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Abstract

Multi-hop Question Answering (QA) is a chal-001
lenging task since it requires an accurate ag-002
gregation of information from multiple context003
paragraphs and a thorough understanding of004
the underlying reasoning chains. Recent work005
in multi-hop QA has shown that performance006
can be boosted by first decomposing the ques-007
tions into simpler, single-hop questions. In this008
paper, we explore one additional utility of the009
multi-hop decomposition from the perspective010
of explainable NLP: to create explanation by011
probing a neural QA model with them. We hy-012
pothesize that in doing so, users will be better013
able to construct a mental model of when the014
underlying QA system will give the correct an-015
swer. Through human participant studies, we016
verify that exposing the decomposition probes017
and answers to the probes to users can increase018
their ability to predict system performance on019
a question instance basis. We show that de-020
composition is an effective form of probing QA021
systems as well as a promising approach to ex-022
planation generation. In-depth analyses show023
the need for improvements in decomposition024
systems.025

1 Introduction026

As natural language understanding tasks have be-027

come increasingly complex, the field of explainable028

natural language processing (exNLP) aims to help029

users understand the performance of NLP systems.030

Multi-hop question answering is one such task in031

which questions seemingly require multiple rea-032

soning steps to answer. To accurately answer a033

multi-hop question, one must start by decompos-034

ing the given multi-hop question into simpler sub-035

questions, then try to answer them respectively, and036

finally aggregate together the information obtained037

from all the sub-questions. For instance, consider038

the multi-hop question “What year did the band039

that sang ‘With Or Without You’ form?”. To an-040

swer the question, one must first figure out the band041

How do I know it has  
the right answer?

What year did the band that sang "With or
Without You" form?

1976

U2

Which band sang "With or Without You"?

What year did U2 form?

1976

I think the agent knows  
what it is talking about

Figure 1: An overview of our method. The user wonders
if they are able to trust the answer. Sub-questions are
generated by a decomposer agent (gear) to probe the
question-answering agent.

