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Abstract

Recently, transformer architectures for graphs emerged as an alternative to established techniques
for machine learning with graphs, such as (message-passing) graph neural networks. So far, they
have shown promising empirical results, e.g., on molecular prediction datasets, often attributed to
their ability to circumvent graph neural networks’ shortcomings, such as over-smoothing and
over-squashing. Here, we derive a taxonomy of graph transformer architectures, bringing some
order to this emerging field. We overview their theoretical properties, survey structural and
positional encodings, and discuss extensions for important graph classes, e.g., 3D molecular
graphs. Empirically, we probe how well graph transformers can recover various graph properties,
how well they can deal with heterophilic graphs, and to what extent they prevent over-squashing.
Further, we outline open challenges and research direction to stimulate future work. Our code is
available at https://github.com/luis-mueller/probing-graph-transformers.

1 Introduction

Graph-structured data are prevalent across application domains ranging from chemo- and bioinformatics (Barabasi
& Oltvai, 2004; Reiser et al., 2022) to image (Simonovsky & Komodakis, 2017) and social-network analysis (Easley
& Kleinberg, 2010), underlining the importance of machine learning methods for graph data. In recent years,
(message-passing) graph neural networks (GNNs) (Chami et al., 2022; Gilmer et al., 2017; Morris et al., 2021) were
the dominant paradigm in machine learning for graphs. However, with the rise of transformer architectures (Vaswani
et al., 2017) in natural language processing (Lin et al., 2021b) and computer vision (Han et al., 2022), recently, a
large number of works in the field focused on designing transformer architectures capable of dealing with graphs,
so-called graph transformers (GTs).

Graph transformers have already shown promising performance (Ying et al., 2021), e.g., by topping the leaderboard
of the OGB Large-Scale Challenge (Hu et al., 2021; Masters et al., 2022) in the molecular property prediction track.
The superiority of GTs over standard GNN architecture is often explained by GNNs’ bias towards encoding local
structure and being unable to capture global or long-range information, often attributed to phenomena such as
over-smoothing (Li et al., 2018), under-reaching (Barceló et al., 2020), and over-squashing (Alon & Yahav, 2021;
Di Giovanni et al., 2023). Many papers (Rampášek et al., 2022) speculate that GTs do not suffer from such effects
as they aggregate information over all nodes in a given graph and hence are not limited to local structure bias.
However, to make GTs aware of graph structure, one has to equip them with so-called structural and positional
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Figure 1: Categorization of graph transformers along four main categories with representative architectures:
Encodings; see Section 2.2, input features; see Section 2.3, tokens; see Section 2.4, propagation; see Section 2.5. See
also Figure 3 detailing how the different branches translate into changes to the original transformer.

encodings. Here, structural encodings are, e.g., additional node features to make the GT aware of (sub-)graph
structure. In contrast, positional encodings make a node aware of its position in the graph concerning the other
nodes.

Present Work. Here, we derive a taxonomy of state-of-the-art GT architectures, giving an organized overview of
recent developments. In addition, we survey common positional and structural encodings and clarify how they are
related to GTs’ theoretical properties, e.g., their expressive power to capture graph structure. Additionally, we
investigate these properties empirically by probing how well GTs can recover various graph properties, deal with
heterophilic graphs, and to what extent GTs alleviate the over-squashing phenomenon. Further, we outline open
challenges and research directions to stimulate future work. Our categorization, theoretical clarification, and
experimental study present a useful handbook for the GT and the broader graph machine-learning community. We
hope that its insights and principles will help spur novel research results and avenues.

Related Work. Since GTs emerged recently, only a few surveys exist. Notably, Min et al. (2022a) provide a
high-level overview of some of the recent GT architectures. Different from the present work, they do not discuss
GTs’ theoretical and practical shortcomings and miss out on recent architectural advancements. Chen et al. (2022a)
gives an overview of GTs for computer vision. Finally, Rampášek et al. (2022) provide a general recipe for
classifying GT architectures, focusing on devising empirically well-performing architectures rather than giving a
detailed, principled overview of the literature.

1.1 Background

A graph G is a pair (V (G), E(G)) with a finite set of nodes V (G) and a set of edges E(G) ⊆ {{u, v} ⊆ V | u ̸= v}.
For ease of notation, we denote an edge {u, v} as (u, v) or (v, u). In the case of directed graphs, E(G) ⊆ {(u, v) ∈
V (G)2 | u ̸= v}. Throughout the paper, we set n := |V (G)| and m := |E(G)|. A node-attributed graph G is a
triple (V (G), E(G), X), where X ∈ Rn×d, for d > 0, is a node feature matrix and Xv is the node feature of node
v ∈ V (G). Similarly, we can represent edge features by an edge feature matrix E ∈ Rm×e, for e > 0, where Evw is
the edge feature of edge (v, w) ∈ E(G). The neighborhood of v ∈ V (G) is N(v) := {u ∈ V (G) | (v, u) ∈ E(G)}.
We say that two graphs G and H are isomorphic if there exists an edge-preserving bijection φ : V (G) → V (H),
i.e., (u, v) is in E(G) if and only if (φ(u), φ(v)) is in E(H) for all u, v ∈ V (G). We denote a multiset by {{. . .}}.

Equivariance and Invariance. Ideally, machine learning models for graphs respect their symmetries, such as
being agnostic to the node permutations or other (group) transformations, such as rotation, leading to the
definitions of equivariance and invariance. In particular, we can expect better generalization for models respecting
these symmetries (Petrache & Trivedi, 2023). In general (Fuchs et al., 2021), given a transformation T, a function
f is equivariant if transforming the vector input x is equal to transforming the output of the function f , i.e.,
f(Tx) = Tf(x). A function g is invariant if transforming the vector input x does not change the output, i.e.,
g(Tx) = g(x). In the 3D Euclidean space, 3D translations, rotations, and reflections form the E(3) group.
Translation and rotation form the SE(3) group. Rotations form the SO(3) group, rotations and reflections form
the O(3) group.
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Graph Transformers. A transformer is a stack of alternating blocks of multi-head attention and fully-connected
feed-forward networks. Let G be a graph with node feature matrix X ∈ Rn×d.1 In each layer, t > 0, given node
feature matrix X(t) ∈ Rn×d, a single attention head computes

Attn(X(t)) := softmax
(

QKT

√
dk

)
V, (1)

where the softmax is applied row-wise, dk denotes the feature dimension of the matrices Q and K, with X(0) := X.
Here, the matrices Q, K, and V are the result of projecting X(t) linearly,

Q := X(t)WQ, K := X(t)WK , and V := X(t)WV ,

using three matrices WQ, WK ∈ Rd×dK , and WV ∈ Rd×d, with optional bias terms omitted for clarity. Now,
multi-head attention MultiHead(X(t)) concatenates multiple (single) attention heads, followed by an output
projection to the feature space of X(t). By combining the above with additional residual connections and
normalization, the transformer layer updates features X(t) via

X(t+1) := FFN
(
MultiHead

(
X(t)) + X(t)). (2)

Graph Neural Networks. Intuitively, GNNs learn a vector representing each node in a graph by aggregating
information from neighboring nodes. Formally, let G be a graph with node feature matrix X ∈ Rn×d. A
GNN architecture consists of a stack of neural network layers, i.e., a composition of permutation-equivariant
parameterized functions. Each layer aggregates local neighborhood information, i.e., the neighbors’ features, around
each node and then passes this aggregated information on to the next layer. Following Gilmer et al. (2017) and
Scarselli et al. (2009), in each layer, t ≥ 0, we compute node features

h(t+1)
v := UPD(t)

(
h(t)

v , AGG(t)({{h(t)
u | u ∈ N(v)}}

))
∈ Rd,

where UPD(t) and AGG(t) may be differentiable parameterized functions, e.g., neural networks. For example,
GNNs often compute a vector for node v by using sum aggregation (Morris et al., 2019), i.e.,

h(t+1)
v := σ

(
h(t)

v W(t)
1 +

∑
w∈N(v)

h(t)
w W(t)

2

)
,

where σ is a non-linearity applied in a point-wise fashion, W(t)
1 and W(t)

2 ∈ Rd×d are parameter matrices, and
h(0)

v := Xv. As noticed by Mialon et al. (2021), we can rewrite attention as defined in Eq. (1) as

Attn(X(t))v =
∑

u∈V (G)

kexp(X(t)
v , X(t)

u )∑
w∈V (G) kexp(X(t)

v , X(t)
w )

X(t)
u WV , (3)

for v ∈ V (G), where
kexp(X(t)

v , X(t)
w ) := exp

(
X(t)

v WQX(t)
w WK/

√
dK

)
and obtain an aggregation reminiscent of a GNN. In fact, we may view a GT as a special GNN, operating on a
complete graph, where the attention score weights the importance of each node during the sum aggregation.
Conversely, Veličković et al. (2018) propose graph attention networks (GAT), a GNN that replaces sum aggregation
with self-attention. We note that their definition of self-attention differs from Equation (1) in that GAT replaces
the dot-product with concatenation and subsequent linear projection.

