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Abstract
Machine reading comprehension (MRC) poses001
new challenges over logical reasoning, which002
aims to understand the implicit logical relations003
entailed in the given contexts and perform in-004
ference over them. Due to the complexity of005
logic, logical relations exist at different granu-006
larity levels. However, most existing methods007
of logical reasoning individually focus on ei-008
ther entity-aware or discourse-based informa-009
tion but ignore the hierarchical relations that010
may even have mutual effects. In this paper, we011
propose a holistic graph network (HGN) which012
deals with context at both discourse level and013
word level, as the basis for logical reasoning,014
to provide a more fine-grained relation extrac-015
tion. Specifically, node-level and type-level016
relations, which can be interpreted as bridges017
in the reasoning process, are modeled by a hi-018
erarchical interaction mechanism to improve019
the interpretation of MRC systems. Experimen-020
tal results on logical reasoning QA datasets021
(ReClor and LogiQA) and natural language in-022
ference datasets (SNLI and ANLI) show the023
effectiveness and generalization of our method,024
and in-depth analysis verifies its capability to025
understand complex logical relations.026

1 Introduction027

Machine reading comprehension (MRC) is a chal-028

lenging task that requires machines to answer a029

question according to given passages (Hermann030

et al., 2015; Rajpurkar et al., 2016, 2018; Lai031

et al., 2017). A variety of datasets have been in-032

troduced to push the development of MRC to a033

more complex and more comprehensive pattern,034

such as conversational MRC (Reddy et al., 2019;035

Choi et al., 2018), multi-hop MRC (Yang et al.,036

2018), and commonsense reasoning (Davis and037

Marcus, 2015; Bhagavatula et al., 2020; Talmor038

et al., 2019; Huang et al., 2019). In particular,039

some recent multi-choice MRC datasets pose even040

greater challenges to the logical reasoning abil-041

ity of models (Yu et al., 2020; Liu et al., 2020a)042

Example (taken from ReClor dataset)

Context: Most lecturers who are effective teachers are eccentric, 

but some non-eccentric lecturers are very effective teachers. In 

addition, every effective teacher is a good communicator.
Question: 

Which one of the following statements follows logically from the 

statements above?

Options:

A: Most lecturers who are good communicators are eccentric. 
B: Some non-eccentric lecturers are effective teachers but are 

not good communicators. 

C: All good communicators are effective teachers. 

D: Some good communicators are eccentric.✓

Figure 1: An example from Reclor dataset. The example
mainly talks about "effective teachers, non-eccentric,
eccentric, good communicator".

which are not easy for humans to do well, either. 043

Firstly, all the supporting details needed for reason- 044

ing are provided by the context, which means there 045

is no additional commonsense or available domain 046

knowledge. Secondly, it is a task of answer selec- 047

tion rather than answer retrieval, which means the 048

best answer is chosen according to their logical fit 049

with the given context and the question, rather than 050

retrieved directly from the context according to the 051

similarity between answers and context. Most im- 052

portantly, the relations entailed in the contexts are 053

much more complex than that of previous MRC 054

datasets owing to the complexity of logic, which 055

is hard to define and formulate. Without a targeted 056

design for those challenges, existing pre-trained 057

models, e.g., BERT, RoBERTa, fail to perform well 058

in such kind of logical reading comprehension sys- 059

tems (Yu et al., 2020; Liu et al., 2020a). 060

Logical reasoning MRC tasks are usually to find 061

an appropriate answer, given a set of context and 062

question. Figure 1 shows an example from ReClor 063

dataset (Yu et al., 2020) which requires logical rea- 064

soning ability to make the correct predictions. As 065

humans, to solve such problems, we usually go 066

through the following steps. Firstly, we divide the 067

context into several fragments and figure out the 068
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Figure 2: An overview of our proposed holistic graph-based reasoning model.