that sang that song from and then find the year in 042

which that band formed from another context para- 043

graph. A typical approach to multi-hop QA sys- 044

tems is to automatically decompose the question 045

into sub-questions, answer those questions, and 046

then synthesize the answers to the sub-questions 047

to answer the original question (Min et al., 2019; 048

Perez et al., 2020; Khot et al., 2021). 049

From the perspective of explainable NLP, we 050

explore the utility of multi-hop decompositions 051

to create explanations. One role of explanations 052

is to help users construct a mental model of the 053

1



underlying system (Chandrasekaran et al., 2017;054

Chakraborti et al., 2019; Jacovi et al., 2022). In055

doing so, users will be better equipped to know056

when the system answers can be trusted. This is057

especially important for large, general-purpose QA058

systems that can answer a wide range of questions059

but might have greater competencies when answer-060

ing questions about some topics versus others . We061

hypothesize that question decompositions used to062

probe a neural QA model can improve users’ abili-063

ties to predict whether the QA system will answer064

the original question correctly or not.065

Khot (2021) observed that improved decomposi-066

tional reasoning chains for multi-hop QA correlate067

with increased user perceptions of trust, understand-068

ability, and preference. While perceptions of trust069

are important, it is also important that the trust070

is appropriately calibrated (Perkins et al., 2021).071

That is, the user should trust the system when it is072

worthy of that trust. For general-purpose question-073

answering systems built upon large-scale language074

models the ability to accurately answer a question075

is likely to be variable based on the specific ques-076

tion asked.077

How does a user know when to trust a QA sys-078

tem’s answer to a particular question? If just pre-079

sented with an answer, one has no cues from which080

to make an assessment. End-to-end QA systems081

that generate answers and explanations are trained082

to justify the answer as opposed to provide evi-083

dence of the system’s competencies on a topic.084

We introduce probing as an explanation strat-085

egy that helps a user determine whether to trust an086

answer. Probing is a process whereby a model is087

provided similar inputs to determine if its perfor-088

mance is stable when handling related inputs. In089

this work, we show that exposing the decomposi-090

tion probes and answers to the probes to users can091

increase their ability to predict whether the system092

will answer the original question correctly. This093

indicates that users—without knowing the partic-094

ulars of the underlying QA system—are receiving095

actionable cues from which to model the behav-096

ior of the system. Instead of asking for subjective097

perceptions of the overall system, we objectively098

measure the effect of the probes on instance-level099

interactions.100

To the best of our knowledge, this paper is the101

first to show that probing can have a measurable102

impact on users in multi-hop QA. These results103

are also complementary to Tang et al. (2021) who104

Context: Learning, Inc. is an educational software
and hardware company co-founded in 1999 by Texas
businessman Neil Bush and a year later Ken Leonard.
He is the fourth of six children of former President
George H. W. Bush and Barbara Bush (née Pierce).
Question: Who is the mother of the Texas business man
that co-founded Ignite! Learning, Inc?
Answer: Barbara Bush

Sub-question 1: Who is the Texas business man who
co founded Ignite Learning, Inc?
Answer: Neil Bush
Sub-question 2: Who is Neil Bush’s mother?
Answer: Barbara Bush

Table 1: Example from the validation set of HOTPOTQA
(Yang et al., 2018), as well as the associated silver ques-
tion decompositions from Khot et al. (2021).

use decompositions to assess whether multi-hop 105

QA systems successfully go through multiple hops 106

when answering questions. In summary, our main 107

findings are: 108

1. Decomposition is an effective form for prob- 109

ing neural QA models. 110

2. Explanation created by probing the neural QA 111

model with question decompositions can help 112

human construct a mental model on which 113

they can rely to predict the model behavior. 114

3. Quality of decompositions matters—from the 115

explainability perspective, existing question 116

decomposers still have a long way to go. 117

A summary of our method is given in Figure 1. 118

2 Preliminaries 119

2.1 Dataset 120

We use a popular English question-answering / 121

reading comprehension task designed to test multi- 122

hop reasoning: HOTPOTQA (Yang et al., 2018). 123

Examples are given in Table 1. The HOTPOTQA 124

task involves answering questions by finding infor- 125

mation over multiple Wikipedia articles.1 126

2.2 Question Decompositions 127

As a source of high-quality question decomposi- 128

tions and answers, we use the sub-questions and 129

answers provided for a subset of the HOTPOTQA 130

validation set by Khot et al. (2021).2 These sub- 131

questions are generated using distant supervision in 132

the form of task-specific hints to a BART-LARGE 133

1We make simplifying assumptions for this task, detailed
in §2.3.

2https://github.com/allenai/modularqa
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(Lewis et al., 2020) model trained to generate ques-134