2 The Landscape of Graph Transformers

In the following, we outline our taxonomy of GTs, see also Figure 1, bringing some order to the growing set of
GT architectures. We start by discussing the theoretical properties of GTs that heavily rely on structural and

1For simplicity, we learn attention between a graph’s nodes. However, in Section 2.4, we extend this to, e.g., edges or subgraphs.
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positional encodings, which we study subsequently. Further, we discuss different approaches to dealing with
essential classes of input node features, e.g., 3D coordinates in the case of molecules. We then study how to
tokenize a graph, i.e., partition a graph into atomic entities between which the attention is computed, e.g., nodes.
Then, we review how GTs organize message propagation in the graph through global, sparse, or hybrid attention.
Finally, we overview representative applications of GTs.

2.1 Theoretical Properties

It is crucial to understand that the general GT architecture of Eq. (2) is less expressive in distinguishing
non-isomorphic graphs than standard GNNs. Hence, it is also weaker in approximating permutation-invariant and
-equivariant functions over graphs (Chen et al., 2019). GTs are weaker since, without sufficiently expressive
structural and positional encodings, they cannot capture any graph structure besides the number of nodes and
hence equal DeepSets-like architectures (Zaheer et al., 2020) in expressive power. Thus, for GTs to capture
non-trivial graph structure information, they are crucially dependent on such encodings; see below. In fact, by
leveraging the results in Chen et al. (2019), it is easy to show that GTs can become maximally expressive, i.e.,
universal function approximators, if they have access to maximally expressive structural bias, e.g., structural
encodings. However, this is equivalent to solving the graph isomorphism problem (Chen et al., 2019). Moreover, we
stress that GNN architectures equipped with the same encodings will also possess the same expressive power.
Hence, regarding expressive power, GTs do not have an advantage over GNNs.

Cai et al. (2023) study the connection between GNNs and graph transformers, showing that under mild assumptions,
GNNs with a virtual node connected to all other nodes are sufficient to simulate a graph transformer. Conversely,
Kim et al. (2022) propose a hierarchy of (higher-order) transformers and respective positional encodings that is
aligned with k-IGNs (Maron et al., 2019), i.e., for each k > 1, there exists a corresponding higher-order transformer
that can simulate a k-IGN. The relationship between k-IGNs and k-WL (Maron et al., 2019) then implies the
connection between transformers and the k-WL hierarchy as well.

2.2 Structural and Positional Encodings

As outlined in the previous subsection, GTs are crucially dependent on structural and positional encodings to
capture graph structure. Although there is no formal definition or distinction between the two, structural encodings
make the GT aware of graph structure on a local, relative, or global level. Such encodings can be attached to node-,
edge-, or graph-level features. Examples of local structural encodings include annotating node features with
node degrees (Chen et al., 2022b), the diagonal of the m-step random-walk matrix (Dwivedi et al., 2022), the
time-derivative of the heat-kernel diagonal (Kreuzer et al., 2021), enumerate or count predefined substructures and
the node’s role within (Bouritsas et al., 2022), or Ricci curvature (Topping et al., 2022). Examples of edge-level
relative structural encodings include relative shortest-path distances (Chen et al., 2022a) or Boolean features
indicating if two nodes are in the same substructure (Bodnar et al., 2021). Examples of graph-level global
structural encodings include eigenvalues of the adjacency or Laplacian (Kreuzer et al., 2021), or graph properties
such as diameter, number of connected components, or treewidth.

On the other hand, positional encodings make, e.g., a node aware of its relative position to the other nodes in a
graph. Hence, two such encodings should be close to each other if the corresponding nodes are close in the graph.
Again, we can distinguish between local, global, or relative encodings. Examples of node-level local positional
encodings include the shortest-path distance of a node to a hub or central node or the sum of each column of the
non-diagonal elements of the m-step random walk matrix. Examples of edge-level relative positional encodings are
pair-wise node distances (Beaini et al., 2021; Chen et al., 2022a; Kreuzer et al., 2021; Mialon et al., 2021; Li et al.,
2020) and relative random walk encodings (Ma et al., 2023). Examples of node-level global positional encodings
include eigenvectors of the graph Laplacian (Kreuzer et al., 2021; Dwivedi & Bresson, 2020) (or of the Magnetic
Laplacian in case of directed graphs (Geisler et al., 2023)), or unique identifiers for each connected component of
the graph. Lim et al. (2022) propose SignNet and BasisNet, two positional encodings also based on the eigenvectors
of the graph Laplacian, which generalize a number of previously introduced structural and positional encodings
such as those based on random walks (Dwivedi & Bresson, 2020; Mialon et al., 2021) or PageRank (Li et al., 2020).

When designing such encodings, one must ensure equivariance or invariance to the nodes’ ordering. Such
equivariance is trivially satisfied for simple encodings such as node degree but not for more powerful encodings
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based on eigenvectors of the adjacency or Laplacian matrix (Lim et al., 2022). It is an ongoing effort to design
equivariant Laplacian-based encodings (Lim et al., 2022; Wang et al., 2022).

2.3 Input Features

Besides characterizing GTs based on their use of structural and positional encodings, we can also characterize them
based on their ability to deal with different node and edge features. To this end, we devise two families of input
features. First, we consider so-called non-geometric features where nodes and edges have feature vectors in Rd, i.e.,
graphs are described with a tuple (V, E, X, E). Secondly, we consider so-called geometric features where nodes and
edges features contain geometric information, e.g., 3D coordinates for nodes X3D ∈ R3. Therefore, graphs are
described with (V, E, X, E, X3D, E3D). We categorize GT architectures as non-geometric and those supporting
both features in the following.

Non-geometric GTs (Chen et al., 2022b; Choromanski et al., 2021; Dwivedi & Bresson, 2020; He et al., 2022; Kim
et al., 2022; Kreuzer et al., 2021; Jain et al., 2021; Ma et al., 2023; Mialon et al., 2021; Rampášek et al., 2022) are
most common and follow the equations in Section 1.1. Graphs with non-geometric features do not have explicit
geometric inductive bias. Examples of such features include encoded node attributes in citation networks or
learnable atom-type embeddings in molecular graphs. Non-geometric features are supposed to be equivariant to
node permutations, and transformers provide such equivariance by default. Structural and positional features
(Section 2.2) are often added to increase the expressive power of GTs.

3D molecular graphs provide geometric features describing nodes and edges, e.g., 3D coordinates of atoms, angles of
bonds, or torsion angles of planes. Building GTs supporting geometric features is more challenging as geometric
features need to be invariant or equivariant to certain group transformations, such as rotation, depending on the
task. Further, the architectures must be invariant for graph-level molecular property prediction tasks. In contrast,
models must be equivariant in node-level tasks such as predicting structural conformers or force fields.

Joshi et al. (2023) showed that equivariant geometric models are more expressive than invariant ones. Here, we
first describe SO(3), SE(3), and E(3) equivariant models and then turn the attention to invariant models.
TorchMD-NET (Thölke & Fabritiis, 2022) achieves SO(3) equivariance by incorporating interatomic distances into
the attention operation via exponential normal radial basis functions (RBF). SE(3)-Transformer (Fuchs et al.,
2020) was one of the first attempts to incorporate SE(3) equivariance. By using irreducible representations,
Clebsch-Gordan coefficients, and spherical harmonics, the authors encode SE(3) equivariance into the attention
operation. Equiformer (Liao & Smidt, 2023) further extends this mechanism to complete E(3) equivariance.
Graphormer (Shi et al., 2022), Transformer-M (Luo et al., 2022a) and GPS++ (Masters et al., 2022) use Gaussian
kernels to encode 3D distances between all pairs of atoms. Tailored for graph-level prediction tasks, GPS++
remains SE(3)-invariant, while Graphormer and Transformer-M introduce an additional SE(3)-equivariant
prediction head for node-level molecular dynamics tasks.

2.4 Graph to Sequence Tokenization

The nature of graph tokenization, i.e., mapping a graph into a sequence of tokens, directly affects the supported
features and computational complexity. Here, we identify three approaches to graph tokenization: (1) nodes as
tokens, (2) nodes and edges as tokens, and (3) patches or subgraphs as tokens.

