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Abstract

We present a differentiable framework that leverages the
Discrete Empirical Interpolation Method (DEIM) for in-
terpretable deep learning and dynamical system analysis.
Although DEIM efficiently approximates nonlinear terms
in projection-based reduced-order models (POD-ROM), its
fixed interpolation points limit the adaptability to complex
and time-varying dynamics. To address this limitation, we
first develop a differentiable adaptive DEIM formulation for
the one-dimensional viscous Burgers’ equation, which allows
neural networks to dynamically select interpolation points in
a computationally efficient and physically consistent manner.
We then apply DEIM as an interpretable analysis tool for ex-
amining the learned dynamics of a pre-trained Neural Or-
dinary Differential Equation (NODE) on a two-dimensional
vortex-merging problem. The DEIM trajectories reveal phys-
ically meaningful features in the NODE’s learned dynamics
and expose its limitations when extrapolating to unseen flow
configurations. These findings demonstrate that DEIM can
serve not only as a model reduction tool but also as a diag-
nostic framework for understanding and improving the gen-
eralization behavior of neural differential equation models.

Introduction

Machine learning has recently emerged as a powerful tool
for modeling high-dimensional nonlinear dynamical sys-
tems. In particular, neural differential equation models such
as Neural Ordinary Differential Equations (NODEs) provide
a continuous-time formulation for learning the evolution of
physical systems directly from data (Chen et al. 2018). How-
ever, despite their success in reproducing complex dynam-
ics, these models often operate as black boxes, offering lim-
ited interpretability and uncertain generalization when ap-
plied to unseen physical regimes. Developing interpretable
frameworks that can diagnose, analyze, and improve such
models is therefore essential for scientific machine learning.

Projection-based reduced-order modeling (ROM) meth-
ods, such as Proper Orthogonal Decomposition (POD) and
the Discrete Empirical Interpolation Method (DEIM), have
long been used to reduce the computational complexity of
partial differential equations (PDEs) while retaining physi-
cal interpretability. DEIM in particular identifies sparse in-
terpolation points for approximating nonlinear terms effi-
ciently, linking reduced-order dynamics to spatially local-
ized physical structures (Chaturantabut and Sorensen 2010).

However, the original variant of DEIM uses a fixed set of
interpolation points determined offline, which limits its abil-
ity to capture transient and nonlinear phenomena that evolve
dynamically.

To address this limitation, we first propose a differentiable
adaptive DEIM framework that learns to dynamically select
interpolation points in an end-to-end differentiable manner.
Using the one-dimensional viscous Burgers’ equation as a
benchmark, we train a neural network to generate DEIM
sampling matrices using the Gumbel-Softmax estimator, al-
lowing discrete, yet differentiable point selection. This for-
mulation preserves the computational efficiency of DEIM
while allowing adaptivity to changing flow features.

Building on this concept, we further apply DEIM as a tool
for interpretable analysis of learned NODE dynamics in a
two-dimensional vortex-merging problem. The assumption,
here, is that the dynamically identified interpolation points
correspond to ‘important’ locations in the flow-field. By ap-
plying DEIM to windows of snapshots obtained during the
evolution of the trained NODE, we extract trajectories of
representative sampling points and analyze how they evolve
compared to those obtained from ground-truth dynamics.
These trajectories reveal physically meaningful flow struc-
tures and provide direct insight into the NODE’s ability (or
lack thereof) to generalize to unseen flow conditions.

Together, these two components demonstrate the potential
of DEIM not only as a model reduction method but also as a
general-purpose framework for interpretable and physically
consistent analysis of learned dynamical systems.

Background and Related Work
Projection-based Reduced-order Models

Proper Orthogonal Decomposition (POD) is a data-driven
method to construct low-dimensional subspaces that opti-
mally capture the dynamics of high-dimensional systems.
This process includes two steps: snapshot collection and
basis construction. Snapshot collection extracts solutions
u(t;) € R™ from full-order simulations or experiments at
time instances ¢;(¢ = 1,..., N). Then, a basis is identified
via the singular value decomposition (SVD) on the snap-
shot matrix U = [u(t1), ..., u(ty)] € R™¥ to obtain or-
thogonal POD modes ¥ = [Uy,...,¥,,] € R"*™, where
m is the number of truncated POD modes and n >> m.



