Unsupervised Action-Policy Quantization via
Maximum Entropy Mixture Policies with Minimum
Entropy Components

Yamen Habib Dmytro Grytskyy
Department of Communication Department of Communication
and Information Technologies and Information Technologies
Universitat Pompeu Fabra Universitat Pompeu Fabra
Barcelona, Spain Barcelona, Spain

yamen.habib@upf.edu dmytro.grytskyy@gmail.com

Rubén Moreno-Bote
Serra Hunter Fellow Programme
Department of Communication
and Information Technologies
Universitat Pompeu Fabra
Barcelona, Spain
ruben.moreno@upf . edu

Abstract

Most reinforcement learning approaches optimize behavior to maximize a task-
specific reward. However, from this, it is difficult to learn transferable token-like
behaviors that can be reused and composed to solve arbitrary downstream tasks.
We introduce an online unsupervised reinforcement learning framework that au-
tonomously quantizes the agent’s action space into component policies via a joint
entropy objective—maximizing the cumulative entropy of an overall mixture policy
to ensure diverse, exploratory behavior under the maximum-occupancy principle,
while minimizing the entropy of each component to enforce diversity and high
specialization. Unlike existing approaches, our framework tackles action quantiza-
tion into state-dependent component policies in a fully principled, unsupervised,
online manner. We prove convergence in the tabular setting through a novel policy
iteration algorithm, then extend to continuous control by fixing the discovered
components and deploying them deterministically within an online optimizer to
maximize cumulative reward. Empirical results demonstrate that our maxi-mix-
mini-com entropy-based action-policy quantization provides interpretable, reusable
token-like behavioral patterns, yielding a fully online, task-agnostic, scalable archi-
tecture that requires no task-specific offline data and transfers readily across tasks.
Project Page: https://yamenhabib.com/maxi-mix-mini-com/ .

1 Introduction

Continuous control tasks in biophysical systems and robots require mapping high-dimensional state
inputs to actions in real time [[1]. This presents significant challenges: the vastness of the con-
tinuous action space makes exploration inefficient [2]], and balancing the exploration—exploitation
trade-off often necessitates approximations that complicate policy optimization [3]]. Action quantiza-
tion—discretizing continuous actions via a finite number of actions—has been explored as a means to

18th European Workshop on Reinforcement Learning (EWRL 2025).

https://yamenhabib.com/maxi-mix-mini-com/

address the difficulties of continuous control [456]]. By focusing on core representative actions, action
quantization can improve sample efficiency, accelerate convergence, and avoid wasteful exploration
of irrelevant continuous actions [[7]]. Beyond its technical strengths, action quantization can allow
simpler labeling and interpretability by human observers, making agent behavior easier to understand
compared to continuous actions. It can also simplify planning or sequence generation by arbitrarily
composing token-like actions [8}9].

Despite its theoretical interest, action quantization presents its own fundamental challenges. First,
naively binning uniformly across each action dimension leads to an exponential growth of action
space—resulting in KM total bins for M dimensions and K levels each—which quickly becomes
computationally intractable as dimensionality increases. Some approaches treat each action dimension
independently to avoid the curse of dimensionality [3], but this approximation overlooks the temporal
correlations across dimensions inherent in realistic action sequences (e.g., as in multi-joint control
tasks) (see Appendix [6.1] for further discussion). Bin placing in action space is another related
problem, whose solution requires action quantifiers to become state-dependent [6} [7]] and task-
dependent [10]. The second fundamental challenge is how to learn action quantizers that are
task-agnostic and transferable across tasks. Current approaches rely on curated offline datasets to
allow for exhaustive coverage of the state—action space, but this is impractical in dynamic, on-robot
deployments [7]. More importantly, exclusively relying on offline data ties the quantization scheme
to the dataset’s task, and fixed, task-specific bins must be fully retrained for each new environment,
hindering both generalization and reusability [6]]. Further, existing work often lacks a principled
analysis of quantization, focusing primarily on reward maximization without systematically studying
the theoretical properties, reusability, or long-term behavior of the resulting discrete action sets
(see Appendix [6.T). In contrast to the dominance of task-specificity in reinforcement learning
(RL), unsupervised pre-training has emerged as a fundamental learning framework, generating
significant advances in both natural language processing and computer vision. In language, generative
autoregressive models [[L1] trained on large unlabeled text corpora learn versatile representations
that can be fine-tuned for diverse downstream tasks; in vision, contrastive learning methods [[12]]
derive discriminative feature embeddings from unannotated images. In this work we address the
above two challenges: how to build in an unsupervised manner state-dependent, token-like quantized
action-policies that are transferable and easily composable to solve any downstream task.

Using a Markov Decision Process (MDP) setting, we reframe action quantization as the problem of
learning a finite set of component policies each with minimal action entropy, whose combination
into a mixture is optimized to maximize cumulative action entropy. By jointly optimizing these
opposing objectives—high entropy mixture with minimal component entropy—the mixture policy
largely samples action space in a task-agnostic manner while identifying and excluding risk-prone
action regions that would hinder future action entropy. In parallel, each state-dependent component
refines its action repertoire to execute finely tuned maneuvers when invoked, and they become diverse
because they must jointly produce a maximum entropy mixture policy. This maxi-mix-mini-com
entropy formulation for action-policy quantization is entirely unsupervised and does not rely on any
offline dataset or task-specific demonstrations; because quantization arises from the agent’s intrinsic
motivation to generate safe action entropy in the long term—the maximum occupancy principle
(MOP) [13} [14]])— rather than solving a task, the resulting mixture components provide reusable
tokens that are transferable across different tasks and environments.

We first show that the maxi-mix-mini-com entropy objective is tractable, and we provide a provably
convergent policy-iteration algorithm for the discrete setting (Sec. [2). Building on the tabular case, we
derive and validate a policy-gradient theorem under function approximation to extend our framework
to continuous actions (Fig. [T). The outcome of the joint entropy objective is a set of component
policies with support on continuous action; these components can be deployed by themselves to
allow for smooth composition of token-like behaviors. However, we find that simply executing
components using their modes to maximize arbitrary reward functions leads to great transferability.
Through experiments, we show that learned components scale effectively, transferring successfully
to novel environment layouts and achieving performance comparable to leading baselines such as
SAC [15] and PPO [16]] in high-dimensional, on-policy control tasks (Sec.). Because components
are acquired in a fully unsupervised fashion—driven solely by the agent’s intrinsic objective—they
remain agnostic to any specific reward function. Consequently, this quantization alone cannot, in
principle, recover the exact optimal continuous action for an arbitrary, previously unseen reward
signal. Nonetheless, we find that as the number of learned components provides a good enough

coverage of action space the mixture policy attains performance on par with leading continuous-
action baselines (Sec. [4)). Our results establish a principled framework for action-policy quantization
resulting in interpretable components that can be flexibly composed in a token-like manner for
efficient exploration and generalizes well to unseen tasks.

Component Policies

m={my, ..., Mg} RM RM
—
s =™ w1 (8) | e | e 02 | s — Component Policies

7 ={my, ..., g}
§ %

o | g (S) | e | e |OK2S) | e

I Hie(s)

wy(s) [RRAWA
[T
s . s Discrete Policy a €{1,..,K}

wi(s)

Figure 1: Unsupervised maxi-mix-mini-com entropy learning and deployment in the continuous case.
(Left) Unsupervised pre-training delivers a set of K component policies {7 } forming a diverse
repertoire of behaviors, each with mean 14 (s) and diagonal covariance o (s))(see Appendix |6.5|for
more details). (Right) For downstream tasks, these components are frozen and treated as black-box
behavioral tokens for any discrete-action algorithm (e.g., DQN, PPO). The discrete action space is
the index set {1, ..., K}, where selecting index k executes the corresponding mode action p(s) (or,
optionally, a low-variance sample) in the environment to accumulate task-specific reward.

2 Maxi-mix-mini-com entropy objective for mixture component learning

Our goal is to learn a mixture policy and its components so that the mixture generates maximum
cumulative entropy under MOP while each component has minimal entropy. We address this problem
in the unsupervised setting, where the agent is not faced with any task. We first start in the discrete
action-state case, and later address the continuous action-state case (Sec. [3). We consider a Markov
decision process (MDP) (S, A, p,7), where S is a discrete state space, .A(s) is a state-dependent
discrete action space, p(s’|s, a) is the transition kernel, and -y € [0, 1) is the discount factor.

We define the mixture policy
K
Tm(als) = Zwk(s)wk(a|s) (1
k=1

as a non-negative linear combination of K component policies 7y (a|s) with mixture weights wy,(s) >
Oand), wy(s) = 1. Weights are state-dependent, i.e., they are not fixed, and they can be interpreted
as the probability that policy k is chosen at state s. The number of components K can be made
state-dependent, K (s), in a straightforward manner.

Our goal is to optimize both the component policies and weights so as to maximize the value function

V(s) =Y A'E [H(mm(ls:) = a > wi(s)H(mk([s0))|So = s ©)
t=0 k

where the expectation is over actions sampled from the mixture policy and state transitions given
initial condition s, H(7(-|s)) = — >, m(a|s)logm(a|s) is the action entropy of a policy 7 given
state s; at time step ¢, and 0 < a < 1. This goal maximizes the sum of future action entropies, thus
generating diversity of action paths, while minimizing the entropy of each of the components, thus
favoring specialized component policies. These two generally opposing goals are balanced by the
hyperparameter «v. The degree of diversity thus generated is also shaped by the state-dependence
of the action set .A(s). Indeed, to avoid the possibility of the trivial solution of a uniform policy as
the optimal mixture, we assume that the environment is embedded with some structure, typically
with terminal states sT for which only a single action is allowed |A(s™)| = 1, which is "not doing
anything". State-dependence actions sets strongly shape the solution, leading to maximum entropy
policies that promote exploration and diverse behavior while trying to avoid low-size action states,

like terminal states (e.g., such a deadly falling down) from where no further action entropy can be
generated. Finally, we note that replacing the weighted sum of component policy entropies in Eq. 2}
— >, wr(se)H(mk(+|s¢)), by an unweighted one, — >, H (7 (-|s¢)) would penalize as well having
entropic component policies, but it would not lead to an easily solvable problem (see Appendix [6.2.1)).