logical relations between each clause, such as tran-069

sition, continuity, contrast, etc. Secondly, we ex-070

tract the important elements in the context, namely,071

the objects and topics described by the context, and072

construct the logical graph with these significant073

elements. Finally, we need to compare the answer074

statement to the mentioned part in the context and075

assess its logical fit with the given context.076

Most existing methods of logical reasoning077

MRC focus on either entity-aware or discourse-078

based information but ignore the hierarchical rela-079

tions that may have mutual effects (Yu et al., 2020;080

Liu et al., 2020a; Wang et al., 2021; Huang et al.,081

2021; Ouyang et al., 2021b). Motivated by the ob-082

servation above, we model logical reasoning chains083

based on a newly proposed holistic graph network084

(HGN) that incorporates the information of element085

discourse units (EDU) (Gao et al., 2020; Ouyang086

et al., 2021a) and key phrases (KPH) extracted087

from context and answer, with effective edge con-088

nection rules to learn both hierarchical features and089

interactions between different granularity levels.090

Our contributions are summarized as follows. (1)091

We design an extraction algorithm to extract EDU092

and KPH elements as the critical basic for logical093

reasoning. (2) We propose a novel holistic graph094

network (HGN) to deal with context at both dis-095

course and word level with hierarchical interaction096

mechanism that yields logic-aware representation097

for reasoning. (3) Experimental results show our098

model’s strong performance improvements over099

baselines, across multiple datasets on logical rea-100

soning QA and NLI tasks. The analysis demon-101

strates that our model has a good generalization102

and transferability, and achieves higher accuracy103

with less training data.104

2 Methodology 105

Logical reasoning MRC tasks aim to find the 106

best answer among several given options based 107

on a piece of context that entails logical rela- 108

tions. Formally, given a natural language con- 109

text C, a question Q, and four potential answers 110

A={A1, A2, A3, A4}. We concatenate them as 111

{C,Q, Ai} pairs. To incorporate the principle of 112

human inference into our method, we propose a 113

holistic graph network (HGN) as shown in Fig- 114

ure 2. Our model works as follows. First, we use 115

EDU and KPH extraction algorithm to get neces- 116

sary KPH nodes ({Pj}) and EDU nodes ({Ej}) 117

from the given pairs. They contain information 118

with different granularity levels and complement 119

each other. Based on the extracted KPH-EDU inter- 120

action information and pre-defined rules, we con- 121

struct the holistic graph. The process of construct- 122

ing the holistic graph is shown in Figure 3. Then 123

we measure the interaction between {Ej} and {Pj} 124

to obtain logic-aware representations for reasoning. 125

2.1 Logical Chain Construction 126

Element Discourse Units (EDU) We use clause- 127

like text spans delimited by logical relations 128

to construct the rhetorical structure of texts. 129

These clause-like discourses can be regarded 130

as element units that reveal the overall logic 131

and emotional tone of the text. For exam- 132

ple, conjunctions like "because” indicate a 133

causal relation which means the following dis- 134

course is likely to be the conclusion we need to 135

pay attention to. Parenthesis and clauses like 136

"who are effective teachers" in Fig- 137

ure 3 play a complementary role in context. Also, 138

punctuation indicates a pause or an end of a sen- 139
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Question: Which one of the following statements follows logically from the statements above?

E6 E7 E8
Answer: Most lecturers who are good communicators are eccentric. 

E1 E2 E3 E4
Context: Most lecturers who are effective teachers are eccentric, but some non-eccentric lecturers are very effective 
teachers. In addition, every effective teacher is a good communicator.

E5

Figure 3: Process of constructing the holistic graph, using KPH-EDU Interaction information and pre-defined rules.

tence, containing semantic transition and turning140

point implicitly. We use an open segmentation141

tool, SEGBOT (Li et al., 2018), to identify the142

element discourse units (EDUs) from the con-143

catenation of context and answer, ignoring144

the question whose structure is simple. Conjunc-145

tions (e.g., "because", "however"), punctua-146

tion and the beginning of parenthesis and clauses147

(e.g., "which", "that") are usually the segment148

points. They are considered as explicit discourse-149

level logical relations.150

To get the initial embedding of EDUs, we in-151

sert an external [CLS] symbol at the start of each152

discourse, and add a [SEP] symbol at the end of153

every type of inputs. Then we use RoBERTa to en-154

code the concatenated tokens. The encoded [CLS]155

token represents the following EDU. Therefore, we156

get the initial embedding of EDUs.157

Key Phrase (KPH) Key Phrases, including key-158

words here, play an important role in context. They159

are usually the object and principle of a context. We160

use the sliding window to generate n-gram word161

list, filtering according to the Stopword list, POS162

tagging, the length of the word, and whether it con-163

tains any number.1 The filtering process is based164

on the following two main criteria:165

(1) If the n-gram contains a stop word or a num-166

ber, then delete it.167

1The stop list is derived by the open-source toolkit Gen-
sim: https://radimrehurek.com/gensim/. The
POS tagging is derived by the open-source toolkit NLTK:
https://www.nltk.org/.

(2) If the length of word is less than the threshold 168

value m, delete it, and if the n-gram length is 1, 169

then only the noun, verb, and adjective are retained. 170

Then, we calculate the TF-IDF features of each 171

n-gram, and select the top-k n-gram as key phrases. 172

k is a hyper-parameter to control the number of 173

KPHs. We restore the selected tokens and retrieve 174

the original expressions containing the key phrase 175

from the original text. For example, as in Figure 176

3, "eccentric" is one of the KPHs, while we 177

retrieve the original expression "eccentric" and 178

"non-eccentric" from the original text. 2 179

Given the token embedding sequence Ki = 180

{t1, . . . , tn} of a KPH with length n, its initial 181

embedding is obtained by 182

Pi =
1

|Ki|
∑
tl∈Ki

tl. (1) 183

Holistic Graph Construction Formally, every 184

input sample is a triplet that consists of a context, a 185

question and a candidate answer. EDU and KPH 186

nodes are extracted in the above way. As shown 187

in Figure 3, we construct a holistic graph with two 188

types of nodes: EDU Nodes (in blue) and KPH 189

Nodes (in green). For edge connections, there are 190

four distinct types of edges between pairs of nodes. 191

• EDU-EDU continue: the two nodes are contex- 192

tually associated in the context and answer. This 193

type of edge is directional. 194

• EDU-EDU overlap: the two nodes contain the 195

same KPH. This type of edge is bidirectional. 196

2The complete algorithm is given in Appendix A.
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• EDU-KPH mention: the EDU mentions the197