U;(i = 1,..,m) is ranked by each mode’s energy con-
tent. The number of truncated POD modes is typically de-
termined by setting an energy threshold, such that the re-
tained modes collectively captures a predetermined percent-
age (e.g., 99%) of the total variance (energy) in the dataset.
This is achieved by computing the cumulative sum of the
eigenvalues (or singular values) and selecting the smallest
number of modes for which the cumulative energy exceeds
the chosen threshold. In some cases, additional dynamical or
physical considerations may influence the final selection of
modes.

Using the orthonormal property of these POD modes,
Galerkin projection projects governing equations (e.g. non-
linear PDEs) onto a reduced subspace spanned by these
modes. A nonlinear PDE in Eq. 1,
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where £ ¢ and Ny are linear and nonlinear operators in the

full-order space, respectively, can be approximated using the

POD modes as follows:
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where a = [ay,...,am,] € R™ are temporal POD coeffi-
cients, and u is approximated as u ~ $a = Y " | ;a;
Then, by using the orthonormality of the POD modes, the
final reduced system becomes as follows:

% = L.[a] + UTN}[al], 3)

where L, is a linear operator in the reduced-order space.
This approach preserves system dynamics while reducing
computational cost, because the dimension of a in the re-
duced system, m, is orders of magnitude smaller than that
of u, n in the original full-order system. However, since the
POD modes cannot commute with the nonlinear operator
unlike the linear operator, Ny remains expensive to evalu-
ate in high dimensional systems.

Discrete empirical interpolation

In order to address the complexity of calculating the
nonlinear term in Eq. 3, Discrete Empirical Interpola-
tion Method (DEIM) (Chaturantabut and Sorensen 2010)
approximates Ny[u| using a sparse subset of interpola-
tion points. This method starts by constructing a separate
POD basis ® € R™*! from nonlinear snapshots, U,; =
[Woi(t1), s un(tny)] € RN, Here, [ is the number of
truncated POD modes for nonlinear snapshots, and n > [.
Then, the DEIM sampling matrix, P = [eP!, ..., eP'], where
P € R"*! and eP*(k = 1, ...,1) is a one-hot vector with a
1 at the pg-th entry and zeros elsewhere, is constructed us-
ing a greedy algorithm to select [ interpolation points that
minimize the approximation error. Then, Ny [u] can be ap-
proximated as follows:

Ni[u] =~ &(PT2) ' PTN;[u] )
Eq. 4 reduces the cost of evaluating Ny [u] from O(n) to
O(1), because the nonlinear terms Ny [u] are only calculated

atx,, (k =1,...,1). The sampling matrix P is pre-computed
and fixed during online stage of ROM. Eq. 4 is integrated to
Eq. 3 to get the final form of the PDE in the reduced order
space as follows:

0

o = Lolal + RTO(PTO) PTN (W] (5)
DEIM can reduce the computational cost of POD-

Galerkin frameworks by maintaining a low computational

complexity for the calculation of the nonlinear term. For de-

tails on the DEIM algorithm, the reader is referred to the

previous work (Chaturantabut and Sorensen 2010).

Differentiable Physics

Differentiable physics frameworks aim to seamlessly inte-
grate physical simulation and machine learning by enabling
gradient-based optimization through the governing equa-
tions of dynamical systems (Sanderse et al. 2024). These
frameworks reformulate numerical solvers in a differen-
tiable manner, allowing model parameters to be optimized
via backpropagation while preserving the physical consis-
tency imposed by the underlying PDEs. Differentiability
can be achieved using automatic differentiation, adjoint-
based methods, or source-to-source transformations of ex-
isting solvers. Recent studies have leveraged such frame-
works to train machine learning models for LES turbu-
lence closures, reduced-order model corrections, and bound-
ary conditions in fluid—structure interaction problems (Sirig-
nano and MacArt 2023; Kim et al. 2023; Ahmed and Sti-
nis 2023; Fan and Wang 2024). Ultimately, differentiable
physics bridges the gap between data-driven and physics-
based modeling, providing a unified foundation for inter-
pretable and physically consistent learning.