tions in the SQUAD 2.0 dataset (Rajpurkar et al.,135

2018). The answers are generated by a ROBERTA-136

LARGE (Liu et al., 2019) model trained on SQUAD137

2.0. These silver sub-question-and-answer pairs138

are relatively high-quality, in that the authors are139

able to use them to train a next-question genera-140

tor that achieves high task performance on HOT-141

POTQA as part of a larger modular system.142

All instances in the validation set have at least143

two sub-questions; certain questions have a third144

math operation sub-question that we abandon as145

this format only suits models with a numerical rea-146

soning module (i.e., not conducive to being asked147

as a probe to the language model). The authors sam-148

pled 5 chains of sub-questions for each instance149

and filtered out noisy ones; we select the first from150

the remaining chains for our probes, and find that151

overall, the sub-questions and answers are of high152

quality and do not vary much across samples. This153

results in 676 instances for HOTPOTQA that have154

a silver question decomposition. Examples of ques-155

tion decompositions are given in Table 1.156

Our choice of tasks is motivated by two factors:157

the existence of high-quality question decompo-158

sitions and answers, and the task labels are not159

limited to predefined categories (such as yes/no),160

which limits the outputs that a fine-tuned gener-161

ative model can produce when probed with sub-162

questions (i.e., if the dataset only contains yes/no163

questions, a model trained on it is unlikely to be164

able to answer sub-questions with anything other165

than yes/no). Future work can focus on extend-166

ing fine-tuning protocols to apply the sub-question167

probing method to datasets with categorical labels.168

2.3 Models169

We fine-tune two popular pretrained models to per-170

form the multi-hop QA tasks: T5-BASE (220M171

parameters; Raffel et al., 2020) and BART-BASE172

(140M parameters; Lewis et al., 2020). Both mod-173

els are built on text-to-text encoder-decoder Trans-174

former (Vaswani et al., 2017) architectures pre-175

trained with denoising objectives. Both models176

treat question-answering tasks as generation tasks,177

making them well-suited for probing since they can178

thus also answer sub-questions in free-form natural179

language (rather than predicting from a fixed set180

of classification labels). We fine-tune the models181

using standard cross-entropy loss to generate the182

answer given the question and context. While one183

Metric Metric (On Subset)

Model EM F1 EM Manual F1

T5 66.73 79.97 70.27 91.27 85.41
BART 62.21 76.18 65.98 88.31 82.12

Table 2: Task performance of pretrained models on the
validation set and a subset of it (see §2.4). “Manual” in-
dicicates our manual annotation for answer correctness,
which is more accurate than EM. A comparable model
on HOTPOTQA (Tu et al., 2020) achieves 61.32 EM
and 74.81 F1 on the full validation set.

subtask for HOTPOTQA is to select the relevant 184

context, i.e., the supporting paragraph from which 185

to extract an answer, we focus on general architec- 186

tures that are not designed for retrieval. Therefore, 187

we provide the gold context paragraph as input. 188

More details, including input-output formatting, 189

are given in Appendix A. 190

The HOTPOTQA leaderboard relies on two met- 191

rics for determining answer correctness, originally 192

from SQUAD (Rajpurkar et al., 2016): exact match 193

(EM), whether the predictions and ground-truth 194

answers match exactly, and F1 score, the (macro- 195

averaged) token-level overlap between a prediction 196

and ground truth answer (treating both as a bag-of- 197

tokens). Using gold context paragraphs, our mod- 198

els achieve comparable performance to standard 199

baselines on the answering task, reported in Ta- 200

ble 2. T5 outperforms BART on both metrics. Our 201

goal is not to build the best model but to establish 202

a model with sufficient performance on questions 203

and sub-questions to test our hypotheses about the 204

effect of question decompositions as explanations. 205

Crucially, we never fine-tune on sub-questions. 206

This allows our probing method to represent what a 207

model that is only trained for the task knows about 208

the task, without introducing any new information 209

that may shift the predictions of the model in favor 210

of the explanation fine-tuning corpus (such as is 211

done in prior work; Roberts et al., 2020). 212

2.4 Probing with Sub-Questions 213

Given the fine-tuned models, we probe on a subset 214

of the validation instances for which we have sil- 215

ver sub-questions—676 instances for HOTPOTQA. 216

This is done at inference-time following the same 217

format as the main task, i.e., by feeding each sub- 218

question for an instance with the instance’s gold 219

context as input to the trained model. For each 220

instance in the dataset, this process results in a 221

tuple of the form: main question (Q), gold con- 222
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text paragraph (C), the model’s predicted answer223