KPH. This type of edge is bidirectional.198

• KPH-KPH relate: the two nodes are seman-199

tically related. We define two types of semantic200

relations. One is that the two KPHs are retrieved by201

the same n-gram as described above. The other one202

is that the Cosine similarity between the two KPH203

nodes is greater than a threshold. This type of edge204

is bidirectional and can capture the information of205

word pairs like synonyms and antonyms.206

The construction of the graph is based on in-207

tuitive rules, which will not introduce extra pa-208

rameters or increase model complexity. A further209

parameter comparison is given in Table 4.210

2.2 Hierarchical Interaction Mechanism211

Considering a specific node in the holistic graph,212

neighboring nodes in the same type may carry more213

salient information, thus affecting each other in a214

direct way. In the process, the neighboring nodes215

in the different types may also interact with each216

other. To capture both the node-level and type-217

level attention, we apply a Hierarchical Interaction218

Mechanism to the update of the graph network’s219

representations.220

Graph Preliminary Formally, consider a graph221

G = {V,E}, where V and E represent the sets222

of nodes and edges respectively. A is the adja-223

cency matrix of the graph. Aij > 0 means there224

is an edge from the i-th node to the j-th node.225

We introduce A′ = A + I to take self-attention226

into account. In order to avoid changing the orig-227

inal distribution of the feature when multiplying228

with the adjacency matrix, we normalize A′, set229

Ã = D− 1
2A′D− 1

2 where D is the degree matrix230

of the graph. D = diag{d1, d2 . . . , dn}, di is the231

number of edges attached to the i-th node.232

Now, we calculate the attention score from node233

v′ to node v in the following steps.234

Type Attention Vector We use T (τ) to represent235

all nodes that belong to type τ , and N(v) to repre-236

sent all neighboring nodes that are adjacent to v. T237

is the set of types. Assume that node v belongs to238

T (τ), hµ is the feature of node µ, hτ is the feature239

of type τ which is computed by240

hτ =
∑

µ∈T (τ)

ÃvµWhµ. (2)241

Using the feature of type and node v, we compute 242

the attention score of type τ as: 243

eτ = σ(µT
τ · [Whv ∥ Wτhτ ]). (3) 244

Then, type-level attention weights ατ is obtained 245

by normalizing the attention scores across all the 246

types T with the softmax function. σ is an activate 247

function such as leaky-ReLU. 248

ατ =
exp(σ(µT

τ · [Whv ∥ Wτhτ ]))∑
τ ′∈T exp(σ(µT

τ ′ · [Whv ∥ Wτhτ ′ ]))
.

(4) 249

Node Attention Vector ατ shows the importance 250

of nodes in type τ to node v. While computing the 251

attention score of node v′ that is adjacent to node 252

v, we multiply that by the type attention weights 253

ατ (assume v′ belongs to type τ ). Similarly, node 254

attention weights are obtained by the softmax func- 255

tion across all neighboring nodes. 256

evv′ = σ(νT · ατ [Whv ∥ Whv′ ]), (5) 257

258

αvv′ =
exp(evv′)∑

i∈N(v) exp(evi)
, (6) 259

where ∥ is the concatenation operator and αvv′ is 260

the attention weight from node v′ to v. 261

Update of Node Representation Let h(l)v be the 262

representation of the node v at the l-th layer. Then 263

the layer-wise propagation rule is as follows: 264

h(l+1)
v = σ(

∑
v′∈N(v)

αvv′Wh
(l)
v′ ). (7) 265

2.3 Answer Selector 266

To predict the best answer that fits the logic entailed 267

in the context, we extract the node representations 268

of the last layer of the graph network and feed them 269

into the downstream predictor. For EDU nodes, 270

since the node order implies the occurrence order 271

in the context, we align them with the output of 272

sequence embedding and add to it as a residual part. 273

Therefore, we feed them into a bidirectional gating 274

recurrent unit (BiGRU). 275

H̃E = BiGRU(HE +Hsent) ∈ Rl×d, (8) 276

where HE = [hv′1 , hv′2 , . . . , hv′l ] ∈ Rl×d, v′i be- 277

longs to type EDU. l and d are the sequence length 278

and the feature dimension respectively. Hsent is 279

the output of sequence embedding. 280
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For KPH nodes, we first expand the embed-281