Eq. 2] can be recursively expressed in the form of the Bellman equation

V(s) = H(mm(-|8t)) —aZwk st)H(mi(+]s¢)) +’yZ7rm als)Q(s, a) 3)

a) EZps\s,a (s) . “

Therefore, the objective can be expressed as maximizing the value function over components and
mixture weights as the optimality Bellman equation

V*(s) = max (R(s; W) 4y Zwm(a|5)Q*(s, a)) 5)

)

R(s;m,w) = H(mm(+]s)) — aZwk 18)) (6)

where 7 indicates the set of component policies T = {7717 oy mi +and w = {wy, ..., wk }, where the
conditioning on the state s is omitted but understood.

We first prove that for a high capacity mixture policy (i.e., when the number of components is larger
or equal than action space size) solving Eq. []is equivalent to solving an unconstrained problem with
no restrictions on the mixture policy. This result, although somehow obvious, shows that there is a
limit where the problem converges to a known solution.

Theorem 1. If K(s) > |A(s)| for all s, then the optimal solution of Eq. [3]is such that 7 (ax|s) = 1
only for one action ay, and the set of actions spans A(s), that is, {ay} = A(s). Then, 7., in Eq. |l|is
unconstrained and the optimal value function obeys

V*(s) = max ('H(wm(|st)) + ’wam(a|s)Q*(s, a)) . 7

The optimal mixture policy is unique, while the mixture components are not unique if |A(s)| > 1 at
least for one state.

Proof. See Appendix Sec. While the case K (s) > | A(s)] is interesting, the most relevant scenario
occurs when the number of components is smaller than the action dimensionality, K (s) < |.A(s)], as
this will lead to a compression and quantization of action space into components that can later be
used to compose sequences of actions for reward maximization using, e.g., off-the-shelf DQN [17]],
or for efficient planning [9]. If mixture capacity is low, directly optimizing Eq. [5is hard because
derivatives with respect to both 7 and w lead to a set of nonlinear questions that to our knowledge
cannot be solved explicitly (Sec. [6.2). To bypass this problem, we derive an iterative algorithm,
which is the main theoretical contribution of our paper.

We first introduce the responsibility
* wi(s) T (als)
ri(s) = = =S ®)

which is the probability that a performed action a at state s has been generated from the component
policy k — note that the denominator, defined in Eq. [1] makes 77 (s, a) probabilities for all (s,a), that
is, rj(s,a) > 0and), (s, a) = 1. Next, we define the immediate gain G(s; 7, w,r) as

G(s;m,w,r) Zwk Ylogwy(s) — (1 — « Zwk 7 (als) log mx (als) 9)
+ > wi(s)me(als) logri(s, a), (10)
k,a

where 1 = {ry,...,rx} is a probability vector. It can be easily seen that (i) G(s;m, w,r*)
R(s;m,w) when using the probability vector r* given by Eq. and (ii)) G(s;m,w,r*)

IVl

G(s;m,w,r) for any probability vector r [18]. The above definitions and observations allow us to
write the optimality Bellman equation [5 as

W T

V*(s) = maxmax <G(s;7r,w,r) + 'yZﬂ'm(a|s)Q*(s,a)> . (11)

a

As in the Blahut—Arimoto algorithm [19, [18], we use this fact to build a algorithm that leads to
monotonic improvement of the value function until convergence.

Our algorithm, shown in Algorithm [T} proceeds as follows:

(1) Initial conditions: Start the value function V(9 (s) = 0 for all s and arbitrary 7(0) =

{71'%0), oy wg?)} and w(® = {wﬁo), - w&?)} outside the simplex boundaries, that is, ﬂ',(co)(a|s) >0

and w,(co) (s) > 0 for all s and a. Define the initial responsibilities as

0 0
w (s) 7 (als)

e =T

>0. (12)

Iterate the following step (2) forn = 1,2,
(2) At iteration n, start from V(=1 (=1 4y(n=1) and 7-("=1) and perform steps (2a)-(2d):
(2a) Define the updated value function V(") as

VI (s) = Gs;r D =D p 171 4 Z D (als)Q" N (s,a) (13)

with Q=D (s,a) = 32, p(s'|s,a) V=D (s) and 7l = 3wl (s)nl""V(als).

(2b) Compute 7™ = {z\™ ... 7M1 fixing V("1 and r("~1) using
n—1 1 v gln-D(g g,
ﬂ-(n)(als) _ [,,,]i)(8704)] 1—(161—01@ ()) (14)
’ S (s,) a e @ VG
(2¢) Compute w™ fixing V(»~1) and (»~1) as
n—1 1 3 gD g)\
(S @) TEerEe)
w, " (s) = - - (15)
) (Sl V(s) Frer=a Ve
(2d) Compute ("™ fixing V(=D 7(") and w(™) using
(n) (n)
7'](:)(5,&) = M , (16)

o (als)

with 7 (a]s) = 32, w!™ (s) 7" (als).
Theorem 2. The algorlthm following steps (1) and (2), which consists in iterating the w, w and r
using Eqs. [I3[IA[I5)[I6]in this order, improves the value function monotonically until convergence.

Proof. See Appendix Sec.

2.1 Experiments and results

To study how component policies are learned in the discrete action case when the capacity of the
policy is smaller than the size of the action space, K (s) < |.A(s)|, we run some experiments in a
fully deterministic grid-world of impassable walls and terminal cells. The action set is {up, right,
down, left} when away from the walls. Any action that would move into a wall is not available,
leading to a state-dependent action set that is reduced to 3 (or 2 in case of a corner) actions when next
to a wall. Actions leading into a terminal cell remain available and immediately terminate the episode

—_
0
-

@ Ty 3 L
50

>
1.0 1.0 1.0 1.0 wy (s)- .0-37 S .
o
=]
- §0.16 <
wy(s) I)
c
w?(s)ilo'le 2 2
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 e
wy(s)- o3 g 1
" : " : —— - " , : : S
= 8 Z 8 < 8 T 3 0.00.10.2 (:}4 0.8
(d)
>
(b) st T U g—"llgp-‘w-
5
1.0 1.0 w1(3)*|0.17 G 108
D o
03 106
o [l g2
0.50.5] z 2 1
0.0 0.0 0.0 0000 0.000Moo wx(S)'IO-” 3 102
- 1}
%%EE %%\EEJ %§,§§ 00 05 10 1 zKa 4
2 o 2 o S o
- O - o - o -—a=00 —a=02 a=08

—a=01 a=04

Figure 2: Component specialization and cumulative mixture entropy in a grid world (Fig. 4] Appendix
. (a,b) Learned state-dependent policies when K = 4 (a) and K = 3 (b). Policies 7y, o, ...

(left panels) and mixture weights wy(s) (right panel) are shown for state s = 141 in the grid-world.
(c) Averaged component entropy decreases as a function of « and for increasing K (different lines),
showing enhanced specialization. (d) Cumulative mixture entropy increases with the number of
components K and for higher « (different lines). Solid curves: mean performance over five random
seeds; shaded regions: their variance. Dashed line in panel (d) indicates MOP, the theoretical limit.

if taken, which is equivalent to having a single action and producing no entropy from there onward.
Because our focus is purely unsupervised, no extrinsic rewards are provided: learning is driven by
the maxi-mix-mini-com entropy objective. To obtain the optimal mixture policy and components we
use Algorithm ([T} described in Sec. 2]

We find that when K = 4, component policies are sharply peaked at a single action, and they cover
all action sets (Fig. [2h), as predicted by Theorem 2] When capacity is smaller (e.g., K = 3), some
components become sharp, while others are not (Fig. [2b), but all of them together offer diversity and
cover the full action space. Components are state-dependent (not shown). In general, we observe
that the policy components with higher weight tend to be broader than the ones that are chosen less
frequently (see second component in Fig. [2b and its associated weight). This bias is consistent with
the maxi-mix-mini-com entropy objective: if mostly only one component policy is active, it should
produce high action entropy to be in accord with the max-mix objective part. However, the agent
generates safe component policies in the sense that the probability of falling to a terminal state is
zero or almost zero, a fact that strongly shapes the final mixture policy. As expected, the entropy of
the component policies declines with increased o and when increasing the number of components K
(Fig. 2k), enhancing their specialization. At the same time, the cumulative entropy of the mixture
policy increases with K regardless of « (Fig. [2ld) and approaches the theoretical limit imposed by
MOP (dashed line; MOP is equivalent to &« = 0 and K = 1). When K = 1, the problem is equivalent
to MOP for all a.

3 Component learning in continuous case

Our discrete grid-world experiments establish theoretical feasibility and validate the maxi-mix-mini-
com entropy objective. Now, we extend it to the continuous-action setting. First, we formalize the
continuous-action problem and present a training procedure for Gaussian mixture policies (see Fig.
[I). Next, we analyze the resulting components, quantifying the framework’s ability to control their
coverage and diversity. Because the continuous-action joint-entropy objective is entirely unsupervised
(no extrinsic rewards are available), the standard policy-gradient theorem does not apply directly, but
we can adapt it to our objective function:

Theorem 3 (Extended Policy Gradient Theorem). Let 7., g(a|s) be a mixture policy over continuous
actions, and define the state-value function as in Eq. [3| Then the gradient of the performance
objective J(0) = V(so) admits the form

VoJ(0) = /dﬂm’e(s)ﬂmﬁg(ab) (Vg log 7 0(als)Q(s, a) + VoR(s; me, ’LU@)) dads.

s,a

where VgR(s;mg,wg) = VQH(Wm,e('|S)) - OzVtozlwk)o(S)H(Fk,e('|8)), T =
{71'179, ...,7TK79} and Wy = {’LUL@, ...,wKﬂ}

Proof. See Appendix Sec. [6.3]

There are several methods for optimizing the policy objective J(6) using policy gradient RL. One
common approach is the likelihood-ratio gradient estimator [[20], which does not require backpropa-
gation through the Q-function or environment dynamics, as it relies on sampled returns. In our setting,
the Q-function is represented by a differentiable neural network, enabling the use of the reparameteri-
zation gradient estimator for each Gaussian policy component. This estimator is unbiased, achieves
lower variance than the likelihood-ratio approach by leveraging deterministic gradient computations
through both the policy and Q-function networks [[15} 21]], and adapts effectively to our context.