Neural Ordinary Differential Equations

A neural ordinary differential equation (NODE)(Chen et al.
2018) can be formulated as:

du(t)
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, where u(t) € RY is a state variable in each timestep, and
f(u(t),t,0) is the hidden unit dynamics, which is learned
by neural networks with the parameter 6 and evaluated to
determine the solution with a differential equation solver.
For a nonlinear PDE as in Eq. 1, learning f(u(t), ¢, 6) using
u(t) implies that one learns the entirety of right-hand side of
the PDE including the linear operator £ and the nonlinear
operator N7, which is evaluated at each time step. This can
be expressed as:
du(t)

S = Llu(t)] + Nju(v)] = f(at),660) ()

Adaptive DEIM with differentiable physics

In this section, we present a differentiable adaptive DEIM
framework for interpretable learning. This approach enables
deep neural networks to generate sampling matrices com-
patible with the original DEIM formulation, preserving the
computational efficiency of nonlinear term evaluation in



Figure 1: (a) Velocity contour from the analytic solution; (b)
Velocity contour from the FOM; (¢) Squared error

ROMs while allowing for adaptive and data-driven selection
of interpolation points.

Problem Setup

Eq. 8 represents one-dimensional viscous Burger’s equation,
and it has been a benchmark case for testing new numeri-
cal schemes or machine learning models. This test case in-
cludes quadratic nonlinearity and a moving discontinuous
shock. Here, the Reynolds number Re controls the ratio of
the convection strength to dissipation, therefore, a smaller
Re means a more dissipative flow condition.
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Applying the Cole—Hopf transformation (Cole 1951; Hopf

1950) to the specific initial and boundary conditions given
in Eq. 10 yields the analytical solution shown in Eq. 9.

1\ op(Re/3) exp 4t+4
e \/ cxp(Re/s> exp(R (10)

u(0,t) = 0,u(L,t) =

In this study, we use a dlscretlzed version of Eq. 8 under
boundary and initial conditions as in Eq. 10 as the full-order
model (FOM). Here, the number of points in x-direction is
set to 128, and 2nd-order upwind and central differencing
schemes are used for approximating the advection and dis-
sipation terms, respectively. For time integration, explicit
Strong Stability Preserving Runge-Kutta 3rd order (SSP-
RK3) is used to reduce oscillations and instability of solution
while attaining high-order accuracy (Gottlieb, Shu, and Tad-
mor 2001). The time integration is conducted until ¢ = 2.0,
and the number of time steps is 300. Fig. 1 shows veloc-
ity contour from the analytic solution in Eq. 9 and from the
FOM and MSE error. As seen in the analytic solution in Fig.
1 (a), the discontinuity formed near x = 0.5 at ¢t = 0.0 prop-
agates to x = 1.0, and the magnitude of the discontinuity
gradually decreases as time goes because of the dissipation
term in Eq. 8. FOM solution in Fig. 1 (b) captures these ad-
vection and diffusion of the discontinuity without oscillation
and unstable behavior of solutions. This is also confirmed in
Fig. 1 (c), where oscillations around the discontinuity are not
observed.

&)

Adaptive DEIM formulation

While the original DEIM uses a fixed set of interpolation
points to approximate nonlinear terms during the online

stage of ROM, it may fail to capture transient dynamics
or complex physical phenomena that evolve over time. To
overcome these limitations, we propose a machine learning
(ML)-based adaptive sampling strategy. In the proposed ap-
proach, instead of using a pre-computed, static sampling ma-
trix P, a deep neural network (DNN) is trained to predict the
optimal set of interpolation points at each time step based on
the current system state:

P’ = fy(uy,ar) (11)

, where fy is the DNN with trainable parameters 6, w,
is the current state, a; are the POD coefficients, and P* de-
notes the adaptive interpolation points for the next time step.
However, as mentioned in the previous section, the DEIM
sampling matrix P? consists of | one-hot vectors, while the
outputs of the DNN fy in Eq. 11 have continuous values.
This cannot reduce the computational complexity of calcu-
lating the nonlinear terms, because the nonlinear terms have
to be calculated at every points. One possible way of making
the output of a DNN as a discrete one-hot vectors is to apply
argmax function to the output tensor of the DNN. However,
argmax is not differentiable, so gradients calculated from
the final loss function cannot be backpropagated through the
solver. A well-established approach to approximating dis-
crete outputs in a differentiable manner is to apply temper-
ature scaling to the softmax function(Jang, Gu, and Poole
2016). This technique is notably formalized in the Gumbel-
Softmax estimator, which enables differentiable sampling
of categorical variables by introducing a temperature pa-
rameter into the softmax operation. As the temperature de-
creases, the softmax output becomes increasingly similar to
a one-hot vector, thereby closely approximating discrete se-
lection while preserving differentiability for gradient-based
optimization (Jang, Gu, and Poole 2016). The procedure of
the differentiable adaptive DEIM sampling method is out-
lined as follows.