ding of the first [CLS] token to size 1 × d, de-282

noted as Hc. Then, we feed the embedding of283

[CLS] token and features of KPH nodes HK =284

[hv1 , hv2 , . . . , hvn ] ∈ Rn×d (vi is of KPH type)285

into an attention layer.286

αi = wT
α [Hc ∥ hvi ] + bα ∈ R1,

α̃i = softmax(αi) ∈ [0, 1],

H̃c = Wc

∑
i

α̃ihvi + bc ∈ R1×d,
(9)287

where α̃i is the attention weight of node feature hvi .288

wα, bα, Wc, and bc are parameters.289

The output of BiGRU and the output of attention290

layer are concatenated and go through a pooling291

layer, followed by an MLP layer as the predic-292

tor. We take a weighted sum of the concatenation293

as the pooling operation. The predictor is a two-294

layer MLP with a tanh activation. Specially, coarse-295

grained and fine-grained features are further fused296

here to extract more information.297

H̃ = Wp[H̃E ∥ H̃c], p = MLP(H̃) ∈ R, (10)298

where Wp is a learnable parameter, ∥ is the con-299

catenation operator. For each sample, we get300

P = [p1, p2, p3, p4], pi is the probability of i-th301

answer predicted by model.302

The training objective is the cross entropy loss:303

L = − 1

N

N∑
i

log softmax(pyi), (11)304

where yi is the ground-truth choice of sample i. N305

is the number of samples.306

3 Experiment307

3.1 Dataset308

Our evaluation is based on logical reasoning MRC309

benchmarks (ReClor (Yu et al., 2020) and LogiQA310

(Liu et al., 2020a)) and natural language infer-311

ence benchmarks (SNLI (Bowman et al., 2015) and312

ANLI (Nie et al., 2020)). ReClor contains 6,138313

multiple-choice questions modified from standard-314

ized tests. LogiQA has more instances (8678 in315

total) and is derived from expert-written questions316

for testing human logical reasoning ability (Liu317

et al., 2020a). To assess the generalization of mod-318

els on NLI tasks, we test our model on the Stanford319

Natural Language Inference (SNLI) dataset, which320

contains 570k human annotated sentence pairs. The321

Adversarial Natural Language Inference (ANLI) is 322

a new large-scale NLI benchmark dataset, where 323

the instances are chosen to be difficult for the state- 324

of-the-art models such as BERT and RoBERTa. 325

It can be used to evaluate the generalization and 326

robustness of the model.3 327

Implementation details and parameter selection 328

are reported in Appendix C for reproduction.4 329

3.2 Main Result 330

3.2.1 Results on Logical QA 331

Table 1 presents the detailed results on the devel- 332

opment set and the test set of both ReClor and 333

LogiQA datasets. We observe consistent improve- 334

ments over the baselines. HGNROBERTA(B) reaches 335

51.4% of test accuracy on ReClor, and 35.0% of 336

test accuracy on LogiQA, outperforming other ex- 337

isting models. HGNROBERTA(L) reaches 58.7% of 338

test accuracy on ReClor, therein 77.7% on Easy 339

subset and 43.8% on Hard subset, and 39.9% on 340

LogiQA. HGNDEBERTA achieves 72.3% on the test 341

set of ReClor and 44.2% on LogiQA. If using 342

the same pre-trained language models as the back- 343

bones, our proposed model achieves the state-of- 344

the-art results on both ReClor and LogiQA, without 345

extra human annotations. Our model shows great 346

improvement over this task by better utilizing the 347

interaction information , which is ignored by most 348

existing methods. 349

3.2.2 Results on general NLI tasks 350

To verify the generality of our model, we con- 351

duct experiments on two widely used entailment 352

datasets for NLI: SNLI and ANLI, in which exist- 353

ing models rarely emphasized the modeling of log- 354

ical relations. Table 2 compares the performances 355

of HGN and baseline models on the SNLI dataset 356

with the same proportion of training data for fine- 357

tuning. We observe that when given a limited num- 358

ber of training data, our HGN has faster adaptation 359

than baseline models as evidenced by higher perfor- 360

mances in low-resource regimes (e.g., 0.1%, 1%, 361

and 10% of the training data used). HGN also out- 362

performs BERTBASE by 0.3% and RoBERTaLARGE 363

by 0.5% on the full SNLI. We assess the model’s 364

robustness against adversarial attacks, using a stan- 365

dard adversarial NLP benchmark: ANLI, as shown 366

3The statistics information of these datasets are given in
Appendix B.