Here, the component policies are reparametrized as 7y g(a|s) = p(e) where a = fg(e; s, k) and p(-)
is the noise distribution. We formalize this in the Component-Reparameterization Policy Gradient
Theorem 4] providing an unbiased gradient form for optimization.

Theorem 4 (Component-Reparameterization Policy Gradient Theorem). Let fg = fo(e; s, k), then
the gradients of objective Vo .J (7Tm79) function under our reparametrization become

E vr . |Vologuis(s) (me,s (s, fa) —logmm.a(fols) + alogm,e(fe\S))
k~Cat(wy, o (s))
o (17)

+ Vofo Va(Qra(5:0) = log T o(als) + alog mi g als)

~)
a=fo
where d. ,(s) is the discounted occupancy measure under Ty, g.

Proof. See Appendix Sec.

Since the mixture weights wy(-) cannot be directly reparameterized, we adopt the straight-through
Gumbel-Softmax trick from [22] to produce a biased but differentiable sample. First, draw

1.+, K s Gumbel(0, 1) and form the “soft” sample
exp((log wk,o(8) + gk)/T)

Y = 5 k:]-v"';K7
SR exp((logw;o(s) + g;)/7)

where 7 is the temperature parameter controlling the smoothness of the distribution. A discrete
sample is obtained as

zZ= one_hot(arg mkax(log wy,o(s) + gk))7 [one_hot(i)]x = 0 ;-
Applying the straight-through estimator yields

2k = 2 + yr — StopGrad(yx), StopGrad(y) =y, V,StopGrad(y) =0,

so that gradients flow through y; but not through its stopped version. Finally, combining
z = (z1,...,2K) with reparameterized samples fy(e;s,k) from each component gives a =

>k 2k foles s, k).

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11 k=12 k=13 k=14 k=15 k=16

)/\/\/\/\/\/\/\/\’/\—\/\/‘/\/\/\\/—/\/\/\/___A

AR T AKX T ALY CP 2P

0.90

(a

1.0 1.0
0.88

0.5

4
®
o

0.0 —

o
Y
=

-0.5

Mean Component Standard
o
©
S

Deviation
o
3
&
Mean Component Standard
Deviation

-1.0

-1.0 =05 00 05 1.0 -1.0 -05 00 05 10 0.60 0.8
0.05 0.10 0.20 0.30 0.60 0.90 16 32 64 128
Alpha (a) Value Number of Components (K)

(e) (f)

S

(c) (d)

Figure 3: (a) Mujoco Swimmer-V5 and (b) Ant-V5 (bottom) poses resulted from continuously
applying the mode of each learned component policy as action, showing diversity and coverage of
action space. (¢) Swimmer (KX = 16) mode vectors. (d) Swimmer (K = 64) showing uniform torque
coverage. (e) Ant (K = 64) mean component std vs. «. (f) Ant mean std vs. K.

3.1 Experiments and results

We first used the MuJoCo Swimmer benchmark [23]], which comprises three segments connected
by two rotary joints in a linear chain, and with no terminal states. Our algorithm learns a set of
components that are readily interpretable as stretches and contractions, of different sorts, of the body
(Fig. B, for K = 16; see Fig. [7] Appendix [6.6]for K = 64;|Videos). Their diversity and coverage are
better visualized by plotting the modes of each of the Gaussian components, using 16 components
(Fig. [Bk) or 64 components (Fig. [3d). With more components, the coverage is more uniform in both
angles and strength, so that the components can be interpreted as torques in all possible directions
and with different magnitudes (colors).

We evaluated maxi-mix-mini-com on the MuJoCo Ant benchmark [23], a three-dimensional
quadruped with a central torso and four two-segment legs (eight actuated hinge joints). We consider
terminal states as those cases where the torso touches the floor, consisting in ant falls. Like the
swimmer, the Ant learns component policies resulting in interpretable coordinated movements when
deployed using their modes (Fig. [3b, for K = 16; see Fig. [8] Appendix [6.6]for K = 64;|Videos). The
components are diverse and cover a broad range of reaching movements with one leg, in addition
to adopting various bow poses, while keeping a balance to avoid falling down to the floor. As
components are Gaussian, we use their standard deviation to characterize their specialization as a
function of the number of components K and the regularizer «.. The standard deviation averaged over
components when K = 64 decreases with « (Fig. [3p), indicating an increased degree of component
specialization. Similarly, increasing the number of components reduces component standard deviation
(and thus their entropy) (Fig. [Bf). These observations are in line with the expectations of how the
specialization of the components should depend on the number of components and on the regularizer.

4 Hierarchical reinforcement learning with pre-trained components

As demonstrated in the previous section, our method generates diverse yet specialized component
policies. We now use the learned components to test their effectiveness and reusability in solving
different tasks by measuring cumulative reward (see Fig. [I). Action space is discretized using the
modes of the learned component Gaussians, and use them as discrete actions in a DQN [[17] or
discrete PPO [[16]. The learned components and the associated discretization are not allowed to
change during the optimization of cumulative reward using the discrete algorithm (e.g. DQN); only
the hierarchical policy on top of them is optimized. Because the downstream controller uses the fixed
finite set of component modes A (s) = {ur(s)}5_, C A(s), any policy constrained to A (s) is
upper-bounded by one that optimizes over the full continuous action set. Accordingly, when a single
set of K components must support N heterogeneous rewards with K < N, a reduction in achievable
return relative to continuous-action methods (e.g., SAC [15]) is expected, unless the continuous
optima are contained in or well-approximated by A (s). Finally, random action quantization fails to

https://yamenhabib.com/maxi-mix-mini-com/#videos_swimmer
https://yamenhabib.com/maxi-mix-mini-com/#videos_ant

capture the coordinated, state-dependent joint couplings required in high-dimensional control, so a
small randomly sampled codebook is unlikely to contain either stabilizing torques or actions suitable
for downstream tasks, as our preliminary experiments indicate (not shown).

Table 1: Mean per-episode reward (+SE) on Ant locomotion tasks using same 64 fixed components.

Method Directional Avg. Maze
SAC (continuous) 3770 £ 42.23 11.48 £ 0.36
PPO (continuous) 221 +11.12 3.42+0.31
Ours (K = 64 discrete) 2118 £ 25.47 9.6 £0.28

We first used two very different locomotion tasks on the MuJoCo Ant: maximizing torso velocity
along one of the 4 cardinal directions (directional locomotion task, with four conditions), and reaching
a central goal in a maze from a random perimeter start (maze navigation task). These two tasks a
priori need different skills, such as running (in the directional locomotion task) and steering the torso
and turning in different directions (in the maze navigation tasks). We compared the performance of
our algorithm against Soft Actor—Critic (SAC) [[15] and standard continuous PPO [16] (Table E]; see
Appendix [6.5]for training details of each algorithm). With only K = 64 discrete components, our
method recovers 56% of SAC’s performance and outperforms continuous PPO by nearly an order
of magnitude on the directional locomotion tasks. Furthermore, using these same components, its
performance remains comparable to the continuous baselines in the maze navigation task, indicating
that the learned components generalize effectively across different locomotion challenges. We
emphasize that this result is quite remarkable because the components have not been specialized or
fine tuned to any of the two tasks: the maxi-mix-mini-com entropy algorithm learn components that
are reusable, diverse enough to solve different tasks, and flexible enough to be composed to generate
complex sequential behavior.

Table 2: Mean per-episode reward (+SE) on manipulation and locomotion tasks.

Method Eelch geaCh Swimmer Hopper Walker2D
(success rate)

SAC (continuous) 0.84 £0.07 110.54 + 1.52 2884.79 + 158.22 4734.71 £ 102.76

PPO (continuous) 0.70 £0.16 70.53 £0.89 2647.90 4+ 120.96 3488.76 + 63.26

Ours (K = 64 discrete) 1.00 + 0.00 117.57 £ 1.17 2332.12 + 98.70 1024.62 £ 112.53

We also tested in domains with smaller action spaces (Fetch Reach and Swimmer) to determine
whether a denser action coverage leads to a comparably better performance. Indeed, in these cases
the maxi-mix-mini-com entropy objective not only matches but surpasses state-of-the-art continuous
methods (Table [2). Further, for the more complex Hopper task—characterized by richer dynamics
and higher-dimensional control—our approach recovers over 80 % of SAC’s performance, illustrating
robustness under increased complexity. Degradation of performance continued with increased action
complexity: on Walker2D—an asymmetric, 6-dimensional forward-locomotion task—our method
attains 21.8 % of SAC’s performance, but still keeping the advantage of usability and transferability
of the learned components, which could be further complemented by a larger number of components.

5 Discussion and Conclusion

We have presented an online unsupervised method to discover discrete action-policies using the
maxi-mix-mini-com entropy objective. This objective promotes the generation of complex and diverse
behaviors because the mixture policy is trained to maximize its future cumulative entropy, which
entails generating complex, yet safe, behavioral patterns [13}[14]. The objective also promotes the
discovery of distinct and specialized discrete action-policies because of the per-component entropy
penalty.

Our framework tackles a very important problem that has been overlooked: how to generate state-
dependent token-like actions that are transferable to multiple tasks. This challenge requires that data
become available online, as opposed to being offline and fixed. Indeed, offline data from data-self-play
[6]] or human demonstrations [[7] can facilitate discrete action discovery and initially speed up learning.
However, in the long term, a fixed offline dataset curtails the possibility of the agent to freely discover
new behaviors, especially hurting the generation of a diverse set of action-policies, which we showed

above to be critical for reusability and transferability. At the same time, online, unsupervised learning
in our maxi-mix-mini-com entropy algorithm is significantly harder than offline learning: the agent
must learn by itself to generate diverse action-policies that ensure smooth transitions between them
to maintain stability and avoid catastrophic failures. Despite these complexities, our method achieves
strong performance on tasks like maze and Fetch Reach, with high scores relative to the baseline,
and experiments on Ant, Hopper, and Walker demonstrate its ability to find scalable, near-optimal
solutions, highlighting its robustness.

Limitations: Our online learning method faces practical challenges. Notably, we often need to
downscale the variance of the learned component policies to make them compatible with discrete
actions. In some instances, we also resort to taking the modes of these components. However,
this is not an inherent flaw in our algorithm—by increasing the number of components K, the
standard deviation naturally decreases, rendering the policies more suitable for discrete policy reward
maximization. Furthermore, downscaling is a technique also utilized in concurrent work, such as
[9l], to mitigate similar challenges. A further limitation concerns the trade-off between deployment
efficiency and training overhead. Although at test time our framework can execute only a single
component—yielding fast inference—its unsupervised learning phase requires evaluating all K
component policies to compute the mixture’s entropy. As K grows, this per-step entropy calculation
incurs an increase in computation, making training slower for larger component sets.