to the main question (A), two silver sub-questions224

(SUB-Q1 and SUB-Q2), and the model’s predicted225

answers to the sub-questions (SUB-A1 and SUB-226

A2).227

To avoid bias introduced by requiring an exact228

token match or determining an F1 cutoff for cor-229

rectness of a model answer, we manually annotate230

the instances (both main and sub-questions) for cor-231

rectness. This leads to a slight increase in accuracy232

due to instances where EM=0 but we determine233

the predicted answer to be correct (e.g., the correct234

answer is “Nashville”, and the model predicted235

“Nashville, Tennessee”). For an example of how236

accuracy numbers change as the result of manual237

annotation, see the 4th and 5th columns of Table 2.238

2.5 Simulatability239

To understand how faithful explanations are to the240

underlying model as reflected by the mental model241

humans can develop of a machine learning sys-242

tem, the explainable AI community has long turned243

to simulatability experiments (Kim et al., 2016;244

Doshi-Velez and Kim, 2017; Ribeiro et al., 2018;245

Nguyen, 2018; Chandrasekaran et al., 2018; Hase246

and Bansal, 2020, inter alia). Doshi-Velez and247

Kim (2017) define “forward simulation/prediction”248

as the task by which “humans are presented with249

an explanation and an input, and must correctly250

simulate the model’s output”. They class this as251

a form of human-grounded evaluation, which has252

strengths over automatic evaluation methods be-253

cause it investigates the understanding of real hu-254

man users, and thus tests the utility of explanations255

in settings closer to true applications. Simulata-256

bility, to date, is one of the only human-grounded257

evaluation methods that tests the interpretability258

of explanation methods rather than human pref-259

erences, and is the most widely used due to its260

versatility.261

We design a simulatability experiment to judge262

the quality of explanations. Here, we define qual-263

ity as fidelity to the underlying model (Wiegreffe264

and Pinter, 2019; Jacovi and Goldberg, 2020) and265

information content that provides sufficient insight266

into the underlying model.267

Our studies are performed using the Prolific268

crowdsourcing platform.3 We randomly select269

a subset of dataset instances from the 676 HOT-270

POTQA validation instances with silver decompo-271

3https://www.prolific.co/

Model Sub-Q
Model Pred. n Accuracy

T5 Correct 617 85.09
Incorrect 59 64.41

BART Correct 597 85.59
Incorrect 79 60.76

Table 3: Combined sub-question task performance, split
by whether the model predicted the main question cor-
rectly or not.

sitions. Participants are paid at $15/hour, and we 272

qualify participants by first giving them a qualifica- 273

tion question and verifying answers manually. We 274

require participants to be located in the U.S. and to 275

speak English as a first language. For each set of 276

experiments, we source a distinct set of participants 277

(no overlap) to avoid any bias in annotations that 278

could occur from seeing past versions of the task 279

or questions. For all experiments, we report Fleiss’ 280

κ (Fleiss, 1971) for binary or nominal data, and 281

Kendall’s τ (Kendall, 1938) for ordinal data. 282

For performance metrics, we report accuracy, F1, 283

precision, recall, and Matthew’s Correlation Coef- 284

ficient (MCC; also known as the phi coefficient 285

outside machine learning). 286

3 Sub-question answering can distinguish 287

incorrect and correct model predictions 288

We first investigate the extent to which performance 289

on sub-question-answering is tied to performance 290

on the main QA tasks. We split the validation set in- 291

stances into two groups: those for which the model 292

predicts the answer for the main question correctly, 293

and those for which it does not. Results are pre- 294

sented in Table 3, which suggests sub-question ac- 295

curacy is indicative of model performance, with 296

a meaningful difference in sub-question accuracy 297

observed between the instances which the model 298

predicts correctly vs. those it does not. 299

4 Sub-question explanations allow 300

humans to predict model behavior 301

Given the correlations between model’s perfor- 302

mance on main QA and sub-QA, we take a step 303

forward to ask: can humans gain any useful in- 304

sight from such correlations? We perform a sim- 305

ulatability experiment to measure how well the 306

sub-question explanations can help humans predict 307

model behaviors on the main HOTPOTQA task. 308

To this end, we design and conduct a human par- 309

ticipant study to investigate crowd annotators’ abil- 310
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ity to make accurate predictions about model per-311