Using nodes as input tokens is the most common approach followed by many GTs, e.g., (Dwivedi & Bresson, 2020;
Fuchs et al., 2020; Kreuzer et al., 2021; Luo et al., 2022b; Rampášek et al., 2022; Thölke & Fabritiis, 2022; Ying
et al., 2021). Here, we often treat structural and positional features as additional node features. Given a graph
with n nodes and the attention procedure of Eq. (1), the complexity of such GTs is in O(n2). We note that
more scalable, sparse attention mechanisms are also possible; see Section 2.5. Edge features, e.g., shortest-path
distances (Ying et al., 2021), random walk relative distances (Ma et al., 2023), or relative 3D distances (Luo et al.,
2022b; Thölke & Fabritiis, 2022), may be added as an attention bias given the fully computed attention score
matrix with n2 entries. Alternatively, Mialon et al. (2021); Jain et al. (2021); Chen et al. (2022b) leverage a GNN
to incorporate node and edge features before applying a transformer on the resulting node features. However, the
transformer’s quadratic complexity remains the bottleneck.
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The second approach uses nodes and edges in the input sequence as employed by EGT (Hussain et al., 2022)
and TokenGT (Kim et al., 2022). Turning an input graph into a graph of its edges is often used in molecular
GNNs (Gasteiger et al., 2021) and NLP (Yao et al., 2020). In addition to soft modeling the edges, i.e., the
node-to-node interactions, the attention operation also possibly models higher-order node-edge and edge-edge
interactions that theoretically result in an expressiveness boost (Kim et al., 2022). The input sequence can
naturally incorporate node features, their positional encodings, and edge features. A pitfall of this approach is its
O(n + m)2 computational complexity. Since the approach includes edge features in the input sequence, such GTs
might benefit from sparse attention mechanisms that do not materialize the full attention matrix.

The third approach relies on patches or subgraphs as tokens. In visual transformers (Dosovitskiy et al., 2021), such
patches correspond to k × k image slices. A generalization of patches to the graph domain often corresponds to
graph coarsening or partitioning (Baek et al., 2021; Chen et al., 2023; Kuang et al., 2022; He et al., 2022). There,
tokens are small subgraphs extracted with various strategies. Initial representations of tokens are obtained by
passing subgraphs through a GNN using a form of pooling to a single vector. He et al. (2022) adds token position
features to the resulting vectors to distinguish coarsened subgraphs better. Finally, these tokens are passed through
a transformer with O(k2) complexity for a graph with k extracted subgraphs. A similar approach is taken by
NAGphormer (Chen et al., 2023) where tokens denote aggregated l-hop neighborhoods of a node. Each node is
represented with a sequence of up to L tokens including the node itself and each token for l ∈ [1, L − 1]-hop
neighborhood. Subgraph tokenization is more scalable since the model never sees the whole graph and might benefit
from sampling methods. On the other hand, it makes GTs inherently local and might hinder their long-range
capabilities.

2.5 Message Propagation

Most GTs follow the global all-to-all attention of Vaswani et al. (2017) between all pairs of tokens. In the initial
GT (Dwivedi & Bresson, 2020) and TokenGT (Kim et al., 2022) this mechanism is unchanged, relying on token
representations augmented with graph structural or positional information. Other models alter the global attention
mechanism to bias it explicitly, typically based on the input graph’s structural properties. Graphormer (Ying et al.,
2021) incorporates shortest-path distances, representation of edges along a shortest path, and node degrees.
Transformer-M (Luo et al., 2022a) follows Graphormer and adds kernelized 3D inter-atomic distances. GRPE (Park
et al., 2022) considers multiplicative interactions of keys and queries with node and edge features instead of
Graphormer’s additive bias and additionally augments output token values. SAN (Kreuzer et al., 2021) relies on
positional encodings and only adds preferential bias to interactions along input-graph edges over long-distance
virtual edges. GraphiT (Mialon et al., 2021) employs diffusion kernel bias, while SAT (Chen et al., 2022b)
develops a GNN-based structure-aware attention kernel. EGT (Hussain et al., 2022) includes a mechanism akin to
cross-attention to edge tokens to bias inter-node attention and update edge representations. Finally, Zhang et al.
(2023) propose Graphormer-GD, a generalization of Graphormer, alongside new expressivity metrics based on graph
biconnectivity for which Graphormer-GD attains the necessary expressivity.

As standard global attention incurs quadratic computational complexity, it limits the application of graph
transformers to graphs of up to several thousands of nodes. To alleviate this scaling issue, Choromanski et al.
(2022) proposed GKAT based on a kernelized attention mechanism of the Performer (Choromanski et al., 2021),
scaling linearly with the number of tokens. Another approach to improve GTs’ scaling is to consider a reduced
attention scope, e.g., based on locality or sparsified instead of dense all-to-all, following expander graph-based
propagation (Deac et al., 2022) as in Exphormer (Shirzad et al., 2023). Finally, Wu et al. (2022) propose to view
attention as in Equation (3) and then apply the kernel trick to kexp to derive NodeFormer with a computational
complexity that scales linearly with the number of nodes.

Finally, hybrid approaches combine several propagation schemes. For example, GPS and GPS++ (Rampášek et al.,
2022; Masters et al., 2022) fuse local GNN-like architectures with global all-to-all attention into one layer. While
GPS employs standard attention and can utilize linear attention mechanisms such as Performer (Choromanski
et al., 2022), GPS++ follows Transformer-M’s attention conditioning. GraphTrans (Jain et al., 2021) is also a
hybrid but applies a stack of GNN layers first, followed by a stack of global transformer layers. Specformer (Bo
et al., 2023) employs transformer encoder layers for encoding eigenvalue representations and mixes those with node
features in the graph convolution-style decoder. GOAT (Kong et al., 2023) lets the nodes attend to k cluster
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centroids instead of n nodes on the global attention level. The centroids are obtained through k-means and
exponential moving average. On the local level, nodes attend to their k-hop neighborhood.

3 Applications of Graph Transformers

Although GTs only emerged recently, they have already been applied in various application areas, most notably in
molecular property prediction. In the following, we give an overview of the applications of GTs. Kan et al. (2022)
propose the Brain Network Transformers to predict properties of brain networks, e.g., the presence of diseases
stemming from magnetic resonance imaging. To that, they leverage rows of the adjacency matrix of each node as
structural encodings, which showed superior performance over Laplacian-based encodings in previous studies.
Moreover, they devise a custom pooling layer leveraging the fact that nodes in the same functional module tend
to have similar properties. Liao & Smidt (2023); Thölke & Fabritiis (2022), see also Section 2.3, devise an
equivariant transformer architecture to predict quantum mechanical properties of molecules. To capture the
molecular structure, they encode atom types and the atomic neighborhood into a vectorial representation, followed
by a multi-head attention mechanism. To predict scalar atom-wise prediction, they rely on gated equivariant
blocks (Schütt et al., 2021), which are then aggregated into single molecular predictions. Hu et al. (2020) develop
an approach to apply graph transformers to web-scale heterogeneous graphs. During the attention computation,
the authors use different projection matrices for each node and edge relation in the heterogeneous graph. Yao et al.
(2020) use transformers to tackle the graph-to-sequence problem, i.e., the problem of translating a graph to
word sequences. They first translate a graph to its Levi graph, replacing labeled edges with additional nodes to
incorporate edge labels. They then split such a graph into multiple subgraphs according to the different edge nodes.
Each subgraph uses a standard transformer architecture to learn the vectorial representation for each node. To
incorporate graph structure, they mask out non-neighbors of a node, concentrating on the local structure. Finally,
they concatenate multiple node representations. Further applications use transformers for rumor detection in
microblogs (Khoo et al., 2020), predicting properties of crystals (Yan et al., 2022) or click-through rates (Min et al.,
2022b), or leverage them for 3D human pose and mesh reconstruction from a single image (Lin et al., 2021a).

4 Experimental Study

Here, we conduct an empirical study to complement our taxonomy in a separate direction. Concretely, we
empirically evaluate two highly discussed aspects of graph transformers: (1) the effectiveness of incorporating graph
structural bias into GTs, and (2) their ability to reduce over-smoothing and over-squashing. This study aims to
compare selected methods from our taxonomy and investigate graph transformers more generally in terms of their
potential benefits over GNNs. Note that an empirical evaluation of all presented works would be out of scope for
the present work. Instead we focus on the approaches most prevalent in the literature. Concretely, we aim to
answer the following questions.

Q1 How well do different strategies for incorporating structural awareness into GTs contribute to recovering
fundamental structural properties of graphs?

Q2 Does the ability of transformers to reduce over-smoothing lead to improved performance on heterophilic
datasets?

Q3 Do graph transformers alleviate over-squashing better than GNN models?

4.1 Structural Awareness of GTs

For question Q1, we evaluate the two most prevalent strategies for incorporating graph structure bias into
transformers.

Positional and Structural Encodings (Section 2.2). Random-walk structural encodings (RWSE) and Lapla-
cian positional encodings (LapPE), two popular positional or structural encodings for transformers (Rampášek
et al., 2022).