References

[1] Daniel M Wolpert, Zoubin Ghahramani, and Michael Jordan. Forward dynamic models in
human motor control: Psychophysical evidence. Advances in neural information processing
systems, T, 1994.

[2

—_—

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

[3] Murtaza Dalal, Deepak Pathak, and Russ R Salakhutdinov. Accelerating robotic reinforcement
learning via parameterized action primitives. Advances in Neural Information Processing

Systems, 34:21847-21859, 2021.

[4] Yuanyang Zhu, Zhi Wang, Yuanheng Zhu, Chunlin Chen, and Dongbin Zhao. Discretizing
continuous action space with unimodal probability distributions for on-policy reinforcement
learning. IEEE Transactions on Neural Networks and Learning Systems, 2024.

[5] Yunhao Tang and Shipra Agrawal. Discretizing continuous action space for on-policy opti-
mization. In Proceedings of the aaai conference on artificial intelligence, volume 34, pages
5981-5988, 2020.

[6] Jianlan Luo, Perry Dong, Jeffrey Wu, Aviral Kumar, Xinyang Geng, and Sergey Levine. Action-
quantized offline reinforcement learning for robotic skill learning. In Conference on Robot
Learning, pages 1348-1361. PMLR, 2023.

[7] Robert Dadashi, Léonard Hussenot, Damien Vincent, Sertan Girgin, Anton Raichuk, Matthieu
Geist, and Olivier Pietquin. Continuous control with action quantization from demonstrations.
arXiv preprint arXiv:2110.10149, 2021.

[8] Yevgen Chebotar, Quan Vuong, Karol Hausman, Fei Xia, Yao Lu, Alex Irpan, Aviral Kumar,
Tianhe Yu, Alexander Herzog, Karl Pertsch, et al. Q-transformer: Scalable offline reinforcement
learning via autoregressive q-functions. In Conference on Robot Learning, pages 3909-3928.
PMLR, 2023.

[9] Ziyad Sheebaelhamd, Michael Tschannen, Michael Muehlebach, and Claire Vernade.
Quantization-free autoregressive action transformer. arXiv preprint arXiv:2503.14259, 2025.

[10] Younggyo Seo, Jafar Urug, and Stephen James. Continuous control with coarse-to-fine rein-
forcement learning. arXiv preprint arXiv:2407.07787, 2024.

[11] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018.

10

[12] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In International conference on machine
learning, pages 1597-1607. PmLR, 2020.

[13] Jorge Ramirez-Ruiz, Dmytro Grytskyy, Chiara Mastrogiuseppe, Yamen Habib, and Rubén
Moreno-Bote. Complex behavior from intrinsic motivation to occupy future action-state path
space. Nature Communications, 15(1):6368, 2024.

[14] Rubén Moreno-Bote and Jorge Ramirez-Ruiz. Empowerment, free energy principle and max-
imum occupancy principle compared. In NeurlPS 2023 workshop: Information-Theoretic
Principles in Cognitive Systems, 2023.

[15] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan,
Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms
and applications. arXiv preprint arXiv:1812.05905, 2018.

[16] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[17] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[18] Suguru Arimoto. An algorithm for computing the capacity of arbitrary discrete memoryless
channels. IEEE Transactions on Information Theory, 18(1):14-20, 1972.

[19] Richard Blahut. Computation of channel capacity and rate-distortion functions. /EEE transac-
tions on Information Theory, 18(4):460-473, 1972.

[20] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8:229-256, 1992.

[21] Ming Xu, Matias Quiroz, Robert Kohn, and Scott A Sisson. Variance reduction properties of
the reparameterization trick. In The 22nd international conference on artificial intelligence and
statistics, pages 2711-2720. PMLR, 2019.

[22] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
arXiv preprint arXiv:1611.01144, 2016.

[23] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ international conference on intelligent robots and systems, pages
5026-5033. IEEE, 2012.

[24] Donald Wayne Bushaw. Differential equations with a discontinuous forcing term. Stevens
Institute of Technology, 1953.

[25] Richard Bellman, Irving Glicksberg, and Oliver Gross. On the “bang-bang” control problem.
Quarterly of Applied Mathematics, 14(1):11-18, 1956.

[26] Arash Tavakoli, Fabio Pardo, and Petar Kormushev. Action branching architectures for deep re-
inforcement learning. In Proceedings of the aaai conference on artificial intelligence, volume 32,
2018.

[27] OpenAl: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob Mc-
Grew, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning
dexterous in-hand manipulation. The International Journal of Robotics Research, 39(1):3-20,
2020.

[28] Nino Vieillard, Marcin Andrychowicz, Anton Raichuk, Olivier Pietquin, and Matthieu Geist.
Implicitly regularized rl with implicit g-values. arXiv preprint arXiv:2108.07041, 2021.

[29] Luke Metz, Julian Ibarz, Navdeep Jaitly, and James Davidson. Discrete sequential prediction of
continuous actions for deep rl. arXiv preprint arXiv:1705.05035, 2017.

11

[30] Chen Tessler, Guy Tennenholtz, and Shie Mannor. Distributional policy optimization: An

alternative approach for continuous control. Advances in Neural Information Processing
Systems, 32, 2019.

[31] Andrey Sakryukin, Chedy Raissi, and Mohan Kankanhalli. Inferring dqn structure for high-
dimensional continuous control. In International Conference on Machine Learning, pages
8408-8416. PMLR, 2020.

[32] Arash Tavakoli, Mehdi Fatemi, and Petar Kormushev. Learning to represent action values as a
hypergraph on the action vertices. arXiv preprint arXiv:2010.14680, 2020.

[33] Jonathan Chang, Masatoshi Uehara, Dhruv Sreenivas, Rahul Kidambi, and Wen Sun. Mitigating
covariate shift in imitation learning via offline data with partial coverage. Advances in Neural
Information Processing Systems, 34:965-979, 2021.

[34] Artemy Kolchinsky and Brendan D Tracey. Estimating mixture entropy with pairwise distances.
Entropy, 19(7):361, 2017.

[35] Jiamin He, Samuel Neumann, Adam White, and Martha White. Investigating mixture policies
in entropy-regularized actor-critic. 2025.

[36] Christian Daniel, Gerhard Neumann, Oliver Kroemer, and Jan Peters. Hierarchical relative
entropy policy search. Journal of Machine Learning Research, 17(93):1-50, 2016.

[37] Iman Nematollahi, Erick Rosete-Beas, Adrian Rofer, Tim Welschehold, Abhinav Valada, and
Wolfram Burgard. Robot skill adaptation via soft actor-critic gaussian mixture models. In 2022
International Conference on Robotics and Automation (ICRA), pages 8651-8657. IEEE, 2022.

[38] Oleg Arenz, Mingjun Zhong, and Gerhard Neumann. Trust-region variational inference with
gaussian mixture models. Journal of Machine Learning Research, 21(163):1-60, 2020.

[39] Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1.
MIT press Cambridge, 1998.

[40] Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function ap-
proximators. In International conference on machine learning, pages 1312—-1320. PMLR,
2015.

[41] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you
need: Learning skills without a reward function. arXiv preprint arXiv:1802.06070, 2018.

[42] Joshua Achiam, Harrison Edwards, Dario Amodei, and Pieter Abbeel. Variational option
discovery algorithms. arXiv preprint arXiv:1807.10299, 2018.

[43] Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Proceedings
of the AAAI conference on artificial intelligence, volume 31, 2017.

[44] Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-
aware unsupervised discovery of skills. In International Conference on Learning Representa-
tions (ICLR), 2020.

[45] Seohong Park, Jongwook Choi, Jackyeom Kim, Honglak Lee, and Gunhee Kim. Lipschitz-
constrained unsupervised skill discovery. In International Conference on Learning Representa-
tions (ICLR), 2022.

[46] Seohong Park, Oleh Rybkin, and Sergey Levine. Metra: Scalable unsupervised rl with metric-
aware abstraction. In International Conference on Learning Representations (ICLR), 2024.

[47] Jacqueline Gottlieb, Pierre-Yves Oudeyer, Manuel Lopes, and Adrien Baranes. Information-
seeking, curiosity, and attention: computational and neural mechanisms. Trends in cognitive
sciences, 17(11):585-593, 2013.

[48] Joel Lehman and Kenneth O Stanley. Abandoning objectives: Evolution through the search for
novelty alone. Evolutionary computation, 19(2):189-223, 2011.

12

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Alexander S Klyubin, Daniel Polani, and Chrystopher L Nehaniv. Empowerment: A universal

agent-centric measure of control. In 2005 ieee congress on evolutionary computation, volume 1,
pages 128-135. IEEE, 2005.

Felix Leibfried, Sergio Pascual-Diaz, and Jordi Grau-Moya. A unified bellman optimality
principle combining reward maximization and empowerment. Advances in Neural Information
Processing Systems, 32, 2019.

Karl Friston, Philipp Schwartenbeck, Thomas FitzGerald, Michael Moutoussis, Timothy
Behrens, and Raymond J Dolan. The anatomy of choice: active inference and agency. Frontiers
in human neuroscience, 7:598, 2013.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
Manuel Gouldo, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A
standard interface for reinforcement learning environments. arXiv preprint arXiv:2407.17032,
2024.

Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, Rene
Traore, Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert,
Alec Radford, John Schulman, Szymon Sidor, and Yuhuai Wu. Stable baselines. https:
//github.com/hill-a/stable-baselines, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging.
SIAM journal on control and optimization, 30(4):838-855, 1992.

13

https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines

6 Appendix

6.1 Related Work

Discretization of Continuous Action Spaces: In control theory, the idea of discretizing continuous
action spaces dates back to Bushaw’s work on discontinuous forcing terms [24], and was formalized
in the “bang—bang” control problem by [25]. However, naive uniform discretization suffers from an
exponential explosion of possible actions in high-dimensional settings. To mitigate this, a family of
methods assumes independence across action dimensions, discretizing each separately [26H28), 15]].
Complementary approaches instead model inter-dimensional dependencies—either via sequential
prediction of continuous actions [29]], distributional policy optimization frameworks [30], learned
Q-network structures for high-dimensional control [31]], or hypergraph representations of action-value
functions [32].

