
Few-shot Query-oriented Summarization with Prefix-merging

Anonymous ACL submission

Abstract
Query-oriented summarization has been consid-001
ered as an important extension for text summa-002
rization. It aims to generate a concise highlight003
for a given query. Different from text sum-004
marization, query-oriented summarization has005
long been plagued by the problem of lacking006
high-quality large-scale datasets. In this pa-007
per, we investigate the idea that whether we008
can integrate and transfer the knowledge of text009
summarization and question answering to assist010
the few-shot learning in query-oriented summa-011
rization. Meanwhile, we draw inspiration from012
prefix-tuning, whose prefix is considered as013
containing task-specific knowledge. Here, we014
propose prefix-merging, a prefix-based pretrain-015
ing strategy for few-shot learning in natural lan-016
guage generation tasks. It allows us to control017
and integrate the task knowledge across multi-018
ple basic tasks through a proper prefix design019
and apply the merged prefix to the downstream020
task. With only a small amount of trainable021
parameters, prefix-merging outperforms fine-022
tuning on the query-oriented summarization023
task. We further discuss the influence of dif-024
ferent prefix designs and propose a visualized025
explanation for how prefix-merging works.026

1 Introduction027

Query-oriented summarization aims to generate a028

concise highlight by summarizing the source docu-029

ment(s) with respect to a given query. It has been030

a classic research problem in the text summariza-031

tion field. It can also be considered as generating a032

concise but informative answer in question answer-033

ing (QA). Although text summarization has been034

widely studied in recent years, there are fewer at-035

tempts on exploring query-oriented summarization036

(Deng et al., 2020; Su et al., 2020; Xu and Lapata,037

2020; Su et al., 2021). We believe one main rea-038

son is the lack of datasets. For text summarization,039

nature summaries such as titles or headlines are040

easy to obtain from news articles, while it is diffi-041

cult for query-oriented summarization to find such042

type of large-scale data in real life. Meanwhile, 043

human-written reference summaries have always 044

been costly. Therefore, it is important to explore 045

few-shot learning in query-oriented summarization. 046

Knowledge transferring is a solution for few- 047

shot learning. For the human, after understanding 048

the definition of text summarization and QA, we 049

can quickly learn how to do query-oriented sum- 050

marization with only a few examples. Such ability 051

to integrate and transfer the knowledge of known 052

tasks to relevant new tasks is crucial for human be- 053

ings to solve problems. It is also interesting to ex- 054

plore whether the machine has a similar ability. In 055

parameter-transfer learning, previous work are usu- 056

ally one-to-one (pre-train then fine-tune (Yosinski 057

et al., 2014)) or one-to-many (domain/task adap- 058

tion (Houlsby et al., 2019; Lin et al., 2020)), and 059

seldom of them focus on many-to-one (integrate 060

basic tasks to a complex one). Considering query- 061

oriented summarization like an integration of text 062

summarization and QA, we believe it is the chance 063

to explore such task integration problem. In this 064

case, the large-scale data in the two tasks can be 065

used to assist the learning of query-oriented sum- 066

marization. 067

Recently, prompt-based approaches have at- 068

tracted a lot of attention. In some of these works, 069

the prompt/prefix is considered as containing the 070

knowledge of the given task, which provides us 071

an explicit way to control the task-specific knowl- 072

edge previously dispersed in the language model 073

(LM). For example, prefix-tuning (Li and Liang, 074

2021) achieved a similar result with fine-tuning by 075

training only the task-specific prefix, a sequence 076

of continuous vectors that prepend to the input. In- 077

spired by this, an intuitive idea is whether we can 078

integrate the task knowledge from basic tasks to a 079

complex task through a proper prefix design. 080

In this paper, we propose prefix-merging, a pre- 081

trained strategy for few-shot learning in natural lan- 082

guage generation tasks. Following the framework 083

1

proposed by prefix-tuning, we focus on merging084

the knowledge from several basic tasks as a single085

prefix. Generally, there are two straightforward086

ideas for this problem: concatenate the separated087

prefix for different tasks as a whole or adopt a088

shared prefix for all the tasks. Considering there089

exist both similarities and differences across the090

tasks, a more flexible prefix design composed of091

both task-specific part and shared part is used in092

further investigation. Moreover, we propose a self-093

adaptive prefix merging that allows the basic tasks094

themselves to decide the prefix design. Drawn the095

inspiration from (Xu et al., 2021), we adopt Fisher096

Information to calculate the importance scores of097