4Our source codes will be publicly available after the
anonymous review period.
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Model
ReClor LogiQA

Dev Test Test-E Test-H Dev Test

Human ♢ - 63.0 57.1 67.2 - 86.0

RoBERTaBASE
♢ 55.0 48.5 71.1 30.7 33.3⋆ 32.7⋆

HGNROBERTA(B) 56.3(↑1.3) 51.4(↑2.9) 75.2(↑4.1) 32.7(↑2.0) 39.5(↑6.2) 35.0(↑2.3)

RoBERTaLARGE
♢ 62.6 55.6 75.5 40.0 35.0 35.3

DAGN ♢ 65.2 58.2 76.1 44.1 35.5 38.7
DAGN (Aug) ♢ 65.8 58.3 75.9 44.5 36.9 39.3
LReasoner♠ROBERTA 66.2 62.4 81.4 47.5 38.1 40.6

- data augmentation ♠ 65.2 58.3 78.6 42.3 - -
HGNROBERTA(L) 66.4(↑3.8) 58.7(↑3.1) 77.7(↑2.2) 43.8(↑3.8) 40.1(↑5.1) 39.9(↑4.6)

DeBERTa♠ 74.4 68.9 83.4 57.5 44.4 41.5
LReasoner♠DEBERTA 74.6 71.8 83.4 62.7 45.8 43.3
HGNDEBERTA 76.0(↑1.6) 72.3(↑3.4) 84.5(↑1.1) 62.7(↑5.2) 44.9(↑0.5) 44.2(↑2.7)

Table 1: Experimental results (Accuracy: %) of our model compared with baseline models on ReClor and LogiQA
datasets. Test-E and Test-H denote Test-Easy and Test-Hard subclass of the ReClor dataset respectively. The results
in bold are the best performance of all models. ♢ indicates that the results are given by Huang et al. (2021), ♠
indicates the results are given by Wang et al. (2021), ⋆ means that the results come from our own implementation.
ROBERTA(L) and ROBERTA(B) denotes RoBERTa-large and RoBERTa-base, respectively.

% data used
0.1% 1% 10% 100%

Dev Test Dev Test Dev Test Dev Test

BERTBASE 73.2 70.4 77.9 76.8 84.2 83.9 90.8 90.7
RoBERTaLARGE 84.8 82.0 87.6 87.0 89.5 88.8 92.2 91.0
HGNBERT(B) 75.8(↑2.6) 75.4(↑5.0) 81.1(↑3.2) 80.3(↑3.5) 85.4(↑1.2) 83.9(↑0.0) 91.3(↑0.5) 91.0(↑0.3)

HGNROBERTA(L) 85.4(↑0.6) 83.5(↑1.5) 87.6(↑0.0) 87.3(↑0.3) 90.2(↑0.7) 89.4(↑0.6) 92.3(↑0.1) 91.5(↑0.5)

Table 2: Experimental results (Accuracy: %) on the SNLI dataset. We randomly generate the training dataset with
limited size, without changing the size of Dev. and Test set. BERT(B) and ROBERTA(L) denote BERT-base and
RoBERTa-large respectively.
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k number
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Figure 4: Dev. accuracy on the ReClor dataset as the
number of KPH nodes changes.

in Table 3. A1, A2 and A3 are three rounds with in-367

creasing difficulty and data size. ANLI refers to the368

combination of A1, A2 and A3. HGNROBERTA(L)369

gains a 15.2% points in test accuracy of ANLI over370

RoBERTaLARGE, creating state-of-the-art results on 371

all rounds. Results show that our model has a com- 372

prehensive improvement over baseline models, in 373

aspects of faster adaption, higher accuracy and bet- 374

ter robustness. 375

3.3 More Results 376

Interpretation of k In this part, we investigate 377

the sensitivity of parameter k, which is the number 378

of KPH node. Figure 4 shows the accuracies on 379

the development set of our proposed model with 380

different numbers of KPH nodes, which are ex- 381

tracted according to TF-IDF weights. We observe 382

that k = 2 or k = 3 is an appropriate value for our 383

model. This is consistent with our intuition that a 384

paragraph will have 2 to 3 key phrases as its topic. 385

When k is too small or large, the accuracy of the 386

model does not perform well. 387

6



Model
Dev Test

A1 A2 A3 ANLI A1 A2 A3 ANLI

RoBERTaLARGE 74.1 50.8 43.9 55.5 73.8 48.9 44.4 53.7
ALUM♠ 73.3 53.4 48.2 57.7 72.3 52.1 48.4 57.0
InfoBERT♢ 76.4 51.7 48.6 58.3 75.5 51.4 49.8 58.3
HGNROBERTA(L) 76.7(↑2.6) 69.3(↑18.5) 74.5(↑30.6) 71.3(↑15.8) 79.5(↑5.7) 63.4(↑14.5) 76.3(↑31.9) 68.9(↑15.2)

Table 3: Experimental results (Accuracy: %) on the ANLI dataset. Both ALUM and InfoBERT take RoBERTa-large
as the backbone model. ♠ means the results from Liu et al. (2020b). ♢ means the results from Wang et al. (2020).