formance given question decompositions as expla-312

nations, following the protocol given in §2.5. We313

select a random 100-instance sample from the 671314

HOTPOTQA validation instances, balanced such315

that the model predicts 50 instances correctly and316

50 incorrectly, and perform the probing procedure317

described in §2.4 on the best-performing model318

(T5-BASE), which results in tuples of the form319

(Q, C, A, SUB-Q1, SUB-A1, SUB-Q2, SUB-A2),320

where all answers A are predicted by the model.321

Our goal is to observe how much the SUB-QA322

explanations help human annotators predict model323

behavior over a baseline that does not include these324

explanations, as well as investigate how the con-325

text (C) & the predicted answer (A) could poten-326

tially impact human’s performance of diagnosing327

model errors. We design five different settings in328

which human participants are provided with differ-329

ent combinations of information. After reading the330

combination of information we present, the partic-331

ipants are asked to make their predictions about332

model’s behavior on the main question (Q), i.e.,333

whether or not the model will be able to correctly334

answer the given Q.335

We recruit 50 participants on Prolific and split336

them into 5 batches, each of which contains 10 par-337

ticipants. Given the 100-instance sample, we split338

it into 5 batches of 20 questions each. We follow339

a Latin Square design, similarly to (Gonzalez and340

Søgaard, 2020), to ensure that each group of par-341

ticipants only sees each set of questions under one342

condition: (Q, A), (Q, A, SUB-Q), (Q, A, SUB-Q,343

SUB-A), (Q, SUB-Q, SUB-A), or (Q, C, SUB-Q,344

SUB-A), yet each condition is tested on both all345

50 annotators and all 100 questions. This ensures346

that no bias in human predictions occurs due to347

having previously seen the questions and model348

predictions. Example of the UI that participants349

see is given in Figure 2. Finally, we collect their350

predictions and compute the performance scores351

using the actual main question’s answer correctness352

as the ground truth.353

Results are presented in Table 4. The average354

inter-annotator agreement is κ = 0.24 . In order355

to ensure that human users are not simply perform-356

ing the HOTPOTQA labelling task themselves, we357

validate this by first providing users with (Q, A)358

pairs, asking them “Do you think the answer to the359

given multi-hop question provided by the question-360

answering system is correct?”. Because they are361

not given the context, C, this serves as a lower 362

bound in quantifying any biases the participants 363

may have about AI systems. 364

We apply the two-sided Mann-Whitney U test 365

(Mann and Whitney, 1947) for statistical signifi- 366

cance on accuracy numbers. Participant accuracy 367

given (Q, A, SUB-Q, SUB-A) is statistically signif- 368

icantly different at p = 0.01 from all other settings, 369

and results in substantially higher performance 370

across all metrics except recall. This demonstrates 371

that our proposed SUB-QA explanation method 372

does help humans make more accurate predictions 373

about model behavior on the main question (Q) 374

than simply seeing model predictions (Q, A). We 375

additionally validate that both sub-questions and 376

sub-answers are important—when we ablate sub- 377

answers, humans do poorly at the simulatability 378

task given (Q, A, SUB-Q), resulting in no signifi- 379

cant performance difference over (Q, A) pairs. 380

Having the answer (A) greatly improves the pre- 381

diction performance, whereas the context (C) does 382

not significantly impact human’s prediction per- 383

formance. Meanwhile, the proved feasibility of 384

human’s making accurate prediction about model 385

behavior using SUB-QA explanations suggests a 386

potential future direction for establishing an alter- 387

native for carrying out real annotation activities in 388

order to diagnose QA system’s error. The benefit of 389

such alternative is obvious: humans will no longer 390

have to conduct the question decomposition and 391

perform the actual multi-hop reading comprehen- 392

sion by themselves. Instead, they may solely rely 393

on or at least gain useful insights from their mental 394

model about the QA system to save time and effort 395

when trying to diagnose the error. 396

5 Quality of question decompositions 397

matters 398

Prior work has shown that predictions from ques- 399

tion decomposition models can improve task per- 400

formance on HOTPOTQA when part of a larger 401

modular system (Min et al., 2019; Perez et al., 402

2020; Khot et al., 2021), but qualitative inspec- 403

tion reveals a lack of quality in many cases. To 404

investigate whether such sub-question-generation 405

models can provide interpretability, we explore the 406

effect of sub-question quality on utility of ques- 407

tion decompositions as explanations in our probing 408

setup. Namely, we conduct simulatability exper- 409

iments and measure performance variation in hu- 410

mans’ ability to guess model predictions based on 411
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Metric

Setting Acc. F1 Precision Recall MCC

(Q, A) 58.171.55 65.741.63 55.361.59 83.482.29 19.153.40
(Q, A, SUB-Q) 56.571.20 62.941.82 53.781.71 79.322.80 15.412.87
(Q, A, SUB-Q, SUB-A) 63.50∗