the prefix embeddings (basic units for the prefix)098

for each basic task. For one task, only the prefix099

embeddings with top scores are activated in the fol-100

lowing training. Hence, different tasks can adapt101

to different parts of prefix automatically. After fin-102

ishing training the merged prefix, it is transferred103

to a downstream task for few-shot learning. In104

the experiment, we explore prefix merging in the105

context of query-oriented summarization, taking106

PubMedQA (Jin et al., 2019) as the test dataset.107

Prefix-merging provides a potential solution for108

the few-shot learning in complex tasks that can109

be integrated by the basic tasks. Benefited by the110

universality of the prompt-based approach, prefix-111

merging is not limited by the model architecture112

and can be used in both autoregressive LM and113

encoder-decoder based LM. We believe this shows114

a possible direction to the application of prompt-115

based approaches. Our contribution can be summa-116

rized as follow:117

• We provide a new solution for few-shot query-118

oriented summarization utilizing the large-119

scale data from text summarization and ques-120

tion answering.121

• We propose prefix-merging that integrates the122

task-specific knowledge from basic tasks to123

assist the learning of a more complex task,124

which provides a new solution to many-to-one125

parameter-transfer learning.126

• We further expand the application of prompt-127

based approaches by applying the prefix to128

multi-task situation, realizing the interaction129

between different task knowledge through pre-130

fix.131

2 Related Work 132

2.1 Query-oriented Summarization 133

Query-oriented summarization aims to generate a 134

concise highlight from the source document(s) ac- 135

cording to a specific topic or query, which is consid- 136

ered as a more complex extension of text summa- 137

rization. Early works (Lin et al., 2010; Shen and Li, 138

2011) focus on extracting query-related sentences 139

as summaries, while further works (Wang et al., 140

2016; Li and Li, 2014) improve it by rewriting 141

the extracted sentences with sentence compression. 142

(Nema et al., 2017; Hasselqvist et al., 2017) pro- 143

pose neural-abstractive models with an additional 144

query attention mechanism to generate the sum- 145

maries with respect to the given query. (Deng et al., 146

2020) consider the relation among the query and 147

source sentences as a multi-hop inference process 148

and generate the summaries by integrating infor- 149

mation from different inference steps. Meanwhile, 150

researchers also utilized QA models to find the pos- 151

sible query-related evidence in query-oriented sum- 152

marization. (Su et al., 2020; Xu and Lapata, 2020) 153

adopts QA models for sentence-level or paragraph- 154

level answer evidence ranking. (Su et al., 2021) 155

incorporate answer relevance scores generated by 156

QA model as explicit fine-grained query relevance 157

to a transformer-based abstractive summarization 158

model. Therefore, we believe the text summariza- 159

tion and QA are the foundation for query-oriented 160

summarization and choose them as the auxiliary 161

tasks in this work. 162

2.2 Prompt-based Approaches 163

Prompting originally refers to adding instructions 164

and several examples to a task input and generat- 165

ing the output from the LM. A fundamental idea 166

for prompt-based approaches is that let the tasks 167

adapt to the LM. Some researchers tend to utilize 168

the idea to improve the performance of the model 169

by making the form of the task closer to the LM. 170

A series of works (Petroni et al., 2019; Jiang et al., 171

2020; Shin et al., 2020) explore the prompt engi- 172

neering and prompt ensemble in natural language 173

understanding tasks. For instance, instead of man- 174

ually designing prompt, AutoPrompt (Shin et al., 175

2020) automatically search for a sequence of dis- 176

crete words as prompt to extract knowledge from 177

pre-trained LMs. Other works choose to optimize 178

the prompt in a continuous space. (Qin and Eisner, 179

2021; Liu et al., 2021) adopt hand-designed prompt 180

as initialization and add learnable perturbation on 181

2

the prompt. Other researchers choose to find a182

parameter-efficient adaption from LM to a specific183

task. GPT-3 (Brown et al., 2020) adopts manually184

designed task-specific prompts to adapt the LM185

for different generation tasks. Prefix-tuning pro-186

poses “prefix tuning” for language generation task:187

learning a sequence of continuous prefixes that are188

inserted to every transformer layer. (Lester et al.,189

2021) provides a simplified version of “prefix tun-190

ing” with fewer parameters and more robust prompt191

initialization on the SuperGLUE tasks. In this192

work, following the framework of prefix-tuning,193

we aim to integrate basic tasks to a more complex194

one by merging the task knowledge through the195

prefix.196

3 Method197

3.1 Problem Statement198

Given a target task with limited data and several199