Model RoBERTa DAGN HGN
Params 356.4M 396.2M 373.4M

Table 4: Statistics of models’ parameters

Model Complexity With well-defined construc-388

tion rules and an appropriate architecture, our389

model enjoys the advantage of high performance390

with fewer parameters. We display the statistics391

of model’s parameters in Table 4. Compared with392

the baseline model (RoBERTaLARGE), the increase393

of our model’s parameters is no more than 4.7%.394

Particularly, our model contains fewer parameters395

and achieves better performance than DAGN.396

3.4 Ablation397

We conduct a series of ablation studies on Graph398

Construction, Hierarchical Interaction Mechanism399

and Answer Selector. Results are shown in Table 5.400

All models use RoBERTa-base as the backbone.401

Holistic Graph Construction The Holistic402

Graph in our model contains two types of nodes403

and four types of edges. We remove the nodes of404

EDU and KPH respectively and the results show405

that the removal hurts the performance badly. The406

accuracies drop to 55.8% and 53.9%. Furthermore,407

we delete one type of edge respectively. The re-408

moval of edge type destroys the integrity of the409

network and may ignore some essential interac-410

tion information between EDUs and KPHs, thus411

causing the drop of the performance.412

Hierarchical Interaction Mechanism Hierar-413

chical Interaction Mechanism helps to capture414

the information contained in different node types.415

When we remove the type-level attention, the416

model is equivalent to a normal Graph Attention417

Network (GAT), ignoring the heterogeneous in-418

formation. As a result, the performance drops to419

54.8%. When we remove both types of attention,420

the performance drops to 55.7%.421

Model Accuracy (%)

HGNBASE 56.3

Graph Construction
- EDU 55.8 (↓0.5)
- KPH 53.9 (↓2.4)
- edge type: E-E continue 53.0 (↓3.3)
- edge type: E-E overlap 54.0 (↓2.3)
- edge type: E-K mention 54.2 (↓2.1)

Hierarchical Interaction
- type-level attention (i.e. GAT) 54.8 (↓1.5)
- both (i.e. GCN) 55.7 (↓0.6)

Answer Selector
- BiGRU 53.2 (↓3.1)
- Attention layer 55.0 (↓1.3)

Table 5: Ablation results on the dev set of ReClor.

Answer Selector We make two changes to the 422

answer selector module: (1) deleting the BiGRU, 423

(2) deleting the attention layer. For (1), the output 424

of EDU features concatenates with the output of 425

the attention layer directly and then are fed into the 426

downstream pooling layer. For (2), we ignore the 427

attention between the KPH features and the whole 428

sentence-level features. The resulting accuracies of 429

(1) and (2) drop to 53.2% and 55%, which verify 430

that the further fusion of features with different 431

granularity is necessary in our proposed model. 432

We further analysed the examples that are pre- 433

dicted correctly by our model but not by baselines, 434

and found that the powerful pre-trained language 435

models, such as RoBERTa, would bias for answers 436

with higher similarity to the context or those con- 437

taining more overlapping words. The model itself 438

does not understand the logical relations, but only 439

compares their common elements for prediction. 440

Instead, our model can not only match synonymic 441

expressions, but also make logical inferences by 442

separating sentences into EDUs and extracting key 443
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phrases and establishing logical relations between444