1.39 68.951.15 60.821.46 82.121.60 29.502.92

(Q, SUB-Q, SUB-A) 53.071.43 61.251.54 52.491.71 76.882.26 8.293.13
(Q, C, SUB-Q, SUB-A) 57.001.66 64.611.62 54.821.72 80.371.78 14.793.67

Table 4: Simulatability performance of human participants on 100 validation instances of HOTPOTQA given
different input combinations. The majority baseline for accuracy is 50.00 since the dataset is fully balanced. All
the statistics are computed by averaging across 50 participants, with standard errors included in subscripts. ∗: The
setting’s accuracy score distribution over 50 annotators is statistically significantly different from all other methods
at p = 0.01 using two-sided Mann-Whitney U tests.

the quality of the SUB-QA explanations they re-412

ceived.413

We use decomposition predictions from three414

trained question decomposers developed as part415

of larger modular QA systems in prior work: a)416

MODULARQA (Khot et al., 2021); b) One-to-417

N Unsupervised Sequence transduction (ONUS;418

Perez et al., 2020); and c) DECOMPRC (Min419

et al., 2019). MODULARQA is a next-question-420

prediction BART-LARGE model trained on the sil-421

ver decompositions described in §2.2. ONUS is422

trained to decompose complex questions from the423

internet into simpler questions using supervision424

from noisy pseudo-decompositions. DECOMPRC425

is trained on a mix of supervision and heuristics to426

create sub-questions from the tokens in the original427

question, framing the task as span prediction. Ex-428

amples of the question decompositions produced by429

each method are in Table 5. ONUS and DECOM-430

PRC always produce two sub-questions; MODU-431

LARQA follows the form of SILVER and thus also432

results in 2 sub-questions per-instance once math433

operations are removed (§2.2).434

We repeat the crowdsourcing process in §4, ran-435

domly sampling a subset of 30 correctly-predicted436

instances and 30 incorrectly-predicted instances437

from the 100 selected in §4. We probe the T5438

model with SUB-Q1 and SUB-Q2 produced by439

each of the 4 sources: {SILVER, MODULARQA,440

ONUS, DECOMPRC}, and collect its SUB-A1,441

SUB-A2 responses. Tuples of (Q, A, SUB-Q1,442

SUB-A1, SUB-Q2, SUB-A2) are presented to 30443

new annotators (who have not participated in previ-444

ous experiments) following the setup in §4, where445

A represents the model’s prediction.446

Similar to §4, we perform a Latin Square de-447

sign by equally splitting the participants and the448

questions into 3 batches, such that each partici-449

pant group only observes each subset of questions 450

under one experimental condition (either MOD- 451

ULARQA, ONUS, or DECOMPRC predictions). 452

Annotator performance metrics at predicting an- 453

swer correctness, averaged across all 30 partici- 454

pants, are presented in Table 6, along with annota- 455

tor performance on the same subset given SILVER 456

sub-questions. The average inter-annotator agree- 457

ment is κ = 0.29. 458

We apply the two-sided Mann-Whitney U test 459

(Mann and Whitney, 1947) for statistical signifi- 460

cance on accuracy numbers. Human performance 461

scores from the trained decomposers are all worse 462

than the SILVER decomposer at a statistically- 463

significantly different level (p = 0.05). This in- 464

dicates that there are still notable gaps between 465

the quality of SILVER’s and other existing decom- 466

posers’ SUB-QA explanations. ONUS question 467

decompositions consistently provide the least ex- 468

planatory power. Despite DECOMPRC’s method- 469

ological simplicity, the explanatory power of its 470

question decompositions is comparable to MOD- 471

ULARQA, though MODULARQA is the highest- 472

performing predictive model overall. This is further 473

supported by statistical significance results, which 474

reveal that both MODULARQA and DECOMPRC 475

are statistically-significantly different from ONUS, 476

but not from one another (p = 0.05). 477

To further investigate the quality differences of 478

different sources of question decompositions as 479

measured by human preferences, we conduct an 480

additional study where participants are asked to 481

rank sources of SUB-QA explanations based on 482

their quality. Specifically, we again recruit 30 new 483

participants and each of them is asked to rank four 484

decomposers’ SUB-QA explanations for 30 ran- 485

dom question samples in terms of three criteria: 486

well-formedness, relatedness, and informativeness. 487
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SILVER (Khot et al., 2021)