Offline and Demonstration-Based Action Quantization: Concurrently, offline and demonstration-
based approaches have focused on deriving discrete action primitives directly from fixed data (not
allowing the interaction of the agent with the environment). For example, state-conditioned action
quantization has been implemented via VQ-VAE frameworks [6]. [7] proposed AQuaDem, which
constructs a state-conditioned discretization of the continuous action space entirely offline using
logged human demonstrations before any online reinforcement learning. Q-Transformer [8] adopts
a per-dimension discretization that treats each action axis as a separate time step, predicting one
bin at a time. This avoids the exponential grow of actions in multi-dimensional discretization, but
it forces a coarse—fine trade-off in movement granularity. This important limitation has motivated
contemporaneous work on quantization-free continuous sequence models such as the Q-FAT, which
directly parameterize continuous actions via Gaussian mixture models, eliminating per-dimension
binning [9]]. However, like Q-Transformer’s per-dimension discretization scheme, Q-FAT is trained
entirely on offline demonstration datasets using a negative log-likelihood objective without access to
reward signals, making it susceptible to distributional shift and dataset bias when deployed out-of-
distribution [33]]. Moreover, there is no guarantee that the mixture-model representation will maintain
diverse component utilization (see e.g., [9]).

Mixture Policy Representations and Entropy Estimation: [34] introduce a family of analytic
estimators for the differential entropy of mixture distributions, based on pairwise distance functions
between components. [35] examines conditional Gaussian mixture policies within the entropy-
regularized actor-critic framework, derives both half-reparameterization and Gumbel-softmax gradient
estimators for the mixture weights and components, and demonstrates that mixture policies yield
in some cases more robust exploration and higher solution quality than unimodal Gaussians across
a variety of benchmarks. [36]] extend the Relative Entropy Policy Search algorithm to hierarchical
“mixed-option” policies by formulating policy learning as a latent-variable problem and incorporating
an uncertainty constraint to enforce mode separation. Nematollahi et al. [37] propose a hybrid
approach in which a Gaussian mixture dynamical system is first learned from demonstrations to
model trajectory distributions of robot skills.

Static Variational-Inference vs. Bellman-Coupled RL: Both our method and VIPS [38] leverage
log-responsibility updates to alternate between mixture components and weights, a structure rooted
in Arimoto’s algorithm. VIPS, however, is a static variational-inference procedure that maximizes an
ELBO to approximate a fixed target distribution, whereas we optimize a sequential MDP objective
in which the mixture-component entropy terms are embedded in a Bellman recursion, creating
temporal coupling across states. Our objective also differs: we jointly maximize mixture entropy
while minimizing per—component entropy (maxi—mix—mini—com), rather than performing a KL/ELBO
projection. Finally, our tabular updates admit closed forms and we prove monotonic improvement
of the value function per iteration, without trust-region or Monte Carlo approximated lower—bound
steps.

Hierarchical RL: encompasses frameworks such as goal-conditioned RL, unsupervised skill dis-
covery, and option-based methods that decompose tasks into high- and low-level policies [39].
Goal-conditioned approaches like Universal Value Function Approximators train policies to achieve
explicit goals but require predefined goal signals [40], while skill-discovery methods (e.g., DIAYN
[41], VALOR [42]) uncover diverse behaviors via mutual-information or empowerment objectives but
often lack convergence guarantees or principled composition). Option-based frameworks learn tempo-
rally extended primitives under formal hierarchies but can depend on offline data or manual subgoal

14

design [43]]. In contrast, our maxi-mix-mini-com framework discovers entropy-driven component
policies fully online, providing provable convergence, explicit diversity control, and interpretable
components that integrate seamlessly into hierarchical architectures.

Unsupervised Skill Discovery: Online unsupervised action quantization and unsupervised skill
discovery differ fundamentally in their structure and deployment. Action quantization produces
a set of atomic components that can be rapidly switched at every timestep, enabling fine-grained
control and flexible composition within or across states. In contrast, skill discovery methods such
as DIAYN, DADS, LSD, VALOR, and METRA learn temporally extended skills or options, each
with its own intra-skill policy and often explicit termination conditions, so that switching typically
occurs only at option boundaries [41] 144 45|42} /46]. The distinction targeted by each approach also
diverges: action quantization explicitly encourages distinct actions in the same state by separating the
supports of its components in action space, while skill discovery maximizes mutual information or
related divergences between a latent skill variable and state, final state, or trajectory distributions,
resulting in skills that may execute identical actions in the same state but diverge over extended
rollouts. State dependence in action quantization arises from state-conditioned selection and the
agent’s controllability, without a direct objective for maximizing state-space coverage; skill discovery,
in contrast, explicitly couples the latent variable to state visitation, thereby incentivizing broader
exploration. In deployment, action quantization exposes a discrete set of selectable actions for
standard discrete-action RL methods, requiring no additional termination handling, whereas skill
discovery introduces a two-level control hierarchy that manages skill selection, intra-skill policy
execution, and option termination. As a result, compositional control is fine-grained and per-
step with action quantization, but is inherently coarser and limited to skill boundaries in skill
discovery frameworks. Our preliminary experiments (not shown) indicate, as expected, that skill
discovery approaches used as quantized action provide lower performance than our maxi-mix-mini-
com approach.

Intrinsic Motivation addresses the question of what reward-agnostic signals can generate behavior
useful for learning and discovery. Several frameworks have emerged where intrinsic signals are
major drives of behavior: information seeking [47], novelty seeking [48], empowerment [49] 50],
minimizing free energy [51l], or occupying action-state space [13]]. We have focused on the latter
because the maximum occupancy principle (MOP) provides a principled way to generate diverse,
complex behaviors only limited by the constraints of the agent and the presence of terminal states.
Empowerment maximizes the mutual entropy between future states and sequences of actions, and
therefore it is an appealing objective to generate diverse behavior. However, it has been shown that
empowerment provides no clear closed-form recursion beyond its per-step formulation [[14]. In any
event, it is worthy exploring in future work different intrinsic motivation objectives for action-policy
discretization.

6.2 Monotonic Policy Iteration for the Maxi-Mix-Mini-Comp Entropy Objective

Here we provide a full proof of Theorems[I]and 2] We reproduce some results previously shown
in Sec. [2]to ease understanding. First we remind the reader that our objective can be expressed as
maximizing the value function over component and coefficients as the optimality Bellman equation

V*(s) = max | R(s;m,w) +75) mm(als)Q*(s,0) (18)
R(s;m,w) = H(mm(1s) — Y wi(s)H(mi(]s)) , (19)
k

where 7 indicates the set of component policies 7 = {71, ...,7x } and w = {wy, ..., wg }, where
the conditioning on the state s is omitted but understood. Note that the sum limits in) are
state-dependent, as we in general allow for state-dependent action set A(s).

If « < 1, the immediate reward is non-negative, R(s; 7, w) > 0, because the entropy of a mixture
is always larger or equal than its maximum entropy component — easy to prove using concavity of
—zlogz in [0, 1]. Since the immediate reward R(s; 7, w) is bounded for all s in finite action spaces,
it is not difficult to show that the optimal value function V* admits an unique solution, although
possibly through non-unique optimal 7 and w (see e.g., steps in [15], using the fact that if 0 < v < 1,
then the optimal Bellman operator is a contraction).

15

We first prove that for a high capacity mixture policy, that is, when the number of components is
larger or equal than the action space, then solving Eq. [T8]is equivalent to solving an unconstrained
problem with no restrictions on the mixture policy.

Theorem[1} If K (s) > |A(s)| for all s, then the optimal solution of Eq. [I8|is such that T, (ak|)=
only for one action ay, and the set of actions spans A(s), that is, {ar} = A(s). Then, 7, in Eq. |l|is
unconstrained and the optimal value function obeys

W

V*(s) = max <H(7Tm(-8t)) Y mn(als)Q" (s, a)) (20)

The optimal mixture policy is unique, while the mixture components are not unique if |A(s)| > 1 at
least for one state.

Proof. It is obvious that for any fixed mixture policy 7,,, the value function in Eq. [3]is maximized
if each of the components can be made to have zero entropy (as « > 0), eliminating the negative
contribution to the immediate reward. Zero entropy components can be obtained iff for each
component k, there exists a single action ay, such that 7y (ax|s) = 1. As K(s) > |.A(s)|, and defining
A(s) = {a1,...,a4(s)}, we can choose the components 7, such that 73 (ax|s) = 1 (that is, it is a
deterministic component policy) for k = 1, ..., | A|(s), and 7, (a1|s) = 1 for k& > |.A|(s). Then, any
policy 7(als) can be built from these components using wy(s) = m(ay|s) in Eq. [[|for k < [A(s)]
and wy(s) = 0 otherwise. This means that the mixture policy is unconstrained, and then it can be
made to optimize the Bellman Eq. [5| with a = 0, or equivalently Eq. [20] Non uniqueness of the
components is clear because we are free to permute assignments between actions and components.
Uniqueness of V* and the optimal policy 7, has been shown in [13]]. O

For the case K (s) < |A(s)|, we can write the optimality Bellman equation 18| (see Sec. [2) as

W r

V*(s) = max max <G(s; T, w,T) + ’Yzﬂm(a|s)Q*(s7 a)> 21

a

Our algorithm (see Sec. [2)) proceeds by following the next steps:

(1) Initial conditions: Start the value function V(9 (s) = 0 for all s and arbitrary 7(?) =
{71'%0), s wg?)} and w(®) = {wﬁo), - wg)} outside the simplex boundaries, that is, ﬁ,(co)(a|s) >0

and w,(co) (s) > 0 for all k, s and a. Define the initial responsibilities as

wi” (s) 1 (a]s)

e =)

>0. (22)

Iterate the following step (2) forn = 1,2,

(2) At iteration n, start from V(=1 7(n=1) 4, (n=1) and »-(»=1) Perform the following steps, (2a)
to (2d).

(2a) Define the updated value function V() as

V) (s) = Gs;r(D, w1 p(nm) +vz7r5” Y(als)Q" (s, a) , (23)

with Q=D (s,a) = 3, p(s'|s,a) V= V(s) and 7 =3 w(n V(s)ﬂ',(i," D(als).