related auxiliary tasks, we aim to utilize the task-200

specific knowledge from these relevant tasks to201

assist the learning in the target task. There are two202

steps: a model is first trained on the auxiliary tasks203

with a large number of labeled data to obtain the204

potentially useful knowledge for the target task;205

then the trained model is fine-tuned on the target206

task with only a small amount of data. Considering207

prefix-tuning has provided an effective approach208

for prompt-based text genection 3.3 to 3.6. eration209

tasks, we follow its framework and further extend210

it to prefix-merging. In section 3.2, we have a brief211

introduction about prefix-tuning. And our approach212

is shown in s213

3.2 Prefix-tuning214

Consider there is a transformer-based encoder-215

decoder LM p(y|x) such as Bart(Lewis et al., 2019)216

and it is parametrized by ϕ. Taking the encoder217

layer in transformer as an example, let z = [x]218

denote the sequence of indices that corresponds to219

encoder input tokens.220

We use hi to represent the concatenation of all221

activation layers at the index i. And each activa-222

tion consists of a key-value pair. The hi for all223

i ∈ x in encoder layer is a function of zi and the224

other activations in the context based on the LM,225

as follows:226

hi = LMϕ(zi, h̸=i) (1)227

Prefix-tuning prepends a prefix for the encoder228

layer to obtain z = [prefix;x], or prepends pre-229

fixes for cross-attention layer or self-attention layer 230

in the decoder to obtain z = [prefix;x; y] or 231

z = [prefix; y]. Here, Pidx refers to the sequence 232

of prefix embedding indices, and |Pidx| is used to 233

represent the length of the prefix. A trainable ma- 234

trix Pθ ∈ |Pidx| × dim(hi) is initialized to store 235

the prefix parameters. 236

hi =

{
Pθ[i, :], if i ≤ |Pidx|
LMϕ(zi, h̸=i), otherwise

(2) 237

Hence, hi becomes a function of the trainable Pθ 238

and it allows the prefix parameters to control the 239

model by affecting the activations in every layer of 240

the transformer. The training objective maintains 241

the same as normal task, but only the prefix param- 242

eters θ are trainable and the parameters of the LM 243

ϕ are fixed. 244

To avoid the unstable optimization problem 245

when directly optimizing the prefix parameters, 246

prefix-tuning reparametrize the matrix Pθ[i, :] = 247

MLPθ(P
′
θ[i, :]) by passing a seed matrix P

′
θ 248

through a feedforward neural network MLPθ. Af- 249

ter the training, only the prefix matrix Pθ needs to 250

be saved and the other parameters can be dropped. 251

3.3 Intuition for Prefix-merging 252

Based on the definition of prompt-based ap- 253

proaches, it is believe that having a proper context 254

or a set of continuous vector can control the gener- 255

ation of LM without changing its parameters. This 256

idea is further extended to using proper prompt or 257

prefix allows the LM to adapt to different tasks. In 258

this case, these prompts or prefix is considered to 259

contain the task-specific knowledge. 260

Intuitively, to merge the task knowledge from dif- 261

ferent tasks, the simplest way is to concatenate their 262

prefix as one. Another way is to use a shared prefix 263

that is updated by all the tasks. Instead of using ei- 264

ther of the two ways, we choose a more flexible pre- 265

fix design for further investigation of the problem. 266

For each task, its prefix consists of a shared sub- 267

prefix and a task-specific sub-prefix whose lengths 268

are controlled by two hyperparameters. We be- 269

lieve the shared sub-prefix tends to represent the 270

similarities between all merged tasks, while the 271

task-specific sub-prefix refers to the uniqueness of 272

each task. Meanwhile, the two mentioned intuitive 273

methods can also be restored when any of the two 274

hyperparameters is set to 0. 275

3

Unique Prefix Prompt Source text

3 4

Shared Prefix

1 2

h3 h4h1

how graphs are encoded as ...

h2 h8 h9 h10 h11

Prefix-merging with question answering(encoder layer)

Unique Prefix Prompt Source text

3 4

Shared Prefix

1 2

h3 h4h1

The French president told leaders ...

h2 h6 h7

Prefix-merging with text summarization(encoder layer)

Unique Prefix Prompt Source text

3 4 5 7

Shared Prefix

1 2

h3 h4 h5 h6h1

summarize and answer the question does ileoscopy reduce the need ...

8 9 10 116

h2 h7 h8 h9 h10 h11

Few-shot learning for query-oriented summarization(encoder layer)

Shared Prefix
Shared Prefix

QA Prefix
QA Prefix

Sum Prefix
Sum Prefix

Shared Prefix
Shared Prefix

QA Prefix
QA Prefix

Sum Prefix
Sum Prefix

P

P

P x

x

x
5

answer the question

6 7

h5 h6 h7

5

summarize

h5

h12 h13 h14 h15 h16

12 13 14 15 16

h8 h9 h10

6 7 8 9 10

h12

8 9 10 11 12

Prefix Matrix
in prefix-merging

Shared Prefix
Shared Prefix

QA Prefix
QA Prefix

Sum Prefix
Sum Prefix

Figure 1: Focusing on the encoder layer of BART, the figure shows annotated examples and comparison between
the prefix-merging (top, mid) on the two auxiliary tasks and applying the merged prefix on the target task with
prefix-tuning (bottom).