Sub-question 1: During what war was Pavillon du Butard occupied by the Prussians?
Sub-question 2: What was the name that the French called the Franco-Prussian War?
MODULARQA (Khot et al., 2021)

Sub-question 1: During what war was the Pavillon du Butard occupied?
Sub-question 2: What is the French name for the Franco-Prussian War?
ONUS (Perez et al., 2020)

Sub-question 1: What is the name the french give to the war?
Sub-question 2: During which war did the prussians occupy the pavillon du butard?
DECOMPRC (Min et al., 2019)

Sub-question 1: which war during which the prussians occupied the pavillon
Sub-question 2: what is the name the french give to Franco-Prussian War du butard?

Table 5: Examples of the question decompositions produced by {SILVER, MODULARQA, ONUS, DECOMPRC}
for the question “What is the name the French give to the war during which the Prussians occupied the Pavillon du
Butard?”.

Metric

Decomposer Acc. F1 Precision Recall MCC

SILVER 63.50∗
1.39 68.951.15 60.821.46 82.121.60 29.502.92

MODULARQA 58.331.94 63.192.06 59.111.54 69.223.07 16.234.22
DECOMPRC 57.67∗1.51 60.901.79 60.331.55 64.613.34 15.643.07
ONUS 53.111.53 52.802.70 55.961.53 54.134.05 6.073.22

Table 6: Simulatability performance of human participants on 60 validation instances of HOTPOTQA, where SUB-Q
is provided by different question decomposers and SUB-A answers are obtained from our T5-BASE model. The
majority baseline for accuracy is 50.00 since the dataset is fully balanced. All but SILVER statistics (copied from
Table 4) are computed by averaging across 30 participants, with standard errors included in subscripts. ∗: The
method’s accuracy score distribution over 30 annotators is statistically significantly different from the method below
it at p = 0.05 using a two-sided Mann-Whitney U test.

Example of the UI that participants see is given in488

Figure 3. Results are presented in Table 7. Inter-489

annotator agreement, as measured by Kendall’s Tau490

(Kendall, 1938), is τ = 0.32. SILVER decomposer491

is consistently preferred under all measurement cri-492

teria; MODULARQA is consistently second-best,493

followed by ONUS and DECOMPRC. This echoes494

results reported in Khot et al. (2021) (who only495

compared MODULARQA to DECOMPRC).496

6 Related Work497

Multiple prior works have concluded that question-498

answering as a form (Gardner et al., 2019) is a good499

choice for probing pretrained models (Roberts500

et al., 2020; Marasović et al., 2021). Roberts et al.501

(2020) fine-tune a model on a dataset of questions502

and answers, but claim this does not introduce new503

information to the model and only teaches form for504

effective QA probing. However, this claim is not505

well-supported, as fine-tuning removes any guaran-506

tees that the questions answered at test-time reflect507

information learned during pre-training alone, and508

is not zero- or few-shot. We avoid this by perform- 509

ing probing in a truly zero-shot manner (i.e., we 510

never fine-tune on sub-questions). Additionally, 511

the method of Roberts et al. (2020) does not probe 512

for instance-level prediction explanations; the au- 513

thors instead use a fixed set of questions on general 514

topics. In our work, we use the instance-level expla- 515

nations we obtain from probing with sub-questions 516

to test whether these explanations give humans an 517

accurate mental model of the system (Jacovi et al., 518

2022). 519

Most related to our work is that of Tang et al. 520

(2021), who also investigate whether model archi- 521

tectures for multi-hop QA can answer single-hop 522

questions. They find that there is a significant per- 523

centage of questions for which the model answers 524

the main question correctly, but cannot correctly 525

answer the multi-hop questions. However, because 526

they use a model to produce question decomposi- 527

tions, their results may be confounded by errors 528

or low quality of the questions themselves, which 529

our work circumvents by using a silver source of 530
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Well-formedness Relatedness Informativeness