Note that with this definition, we have V(1) (s) > V(9 (s) = 0 for all s, because the gain
G(s;70 w® 1) = R(s; 79) is non-negative.

(2b) Compute 7™ fixing V(*~1 and +(*~1) using
"V (s, a)| TR e w QT (50)

B Sl (5,0 R e R @ Ve

(24)

16

This equation is the result of the optimization

7™ ([s) = argmax | G(s;m, w0 r=0) 443" wl" V() mi(a5) QU (s,a) | L (25)

T
k,a

where (™) (.|s) = {ﬂn) (-|8)y -+ ,775,?) (+|s)}, as it can be checked adding Lagrange multipliers and
taking derivatives (see details in Appendix [6.2.1). Note that the ordering of the component policies
m1,...,TK 1s immaterial, as the objective in Eq. @is additive over k, and each 7 can be optimized
independently when w(™~1 and ("1 are fixed. Consequently, the solution is invariant to any

permutation of the indices. The solution w,i") (a|s) provided in Eq. is the only global optima if
w,gn_l) (s) > 0 for all k£ and s, as then the solution lies inside the simplex and the objective is strictly
concave.

Defining Vﬂ(”) as the argument of the right hand side of Eq. after replacing 7 with the optimal
W](Cn) (als), we obtain

V#n) =G(s; 7T(”), w(n—1)7 T("_l)) oy Z wl(cnfl)(s) W](cn)(a|S)Q(n_1) (s,a) (26)
k,a

Z[l(cnil) (87 a)} ﬁelja Q(nl)(sva)]

(1-« Zw(n b s)log

—Zw(n Y (s) log(wy" ™ (s)). 27)

Naturally, we have VTE (s) > 14D (s) for all s, because after the optimization the quantity in the
bracket on right hand side of Eq. [25]cannot decrease.

(2¢) Compute w™ fixing V(=1 and (»~1) using

n—1 1 3 g g)\
(n) (Z [)(s7a)]1faelfa<? (s, >)
Wy, (8): i (n—1) T—a * (28)
S (Sl V(s @) TEera @)
This equation is the result of the optimization
w™(s) = argmax [G(s;7", w,r*=1) 4 'wak(s) Wl(cn)(als)Q("_l)(s, a)|, (9

w
k,a

by using the previously computed 7(™ in step (2b), and where we denote w(")(s) =

{wgn)(s), e ,wﬁg)(s)}. The solution in Eq. is the only global maximum provided that
r("_l) (s,a) > 0 forall k, s and a (see Appendix for details).

Defining V7r(« as the argument of the right hand side of Eq. after replacing w with the optimal
,(C)(), we obtain

V) = G(s;n™, w™ p=1) +va " (als)Q" Y (s,a) (30)

-«
= log Z(Z[r,i”‘”(s,aﬂlueay@“-”(s’w) . 31)

k a

Naturally, we have VW(TL), (s) > V7T("') (s) for all s, because after the optimization the right hand side of

Eq. cannot decrease. This, in turn, implies that Vﬂ(% (5) > V(™ (s) using the last inequality in
step (2a).

(2d) Compute (™ fixing V=1 7(") and w(™) using

(n) (n)
n wy ' (s)m, " (als
r,i)(S7a) — % ; (32)
T (a]$)

17

with 71 (|s) =, w (),)(a|s). This equation is the result of the optimization (see Appendix

[6:2.3] for details),

(M (s,) = argmax | G(s; 7™ +’wa als)Q" V(s,a) |, (33)

where r(")(s,)= {rﬁ”)(s,), 77”%)(5,)}

Defining VTSZ),,T as the quantity within the bracket on the right hand side of Eq. [33|after replacing r

with the optimal r{"” (s, a), we obtain

Vi = Glsimt™ w™ r()) 44 Z wy (al)Q" M (s,a) . (34)
Naturally, we have Vw(ﬁg,r(s) > V,STLZ (s) for all s, because after the optimization the right hand side
of Eq. cannot decrease. This, in turn, implies that Véﬁg,r(s) > V(") (s) using steps (2a) and (2b).

Theorem 2} The algorithm following steps (1) and (2), which consists in iterating the 7, w and r
using Eqgs. 2324|2832 in this order, improves the value function monotonically until convergence.

Proof. From (2a) above we have seen that V(1) > V(0 Agsume that it is true V(™ > V(=1 for
some n > 0. Then, from the definition of V”+1 using Eq. .We see that

VD (5) = Gs; 7™, w™ (M) JWZW(n) 15)Q™ (s, a) (35)
> G(s; 7™, ™ () _,_,yzﬁ(n) 15)Q "V (s, a) (36)
=V, G7
> V(). 9

Q=1 (s, a) for all (s, a), in the third line we have used the definition of V)., in Eq. [34, and in
the last line we have used the final implication in (2d).

where in the second line we have used the induction assumption, implying that Q(")is, a) >

Then, by induction, the series V(") (s) is non-decreasing for all s, and since the value function is
finite (V' (s) < log(maxs |.A(s)|)/(1 —) for any policy 7,,,), the series converges to a finite value
V() (s) as n goes to infinity. There is strick improvement (> instead of > in all equations above)
whenever the updated 7, w or r are different from the previous ones.

We finally check for consistency of Eqs. 24]28]32] as these optima are obtained by taking derivatives
with Lagrange multipliers and assuming that the optima do not lie on the simplex boundaries. The

initial condition indeed obeys this, 7r,(c (als) >0, w(o)() > 0 and r,i())(s, a) > 0 forall k, s and a.
Then, positivity of all variables is true for n = 0. Assuming that positivity of all variables is true for
some n such that n > 0, then it can be shown that it is again true for n + 1 using Eqs. 242832 By
induction, it follows that the optima are always in the simplex but outside the boundary, although
they can get infinitely close to the simplex boundary as n goes to infinity, meaning that the converged
solution might actually be at the boundary. O

Remark: The limit V(> (s) must be a solution to the Bellman Eq. [3| Therefore, it corresponds to

a proper value function with a proper policy. Indeed, the policy must converge as well to a policy

o) (als), because it cannot change when the value function V(") () has converged: if the policy

changed, then there should an strict (>) improvement of the value function in every new iteration,
which contradicts the assumption that the value function has converged. However, convergence of
the series V(") (s) does not imply that the optimal Bellman equation is solved by V(°)(s), so it
might lead to a suboptimal value and policy. The converged values also might depend on the initial
conditions.

Remark: Any orderings of the updates for 7, w or r lead to equivalent algorithms. This is because 7
and w only depend on r and @), so their order is interchangable, and any other update ordering is just
a cyclic permutation of one of these two.

18

6.2.1 Finding optimal component policies at iteration n

At iteration n, with fixed value function V"~ mixture weights w1 and responsibilities r (1),
the update for the component policies 7y, is given by the maximization problem

7™M (|s) = argmax | G(s;m, w™ D r(=D) 4 szlgnfl)(s) m(als)QM (s, a)

s
k,a

In this optimization, for a given k, only the following terms depending on 7, contribute,
—(1-« Zﬂ'k s)log mi(als) + Z?‘(‘k als) {10g r,i”fl)(s, a) + ’YQ(H_D(& a)l

subjectto - m(a | s) = 1. This expression is multiplied by w(n 1)(s),but because w,(cnfl)(s) >0
for all k, s and n (see Theorem [2), it can be removed. We note that for < 1 this expression is
strictly concave in 7y (|s); therefore if there is a critical point in the simplex), 7 (a | s) = 1, it
will be the global maximum, which will be the case as shown below.

We note that the simplification that arises from having a constant weight w,(c"_l)(s) multiplying
the previous equation does not hold if the weighted sum of entropies in Eq. [2]is replaced by an
unweighted sum (i.e. replacing the Weighted entropy penalty Y, wy(s) H(m(- | s)) in Eq. @)
with the unweighted sum), H (7 (- | s))). In this case, the first term (multiplied by the weight)
would be replaced by —(w,, (n= 1)() —a) Y, mk(als)log mi(als), leading to a non-concave problem
depending on the current sign of —(w,(cnfl) (s) — «) at iteration n — 1, which could also fluctuate

across iterations (remember that o < 1 and 0 < w,(cnfl)(s) < 1.

Introducing a Lagrange multiplier A\, we form the Lagrangian

Lr(s, i M) Zm als)[logr{") (s,0) + Q"D (s,0)| = (1 a) D" mi(als) log m (als)

k (Z i (als) — 1) .

Differentiating with respect to 7 (a|s) and setting it to zero to find critical points gives
0Ly
Ory(als)

which after rearranging becomes

= log7{"V(s,0) +9Q"V(s,a) ~ (1 - o) (log me(als) + 1) + Ae =0, (39)

logry" ™ (s,a) + Q"D (s,a) + A, — (1 — a)
1—«

log 71, (als) =

b

or equivalently,

o ,r(n 1) s.a (n—1) s.a B N
Wk(a|s):exp<l g (5)+7Q (3)>8Xp<)\k(1)> .

1—«a 11—«

Enforcing normalization yields the closed-form softmax update
[y (s,0)) e s @)
Za/[r](c 1)<S a)]l 0461 Q(n 1)(50’) '

" (a]s) =

identical to Eq. [T4]

Because r,(cn_l) (s,a) > 0and Q"1 (s,a) < oo, the critical point is in the simplex. Therefore w,(gn)

is the global maximum. Further, note that the global maximum is not on the simplex boundaries.
We remind the reader that the fact that 7("), w () (") are all positive for all n has been shown by
induction (see Theorem 2)).

19

6.2.2 Finding optimal mixture weights at iteration n

To determine the optimal weights w,(cn) (s), we solve the constrained maximization

w,gn)(s) = argmax{G(s; 7™, r(n Y +’wak 71' (a]s)@ mﬂ)(s,a)},

(40)
subject to Zwk(s) =1,
k
where 7(™) is computed in step (2b) and r,(fnfl) (s,a) > 0 forall k, s, a.
We can rewrite the objective as we saw earlier (see Eq. as
G (s 7™, w10 7) 49 we(s) " (a | 5) QN (s,a)
k,a (41)
(1-« Zwk logF " 1)() — Zwk(s)logwk(s))
k
where)
F]gnfl)<8>_Z[(n— 1)()]1 s eT2 1 Q (sa). (42)

a

We note again that the objective is strictly concave in the wy(s), and therefore once again if there is a
critical point in the simplex), wy(s) = 1, it must be the global maximum, as it is shown below.