them. An example is shown in Appendix D.445

4 Related Work446

4.1 Machine Reading Comprehension447

MRC is an AI challenge that requires machines448

to answer questions based on a given passage,449

which has aroused great research interests in the450

last decade (Hermann et al., 2015; Rajpurkar et al.,451

2016, 2018; Lai et al., 2017). Although recent452

systems have reported human-parity performance453

on various benchmarks (Zhang et al., 2020a; Back454

et al., 2020; Zhang et al., 2021) such as SQuAD455

(Rajpurkar et al., 2016, 2018) and RACE (Lai456

et al., 2017), whether the machine has necessar-457

ily achieved human-level understanding remains458

controversial (Zhang et al., 2020b; Sugawara et al.,459

2021). Recently, there is increasing interest in im-460

proving machines’ logical reasoning ability, which461

can be categorized into symbolic approaches and462

neural approaches. Notably, analytical reasoning463

machine (AMR) (Zhong et al., 2021) is a typical464

symbolic method that injects human prior knowl-465

edge to deduce legitimate solutions.466

4.2 Logical Reasoning467

Neural and symbolic methods have been studied468

for logical reasoning (Garcez et al., 2015; Besold469

et al., 2017; Chen et al., 2019b; Ren and Leskovec,470

2020; Huang et al., 2021). Compared with the471

neural methods for logical reasoning, symbolic ap-472

proaches like (Wang et al., 2021) rely heavily on473

dataset-related predefined patterns which entails474

massive manual labor, greatly reducing the gener-475

alizability of models. Also, it could introduce prop-476

agated errors since the final prediction depends on477

the intermediately generated functions. Even if one478

finds the gold programs, executing the program is479

quite a consuming work as the search space is quite480

large and not easy to prune. Therefore, we focus on481

the neural research line in this work, to capture the482

logic clues from the natural language texts, without483

the rely on human expertise and extra annotation.484

Since the logical reasoning MRC task is a new485

task that there are only a few latest studies, we486

broaden the discussion to scope of the related tasks487

that require reasoning, such as commonsense rea-488

soning (Davis and Marcus, 2015; Bhagavatula et al.,489

2020; Talmor et al., 2019; Huang et al., 2019),490

multi-hop QA (Yang et al., 2018) and dialogue rea-491

soning (Cui et al., 2020). Similar to our approach of492

discovering reasoning chains between element dis- 493

course and key phrases, Fang et al. (2020) proposes 494

a hierarchical graph network (HGN) that helps to 495

multi-hop QA. Our method instead avoids the in- 496

corporation of external knowledge and designs the 497

specific pattern for logical reasoning. Discourse- 498

aware graph network (DAGN) proposed by Huang 499

et al. (2021) also uses discourse relations to help 500

logical reasoning. However, only modeling the 501

relation between sentences will ignore more fine- 502

grained information. Focal Reasoner proposed by 503

Ouyang et al. (2021b), covering global and local 504

knowledge as the basis for logic reasoning, is also 505

an effective approach. In contrast, our work is more 506

heuristic and has a lighter architecture. 507

Previous approaches commonly consider the 508

entity-level, sentence-level relations, or heavily rely 509

on external knowledge and fail to capture important 510

interaction information, which are obviously not 511

sufficient to solve the problem (Qiu et al., 2019; 512

Ding et al., 2019; Chen et al., 2019a). Instead, 513

we take advantages of inter-sentence EDUs and 514

intra-sentence KPHs, to construct hierarchical in- 515

teractions for reasoning. The fine-grained holistic 516

features are used for measuring the logical fitness 517

of the candidate answers and the given context. As 518

our method enjoys the benefits of modeling rea- 519

soning chains from riddled texts, our model can 520

be easily extended to other types of reasoning and 521

inference tasks, especially where the given con- 522

text has complex discourse structure and logical 523

relations, like DialogQA, multi-hop QA and other 524

more general NLI tasks. We left all the easy empir- 525

ical verification of our method as future work. 526

5 Conclusion 527

This paper presents a novel method to guide the 528

MRC model to better perform logical reasoning 529

tasks. We propose a holistic graph-based system to 530

model hierarchical logical reasoning chains. To our 531

best knowledge, we are the first to deal with context 532

at both discourse level and phrase level as the basis 533

for logical reasoning. To decouple the interaction 534

between the node features and type features, we 535

apply hierarchical interaction mechanism to yield 536

the appropriate representation for reading compre- 537

hension. On the logical QA benchmarks (ReClor, 538

LogiQA) and natural language inference bench- 539

marks (SNLI and ANLI), our proposed model has 540

been shown effective by significantly outperform- 541

ing the strong baselines. 542
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A KPHs Extraction Algorithm790

Algorithm 1 Key Phrases (KPH) Extraction Algo-
rithm
Require: Input C = {S1, S2, . . . , SI}, n-gram length n,

min word length m, number of Key Phrases k
Ensure: Set of Key phrases with top-k TF-IDF weights K =

{g1, g2, . . . , gk}
1: Obtain the TF-IDF dictionary F = TF-IDF(C)
2: Generate n-gram dictionary G = n-GRAM(C, n)
3: Filter n-gram dictionary G, G̃=FILTER(G,m)
4: Retrieve the original expressions K = RE-

TRIEVE(C,F , G̃, k)
5: procedure TF-IDF(C)
6: for each sentence in C do
7: Filter stop-words in the sentence
8: Calculate the TF-IDF weight for each word
9: end for

10: return TF-IDF dictionary F
11: end procedure
12: procedure n-GRAM(C, n)
13: for each sentence in C do
14: Select all gram g with length n in the sentence
15: Add g to the dictionary G
16: end for
17: return n-gram dictionary G
18: end procedure
19: procedure FILTER(G,m)
20: for each n-gram g in G do
21: if stopwords in g or length(g) is less than m or

there is any number in g then
22: Delete g
23: end if
24: if length(g) is 1 and POStag(g) is not noun, verb,

or adjective then
25: Delete g
26: end if
27: end for
28: return n-gram dictionary G̃
29: end procedure
30: procedure RETRIEVE(C,F , G̃, k)
31: for each g in G̃ do
32: Calculate the sum of the TF-IDF weights of each

word in g, add to a dictionary z = {g : w(g)}
33: end for
34: Rank the top-k n-gram g by TF-IDF weight sum.

Construct key phrases set K = {g1, g2, . . . , gk}
35: if n=1 then
36: for each g in K do
37: gs= STEM(g)
38: Retrieve all the original words from C con-

taining gs, add to K
39: end for
40: end if
41: return Set of Key phrases K = {K1,K2, . . . ,Kk}
42: end procedure