Decomposer 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th

SILVER 50.23.3 37.32.9 6.41.3 6.11.2 41.83.0 37.62.7 11.51.4 9.11.3 41.73.0 37.42.8 11.71.3 9.21.3
MODULARQA 35.52.8 45.13.5 12.01.9 7.41.5 37.02.5 36.72.9 14.91.6 11.41.3 36.52.5 38.32.9 14.21.8 11.01.4
ONUS 9.11.3 13.22.0 54.94.5 22.82.2 14.11.3 18.61.6 37.83.6 29.52.2 15.71.5 17.01.6 40.13.4 27.22.0
DECOMPRC 5.21.5 4.41.0 26.72.7 63.73.8 7.11.3 7.11.2 35.82.4 50.03.2 6.11.3 7.31.2 34.02.5 52.63.1

Table 7: Percentages (%) of the time each decomposer is listed in a ranking spot. Human participants rank all four
question decomposers in terms of the well-formedness, relatedness, and informativeness of their corresponding
questions and answers. Each annotator judges the same 30 instances, and results are averaged across 30 annotators.
Subscripts indicate standard errors over 30 annotators.

sub-questions; we also investigate the effect of sub-531

question quality on the final results.532

7 Conclusions533

We have demonstrated the utility of question de-534

composition as an effective means to probe pre-535

trained multi-hop question-answering models for536

supporting evidence. Through simulatability ex-537

periments, we show the effectiveness of this expla-538

nation form at allowing humans to predict model539

behavior, a sign that it helps humans to form an540

accurate mental model of the machine learning sys-541

tem. This ability to predict system performance542

occurs at the instance level instead of a sense of543

trust of the overall system, which can be important544

if the accuracy of the system is variable based on545

the question.546

Our results indicate that explanations based on547

decompositional probes can be beneficial to users548

when the sub-questions are of reasonable quality.549

Our analyses indicate that existing decomposition550

systems, however, have considerable room for im-551

provement. We can now look at the state of re-552

search in decomposition systems not only as to553

whether they improve multi-hop question answer-554

ing, but whether they provide users with more cali-555

brated trust.556

The limitation is the need for higher-quality ques-557

tion decompositions. In future work, we hope to558

investigate and improve upon predictive models559

for question decomposition. We also plan to study560

balanced fine-tuning strategies that enable models561

fine-tuned on tasks of different formats, such as562

yes/no questions, to be probed.563
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A Additional Details767

We use Huggingface Datasets (Lhoest et al., 2021)768

and Huggingface Transformers (Wolf et al., 2020).769

Models are trained with a learning rate linearly de-770

caying from 5E− 5, a batch size of 64, and default771

values for Adam (Kingma and Ba, 2015), gradient772

clipping, and dropout. We train for a maximum 200773

epochs, performing early stopping on the valida-774

tion loss with a patience of 10 epochs. All models775

are trained on a NVIDIA GeForce GTX 1080 GPU776

(8 GB memory) and on average take approximately777

14 hours to train, converging in around 12 epochs. 778

Input-output formatting is: 779

input_string = (f"question: {question} 780
context: {passage}") 781

output_string = (f"{answer}") 782

The HOTPOTQA dataset has 90,447 train and 783

7,405 validation instances. In the HOTPOTQA 784

leaderboard, there are two evaluation settings: dis- 785

tractor and full-wiki. In distractor, models are given 786

10 paragraphs where 2 of them are gold paragraphs 787

needed to answer the question and the other 8 are 788

“distractors”. In the full-wiki setting, models are 789

given the first paragraphs of all Wikipedia articles 790

without the gold paragraphs specified. We do not 791

submit to the leaderboard and thus cannot report 792

test set performance, since we simplify the task and 793

pass the 2 gold context paragraphs as input directly 794

(§2.3) which does not align with either evaluation 795

setting. 796

The Prolific interfaces for the human participant 797

studies conducted in section 4 and section 5 are 798

shown in Figure 2 and Figure 3, respectively. 799
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Figure 2: The Prolific interface for simulatability experiments in section 4.
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Figure 3: The Prolific interface for ranking experiments in section 5.
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