To enforce the simplex constraint, we introduce a Lagrange multiplier \,, and form

K
L(s,w,) =(1—a Zwk log F(" 1) Zwk log wy,(s) + A (Z wy(s) — 1))
k=1

(43)
Differentiating £ with respect to wy(s) and setting the derivative to zero yields
—logwi(s) =1+ (1 - «) log F,En_l)(s) + Ay =0. (44)
Solving for wy,(s) and enforcing >, wy.(s) = 1 gives the closed-form update
n— —« (n—1) L (n=1) s,a 1-a
O T oY e e
wy, ' (s) = - (45)

DUETIO)TT o (S s) e ers @)
(

Because rk"_l) (5,a) > 0and QY (s,a) < oo, the optimal mixture weights at iteration 7 are in
its simplex, but not on its simplex boundaries.

6.2.3 Finding optimal responsibilities at iteration n

To solve the optimization problem

(M (s,.) = argmax [G(s; 7™ +vzw(”) (") (a|$) Q" Y(s,a) | ,

s

we note that the only term involving r affecting the maximization is

Zw |) 1ogrk(s,a),

subject to the normalization constraint that for every state-action pair (s, a) the responsibilities satisfy

> k1 "k(s,a) = 1. Note that when r,(cn) (s,a) > 0and W,(C") (a]s) > 0 the function is strictly concave
in 7. Therefore, if there is a critical point inside the simplex), 71 (s, a) = 1, it must be the global
maximum, as we show below.

20

Introducing a Lagrange multiplier A, (a|s) for each state—action pair (s, a), the Lagrangian can be
written as

K K
Z (n) Wl(cn) (a]s) logri(als) + (s, a) (1 - Zm(s,a)) . (46)
k=1

k=1
Taking the derivative of the Lagrangian in (@6)) with respect to i (a|s) yields

oL, _ wi”(s) " (als) _
ory(als) ri(als) —Ar(als) =0,

which implies
Tk (57 CL) =

Enforcing the normalization constraint

K
Zrk als)=1 = A.(a]s) Zw (als) = 7™ (als),
k=1

we obtain the updated responsibilities

T’(C’U (as) = wy, (s)my (als) .

These probabilities over k are the global maximum, and they do not lie on the simplex boundaries
because r,(cn) > 0 and 7r,(€") (a|s) > 0 (see Theorem .

6.3 Unsupervised Policy Gradient Reparameterization for Continuous Control

In this section, we present the proof of Theorem [3] in which the performance measure is defined
as the value of the initial state of the episode, J(6) = V (sg). However, the derivation generalizes
straightforwardly to the case where the initial state is drawn from a distribution p(sg), in which
case the objective becomes J(0) = E, ~,[V (s0)], and the gradient is taken with respect to this
expectation. Our derivation is a simple generalization of the policy gradient theorem of [39] by
considering a mixture policy and incorporating, as intrinsic reward, a linear combination of the
entropy of the mixture and the entropies of its component policies.

Theorem Let m,, 0(als) be a mixture policy over continuous actions, and define the state-value
Sunction as in Eq. 3| Then the gradient of the performance objective J(0) = V (so) admits the form

VoJ(8) = /dwm,g(S)Wm,e(MS) (Vo log Tm,0(als)Q(s, a) + Ve R(s; , we)) dads.

s,a

where VgR(s;mg,wg) = Vg”H(ﬂ'm,@(-|s)) — aVy Zszl wi,o(s) H(mko(-|s)), m =
{m1,0,.... Tk o} and wg = {w1 9, ..., WK 9}

21

Proof. The gradient of the state-value function can be written in terms of the action-value function as
VeV (s)

= VyR(s; 7, wy) + V‘w/wmﬁ(ab)Q(s, a) da

a

= VyR(s; 7, wy +7/V97Tm9(a|)Q(s,a)da+~ [Tme(a|s)VeQ(s,a)da

a

:VQR(S;TI'Q,U)Q)+’Y/VQWm79(a|S) s,a da+’y/7rm79 /p(s'|5,a)V(s') dsda
/ Tm.o(a|s)p(s'|s,a)VeV (s') dsda

:V(;R(s;ﬂg,wg)+’y/V97rm79(a|s) s,a)da +y

a

= VyR(s;m, wp) + V/Voﬂm,e(a|3)Q(S7 a) da+

T / oo (als)p(s']s, a)
a,s’

(V@R(s’; o, We) + / Vormo(d'|s)Q(s',a") da" + 'y/ Tm.o(d'|s")p(s"]s',a" \VeV (s")ds' da’)

yS

= / ZP’I“(S — Z,t, Tm,0) (V@R(s;m),wg) +/V97Tm,9(a|x)Q(x,a)>

(47)
where we define Pr(s — x,t,) similar to [39] as the discounted probability of transitioning from
state s to state x in t steps under the mixture policy 7,, . Then we can find that

Vo J(0) = VoV (s0)
- /Szt:Pr(so — 8, b, Tm,0) (V@R(S;ﬂ'g,wo) +/QV97Tm,9(a|s)Q(s,a)> 48)

= / dr,, 6(8)Tm.0(als) (Vo log T, 0(als)Q(s,a) + VeR(s; 79, wp))
O

In this work, we reparametrize our component policies as 7y g(a|s) = p(e) where a = fy(g; s, k)
and p(-) is the noise distribution. Here we prove theorem (see Sec. [3) in which we provide an
unbiased reparametrization of our component policies.

Theorem@ Let fg = fo(g; s, k) then the gradients of objective function under our reparametrization
become

VQJ(Trm)e)

=E snd.,,, [Ve log wy,9(s) (Qﬂm,e (s, fo) —log mm.0(fols) + Oélogﬂk,e(f9|8))
kNCat(wk 9(8))
a—f9‘| ’

e~p
Proof. Our proof depends heavily on similar proof provided by [35], where they discuss the
reparametrization trick for entropy regularized policy gradient theorem for mixture policies. The
only difference between our case and their case is the weighted sum of component entropy and the
absence of the extrensic reward from the environment. We start with the extended policy gradient
Theorem 3] which states that

VoJ(0) = / dr,, o (8)Tm6(als) (Volog mm g(als)Q(s,a) + VeR(s;mg, we)) dads. (50)

(49)

+ v@f@ va (Qﬂ'mﬂ (Sa a’) -]'Og Tm.,0 (a’|8) +a log 71']6’9(01|S))

where d. ,(s) is the discounted occupancy measure under Ty, g.

Tm,0

22

We can break this last equation into 3 parts that we can handle separately. The first part is for the
state-action value function which recover the vanilla policy gradient theorem [39]]. [35] found that

/ dr,, o(8)Tm,0(a|s)Velog T 0(als)Qxr,, ,(s,a) dads

)

2 2 51
“E e, [Qe (s o) Vologuwio(9) + Vofs VaQu, (s,] OV
k~Cat(wy,o(s))
e~p(e)
The second part handle the entropy of the mixture policy and similarly [35] found that:
/ dr,. o(8) Tme(als) VeH(Wm’g(- | s)) dads (52)

)

=-E i, , [log om0 (fo | 5) Vologwy(s) + Vofo Valogmme(a| s)|,_ f] (53)
k~Cat(w.,0(s))
e~p(e)
The third term is

/ dr,, o(s)ma(als)Vg <Z wkyg(s)”;‘-l(wkyeus))) dads. (54)
s,a Lk
Note first that we can rewrite the entropy of component k with reparametrization as:

H(ﬂ'k,g(' | 8)) = — Eewp(e) [log Tk,0 (fg | S)} . (55)
Then the gradient

Zwk,e(s)VQH(ﬂ'k,G) =- Zwkﬁ(S)VGEe log mk.0(fo | 5)]
p ") (56)
= ~Epmcutup (o | Vofo Valogmeo(a | 5)[,_ |
e~p(e)
In addition we have

Zngk,g(s)H(wkHs)) = — Zwk,e(S)Ve log w0 (s)E. [10g7Tk,9(f6 |s)]
k % 57)

= —Epncat(wro(s)) | Vo log wr o (s) log 7 (fo |)]
e~p(e)

/ oo (8)Tm,0(als) Vg (Z ’LUk79(S)H(7Tk799(~|S))> dads.
s,a L

=-E .4 {Ve logwi(s) logmy(fo | s) + Vofs Valogm(a | S)fa:f;)]

Tm,0

kk~Cat(wg, o (s))
e~p(e)

Combining these 3 parts with multiplying the last one with —a completes our proof.

6.4 Implementation Details of the Policy Iteration Algorithm

To evaluate our policy iteration algorithm, we employed a simple grid-world environment comprising
three cell types: walls (impassable), terminal states, and feasible (navigable) states. The agent’s
objective is to maximize the entropy of its state—action distribution; consequently, it must avoid
regions with constrained movement. By definition, actions that would lead into wall cells are
excluded from the agent’s action set. Likewise, states adjacent to terminal cells are implicitly
disfavored, since transitions into a terminal state immediately terminate an episode and prevent
further entropy accumulation. As shown in Fig. 4] the highest-probability actions drive the agent
toward the center of the upper-right room, where it remains maximally distant from both walls and
terminal states, thus preserving the greatest potential for entropy maximization.

23

Figure 4: Grid-world environment. Grey cells denote impassable walls, and hatched cells indicate
terminal states. Each cell is labeled by its state index. The robot icon marks the agent’s initial state.
Although the optimal mixture policy is stochastic, arrows show the action with the highest selection
probability at each state.

6.5 Implementation Details

Figure 5: Benchmark environments used to evaluate our framework. From left to right: Ant-v5,
Walker2d-v5, Hopper-v5, Swimmer-v5, FetchReach-v2, and AntMaze. These environments span
diverse locomotion and manipulation tasks with varying dynamics and control complexity.

Unsupervised Learning: In this section, we detail the implementation of our algorithm for learning
mixture components in the continuous action domain. The mixture policy is parameterized by
a single neural network with 2K + 1 output heads. Specifically, K of these heads produce the
component means y; € RM, another K produce the log—standard deviations log o; € R, and the
final head produces unnormalized mixing logits @ € R¥, from which mixing weights w € [0, 1]%

are sampled using the Gumbel-Softmax trick, ensuring Zfil w; = 1. The log—standard deviations
are exponentiated to obtain positive standard deviations for the Gaussian components, which are then
used to form Normal(y;, o?) distributions.