First, we get a tensor with the same shape as the DEIM
sampling matrix P? as the output of the DNN:

z' = fo(us, ar) (12)
¢

, where z! = [21, ..., zf] € R™*!is the raw output of the
DNN. The proposed DNN architecture is designed as fol-
lows. The network consists of two fully connected hidden
layers, each containing 2,048 units. The first block applies
a linear transformation followed by Layer Normalization,
ReLU activation, and Dropout with a rate of 0.2 to prevent
overfitting. The second block incorporates a residual skip
connection that adds the input of the block to its output, fa-
cilitating gradient flow and stable training. Finally, the out-
put layer projects the extracted features to the target spatial
resolution, which is then reshaped to match the dimensions
of the sampling matrix. Note that the final layer outputs raw
logits without an activation function to be compatible with
the subsequent sampling logic.

In order to approximate the discrete, one-hot structure re-
quired by DEIM while maintaining differentiability during
training, we apply a Gumbel-softmax estimator (Jang, Gu,
and Poole 2016) to each column of the raw output:
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Figure 2: Effect of the temperature parameter 7 on
Gumbel-Softmax samples. Lower values of 7 produce
sharper, nearly one-hot samples, while higher values lead to
smoother and more uniform distributions.
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(13)
, where IT' = 7! (i = 1,...,1) € R"*! denotes the Gumbel-
softmax distribution for choosing each interpolation point,
and the softmax temperature 7 is a positive scalar controlling
the sharpness of the output distribution. Fig. 2 shows exam-
ple Gumbel-Softmax distributions of sampled values under
different temperature parameters. By setting a low temper-
ature (e.g., 7 = 0.3), the softmax output becomes sharply
peaked, closely approximating a one-hot vector while re-
maining differentiable. This allows the model to be trained
end-to-end using gradient-based optimization.

The total loss function L;,4; used for training is defined
as a linear combination of the reconstruction error L,.ccon
for the time-evolved snapshots and the spectral error L fr.eq
in the frequency domain, as shown in Eq. 14.

»Ctotal = ﬁrecon +A- »Cf'r‘eq (14

Here, L,ccon denotes the Root Mean Square Error
(RMSE) between the predicted and target values, while
Lfreq represents Li-norm of the FFT-transformed coeffi-
cients, designed to preserve high-frequency information es-
sential for simulating rapid changes such as moving shocks.
The hyperparameter A controls the trade-off between two
terms.

While we use a Gumbel-Softmax distribution to enable
differentiability during training, we apply the argmax oper-
ation to the output probability distribution during inference
to obtain a discrete selection of interpolation points. This ap-
proach is widely adopted in machine learning, particularly
in classification tasks, where the model outputs a probabil-
ity distribution via softmax over possible classes, and the
final predicted class is chosen as the one corresponding to
the highest probability (i.e., the index with the maximum
value). In our formulation, applying argmax during infer-
ence effectively restores the one-hot structure required for

DEIM as follows:

p'=[p},....pl] = [argmaxwéj)’t,...,argmaxwlu)"t]
J J
15)
where p! = [p},...,pl] € R™*! denotes the indices of the
selected interpolation points. Then, the ML-based adaptive
DEIM sampling matrix, P%,;, can be constructed as fol-
lows:

Pl = [eP, .., eM] (16)

This approach enables DNNs to generate DEIM sampling
matrices that are compatible with the original DEIM frame-
work, thus preserving the computational efficiency for the
evaluation of nonlinear terms during the online stage of
ROM, while also allowing for adaptive and data-driven se-
lection of interpolation points.