3.4 Prefix-merging276

Similar to prefix-tuning, a trainable matrix Pθ is277

used to store the prefix parameters. The differ-278

ence is that there are n different tasks denoted279

as [task1, task2, .., taskn] in the prefix-merging280

stage and only part of the matrix parameters will281

be used for a single task. The prefix for each task282

is composed of a task-specific unique sub-prefix283

with a length of lu and a shared sub-prefix with a284

length of ls. In this way, the Pθ has the dimension285

of (ls+ lu∗n)×dim(hi). Meanwhile, we use Pn
idx286

to represent the the sequence of prefix embedding287

indices of taskn and its length |Pn
idx| is equal to288

ls + lu. As follow, the hi for taskn is calculated289

based on the following equation:290

Pn
idx = [0 : ls]+[ls+n∗ lu : ls+(n+1)∗ lu] (3)291

hi =

{
P [Pn

idx[i], :], if i ≤ |Pn
idx|

LMϕ(zi, h̸=i), otherwise
(4)292

Figure 1 shows an example of training two aux-293

iliary tasks, text summarization and QA, for prefix-294

merging. Here, both the shared sub-prefix length295

and unique sub-prefix length are set to 2. The pre- 296

fix embedding indices for text summarization is 297

[1,2,3,4], and it changes to [1,2,5,6] for QA. 298

To distinguish the different tasks during the train- 299

ing, we add a task-specific prompt before the origi- 300

nal input tokens following T5 (Raffel et al., 2019). 301

As shown in Figure 1, the prompt is “summarize” 302

for the text summarization and the prompt is “an- 303

swer the question” for QA. 304

We also adopt the similar reparametrize strat- 305

egy to stabilize the training process. One thing 306

that is worth noticing is that all the sub-prefixes 307

share the same MLP, and the seed matrices are dif- 308

ferent. In preliminary experiments, we find that 309

using multiple MLP for different sub-prefixes also 310

leads to unstable optimization. During the train- 311

ing, we adopt a mixed-task training strategy where 312

instances from different tasks equally exist in the 313

same training batch. 314

3.5 Self-adaptive Prefix-merging 315

Considering that manual design does not always 316

lead to the best results, we further propose a self- 317

adaptive prefix merging. Instead of setting lengths 318

of shared sub-prefix and unique sub-prefix manu- 319

ally, we aim to let the auxiliary tasks decide the 320

4

prefix design. The idea is based on Fisher Infor-321

mation, a evaluation metric that reflects how much322

changing the parameter will change the model’s323

output. It can be considered as the importance of324

a parameter for the model on a certain set of data325

(Xu et al., 2021). In this way, we can find the most326

important sub-prefix for each auxiliary task based327

on Fisher Information.328

Fi =
1

pq

p∑
j=1

q∑
k=1

(
∂log(p(yk|xk; θ))