Attention Bias (Section 2.5). Attention bias based on spatial information such as shortest-path distance
between nodes, following the Graphormer architecture (Ying et al., 2021).
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Table 1: Hyper-parameter sets for GTs and GNNs with or without PE/SE (Set 1), and for Graphormer models
(Set 2).

Hyper-parameter Set 1 Set 2

Embedding dim. 64 72
Self-attention heads 4 4
Weight decay 10−5 10−2

Learning rate 10−3 10−3

Gradient clip norm 1.0 5.0

LR scheduler cosine, constantwarm-up
Batch size 96 256

Table 2: Average test accuracy of GTs with structural bias (± SD) over five random seeds on the structural
awareness tasks. Difficulty level on top derived from GIN performance. We additionally report the performance of
a transformer without any structural bias serving as a baseline.

Model
Easy Medium Hard

Edges Triangles-small Triangles-large CSL

2-way Accuracy ↑ 10-way Accuracy ↑ 10-way Accuracy ↑ 10-way Accuracy ↑

GIN 98.11 ±1.78 71.53 ±0.94 33.54 ±0.30 10.00 ±0.00

Transformer 55.84 ±0.32 12.08 ±0.31 10.01 ±0.04 10.00 ±0.00

Transformer (LapPE) 98.00 ±1.03 78.29 ±0.25 10.64 ±2.94 100.00 ±0.00

Transformer (RWSE) 97.11 ±1.73 99.40 ±0.10 54.76 ±7.24 100.00 ±0.00

Graphormer 97.67 ±0.97 99.09 ±0.31 42.34 ±6.48 90.00 ±0.00

We propose a benchmark of three tasks that require increasingly higher structural awareness of non-geometric
graphs. We determine the level of structural awareness necessary to solve a task according to the baseline
performance of GIN (Xu et al., 2019), a 1-WL expressive GNN reference architecture. In addition, we report the
performance of a vanilla transformer without any structural bias to understand the relative impact of the positional
or structural encodings (PE/SE) and attention biasing.

We first describe the tasks in our benchmark and their estimated difficulty, then outline task-specific hyper-parameters
of evaluated models and interpret the observed results; see Table 2 for quantitative results.

Detect Edges (Easy). Detecting whether an edge connects two nodes can be considered the fundamental test
for structural awareness. We investigate this task using a custom dataset, Edges, derived from the Zinc (Dwivedi
et al., 2023) dataset. For each graph, we treat the pairs of nodes connected by an edge as positive examples and
select an equal number of unconnected nodes as negative examples, resulting in a binary edge detection task with
balanced classes. Let P denote the set of pairs selected as either positive or negative examples, and let h(T )

v denote
the feature vector of node v after the last layer T of a model. We make predictions as follows. We first compute
the cosine similarity between h(T )

v and h(T )
w for each pair (v, w) of nodes in P , resulting in a scalar similarity score.

Finally, we apply a linear layer to each similarity score, followed by a sigmoid activation, resulting in binary class
probabilities.

Count Triangles (Medium). Counting triangles only requires information within a node’s immediate
neighborhood. However, more than 1-WL expressivity is required to solve it (Morris et al., 2019). Hence, a standard
GIN architecture is not powerful enough. For this task, we evaluate models on the Triangles dataset proposed by
Knyazev et al. (2019), which poses triangle counting as a 10-way classification problem. Here, graphs have between
1 and 10 triangles, each corresponding to one class. The dataset specifies a fixed train/validation/test split, which
we adopt in our experiments. Graphs in the train and validation split are roughly the same size. The test set is a
mixture of two graph distributions, where 50% are graphs with a similar size to those in the training and validation
set (Triangles-small) and 50% are graphs of larger size (Triangles-large). We separately report model
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performance for Triangles-small and Triangles-large to study the ability of transformers with different
structural biases to generalize to larger graphs. We analyzed the datasets’ class balance and report that each test
set contains 5000 graphs with 500 graphs per class. For more details about the dataset, see Knyazev et al. (2019).

Distinguish Circular Skip Links (CSL) (Hard). A 1-WL limited model cannot distinguish non-isomorphic
CSL graphs (Murphy et al., 2019) as the task requires an understanding of distance (Morris et al., 2019). Here, we
evaluate models on the CSL dataset (Dwivedi et al., 2023), which contains 150 graphs with skip-link lengths
ranging from 2 to 16 and poses a 10-way classification problem. We follow Dwivedi et al. (2023) in training with
5-fold cross-validation.

Hyper-parameters. To simplify hyper-parameter selection, we hand-designed two general sets of hyper-
parameters; see Table 1. For Edges and Triangles, we fix a parameter budget of around 200k for the transformer
models, resulting in six layers for each model with the respective embedding sizes specified in Table 1. Further, we
train Graphormer on 1k epochs. Due to the small number of graphs in the CSL dataset, we fix a parameter budget
of around 100k for the transformer models, resulting in three layers for each model with the exact embedding sizes
as above. Further, we train Graphormer on 2k epochs. We repeat each experiment on five random seeds and report
the model accuracy’s mean and standard deviation.

For our 1-WL-equivalent reference model, we chose the GIN layer (Xu et al., 2019). To improve comparability with
the transformer models, we use a feed-forward neural network composed of the same components, using the same
hyper-parameters as for transformers. For Graphormer, we use the feed-forward neural network specified by Ying
et al. (2021). Further, we train GIN with the Set 1 hyper-parameters. For Edges and Triangles, this results in
around 150k parameters, while for CSL, the GIN model contains approximately 75k parameters.

Answering Q1. Table 2 shows that GTs supplemented with structural bias generally perform well on all
three tasks with a few exceptions. First, the GT with Laplacian positional encodings performs sub-par on the
Triangles task. However, it is still an improvement over the 1-WL-equivalent GIN. We hypothesize this is due to
an expressivity limit of Laplacian encodings regarding triangle counting. Secondly, we observe that all models
generalize poorly to larger graphs on the Triangles dataset. Lastly, we observe that on CSL, Graphormer cannot
surpass 90% accuracy. A deeper analysis revealed that the shortest-path distributions can only distinguish 9 out of
the 10 classes correctly, meaning that Graphormer is theoretically limited to at most 90% accuracy on CSL.

The above failure cases highlight that current graph transformers still suffer from limited expressivity, and no clear
expressivity hierarchy exists for the used positional or structural encodings. Moreover, GTs may generalize poorly
to larger graphs. At the same time, we demonstrate a general superiority of structurally biased GTs over standard
1-WL-equivalent models such as GIN. Both the transformer with RWSE as well as Graphormer solve Edges,
Triangles-small, and CSL almost perfectly, two of which pose a challenge for GIN, especially on CSL where
GIN performs no better than random.

4.2 Reduced Over-smoothing in GTs?

Graph transformers are often ascribed with an ability to circumvent GNNs’ over-smoothing problem due to their
global attention mechanism. Thus, we set out to benchmark several variants of GCN (Kipf & Welling, 2017),
hybrid GPS models, and Graphormer on six heterophilic transductive datasets: Actor (Tang et al., 2009);
Cornell, Texas, Wisconsin (CMU, 2001); Chameleon and Squirrel (Rozemberczki et al., 2021). In addition,
we also consider the recently proposed heterophilic datasets in (Platonov et al., 2023), which are significantly larger
(ranging from 10k to 45k nodes), where we benchmark GCN (Kipf & Welling, 2017), GAT (Veličković et al.,
2018), as well as GPS. While over-smoothing can occur both on homophilic and heterophilic graphs, only on
heterophilic graphs is over-smoothing truly limiting. This is because successfully predicting a nodes’ class on
a heterophilic graph potentially requires a model to take into account nodes further away than those in the
intermediate one or two-hop neighborhood and hence requires locally aggregating GNNs to be sufficiently deep.
However, since graph transformers allow interactions between all pairs of nodes fewer layers might suffice to
successfully solve a heterophilic problem.

For the six small datasets, we broadly follow the Set 1 hyper-parameters (Table 1). However, we perform a grid
search for each model variant to select the embedding size (32, 64, or 96) and dropout rates while we fix the
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Table 3: Benchmarking of multiple model variants on six heterophilic transductive datasets. Here we report average
test accuracy (± SD) over ten random seeds. We follow the dataset protocol of Pei et al. (2020); for additional
model comparison; see Luan et al. (2022).