Results

When applying DEIM to the POD-ROM as in Eq. 5, the
numbers of POD modes for the full solution field, m, and for
the nonlinear terms, [, must be determined. We set m = 12
and [ = 24, and train the adaptive DEIM model to com-
pare its performance with the standard DEIM under the same
ROM parameters. In addition, the temperature parameter for
the Gumbel-Softmax distribution is set to 7 = 0.3 and fixed
during training, and the hyperparameter A for the loss func-
tion in Eq. 14 is set to A = 0.001. Fig. 3 shows the ve-
locity contours obtained from the original DEIM and the
trained adaptive DEIM model, along with the corresponding
errors relative to the full-order model (FOM) results. The
original DEIM model exhibits large errors along the discon-
tinuity throughout the entire simulation, whereas the adap-
tive DEIM model significantly reduces the errors in that re-
gion. Fig. 4 presents the mean squared error (MSE) at each
time step. The adaptive DEIM model consistently main-
tains lower errors than the original DEIM model throughout
the simulation. Fig. 5 illustrates the trajectories of the sam-
pling points selected by the original DEIM and the adaptive
DEIM model, respectively. While the original DEIM uses
fixed sampling points, the adaptive DEIM model dynami-
cally selects a point near z = 0.3 and adaptively adjusts the
sampling points toward the end of the simulation to further
reduce errors.

We also train the adaptive DEIM model in Eq. 12 us-
ing a different number of modes for the nonlinear terms
(I = 18), resulting in 18 corresponding sampling points.
The results are compared with those from the original DEIM
with [ = 18 as well as with the previous results obtained
using [ = 24. Figure 6 presents the velocity prediction con-
tours from both the original and the adaptive DEIM mod-
els for [ = 18 and [ = 24, along with their corresponding
squared error contours. Both adaptive DEIM models with
! = 18 and I = 24 exhibit lower errors than the original
DEIM model with the same number of sampling points. No-
tably, the adaptive DEIM model with [ = 18 achieves a
lower error than the original DEIM with [ = 24, despite
using fewer sampling points. Throughout the entire sim-
ulation, the POD-ROM coupled with the adaptive DEIM
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Figure 3: Velocity prediction contours obtained from the
original DEIM and the trained adaptive DEIM model, along
with the corresponding squared error contours for each
model
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Figure 4: Mean squared error (MSE) at each time step for
the original DEIM and the trained adaptive DEIM model
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Figure 5: Trajectories of sampling points for the original
DEIM and the trained adaptive DEIM model

model (I = 18) performs approximately 5,400 nonlinear
term evaluations, whereas the POD-ROM with the original
DEIM model (I = 24) requires about 7,200 such evalua-
tions. Figure 7 presents the mean squared error (MSE) at
each time step. It can be observed that the adaptive DEIM
model with 18 sampling points yields smaller errors than
the original DEIM model with 24 sampling points, despite
requiring fewer nonlinear term evaluations. To evaluate the
computational overhead of the proposed method, we mea-
sured the total wall-clock time for the time integration pro-
cess. The standard DEIM with M = 18 and M = 24 re-
quired approximately 5.24s and 5.36s, respectively. In con-
trast, the ML-DEIM models took 6.90s (M = 18) and 8.20s
(M = 24). The proposed framework incurs a computational
overhead of approximately 30% to 50% compared to the
standard DEIM. This increase is primarily attributed to the
online inference cost of the sampling network at each time
step. It is also noteworthy that the ML-DEIM with M = 18
exhibits a longer runtime (6.90s) than the standard DEIM
with M = 24 (5.36s), despite performing fewer nonlinear
term evaluations. This counter-intuitive result arises because
the current benchmark has a relatively low spatial degree of
freedom (N = 256), making the physics-based nonlinear
calculation computationally inexpensive. Consequently, the
time saved by reducing sampling points is insufficient to off-
set the fixed cost of the ML inference. However, we antici-
pate that this balance will shift in high-dimensional systems
(e.g., N > 10°) or problems involving complex physics,
such as reacting flows or 3D turbulence. In such regimes,
the cost of evaluating the nonlinear term dominates the total
runtime, rendering the ML overhead negligible in compari-
son. Therefore, further experiments on larger-scale systems
are necessary to fully demonstrate the computational effi-
ciency and scalability of the proposed framework.