∂θj
)2 (5)329

where F(i) refers to the average Fisher information330

of the i-th prefix embedding, p denotes the number331

of parameters in the embedding and q represents332

the number of data. x and y refer to the data in a333

auxiliary task.334

During the training, we first initialize the prefix335

as a shared prefix trained by all auxiliary task for336

one epoch. Taking taskn as an example, we then337

conduct a complete forward propagation and back338

propagation (one epoch) for all data in taskn, and339

calculate the Fisher Information for prefix embed-340

dings. Only the top-n prefix embeddings will be341

used in the later training for taskn and others will342

be masked. In other words, the Pn
idx is the indices343

of the top-n prefix embeddings. After obtaining344

the important sub-prefix for each task, naturally,345

some prefix embeddings are shared by different346

tasks while others are task-specific. At last, we347

continue the training with the selected sub-prefix.348

3.6 Applying the Merged Prefix to the Target349

Task350

After training on the auxiliary tasks, we obtain the351

prefix parameters that contain its task knowledge.352

We apply the knowledge to the target task by using353

the trained prefix as initialization and continuing354

prefix-tuning on the target task, but with a few355

differences. As shown in Figure 1, all the prefix356

parameters are used for the target task including the357

shared sub-prefix and all the unique sub-prefixes.358

For self-adaptive prefix-merging, only the prefix359

embedding that is used for at least one auxiliary360

task can be applied for the target task. We also361

adopt a new prompt that suggests the relation be-362

tween the target task and auxiliary tasks. For query-363

oriented summarization, we simply concatenate the364

prompt of text summarization and QA as “summa-365

rize and answer the question”.366

4 Experiment 367

4.1 Datasets 368

To evaluate the idea of prefix-merging, we take 369

query-oriented summary as the target task, text 370

summarization and QA as two auxiliary tasks. 371

We focus on a commonly used dataset for single- 372

document query-oriented summarization: Pub- 373

MedQA (Jin et al., 2019). The dataset requires 374

the model to generate a summary containing 1-3 375

sentences as an answer to a question based on a 376

medical related document. Since we train the tar- 377

get task under a few-shot situation, only part of the 378

training set is used in the experiment and we test 379

the model on the full testing set containing more 380

than 20000 data samples. For the text summariza- 381

tion, we adopt the XSum dataset (Narayan et al., 382

2018), a highly abstractive single-document sum- 383

marization dataset that uses the first sentence of 384

news articles as summaries. For the QA, we use 385

the classic machine reading comprehension dataset 386

SQUAD 1.1 (Rajpurkar et al., 2016). Since the 387

output of QA is too short for a generation task, we 388

transform the output from phrases to declarative 389

sentences by combining the answer and the ques- 390

tion. For example, given a question “who is B” and 391

an answer “A”, the transformed output will be “A 392

is B”. 393

4.2 Experiment Setting 394

Our implementation is based on the BART-large 395

model from HuggingFace Transformer and all the 396

input is truncated to 512 tokens. For the prefix- 397

tuning based method, a default setting is a learning 398

rate of 5×10−5 and a prefix length of 30. The batch 399

size is set to 48 when conducting prefix-merging, 400

and for few-shot prefix-tuning, it changes with the 401

size of the training data. In the experiment, we 402

also use fine-tune based method as a comparison, 403

and the default setting for it is a learning rate of 404

2× 10−5 and a batch size of 48. At training time, 405

we adopt the AdamW optimizer with default hy- 406

perparameters. At inference time, we use beam 407

search with a beam size of 2 and the length lim- 408

itation for the output is set from 30 to 75 tokens. 409

Since few-shot learning is sensitive to the training 410

data, we train the models with three sets of random 411

extracted data and report the average result. 412

As for evaluation metric, following previous 413

works, we apply ROUGE (Lin, 2004) including 414

Rouge-1 (R-1), Rouge-2 (R-2) and Rouge-L (R-L) 415

for the query-oriented summarization. We adopt 416

5

Data Size 50 150 300

Model R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

Random 30.33 9.96 28.00 32.08 11.67 28.97 32.79 11.92 29.51

Unq(30) 30.81 10.97 26.52 32.13 11.73 28.23 32.37 11.86 27.81
Unq(20)+Sha(10) 32.36 11.40 28.30 33.14 12.12 29.10 33.68 12.39 29.81
Unq(10)+Sha(20) 32.64 11.84 28.60 33.46 12.34 29.46 33.90 12.59 30.12
Sha(30) 32.44 11.48 28.17 33.28 12.04 29.11 33.87 12.41 29.83

Self-adaptive 33.18 12.01 28.45 33.66 12.40 28.98 34.19 12.65 29.53

Table 1: Evaluation result (higher is better) for query-oriented summarization on PubMedQA. We compare the
result on three different training data size: 50, 150, 300.

Model R-1 R-2 R-L

Fine+Fine 31.65 10.75 28.18
Fine+Prefix 31.64 10.79 27.57
Prefix+Fine 32.03 11.30 28.12
Prefix+Prefix 33.18 12.01 28.45

Table 2: The comparison between prefix-merging and
fine-tuning with a training data size of 50.

Py-rouge, a full Python implementation of the417

ROUGE-1.5.5, to conduct the experiment.418

4.3 Result419

We first evaluate the different prefix designs within420

three different few-shot learning data sizes (50, 150,421

300) for the target task in Table 1. "Unq(n)" stands422

for the prefix contains the unique sub-prefix with423

a length n, while "Sha(n)" refer to the shared sub-424

prefix. For example, "Unq(10)+Sha(20)" represent425

the merged prefix consists of unique sub-prefix426

with length 10 (5 for each task) and the shared427

sub-prefix with length 20. In terms of the self-428

adaptive prefix merging, we initialize the prefix429

length as 40 and select the top-25 prefix embed-430

dings for each tasks. For a better comparison, we431

also add a baseline “random”: randomly initialize432

the prefix and conduct few-shot prefix-tuning on433

the query-oriented summarization dataset.434

In Table 2, we compare the prefix-merging with435

fine-tuning. Since it is a two-step training pro-436

cess (training on auxiliary tasks then applying on437

the target task), each step can adopt prefix-based438

(only the prefix parameters are trained) or fine-439

tuning (all parameters are trained). Therefore, we440

report four variants in total: (1) fine-tuning + fine-441

tuning (Fine+Fine); (2) fine-tuning + prefix-tuning442

Model R-1 R-2 R-L

Unrelated Task 31.34 10.77 27.08
Only Sum 32.38 11.56 27.75
Only QA 31.78 11.39 28.43
Sum and QA 33.18 12.01 28.45

Table 3: The comparison between using different auxil-
iary tasks with a training data size of 50.