Model (PE/SE type) Actor Cornell Texas Wisconsin Chameleon Squirrel

Geom-GCN (Pei et al., 2020) 31.59 ±1.15 60.54 ±3.67 64.51 ±3.66 66.76 ±2.72 60.00 ±2.81 38.15 ±0.92

GCN (no PE/SE) 33.92 ±0.63 53.78 ±3.07 65.95 ±3.67 66.67 ±2.63 43.14 ±1.33 30.70 ±1.17

GCN (LapPE) 34.30 ±1.12 56.22 ±2.65 65.95 ±3.67 66.47 ±1.37 43.53 ±1.45 30.80 ±1.38

GCN (RWSE) 33.69 ±1.07 53.78 ±4.09 62.97 ±3.21 69.41 ±2.66 43.84 ±1.68 31.77 ±0.65

GCN (DEG) 33.99 ±0.91 53.51 ±2.65 66.76 ±2.72 67.26 ±1.53 46.36 ±2.07 34.50 ±0.87

GPSGCN+Transformer (LapPE) 37.68 ±0.52 66.22 ±3.87 75.41 ±1.46 74.71 ±2.97 48.57 ±1.02 35.58 ±0.58

GPSGCN+Transformer (RWSE) 36.95 ±0.65 65.14 ±5.73 73.51 ±2.65 78.04 ±2.88 47.57 ±0.90 34.78 ±1.21

GPSGCN+Transformer (DEG) 36.91 ±0.56 64.05 ±2.43 73.51 ±3.59 75.49 ±4.23 52.59 ±1.81 42.24 ±1.09

Transformer (LapPE) 38.43 ±0.87 69.46 ±1.73 77.84 ±1.08 76.08 ±1.92 49.69 ±1.11 35.77 ±0.50

Transformer (RWSE) 38.13 ±0.63 70.81 ±2.02 77.57 ±1.24 80.20 ±2.23 49.45 ±1.34 35.35 ±0.75

Transformer (DEG) 37.39 ±0.50 71.89 ±2.48 77.30 ±1.32 79.80 ±0.90 56.18 ±0.83 43.64 ±0.65

Graphormer (DEG only) 36.91 ±0.85 68.38 ±1.73 76.76 ±1.79 77.06 ±1.97 54.08 ±2.35 43.20 ±0.82

Graphormer (DEG, attn. bias) 36.69 ±0.70 68.38 ±1.73 76.22 ±2.36 77.65 ±2.00 53.84 ±2.32 43.75 ±0.59

Table 4: Benchmarking of multiple model variants on the five transductive node classification datasets proposed in
(Platonov et al., 2023). Here we report average test accuracy (± SD) for Roman-Empire and Amazon-Ratings
and ROC AUC (± SD) for Minesweeper, Tolokers and Questions. Results over 10 splits, following (Platonov
et al., 2023). We highlight the first, second and third best results.

Model (PE/SE type) Roman-Empire Amazon-Ratings Minesweeper Tolokers Questions

GCN Platonov et al. (2023) 73.69 ±0.74 48.70 ±0.63 89.75 ±0.52 83.64 ±0.67 76.09 ±1.27

GAT Platonov et al. (2023) 80.87 ±0.30 49.09 ±0.63 92.01 ±0.68 83.70 ±0.47 77.43 ±1.20

GCN (LapPE) 83.37 ±0.55 44.35 ±0.36 94.26 ±0.49 84.95 ±0.78 77.79 ±1.34

GCN (RWSE) 84.84 ±0.55 46.40 ±0.55 93.84 ±0.48 85.11 ±0.77 77.81 ±1.40

GCN (DEG) 84.21 ±0.47 50.01 ±0.69 94.14 ±0.50 82.51 ±0.83 76.96 ±1.21

GAT (LapPE) 84.80 ±0.46 44.90 ±0.73 93.50 ±0.54 84.99 ±0.54 76.55 ±0.84

GAT (RWSE) 86.62 ±0.53 48.58 ±0.41 92.53 ±0.65 85.02 ±0.67 77.83 ±1.22

GAT (DEG) 85.51 ±0.56 51.65 ±0.60 93.04 ±0.62 84.22 ±0.81 77.10 ±1.23

GPSGCN+Performer (LapPE) 83.96 ±0.53 48.20 ±0.67 93.85 ±0.41 84.72 ±0.77 77.85 ±1.25

GPSGCN+Performer (RWSE) 84.72 ±0.65 48.08 ±0.85 92.88 ±0.50 84.81 ±0.86 76.45 ±1.51

GPSGCN+Performer (DEG) 83.38 ±0.68 48.93 ±0.47 93.60 ±0.47 80.49 ±0.97 74.24 ±1.18

GPSGAT+Performer (LapPE) 85.93 ±0.52 48.86 ±0.38 92.62 ±0.79 84.62 ±0.54 76.71 ±0.98

GPSGAT+Performer (RWSE) 87.04 ±0.58 49.92 ±0.68 91.08 ±0.58 84.38 ±0.91 77.14 ±1.49

GPSGAT+Performer (DEG) 85.54 ±0.58 51.03 ±0.60 91.52 ±0.46 82.45 ±0.89 76.51 ±1.19

GPSGCN+Transformer (LapPE) OOM OOM 91.82 ±0.41 83.51 ±0.93 OOM
GPSGCN+Transformer (RWSE) OOM OOM 91.17 ±0.51 83.53 ±1.06 OOM
GPSGCN+Transformer (DEG) OOM OOM 91.76 ±0.61 80.82 ±0.95 OOM
GPSGAT+Transformer (LapPE) OOM OOM 92.29 ±0.61 84.70 ±0.56 OOM
GPSGAT+Transformer (RWSE) OOM OOM 90.82 ±0.56 84.01 ±0.96 OOM
GPSGAT+Transformer (DEG) OOM OOM 91.58 ±0.56 81.89 ±0.85 OOM

number of layers to two. We implement the GCN and GT models following GPS with hybrid GCN+Transformer
aggregation layers but with the latter or former component disabled, respectively. We train all models in full-batch
mode using the entire graph as input.

For the five large datasets, we closely follow the hyper-parameter tuning and training setup described in (Platonov
et al., 2023). To this end, we set the embedding size to 512 and only tune the number of layers (1, 2, 3, 4, and 5).
Because on these datasets, the number of nodes provides an additional challenge for the transformer, we benchmark
GPS also with the Performer module (Choromanski et al., 2022) to study the benefits of linear attention on
large-scale graphs.
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Figure 2: Average train accuracy over ten random seeds of a GT on the NeighborsMatch dataset, compared to
models from Alon & Yahav (2021).

Apart from Graphormer, we benchmark all models on three different positional/structural encodings, namely
LapPE, RWSE, and degree encodings as described in (Ying et al., 2021).

Answering Q2. On the small datasets (Table 3), all transformer-based models outperform a 2-layer GCN, and
often the specialized Geom-GCN (Pei et al., 2020), which experimental setup we follow. With the exemption of
node degree encodings (DEG), other PE/SE had minimal effect on GCN’s performance. Adding global attention to
the GCN, i.e., following the GPS model, universally improves the performance. Most interestingly, disabling the
local GCN in GPS, i.e., becoming the Transformer model, increases the performance even further. Such results
indicate that GNN-like models are unfit for these heterophilic datasets, while the global attention of a transformer
empirically facilitates considerably more successful information propagation. Graphormer, which utilizes node
degree encodings, performs comparably to the Transformer counterparts. Surprisingly, the attention bias of
Graphormer had no impact on its performance. The shortest-path distance bias appears uninformative in these
datasets, unlike, e.g., in Zinc, where we observed degradation from 0.12 test MAE to 0.54 when disabling the
attention bias.

We conclude that we empirically confirm the expected benefits of global attention, albeit GTs do not achieve overall
SOTA performance (e.g., see Luan et al. (2022)), which is a reminder that specialized architectures can achieve
similar or higher performance without global attention still.

On the large datasets (Table 4), we observe strong benefits of added positional/structural encodings but also that
their effect is highly dataset dependent. At the same time, an added Transformer or Performer module does
not yield improvements in general. Specifically, the full Transformer goes out of memory on the three largest
datasets while leading to poor performance on Minesweeper and competitive performance on Tolokers.
Interestingly, the largest improvements of positional/structural encodings and Transformer modules are achieved on
Roman-Empire, the only dataset with a large graph diameter (6824).

Here, we conclude that positional/structural information can lead to large gains in performance, while global
attention only provides small or no improvements at all. One possible explanation is that when applied to graphs
with 10K or more nodes, the self-attention of graph transformers is subjected to much more noise, which makes
learning meaningful long-range interactions difficult.

4.3 Reduced Over-squashing in GTs?

To answer question Q3, we evaluate a GT on the NeighborsMatch problem proposed by Alon & Yahav (2021).
This synthetic dataset requires long-range interaction between leaf nodes and the root node of a tree graph of
depth d. The problem demonstrates GNNs’ limited ability to transmit information across a receptive field that
grows exponentially with d. We run our experiments with minimal changes to the code of Alon & Yahav (2021)
and train our transformer on depths 2 to 6. Note that GNN models fail to perfectly fit the training set of trees
with depth 4. Convergence on NeighborsMatch can sometimes take up to 100k epochs for large depths d. Since
the structure of the graphs in NeighborsMatch is irrelevant to solving the problem, we did not need to augment
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node features with positional/structural encodings or attention bias. Hence, the results represent most graph
transformers that use global aggregation similar to the standard transformer. Otherwise, we used the same
architecture as in Section 4.1.