DEIM for Analysis of Trained Neural ODEs
and Nudging-based Data Assimilation

In this section, we perform an interpretabilty analysis of
the pre-trained NODEs. Specifically, windowed-DEIM is
applied to the learned dynamics of the PDEs, f(u(t),t;6)
in Eq. 7, to identify representative sampling points and ex-
amine their dynamic behavior. Furthermore, Nudging-based
data assimilation is conducted based on the sampled DEIM
points.

Problem Setup

For this experiment, we employ the two-dimensional vortex-
merging problem (Ahmed et al. 2023). The incompress-
ible two-dimensional Navier—Stokes equations, expressed in
terms of the vorticity and stream function, can be written as
follows:
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Figure 6: Velocity prediction contours obtained from the
original DEIM and the trained adaptive DEIM models for
l = 18 and [ = 24, together with the corresponding squared
error contours for each case
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Figure 8: Final solutions of the two-dimensional vortex-
merging problem for Re = 1,000 with different initial
conditions: (a) horizontally symmetric vortices, (b) verti-
cally symmetric vortices, (c) horizontally asymmetric vor-
tices, and (d) horizontally symmetric vortices with a smaller
separation distance

where w and ¢ are vorticity and stream function, respec-
tively, and J(w, 1)) is the Jacobian operator, which deter-
mines the nonlinear advection of vorticity. For the training
dataset, the computational domain is set to [0, 27] x [0, 27],
and the number of grid points in x- and y- directions is set to
N, = N, = 128. The timestep size is dt = 2 x 1072, with a
total of 200 timesteps, and the SSP-RK3 scheme is used for
time integration. Fig. 8 presents the final solutions of Eq. 17
for different initial conditions at Re = 1, 000.

The NODE is trained to learn the right-hand side of Eq.
17, which includes both the nonlinear Jacobian operator and
the linear viscous dissipation term. For this PDE, we train
a single CNN-based NODE model using the first 100 snap-
shots from the solution initialized with horizontal vortices,
as shown in Fig. 8(a), and then apply the trained model to
other initial conditions. The CNN architecture consists of
four convolutional layers with 3 x 3 kernels and ReLU ac-
tivations, each followed by residual connections that prop-
agate low-level spatial information through the network. A
final 1x1 convolutional layer projects the 32 intermediate
feature channels back to a single scalar field, representing
the predicted temporal derivative of the flow variable. This
architecture allows the NODE to efficiently capture local
nonlinear interactions and spatial correlations in the vor-
tex dynamics. To train this network, we utilized the JAX
(Bradbury et al. 2018) framework on a single NVIDIA A100
GPU, minimizing the MSE loss using the Adam optimizer
(Kingma 2014) with an initial learning rate of 1 x 1073,
We employed a step-based learning rate scheduler that de-
cays the rate by a factor of 1.1 every 10,000 iterations over
a total of 40,000 training steps. The network weights were
initialized using the He normal strategy (He et al. 2015), and
the time integration was performed using the Heun method
(Ascher and Petzold 1998) provided by the Diffrax library
(Kidger 2021). For robust optimization, we used a batch size
of 5 with a trajectory length of 60 time steps randomly sam-
pled from the training data.



Applying DEIM to Learned Dynamics

When applying DEIM to the trained NODE models, we em-
ploy a time-windowed DEIM approach. In this method, the
right-hand side of each PDE is collected over a fixed time in-
terval to form a snapshot matrix. The sampling matrix P is
then computed from these snapshots, after which the initial
snapshot is shifted forward by a stride time step to construct
consecutive snapshot matrices. This procedure enables us
to track the trajectories of representative sampling points
during simulations and to evaluate the learned dynamics of
the NODE models by comparing them with the trajectories
obtained from the ground-truth data. For the vortex merg-
ing problem, the number of sampling points in the original
DEIM is set to 16, the window size is set to 20, and the stride
timestep is set to 1.

Figure 9(b) shows the trajectories of sampling points ob-
tained by the DEIM from the ground truth and the NODE
prediction for the case with initially symmetric horizontal
vortices, as shown in Fig.8(a). The color bar represents time
steps, where a color closer to red indicates later time steps.
As can be seen in the figure, as the two vortices rotate coun-
terclockwise and merge, the sampling points obtained by the
DEIM also rotate in the same direction. Since the two vor-
tices are symmetric, the sampling points rotate around the
two vortex cores. Fig. 9(c) shows the trajectories of the first
two sampling points for clarity. As can be seen from these
two figures, the trajectories of the sampling points from the
NODE prediction follow a similar trend to those from the
ground truth during the first half of the simulation but be-
gin to deviate from the circular pattern afterward, repeatedly
visiting specific points. This trend is consistent with the L2
norm plot in Fig. 9(a), where the L2 error starts to increase
after time ¢t = 10.0, beyond the range covered by the training
data.