(Fine+Prefix); (3) prefix-merging + fine-tuning 443

(Prefix+Fine); (4) prefix-merging + prefix-tuning 444

(Prefix+Prefix), which is our proposed approach in 445

Section 3. Despite the variant (1), we add a prefix 446

of length 30 to the model. Taking variant (2) as 447

an example, firstly, both the prefix and the LM are 448

updated by the training data from auxiliary tasks 449

and then only the prefix parameter is trained on 450

the target task. For all the variants, we add the 451

prompt described in section 3.4 and apply the same 452

mixed-task training strategy for a fair comparison. 453

Table 3 displays the result of using different 454

auxiliary tasks for query-oriented summarization. 455

“Sum+QA” refers to the best result when using 456

both text summarization and QA; “Only Sum” and 457

“only QA” are designed for ablation study where 458

only one of the two tasks is used in step 1. More- 459

over, we also import a baseline “Unrelated Task” 460

that takes sentence copying as the auxiliary task, 461

which contains no useful task knowledge for query- 462

oriented summarization. We use prefix-tuning to 463

train the model when there is only one auxiliary 464

task. 465

We summarize the experiment result with the 466

following conclusions. 467

Merging the auxiliary tasks with a shared 468

prefix is better than concatenating them, but 469

6

reserving a small amount of unique sub-prefix470

leads to a better result. As shown in Table 1,471

we find that merging different auxiliary tasks in472

a shared prefix is more effective than concatenat-473

ing independent task prefix for the downstream474

task. Such a trend applies to all three data sizes.475

This suggests that a shared prefix has the ability476

to cover multiple tasks without any specific de-477

sign. Another advantage of using the shared prefix478

is that it maintains a coherent distribution across479

the prefix. Meanwhile, reserving a small amount480

of unique sub-prefix, Unq(10)+Sha(20), leads to481

a better result. Considering there exist both sim-482

ilarities and differences among various tasks, we483

believe this provides the opportunity to separate the484

task-specific knowledge into a unique sub-prefix485

and preserve the common knowledge in the shared486

sub-prefix. Finally, we find that the performance487

of different prefix designs becomes closer with the488

increase of available training data.489

The self-adaptive prefix-merging achieves a490

comparable result with the best manually pre-491

fix design. It is not a surprise that self-adaptive492

prefix-merging outperforms most of the prefix de-493

signs and achieves the best result. One thing that is494

worth noticing is that the effective length for self-495

adaptive prefix-merging is also around 30 (initial-496

ized as 40 and 10 are masked by all tasks), which497

means the number of parameter maintains equal498

with other prefix design. Meanwhile, its proportion499

of shared sub-prefix and unique sub-prefix is sim-500

ilar to the best manual design Unq(10)+Sha(20).501

This suggests that self-adaptive prefix-merging has502

the ability to find the best prefix design.503

Prefix-merging is better than fine-tuning for504

integrating and transferring task knowledge to505

the downstream task. In Table 2, prefix-merging506

outperforms fine-tuning with two different down-507

stream training approaches. On the one hand, this is508

because the generalization ability of the LM is pre-509

served when its parameters are frozen. On the other510

hand, we believe using prefix as the container of511

new task knowledge is more similar to the natural512

form of LM. We believe this shows the potential of513

prefix-merging in many-to-one parameter-transfer514

learning.515

The merged prefix contains effective task516

knowledge from both auxiliary tasks. The ini-517

tialization of prefix is believed to have a huge ef-518

fect on the prefix-tuning based approaches. Here,519

“unrelated task” stands for the performance when520

Model R-1 R-2 R-L

–Prefix 26.56 8.19 22.16
–Prompt 32.48 11.63 28.57
Unq(10)+Sha(20) 32.64 11.84 28.60

Sha(40) 32.60 11.74 28.54
Self-adaptive 33.18 12.01 28.45

Table 4: The experiment result for ablation study with a
training data size of 50.