Answering Q3. Section 4.3 shows that the GT performs exceedingly better than the GNN baselines and can
perfectly fit the training set even for depth d = 6. However, we note that the NeighborsMatch problem is
idealized and has only limited practical implications. The core issue of over-squashing, which is squashing an
exponentially growing amount of information into a fixed-size vector representation, is not resolved by transformers.
Nonetheless, our results demonstrate that the ability of transformers to model long-range interactions between
nodes can circumvent the problem posed by Alon & Yahav (2021).

5 Open Challenges and Future Work

Since the area of GTs is a new, emerging field, there are still many open challenges, both from practical
and theoretical points of view. Theoretically, although it is often claimed that GTs offer better predictive
performance over GNNs and are more capable of capturing long-range dependencies and preventing over-smoothing
and over-squashing, a principled explanation still needs to be formed. Moreover, there needs to be a clearer
understanding of the properties of structural and positional encodings. For example, it has yet to be understood
when certain encodings are helpful and how they compare. The first step could be precisely characterizing different
encodings to distinguish non-isomorphic graphs, similar to the Weisfeiler–Leman hierarchy (Morris et al., 2021).
Further, understanding GTs generalization performance on larger graphs has yet to be understood similarly to
GNNs (Yehudai et al., 2021; Zhou et al., 2022).

On the practical side, one major downside of GTs is their quadratic running time in the number of tokens,
preventing them from scaling to truly large graphs typical in real-world node-level prediction tasks. Moreover, due
to the attention mechanism’s nature, how best to incorporate edge features into GT architectures still needs to be
determined. Further, our experimental analysis reveals a disadvantage of local GNN-like models when used in
conjunction with transformers as in Rampášek et al. (2022) on heterophilic datasets. Heterophily is thus an open
challenge, also for GTs. Moreover, it is crucial to incorporate expert or domain knowledge, e.g., physical or
chemical knowledge for molecular prediction, into the attention matrix in a principled manner.

Explaining and interpreting the performance of GTs remains an open research area where we draw parallels with
NLP. We posit that studying GT in the graph ML community follows a similar path of studying transformer
language models in NLP unified under the name of Bertology (Rogers et al., 2021; Vulić et al., 2020). Numerous
Bertology studies reported that more than dissecting attention matrices and attention scores in transformer layers
is needed for understanding how language models work. The community converged on designing datasets and tasks
tailored to language model features such as co-reference resolution or mathematical reasoning. Therefore, we
hypothesize that understanding GTs’ performance through attention scores is limited, and the community should
focus on designing diverse benchmarks probing particular GTs’ properties. Further, studying scaling laws and
emergent behavior of GTs and GNNs is still in its infancy, with few examples in chemistry (Frey et al., 2022) and
protein representation learning (Lin et al., 2022).

6 Conclusion

We have provided a taxonomy of graph transformers (GTs). To this end, we overviewed GTs’ theoretical properties
and their connection to structural and positional encodings. We then thoroughly surveyed how GTs can deal with
different input features, e.g., 3D information, and discussed the different ways of mapping a graph to a sequence of
tokens serving as GTs’ input. Moreover, we thoroughly discussed different ways GTs propagate information and
recent real-world applications. Most importantly, we showed empirically that different encodings and architectural
choices drastically impact GTs’ predictive performance. We verified that GTs can deal with heterophilic graphs and
prevent over-squashing to some extent. Finally, we proposed open challenges and outlined future work. We hope
our survey presents a helpful handbook of graph transformers’ methods, perspectives, and limitations and that its
insights and principles will help spur and shape novel research results in this emerging field.

12



Published in Transactions on Machine Learning Research (02/2024)

Acknowledgements

CM and LM are partially funded by a DFG Emmy Noether grant (468502433) and RWTH JPI Fellowship under
Germany’s Excellence Strategy.

References
Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications. In ICLR,

2021.

Jinheon Baek, Minki Kang, and Sung Ju Hwang. Accurate learning of graph representations with graph multiset
pooling. In ICLR, 2021.

Albert-Laszlo Barabasi and Zoltan N Oltvai. Network biology: understanding the cell’s functional organization.
Nature Reviews Genetics, 5(2):101–113, 2004.

Pablo Barceló, Egor V. Kostylev, Mikael Monet, Jorge Pérez, Juan Reutter, and Juan Pablo Silva. The logical
expressiveness of graph neural networks. In ICLR, 2020.

Dominique Beaini, Saro Passaro, Vincent Létourneau, William L. Hamilton, Gabriele Corso, and Pietro Lió.
Directional graph networks. In ICML, pp. 748–758, 2021.

Deyu Bo, Chuan Shi, Lele Wang, and Renjie Liao. Specformer: Spectral graph neural networks meet transformers.
In ICLR, 2023.

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Lio, Guido F Montufar, and Michael
Bronstein. Weisfeiler and Lehman go cellular: CW networks. NeurIPS, pp. 2625–2640, 2021.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos P Zafeiriou, and Michael Bronstein. Improving graph neural network
expressivity via subgraph isomorphism counting. TPAMI, 2022.

Chen Cai, Truong Son Hy, Rose Yu, and Yusu Wang. On the connection between MPNN and graph transformer.
In ICML, pp. 3408–3430, 2023.

Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher Ré, and Kevni Murphy. Machine learning on graphs:
A model and comprehensive taxonomy. JMLR, pp. 1–64, 2022.

Chaoqi Chen, Yushuang Wu, Qiyuan Dai, Hong-Yu Zhou, Mutian Xu, Sibei Yang, Xiaoguang Han, and Yizhou Yu.
A survey on graph neural networks and graph transformers in computer vision: A task-oriented perspective.
ArXiv, 2022a.

Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-aware transformer for graph representation
learning. ICML, 2022b.

Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. NAGphormer: A tokenized graph transformer for node
classification in large graphs. In ICLR, 2023.

Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. On the equivalence between graph isomorphism testing
and function approximation with gnns. In NeurIPS, pp. 15868–15876, 2019.

Krzysztof Choromanski, Han Lin, Haoxian Chen, Tianyi Zhang, Arijit Sehanobish, Valerii Likhosherstov, Jack
Parker-Holder, Tamas Sarlos, Adrian Weller, and Thomas Weingarten. From block-Toeplitz matrices to
differential equations on graphs: towards a general theory for scalable masked transformers. In ICML, 2022.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamás Sarlós,
Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser, David Benjamin Belanger, Lucy J.
Colwell, and Adrian Weller. Rethinking attention with performers. In ICLR, 2021.

CMU. World Wide Knowledge Base (Web-KB) project. http://www.cs.cmu.edu/afs/cs.cmu.edu/project/
theo-11/www/wwkb/, 2001.

13

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/


Published in Transactions on Machine Learning Research (02/2024)

Andreea Deac, Marc Lackenby, and Petar Veličković. Expander graph propagation. In Learning on Graphs
Conference, 2022.

Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, and Michael M. Bronstein. On
over-squashing in message passing neural networks: The impact of width, depth, and topology. In ICML, pp.
7865–7885, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An
image is worth 16x16 words: Transformers for image recognition at scale. In ICLR, 2021.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs. ArXiv, 2020.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson. Graph neural
networks with learnable structural and positional representations. In ICLR, 2022.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson. Benchmarking
graph neural networks. JMLR, 2023.

David Easley and Jon Kleinberg. Networks, Crowds, and Markets: Reasoning About a Highly Connected World.
Cambridge University Press, 2010.

Nathan Frey, Ryan Soklaski, Simon Axelrod, Siddharth Samsi, Rafael Gomez-Bombarelli, Connor Coley, and Vijay
Gadepally. Neural scaling of deep chemical models. chemRxiv, 2022.

Fabian Fuchs, Daniel E. Worrall, Volker Fischer, and Max Welling. SE(3)-Transformers: 3D roto-translation
equivariant attention networks. In NeurIPS, 2020.

Fabian B. Fuchs, Edward Wagstaff, Justas Dauparas, and Ingmar Posner. Iterative SE(3)-Transformers. In
Geometric Science of Information, pp. 585–595, 2021.

Johannes Gasteiger, Florian Becker, and Stephan Günnemann. Gemnet: Universal directional graph neural
networks for molecules. NeurIPS, pp. 6790–6802, 2021.

Simon Geisler, Yujia Li, Daniel Mankowitz, Ali Taylan Cemgil, Stephan Günnemann, and Cosmin Paduraru.
Transformers meet directed graphs. In ICML, 2023.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural message passing
for quantum chemistry. In ICML, pp. 1263–1272, 2017.

Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhenhua Liu, Yehui Tang, An Xiao, Chunjing
Xu, Yixing Xu, et al. A survey on vision transformer. TPAMI, 2022.

Xiaoxin He, Bryan Hooi, Thomas Laurent, Adam Perold, Yann LeCun, and Xavier Bresson. A generalization of
ViT/MLP-mixer to graphs. ArXiv, 2022.

Dan Hendrycks and Kevin Gimpel. Bridging nonlinearities and stochastic regularizers with gaussian error linear
units. ArXiv preprint, 2016.

Matthew Honnibal, Ines Montani, Sofie Van Landeghem, and Adriane Boyd. spaCy: Industrial-strength Natural
Language Processing in Python. 2020.

Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec. OGB-LSC: A large-scale
challenge for machine learning on graphs. In NeurIPS: Datasets and Benchmarks Track, 2021.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In WWW, pp.
2704–2710, 2020.

Md Shamim Hussain, Mohammed J Zaki, and Dharmashankar Subramanian. Global self-attention as a replacement
for graph convolution. In KDD, pp. 655–665, 2022.

14



Published in Transactions on Machine Learning Research (02/2024)

Paras Jain, Zhanghao Wu, Matthew Wright, Azalia Mirhoseini, Joseph E Gonzalez, and Ion Stoica. Representing
long-range context for graph neural networks with global attention. NeurIPS, 2021.

Chaitanya K. Joshi, Cristian Bodnar, Simon V Mathis, Taco Cohen, and Pietro Lio. On the expressive power of
geometric graph neural networks. In ICML, pp. 15330–15355, 2023.

Xuan Kan, Wei Dai, Hejie Cui, Zilong Zhang, Ying Guo, and Carl Yang. Brain network transformer. ArXiv, 2022.

Ling Min Serena Khoo, Hai Leong Chieu, Zhong Qian, and Jing Jiang. Interpretable rumor detection in microblogs
by attending to user interactions. In AAAI, pp. 8783–8790, 2020.

Jinwoo Kim, Tien Dat Nguyen, Seonwoo Min, Sungjun Cho, Moontae Lee, Honglak Lee, and Seunghoon Hong.
Pure transformers are powerful graph learners. In NeurIPS, 2022.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In ICLR,
2017.

Boris Knyazev, Graham W Taylor, and Mohamed Amer. Understanding attention and generalization in graph
neural networks. In NeurIPS, pp. 4202–4212, 2019.

Kezhi Kong, Jiuhai Chen, John Kirchenbauer, Renkun Ni, C. Bayan Bruss, and Tom Goldstein. GOAT: A global
transformer on large-scale graphs. In ICML, 2023.

Devin Kreuzer, Dominique Beaini, William L. Hamilton, Vincent Létourneau, and Prudencio Tossou. Rethinking
graph transformers with spectral attention. In NeurIPS, 2021.

Weirui Kuang, Zhen Wang, Yaliang Li, Zhewei Wei, and Bolin Ding. Coarformer: Transformer for large graph via
graph coarsening. OpenReview, 2022.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design provably more powerful
neural networks for graph representation learning. In NeurIPS, 2020.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for semi-supervised
learning. In AAAI, pp. 3538–3545, 2018.

Yi-Lun Liao and Tess Smidt. Equiformer: Equivariant graph attention transformer for 3D atomistic graphs. In
ICLR, 2023.

Derek Lim, Joshua Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, and Stefanie Jegelka. Sign
and basis invariant networks for spectral graph representation learning. ArXiv, 2022.

Kevin Lin, Lijuan Wang, and Zicheng Liu. Mesh graphormer. In ICCV, pp. 12919–12928, 2021a.

Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng Qiu. A survey of transformers. ArXiv, 2021b.

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin, Allan dos
Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, et al. Language models of protein sequences at
the scale of evolution enable accurate structure prediction. bioRxiv, 2022.

Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen Chang, and Doina
Precup. Revisiting heterophily for graph neural networks. In NeurIPS, 2022.

Shengjie Luo, Tianlang Chen, Yixian Xu, Shuxin Zheng, Tie-Yan Liu, Liwei Wang, and Di He. One transformer
can understand both 2D & 3D molecular data. ArXiv, 2022a.

Shengjie Luo, Shanda Li, Shuxin Zheng, Tie-Yan Liu, Liwei Wang, and Di He. Your transformer may not be as
powerful as you expect. ArXiv, 2022b.

Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K. Dokania, Mark Coates, Philip Torr, and
Ser-Nam Lim. Graph inductive biases in transformers without message passing. In ICML, 2023.

15



Published in Transactions on Machine Learning Research (02/2024)

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph networks. In
NeurIPS, pp. 2153–2164, 2019.

Dominic Masters, Josef Dean, Kerstin Klaser, Zhiyi Li, Sam Maddrell-Mander, Adam Sanders, Hatem Helal, Deniz
Beker, Ladislav Rampášek, and Dominique Beaini. GPS++: an optimised hybrid MPNN/transformer for
molecular property prediction. ArXiv, 2022.

Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. GraphiT: Encoding graph structure in
transformers. ArXiv, 2021.

Erxue Min, Runfa Chen, Yatao Bian, Tingyang Xu, Kangfei Zhao, Wenbing Huang, Peilin Zhao, Junzhou Huang,
Sophia Ananiadou, and Yu Rong. Transformer for graphs: An overview from architecture perspective. ArXiv,
2022a.

Erxue Min, Yu Rong, Tingyang Xu, Yatao Bian, Da Luo, Kangyi Lin, Junzhou Huang, Sophia Ananiadou, and
Peilin Zhao. Neighbour interaction based click-through rate prediction via graph-masked transformer. In SIGIR,
pp. 353–362, 2022b.

C. Morris, Y. L., H. Maron, B. Rieck, N. M. Kriege, M. Grohe, M. Fey, and K. Borgwardt. Weisfeiler and Leman
go machine learning: The story so far. ArXiv, 2021.

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav Rattan, and
Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks. In AAAI, pp. 4602–4609,
2019.

Ryan L. Murphy, Balasubramaniam Srinivasan, Vinayak A. Rao, and Bruno Ribeiro. Relational pooling for graph
representations. In ICML, pp. 4663–4673, 2019.

Wonpyo Park, Woonggi Chang, Donggeon Lee, Juntae Kim, and Seung won Hwang. GRPE: Relative positional
encoding for graph transformer. ArXiv, 2022.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric graph
convolutional networks. In ICLR, 2020.

Mircea Petrache and Shubhendu Trivedi. Approximation-generalization trade-offs under (approximate) group
equivariance. In NeurIPS, 2023.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova. A critical look at
the evaluation of gnns under heterophily: Are we really making progress? In ICLR, 2023.

Ladislav Rampášek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Dominique Beaini.
Recipe for a General, Powerful, Scalable Graph Transformer. In NeurIPS, 2022.

Patrick Reiser, Marlen Neubert, André Eberhard, Luca Torresi, Chen Zhou, Chen Shao, Houssam Metni, Clint van
Hoesel, Henrik Schopmans, Timo Sommer, et al. Graph neural networks for materials science and chemistry.
Communications Materials, 3(1):93, 2022.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky. A primer in bertology: What we know about how bert works.
TACL, 8:842–866, 2021.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. Journal of Complex
Networks, 9(2):cnab014, 2021.

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural network model. IEEE
Transactions on Neural Networks, 20(1):61–80, 2009.

Kristof Schütt, Oliver T. Unke, and Michael Gastegger. Equivariant message passing for the prediction of tensorial
properties and molecular spectra. In ICML, pp. 9377–9388, 2021.

Yu Shi, Shuxin Zheng, Guolin Ke, Yifei Shen, Jiacheng You, Jiyan He, Shengjie Luo, Chang Liu, Di He, and
Tie-Yan Liu. Benchmarking graphormer on large-scale molecular modeling datasets. ArXiv, 2022.

16



Published in Transactions on Machine Learning Research (02/2024)

Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J. Sutherland, and Ali Kemal Sinop. Exphormer:
Scaling graph transformers with expander graphs. In ICML, 2023.

Martin Simonovsky and Nikos Komodakis. Dynamic edge-conditioned filters in convolutional neural networks on
graphs. In CVPR, pp. 29–38, 2017.

Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. Social influence analysis in large-scale networks. In KDD, 2009.

Philipp Thölke and Gianni De Fabritiis. Equivariant transformers for neural network based molecular potentials. In
ICLR, 2022.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M Bronstein.
Understanding over-squashing and bottlenecks on graphs via curvature. In ICLR, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and
Illia Polosukhin. Attention is all you need. In NeurIPS, pp. 5998–6008, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph
attention networks. In ICLR, 2018.