B Dataset Information791

ReClor The Reading Comprehension dataset re-792

quiring logical reasoning (ReClor) is extracted793

from standardized graduate admission examina-794

tions (Yu et al., 2020). It contains 6,138 multiple-795

choice questions modified from standardized tests796

such as GMAT and LSAT and is randomly split into797

train/dev/test sets with 4,638/500/1,000 samples 798

respectively. Multiple types of logical reasoning 799

question are included. 800

LogiQA LogiQA is sourced from expert-written 801

questions for testing human Logical reasoning. It 802

contains 8,678 QA pairs, covering multiple types 803

of deductive reasoning. It is randomly split into 804

train/dev/test sets with 7,376/651/651 samples re- 805

spectively. 806

SNLI The Stanford Natural Language Inference 807

(SNLI) dataset contains 570k human annotated sen- 808

tence pairs, in which the premises are drawn from 809

the captions of the Flickr30 corpus and hypotheses 810

are manually annotated. The full dataset is ran- 811

domly split into 549k/9.8k/9.8k. This is the most 812

widely used entailment dataset for natural language 813

inference. It requires models to take a pair of sen- 814

tence as input and classify their relation types, i.e., 815

ENTAILMENT,NEUTRAL, or CONTRADICTION. 816

ANLI The Adversarial Natural Language Infer- 817

ence (ANLI) is a new large-scale NLI bench- 818

mark dataset, collected via an iterative, adversarial 819

human-and-model-in-the-loop procedure. Specif- 820

ically, the instances are chosen to be difficult 821

for the state-of-the-art models such as BERT and 822

RoBERTa. A1, A2 and A3 are the datasets col- 823

lected in three rounds. A1 and A2 are sampled 824

from Wiki and A3 is from News. It requires models 825

to take a set of context, hyperthesis and reason clas- 826

sify the label (ENTAILMENT,NEUTRAL, or CON- 827

TRADICTION). A1 has 18,946 in total and is split 828

into 16,946/1,000/1,000. A2 has 47,460 in total and 829

is split into 45,460/1,000/1,000. A3 has 102,859 in 830

total and is split into 100,459/1,200/1,200. ANLI 831

refers to the combination of A1, A2 and A3. 832

C Parameter Selection 833

Our model is implemented based on the Transform- 834

ers Library (Wolf et al., 2020). Adam (Kingma and 835

Ba, 2015) is used as our optimizer. The best thresh- 836

old for defining semantic relevance is 0.5. We run 837

10 epochs for ReClor and LogiQA, 5 epochs for 838

SNLI and ANLI, and select the model that achieves 839

the best result in validation. Our models are trained 840

on one 32G NVIDIA Tesla V100 GPU. The train- 841

ing time is around half an hour for each epoch. The 842

maximum sequence length is 256 for ReClor and 843

SNLI, 384 for LogiQA and 128 for ANLI. The 844

weight decay is 0.01. We set the warm-up propor- 845

tion during training to 0.1. We provide training 846
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Example (taken from ReClor dataset, id: val_214)

Context: Almost all dogs that are properly trained are housebroken in 

three weeks. In fact, it only takes more than three weeks to housebreak 
properly trained dogs if the dogs have been previously spoiled by their 
owners. In general, however, most dogs take more than three weeks to 
housebreak.
Question: If all the statements above are true, which of the following 
must also be true?
A: Most dogs take longer than four weeks to be housebroken if they have 
been previously spoiled by their owners.
B: A large proportion of dogs are not properly trained. Our Prediction ✓
C: Most dogs that are housebroken in three weeks have been properly 
trained. RoBERTa Prediction ✗
D: A large proportion of properly trained dogs have been previously 
spoiled by their owners.

P1:properly trained    P2:housebroken     P3:three weeks     P4:dogs

Figure 5: An example showing the logical reasoning capability of our model (Left) and the corresponding attention
map (Right). EDUs are shown in different colors alternately, corresponding to E1-E9 in the attention map.

Dataset PrLM batchsize learning rate

ReClor
RoBERTa-base 24 1e-5
RoBERTa-large 32 8e-6
DeBERTa-xlarge 8 8e-6

LogiQA
RoBERTa-base 2 4e-6
RoBERTa-large 2 8e-6
DeBERTa-xlarge 2 8e-6

SNLI
BERT-base 32 2e-5
RoBERTa-large 32 2e-5

ANLI RoBERTa-large 32 2e-05

Table 6: Parameter Selection

configurations used across our experiments in Ta-847

ble 6.848

D Case Study849

To intuitively show how our model works, we se-850

lect an example from ReClor as shown in Figure 5,851

whose answer is predicted correctly by our model852

but not by baseline models (RoBERTa). The ex-853

ample shows that powerful pre-trained language854

models such as RoBERTa may be better at deal-855

ing with sentence pairs that contain overlap parts856

or similar words. For example, the wrong answer857

chosen by RoBERTa is another expression of the858

first sentence in the given context. The words are859

basically the same, only the order changes. The860

model itself does not understand the logical relation861

between sentences and phrases, but only compares862

their common elements for prediction, failing in863

logical reasoning task. In contrast, our model can864

not only match synonymic expressions, but also 865

make logical inferences by separating sentences 866

into EDUs and extracting key phrases and establish- 867

ing logical relations between them. The importance 868

of those elements are interpreted by the attention 869

distribution as shown in the right part, which is 870

derived from the last layer of our model. 871
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