All component parameters are computed concurrently through a shared feature extractor, with each
head responsible for its respective output. Training was conducted to solve the problem defined in
Eq.[2] We ran all experiments for 100,000 environment steps, using a discount factor v = 0.9 to
bias learning toward short-term diversity rather than long-horizon planning. Empirical evaluation
demonstrates that this discount factor yields faster convergence to diverse behaviors within the
intended temporal scale. To prevent degenerate policies in Ant-v5—where the agent could fall, flip
onto its back, and generate high-entropy leg movements in mid-air—we terminate each episode
whenever the torso contacts the ground. This termination rule was applied in both the unsupervised
variant and the reward-accumulating maze variant, as well as during the four-directional evaluation
for our agent and all baselines. We apply the episode termination conditions in the Hopper and
Walker environments exactly as specified in their respective Hopper-v5 and Walker-v5 definitions. In

24

contrast, the Swimmer and Fetch Robot environments were evaluated without any episode termination
conditions. For further details see [52].

Downstream Tasks: All methods are trained for 3 x 10° environment steps and evaluated over five
random seeds. To ensure fair comparison, health bonuses and control costs are omitted from the
reward function. We assess performance on five locomotion tasks: maximizing torso velocity along
the +x, —x, +y, and —y axes (directional locomotion), and reaching a central goal in a maze from
a random perimeter start (maze navigation) (see Fig. [5). Continuous baselines are trained only on
the 4z task (using symmetry for other directions), while our method is trained separately on each
direction and averaged.

In addition, we train discrete policies using DQN [17] and discrete PPO [16]; to compare with
continuous baselines, we also include SAC [[15] and PPO [16]. All agents were implemented and
trained using the Stable Baselines framework [53], with each algorithm configured according to its
recommended hyperparameters.

Compute Resources and Experimental Setup: We document the computational resources and envi-
ronment used for all experiments, including both unsupervised pretraining and downstream evaluation.
Each batch of five agents was trained on a cluster node featuring an NVIDIA T4 GPU, 16 CPU cores,
and 4 GB of RAM per core. The CPUs included models such as Intel Xeon and Broadwell. Training
time per batch ranged from 30 to 50 hours, while baseline models required less time. All experiments
were executed within a Docker container based on the nvidia/cuda:12.0.0-base-ubuntu20.04
image. Simulations were run using MuJoCo v3.1.6, with full configuration specified in the provided
Dockerfile. GPU memory usage during training typically ranged from 8 GB to 10 GB. This setup
ensures consistent dependency management and supports full reproducibility of the reported results.

Table 3: Hyperparameters

Parameter Value
Optimizer Adam [54]
Learning rate 3x 1074
Discount () 0.9
Replay buffer size 103

Number of hidden layers (all networks) 2

Number of hidden units per layer 256
Number of samples per minibatch 32

Steps per epoch 2000
Initial random steps 2000
Nonlinearity ReLU
Target network smoothing coefficient (7) 0.005 [53]]

6.6 Additional Experimental Results

a=0.05

Mean: 0.126
Median: 0.115
Std: 0.072

a = 0.40

Mean: 0.339
Median: 0.244
Std: 0.277

a=0.95

Mean: 0.556
Median: 0.534
Std: 0.306

Density
N w £ v o
N S

-
s

vl T T
0.5 1.0 1.5
Euclidean Distance

0.5 1.0 15 20 0.0 0.0 2.0

Euclidean Distance

0.0

0.5
Euclidean Distance

1.0 15 2.0

Figure 6: Pairwise Euclidean distance densities between component action means for o = 0.05, 0.4,
and 0.95.

Subsequently, we tested the maxi-mix-mini-com entropy objective on the MuJoCo Ant benchmark
[23]. For three values of the regularization coefficient (o« = 0.05, 0.4, 0.95), we trained a 16-
component Gaussian mixture policy and measured all pairwise Euclidean distances between the

25

component mean action vectors under deterministic execution. Figure[6|shows the resulting pairwise
distance densities. As « increases, the average distance between components grows, the variation in
those distances becomes larger, and the median distance shifts upward, demonstrating that components
move farther apart on average and with greater spread. At the same time, each density curve retains
density near zero, indicating that many component pairs remain closely clustered even at higher .
Together, these trends show that raising o both expands the policy’s overall coverage of the action
space and preserves small groups of highly similar, specialized components.

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11 k=12 k=13 k=14 k=15 k=16

—_——r A <N IS A S A S AN | TN SN s (S N A

k=17 k=18 k=19 k=20 k=21 k=22 k=23 k=24 k=25 k=26 k=27 k=28 k=29 k=30 k=31 k=32

I\ /= A AN S A VAN N = A N A Y

k=33 k=34 k=35 k=36 k=37 k=38 k=39 k=40 k=41 k=42 k=43 k=44 k=45 k=46 k=47 k=48

N N A Y A = AN N S N NS NI AL S NS

k=49 k=50 k=51 k=52 k=53 k=54 k=55 k=56 k=57 k=58 k=59 k=60 k=61 k=62 k=63 k=64

AN NN N N A I e (S A S A = N W N

Figure 7: MuJoCo Swimmer-v5 poses resulting from continuously applying the mode of each learned
component of a 64-component Gaussian mixture policy as the action. These results illustrate the
diversity and coverage of the continuous action space.

RERI RYAA R DA AR AR Y
APEXPFPRLRAALL F® K&
AFKBRATEKXR KA K-RA XA

LRER AL ELKRSCRAPAE R

Figure 8: MuJoCo Ant-v5 poses resulting from continuously applying the mode of each learned
component of a 64-component Gaussian mixture policy as the action, showing diversity and coverage
of the continuous action space.

26

Algorithm 1 Discrete Policy Updates

Require: A finite state space S, finite action space .A(s), transition kernel p(s’|s, a), discount factor
€ [0,1), specialization parameter 0 < « < 1, number of components K (s), number of
iterations N. (Sums over a and k are over ranges 0, - - - , |.A|(s) and 1, -+ , K(s)).

Ensure: Sequence {V("), (") (™) r(mM}N_ "converging to a fixed point.
1: Initialize:

22 VO(s)«0, Vse8
3: Choose arbitrary ﬁ,(go)(a|s) > 0, w,(co)(s) >0, Vk,s,a
T . 0 0 0
4: Compute initial mixture policy i) (als) = > ’?o?)’(“)((f? 7T,(€) (als)
5: Compute initial responsibilities r,(co)(s, a) + %7 Vk,s,a
6: forn =1to N do
7:
8: for all s € S do
9: Compute QY (s,a) «+ > p(s'|s,a) V"= (s'), Va
10: G(s) « G(s; an=1), w("_l),r(”_l))
1 VI(s) G(s) + v X, (als) QY (s,a)
12: end for
13:
14: forallk=1,...,K, s€S, aec Ado
n-1 1/(1-a) .
() [V (s,)] T exp (25 QY (5,0))
15 me(als) 1) (. 70 e (L g (s, 0
Za' [Tk (57 a)] exp(m Q(ni)(57 a))
16: end for
17:
18: forallseS, k=1,...,Kdo
n— —« n— 1-—
() (Salri"™ (s, @)Y exp 25.Q0 D (s,0))
19: wy, ' (s) % =y T
>t (el (s,)]V A=) exp 122Q 1 (s, a))
20: end for
21:
22: forallse S, ac A k=1,...,Kdo
23: Compute new mixture policy o’ (als) = 33, w(™ (s) 7\ (als)
(n) (0 ()
24: Compute new responsibilities 7",(:) (s,a) « W(’Cl)(als)
25: end for "
26: end for

27

Algorithm 2 Learning Components using maxi-mix-mini-com framework for continuous domains

1: Input: Policy parameters 6, Q-function parameters ¢1, po, target Q-function parameters
[4", specialization parameter o, discount factor ~, target update rate p, learning rate
71, Gumbel-Softmax temperature 7
2: Initialize replay buffer D
3: for each iteration do

4: for each environment step do

5: Sample component index: k; ~ GumbelSoftmaX(wg (se), 7')

6: Sample action: a; ~ 7k, o(-|st)

7: Execute a; in the environment; observe next state s;1, and terminal flag d;

8: Store transition (s¢, at, S¢41,d¢) in D

9: end for
10: for each gradient step do
11 Sample mini-batch of transitions {(s;, a;, s;,d;)}2., ~ D
12: Update Q-functions:
13: for each sample ¢ in the mini-batch do
14: Sample component for next state: k; ~ GumbelSoftmax (wg(s}), 7)
15: Sample next action: a} ~ 7%, ,(- | s})

16: Compute target:

yi =v(1 —d;) [erg(327 a;) — log T o(at]s;) + alog Trzw(ag\sg)}
17: end for
18: Update Q-functions by minimizing:
1< 2
¢j + arg r%i_n B Z(Q¢j (siyai) — yl> . JjeA{1,2}
’ i=1
19: Update Policy:
20: For each state s;, sample a component and action using the current policy:
k; ~ GumbelSoftmaX(wg(si), T), a; ~ g 0(| 8i)
21: Compute the policy gradient:
B
m 1 d pd a
VoI (m') ~ =Y Vo [Q¢(si, i) — 1og Tm.o(a; | i) + alog m, o(di]s:)
i=1

22: Update policy parameters: 6 <— 6 +n'VyJ(7y")
23: Update Target Networks: ¢/ < p ¢ + (1 —p) ¢;, j € {1,2}
24: end for
25: end for

28

	Introduction
	Maxi-mix-mini-com entropy objective for mixture component learning
	Experiments and results

	Component learning in continuous case
	Experiments and results

	Hierarchical reinforcement learning with pre-trained components
	Discussion and Conclusion
	Appendix
	Related Work
	Monotonic Policy Iteration for the Maxi-Mix-Mini-Comp Entropy Objective
	Finding optimal component policies at iteration n
	Finding optimal mixture weights at iteration n
	Finding optimal responsibilities at iteration n

	Unsupervised Policy Gradient Reparameterization for Continuous Control
	Implementation Details of the Policy Iteration Algorithm
	Implementation Details
	Additional Experimental Results