Ivan Vulić, Edoardo Maria Ponti, Robert Litschko, Goran Glavaš, and Anna Korhonen. Probing pretrained
language models for lexical semantics. In EMNLP, pp. 7222–7240, 2020.

Haorui Wang, Haoteng Yin, Muhan Zhang, and Pan Li. Equivariant and stable positional encoding for more
powerful graph neural networks. In ICLR, 2022.

Qitian Wu, Wentao Zhao, Zenan Li, David P. Wipf, and Junchi Yan. Nodeformer: A scalable graph structure
learning transformer for node classification. In NeurIPS, 2022.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In ICLR,
2019.

Keqiang Yan, Yi Liu, Yuchao Lin, and Shuiwang Ji. Periodic graph transformers for crystal material property
prediction. In NeurIPS, 2022.

Shaowei Yao, Tianming Wang, and Xiaojun Wan. Heterogeneous graph transformer for graph-to-sequence learning.
In ACL, pp. 7145–7154, Online, 2020.

Gilad Yehudai, Ethan Fetaya, Eli A. Meirom, Gal Chechik, and Haggai Maron. From local structures to size
generalization in graph neural networks. In ICML, pp. 11975–11986, 2021.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and Tie-Yan Liu. Do
transformers really perform badly for graph representation? In NeurIPS, 2021.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontañón, Philip
Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big Bird: Transformers for longer sequences. In
NeurIPS, 2020.

Bohang Zhang, Shengjie Luo, Liwei Wang, and Di He. Rethinking the expressive power of GNNs via graph
biconnectivity. In ICLR, 2023.

Yangze Zhou, Gitta Kutyniok, and Bruno Ribeiro. OOD link prediction generalization capabilities of message-passing
GNNs in larger test graphs. In NeurIPS, 2022.

17



Published in Transactions on Machine Learning Research (02/2024)

Attention & Propagation

Standard attention

FFN

sum & norm

+ sum & norm

+

Nodes

Encodings

Input Features

Non-geometric Geometric

Positional Structural

Tokens

Edges Subgraphs

Graph-levelEdge-level

Modified attention

Sparse attention

Hybrid attention

Figure 3: Overview of how the different branches of our taxonomy affect the original transformer architecture.

A Dataset Details

Here, we describe the datasets used in our experiments; see Table 5 for an overview over the dataset statistics.

Edges We derive the Edges dataset from Zinc (Dwivedi et al., 2023). Zinc comprises 12K molecules from the
ZINC database with heavy atoms as nodes and bonds as edges. The original task of Zinc is to predict the
constrained solubility of a given molecule. Note that we ignore these regression targets in our link prediction task.

Triangles The Triangles dataset contains synthetic graphs with the goal of predicting the number of triangle
subgraphs contained in a given graph (Knyazev et al., 2019).

CSL The CSL dataset contains synthetic regular graphs, i.e., graphs where each node has the same number of
neighbors (Dwivedi et al., 2023). The nodes of each graph initially form a cycle and are then additionally equipped
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with additional edges, so-called skip links, connecting nodes on the cycle that are some fixed length L apart.
Different graphs are constructed for different skip link lengths L and the task of CSL is to classify L.

Actor The Actor dataset is derived from the film-director-actor-writer network, a heterogeneous graph resulting
from crawled Wikipedia pages and proposed in Tang et al. (2009). Specifically, Actor is a graph where actors are
the nodes, and two actors are connected by an edge if their names occur on the same Wikipedia page. The task is
to classify the actors in one of the five most occurring categories in the category information on the respective
actor’s Wikipedia page.

Cornell, Texas, Wisconsin The Cornell, Texas and Wisconsin are three of the four webpage networks
collected in WebKB (CMU, 2001). Each network contains crawled webpages as nodes and hyperlinks connecting
the pages as edges. The task is to predict which category of student, project, course, staff, and faculty a webpage
belongs to.

Chameleon, Squirrel The Chameleon and Squirrel are datasets constructed from Wikipedia pages of their
respective topic (that of Chameleons and that of Squirrels, respectively), where the nodes are articles and edges
represent links from one article to another (Rozemberczki et al., 2021). The node features are based on the
occurrence of particular nouns on the respective article and the task is to predict the average monthly traffic on the
site.

Roman-Empire The Roman-Empire dataset is based on the Wikipedia article of the Roman Empire (Platonov
et al., 2023), where nodes are the words occurring in the article and an edge between two words indicates that
either the words follow each other in a sentence or if one word syntactically depends on the other. The task is to
predict the syntactic role of the work according to spaCy (Honnibal et al., 2020).

Amazon-Ratings The Amazon-Ratings dataset is derived from Amazon product co-purchasing metadata
(Platonov et al., 2023), where the nodes are products and an edge between two products indicates that the products
are frequently bought together. The task is to predict the average rating of the product from one to five stars.

Minesweeper The Minesweeper dataset is constructed from a grid graph, where each node represents a cell in
a Minesweeper game, and the task is to predict for each cell whether it contains a mine (Platonov et al., 2023).

Tolokers The Tolokers dataset contains data from the Toloka crowd-sourcing platform (Platonov et al., 2023).
Nodes represent workers, and an edge between two workers indicates that the workers have worked together on one
of 13 selected projects. The task is to predict which workers have been banned from a project.

Questions The Questions dataset contains data from a question-answering wbesite (Platonov et al., 2023).
Nodes represent users answering questions on medicine, and an edge between two users indicates that the users
have answered the same questions within some fixed time span. The task is to predict which users remained active
at the end of the time span.

B Experimental details

Here, we describe the details of our experiments. All experiments were run on a single A100 NVIDIA GPU with
80GB of GPU RAM.

We base our implementation on GraphGPS (Rampášek et al., 2022), which is available at https://github.com/
rampasek/GraphGPS, which also includes an implementation of Graphormer (Ying et al., 2021), except for the
over-squashing experiment, where we use the implementation by Alon & Yahav (2021) to stay as close as possible
to the original implementation. All model layers first apply a convolution/attention, followed by a feed-forward
network. The resulting embeddings are then fed into a final MLP head to make a prediction. For all models, we
use a GELU non-linearity (Hendrycks & Gimpel, 2016) in the feed-forward network. Further, we apply residual
connections for all models, one after the convolution/attention and one after the feed-forward network.
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Table 5: Statistics of the datasets used in our experiments (Dwivedi et al., 2023; Knyazev et al., 2019; Tang et al.,
2009; CMU, 2001; Rozemberczki et al., 2021; Platonov et al., 2023)

Dataset Num. graphs Num. nodes Num. edges Task Metric
Edges 12,000 277,864 597,970 Link prediction Cross entropy
Triangles 45,000 938,438 2,947,024 10-way graph classification Cross entropy
CSL 150 6,150 24,600 10-way graph classification Cross entropy
Actor 1 7,600 30,019 5-way node classification Cross entropy
Cornell 1 183 298 5-way node classification Cross entropy
Texas 1 183 325 5-way node classification Cross entropy
Wisconsin 1 251 515 5-way node classification Cross entropy
Chameleon 1 2,277 36,101 5-way node classification Cross entropy
Squirrel 1 5,201 217,073 5-way node classification Cross entropy
Roman-Empire 1 22,662 32,927 18-way node classification Cross entropy
Amazon-Ratings 1 24,492 93,050 5-way node classification Cross entropy
Minesweeper 1 10,000 39,402 2-way node classification Cross entropy
Tolokers 1 11,758 519,000 2-way node classification Cross entropy
Questions 1 48,921 153,540 2-way node classification Cross entropy

For the structural awareness experiments in Section 4.1, we follow the hyper-parameters detailed in Table 1. In
addition, for all models, we use six layers of convolution/attention. For the GIN, Transformer, and GPS, we use
batch normalization, mean pooling, and three layers for the final MLP head. For Graphormer, we use layer
normalization, [graph] token readout, and a linear layer, preceded by a final layer norm for the final MLP head,
following (Ying et al., 2021).

For the six small datasets Actor, Cornell, Texas, Wisconsin, Chameleon and Squirrel, we select
hyper-parameters with a grid search over the hidden dimension (32, 64, 96), dropout (0.0, 0.2, 0.5, 0.8) and, where
applicable, attention dropout (0.0, 0.2, 0.5). For the grid search, we repeat each experiment ten times and select
the hyper-parameters leading to the best average validation performance. In all models, we use two layers of
convolution/attention and a linear layer for the final MLP head. We use batch normalization for the GCN, GPS,
and Transformer and layer normalization for Graphormer. Again, for Graphormer, we apply a final layer norm
before the final MLP head.

For the five large datasets in Platonov et al. (2023), we follow their hyper-parameter selection exactly to enable a
fair comparison. As a result, we only tune the number of layers (1,2,3,4,5). We use sum pooling and a linear layer
for the final MLP head.
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