Figure 10 is structured in the same way as Fig.9, except
that it corresponds to the case with initially horizontal asym-
metric vortices as in Figs. 8 (b). This case is an extrapo-
lation case, where the model is not exposed to these snap-
shots during training. In Figs. 10(b) and (c), the trajectories
of the sampling points obtained by the DEIM follow a par-
tially circular pattern during the early stage of the simula-
tion but quickly deviate from this regular pattern and begin
to oscillate irregularly. This trend is consistent with the L2-
norm plot in Fig. 10(a), where the L2 norm starts to increase
rapidly soon after the beginning of the simulation.

Figures 11 and 12 share the same structure as Fig. 9, but
correspond to the cases with initially horizontal vortices hav-
ing a smaller separation distance and with initially vertical
vortices, as shown in Figs. 8(c) and (d), respectively. The tra-
jectories of the sampling points obtained by the DEIM from
the NODE results in these two cases do not form any circular
patterns at the beginning; instead, they exhibit highly zigzag
and random behaviors. The randomness of these trajectories
is even worse than in the previous case with initially asym-
metric vortices. This can also be observed from the Ly norm
plots, where the Lo norms for these two cases increase more
rapidly after the prediction starts compared to the asymmet-
ric case. These results indicate that the trained NODE gen-
eralizes poorly to cases where vortices are closely placed at
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Figure 9: For the case with initial horizontal vortices: (a)
L2-norm error at each timestep; (b) trajectories of sampling
points from the ground truth and the NODE prediction; (c)
trajectories of the first two sampling points.
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Figure 10: For the case with initial asymmetric horizontal
vortices: (a) L2 norm error at each timestep; (b) trajectories
of sampling points from the ground truth and the NODE pre-
diction; (c) trajectories of the first two sampling points.
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Figure 11: For the case with initial horizontal vortices with
a small distance: (a) L2 norm error at each timestep; (b) tra-
jectories of sampling points from the ground truth and the
NODE prediction; (c) trajectories of the first two sampling
points.
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Figure 12: For the case with initial vertical vortices: (a) L2
norm error at each timestep; (b) trajectories of sampling
points from the ground truth and the NODE prediction; (c)
trajectories of the first two sampling points.

the start of a simulation.

Conclusion

We have developed a differentiable adaptive DEIM frame-
work for interpretable learning and analysis of nonlinear
dynamical systems. By leveraging differentiable sampling
through the Gumbel-Softmax estimator and coupling it
with a POD-ROM, our approach provides a novel pathway
towards bridging data-driven learning with reduced-order
modeling. Future directions include applying the proposed
differentiable sampling mechanism to large-scale industrial
applications to demonstrate its scalability and robustness in
complex real-world scenarios.

Through systematic experiments on two-dimensional
vortex-merging flows, we showed that DEIM-based trajec-
tory analysis serves as a diagnostic tool for evaluating the
extrapolation robustness of NODE:s. In the cases of initially
closer horizontal vortices and initially vertical vortices, the
sampling-point trajectories exhibit highly irregular, zigzag
patterns and faster growth of Lo errors, indicating degraded
generalization compared to the initial asymmetric vortex
case. These findings demonstrate that the trained NODE per-
ceives these flow configurations as more extrapolative, pro-
viding an interpretable link between learned dynamics and
physical flow regimes.

Beyond interpretability, the DEIM analysis of pre-trained
NODEs offers a promising pathway for enhancing predic-
tive performance through data assimilation. The dynami-
cally identified DEIM points correspond to the most infor-
mative spatial locations for capturing nonlinear dynamics.
By using these points as optimal observation or assimila-
tion locations, future work can integrate data assimilation
and optimal sensor placement to elegantly correct NODE
predictions, reducing accumulated forecast errors and im-
proving stability in long-term evolution.
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