the prefix is well-initialized while containing no 521

knowledge for the target task. Compared to it, us- 522

ing one auxiliary task, either text summarization 523

or QA, achieve a better result. This suggests that 524

the two tasks contribute useful knowledge to query- 525

oriented summarization. More importantly, prefix- 526

merging gets the best performance. And this can be 527

achieved only when the prefix-merging allows the 528

prefix to integrate effective task knowledge from 529

both tasks. 530

4.4 Ablation Study 531

For more detailed analysis, we design an exper- 532

iment to explore how different components con- 533

tribute to our approach. We remove the prefix 534

(-prefix) and the prompt (-prompt) from during 535

the training of the query-oriented summarization. 536

The prefix design used here is Unq(10)+Sha(20). 537

We can observe that removing the prompt has a 538

small negative influence on the result. We be- 539

lieve this is because the input form of text sum- 540

marization and QA is different and the model can 541

distinguish the two tasks even without the given 542

prompt. We also find that the performance drops a 543

lot once the prefix is removed. This indicates that 544

the prompt only plays as guidance, while the prefix 545

is the one containing the task-specific knowledge. 546

For self-adaptive prefix-merging, we compare it 547

with its base prefix design without self-adaption, 548

Sha(40). Even with more trainable parameters, self- 549

adaptive prefix-merging still outperforms it. The 550

result shows that prefix embeddings selected by 551

Fisher Information are crucial for the tasks. 552

4.5 Prefix Visualization 553

To have a more direct observation, we visualize 554

the attention on the prefix during the inference for 555

query-oriented summarization in Figure 2. We 556

adopt the attention weights passing through the 557

Softmax layer and further normalize the attention 558

7

Attention on the encoder for query-oriented summarization Attention on the decoder for query-oriented summarization

Figure 2: The attention score for query-oriented summarization in both encoder and decoder of model
“Unq(20)+Sha(10)”.

weights only on the prefix embeddings. The final559

attention score is obtained by averaging attentions560

from all heads in all layers from 100 random sam-561

ples. In Figure 2, the x axis refers to the indices562

of the prefix embedding and y axis is the normal-563

ized attention score. The straight lines with colors564

stand for the position of the three types of sub-565

prefix, shared sub-prefix (0-9), unique sub-prefix566

originated from QA (10-19) and unique sub-prefix567

originated from Summarization (20-29), and their568

heights refer to the average attention score, which569

can be considered as the prefix’s contribution to570

the query-oriented summarization. In this case, it571

explains how the merged prefix works for query-572

oriented summarization.573

For the decoder, we display the attention in the574

cross-attention layer. In terms of the encoder, since575

the model needs to understand the query, we be-576

lieve it is reasonable that the sub-prefix originated577

from QA plays the most important role. In terms578

of the decoder, the sub-prefix originated from QA579

has little effect on the model, while the shared580

sub-prefix and sub-prefix originated from summa-581

rization dominate. This is because generating the582

query-oriented summaries relies more on genera-583

tion ability and summarization ability. These find-584

ings suggest that the knowledge from QA and sum-585

marization is properly used for query-oriented sum-586

marization through the merged prefix.587

5 Conclusion588

In this paper, we show that prefix-merging is an589

effective approach for transferring and integrat-590

ing task knowledge from multiple auxiliary tasks591

to a target task with limited data. In the context592

of query-oriented summarization, integrating text 593

summarization and QA, our approach outperforms 594

the traditional approach fine-tuning. We further 595

discuss the influence of different prefix designs and 596

propose a self-adaptive prefix-merging. We also 597

provide a visualize explanation for how the merged 598

prefix works. Although this paper focuses on a 599

specific task, we believe these findings suggest a 600

new application for prompt-based approaches in 601

multi-task situation, providing guidance for future 602

progress in prompting language models. 603

References 604

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie 605
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind 606
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 607
Askell, Sandhini Agarwal, Ariel Herbert-Voss, 608
Gretchen Krueger, Tom Henighan, Rewon Child, 609
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, 610
Clemens Winter, Christopher Hesse, Mark Chen, Eric 611
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, 612
Jack Clark, Christopher Berner, Sam McCandlish, 613
Alec Radford, Ilya Sutskever, and Dario Amodei. 614
2020. Language models are few-shot learners. 615

Yang Deng, Wenxuan Zhang, and Wai Lam. 2020. 616
Multi-hop inference for question-driven summariza- 617
tion. arXiv preprint arXiv:2010.03738. 618

Johan Hasselqvist, Niklas Helmertz, and Mikael 619
Kågebäck. 2017. Query-based abstractive sum- 620
marization using neural networks. arXiv preprint 621
arXiv:1712.06100. 622

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, 623
Bruna Morrone, Quentin De Laroussilhe, Andrea 624
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. 625
Parameter-efficient transfer learning for nlp. In In- 626
ternational Conference on Machine Learning, pages 627
2790–2799. PMLR. 628

8

http://arxiv.org/abs/2005.14165

Zhengbao Jiang, Frank F Xu, Jun Araki, and Graham629
Neubig. 2020. How can we know what language630
models know? Transactions of the Association for631
Computational Linguistics, 8:423–438.632

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William W633
Cohen, and Xinghua Lu. 2019. Pubmedqa: A dataset634
for biomedical research question answering. arXiv635
preprint arXiv:1909.06146.636

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.637
The power of scale for parameter-efficient prompt638
tuning. arXiv preprint arXiv:2104.08691.639

