging gets the best performance. And this can be
achieved only when the prefix-merging allows the
prefix to integrate effective task knowledge from
both tasks.

4.4 Ablation Study

For more detailed analysis, we design an exper-
iment to explore how different components con-
tribute to our approach. We remove the prefix
(-prefix) and the prompt (-prompt) from during
the training of the query-oriented summarization.
The prefix design used here is Unq(10)+Sha(20).
We can observe that removing the prompt has a
small negative influence on the result. We be-
lieve this is because the input form of text sum-
marization and QA is different and the model can
distinguish the two tasks even without the given
prompt. We also find that the performance drops a
lot once the prefix is removed. This indicates that
the prompt only plays as guidance, while the prefix
is the one containing the task-specific knowledge.
For self-adaptive prefix-merging, we compare it
with its base prefix design without self-adaption,
Sha(40). Even with more trainable parameters, self-
adaptive prefix-merging still outperforms it. The
result shows that prefix embeddings selected by
Fisher Information are crucial for the tasks.

4.5 Prefix Visualization

To have a more direct observation, we visualize
the attention on the prefix during the inference for
query-oriented summarization in Figure 2. We
adopt the attention weights passing through the
Softmax layer and further normalize the attention
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Figure 2: The attention score for query-oriented summarization in both encoder and decoder of model

“Unq(20)+Sha(10)”.

weights only on the prefix embeddings. The final
attention score is obtained by averaging attentions
from all heads in all layers from 100 random sam-
ples. In Figure 2, the x axis refers to the indices
of the prefix embedding and y axis is the normal-
ized attention score. The straight lines with colors
stand for the position of the three types of sub-
prefix, shared sub-prefix (0-9), unique sub-prefix
originated from QA (10-19) and unique sub-prefix
originated from Summarization (20-29), and their
heights refer to the average attention score, which
can be considered as the prefix’s contribution to
the query-oriented summarization. In this case, it
explains how the merged prefix works for query-
oriented summarization.

For the decoder, we display the attention in the
cross-attention layer. In terms of the encoder, since
the model needs to understand the query, we be-
lieve it is reasonable that the sub-prefix originated
from QA plays the most important role. In terms
of the decoder, the sub-prefix originated from QA
has little effect on the model, while the shared
sub-prefix and sub-prefix originated from summa-
rization dominate. This is because generating the
query-oriented summaries relies more on genera-
tion ability and summarization ability. These find-
ings suggest that the knowledge from QA and sum-
marization is properly used for query-oriented sum-
marization through the merged prefix.

5 Conclusion

In this paper, we show that prefix-merging is an
effective approach for transferring and integrat-
ing task knowledge from multiple auxiliary tasks
to a target task with limited data. In the context

of query-oriented summarization, integrating text
summarization and QA, our approach outperforms
the traditional approach fine-tuning. We further
discuss the influence of different prefix designs and
propose a self-adaptive prefix-merging. We also
provide a visualize explanation for how the merged
prefix works. Although this paper focuses on a
specific task, we believe these findings suggest a
new application for prompt-based approaches in
multi-task situation, providing guidance for future
progress in prompting language models.
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