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan640
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,641
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-642
noising sequence-to-sequence pre-training for natural643
language generation, translation, and comprehension.644
arXiv preprint arXiv:1910.13461.645

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:646
Optimizing continuous prompts for generation. arXiv647
preprint arXiv:2101.00190.648

Yanran Li and Sujian Li. 2014. Query-focused multi-649
document summarization: Combining a topic model650
with graph-based semi-supervised learning. In Pro-651
ceedings of COLING 2014, the 25th International652
Conference on Computational Linguistics: Technical653
Papers, pages 1197–1207.654

Chin-Yew Lin. 2004. Rouge: A package for automatic655
evaluation of summaries. In Text summarization656
branches out, pages 74–81.657

Jimmy Lin, Nitin Madnani, and Bonnie Dorr. 2010.658
Putting the user in the loop: interactive maximal659
marginal relevance for query-focused summarization.660
In Human Language Technologies: The 2010 An-661
nual Conference of the North American Chapter of662
the Association for Computational Linguistics, pages663
305–308.664

Zhaojiang Lin, Andrea Madotto, and Pascale Fung.665
2020. Exploring versatile generative language model666
via parameter-efficient transfer learning. arXiv667
preprint arXiv:2004.03829.668

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,669
Yujie Qian, Zhilin Yang, and Jie Tang. 2021. Gpt670
understands, too. arXiv preprint arXiv:2103.10385.671

Shashi Narayan, Shay B Cohen, and Mirella Lap-672
ata. 2018. Don’t give me the details, just the673
summary! topic-aware convolutional neural net-674
works for extreme summarization. arXiv preprint675
arXiv:1808.08745.676

Preksha Nema, Mitesh Khapra, Anirban Laha, and677
Balaraman Ravindran. 2017. Diversity driven atten-678
tion model for query-based abstractive summariza-679
tion. arXiv preprint arXiv:1704.08300.680

Fabio Petroni, Tim Rocktäschel, Patrick Lewis, An- 681
ton Bakhtin, Yuxiang Wu, Alexander H Miller, and 682
Sebastian Riedel. 2019. Language models as knowl- 683
edge bases? arXiv preprint arXiv:1909.01066. 684

Guanghui Qin and Jason Eisner. 2021. Learning how 685
to ask: Querying lms with mixtures of soft prompts. 686
arXiv preprint arXiv:2104.06599. 687

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 688
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 689
Wei Li, and Peter J Liu. 2019. Exploring the limits 690
of transfer learning with a unified text-to-text trans- 691
former. arXiv preprint arXiv:1910.10683. 692

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and 693
Percy Liang. 2016. Squad: 100,000+ questions 694
for machine comprehension of text. arXiv preprint 695
arXiv:1606.05250. 696

Chao Shen and Tao Li. 2011. Learning to rank for 697
query-focused multi-document summarization. In 698
2011 IEEE 11th International Conference on Data 699
Mining, pages 626–634. IEEE. 700

Taylor Shin, Yasaman Razeghi, Robert L Logan IV, 701
Eric Wallace, and Sameer Singh. 2020. Autoprompt: 702
Eliciting knowledge from language models with 703
automatically generated prompts. arXiv preprint 704
arXiv:2010.15980. 705

Dan Su, Yan Xu, Tiezheng Yu, Farhad Bin Siddique, El- 706
ham J Barezi, and Pascale Fung. 2020. Caire-covid: 707
a question answering and multi-document summa- 708
rization system for covid-19 research. arXiv e-prints, 709
pages arXiv–2005. 710

Dan Su, Tiezheng Yu, and Pascale Fung. 2021. Im- 711
prove query focused abstractive summarization by 712
incorporating answer relevance. arXiv preprint 713
arXiv:2105.12969. 714

Lu Wang, Hema Raghavan, Vittorio Castelli, Radu 715
Florian, and Claire Cardie. 2016. A sentence 716
compression based framework to query-focused 717
multi-document summarization. arXiv preprint 718
arXiv:1606.07548. 719

Runxin Xu, Fuli Luo, Zhiyuan Zhang, Chuanqi Tan, 720
Baobao Chang, Songfang Huang, and Fei Huang. 721
2021. Raise a child in large language model: To- 722
wards effective and generalizable fine-tuning. arXiv 723
preprint arXiv:2109.05687. 724

Yumo Xu and Mirella Lapata. 2020. Coarse-to-fine 725
query focused multi-document summarization. In 726
Proceedings of the 2020 Conference on empirical 727
methods in natural language processing (EMNLP), 728
pages 3632–3645. 729

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod 730
Lipson. 2014. How transferable are features in deep 731
neural networks? arXiv preprint arXiv:1411.1792. 732

9

