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Abstract

We present Fractional Diffusion Bridge Models (FDBM), a novel generative diffu-
sion bridge framework driven by an approximation of the rich and non-Markovian
fractional Brownian motion (fBM). Real stochastic processes exhibit a degree of
memory effects (correlations in time), long-range dependencies, roughness and
anomalous diffusion phenomena that are not captured in standard diffusion or
bridge modeling due to the use of Brownian motion (BM). As a remedy, leverag-
ing a recent Markovian approximation of fBM (MA-fBM), we construct FDBM
that enable tractable inference while preserving the non-Markovian nature of fBM.
We prove the existence of a coupling-preserving generative diffusion bridge and
leverage it for future state prediction from paired training data. We then extend
our formulation to the Schrödinger bridge problem and derive a principled loss
function to learn the unpaired data translation. We evaluate FDBM on both tasks:
predicting future protein conformations from aligned data, and unpaired image
translation. In both settings, FDBM achieves superior performance compared to
the Brownian baselines, yielding lower root mean squared deviation (RMSD) of
Cα atomic positions in protein structure prediction and lower Fréchet Inception
Distance (FID) in unpaired image translation.

1 Introduction

Stochastic differential equations (SDEs) offer a natural framework for modeling the inherent ran-
domness and continuous-time dynamics of real-world systems [1, 2]. This is precisely why they
serve as the backbone of state-of-the-art generative diffusion models [3–5]. Traditionally, these
models assume noise driven by standard Brownian motion (BM) [6–8], which is Markovian with
independent increments [9]. However, this choice is motivated by mathematical tractability and
simplicity rather than faithfulness and fidelity to real-world data. Empirical data, particularly in
complex systems such as proteins, often exhibit long-range temporal dependencies, heavy-tailed be-
haviors, and intricate dynamics that are poorly captured by memoryless processes [10]. A generative
process, lacking temporal dependencies, may lead to insufficient approximations of such intricate
data, due to the absence of modeled memory effects. These limitations have motivated recent ef-
forts to explore generative models with non-standard noise sources [11–18]. Our work extends
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this line of research to generative diffusion bridge models [19–21], where the goal is to transform
a structured, non-Gaussian source distribution into a complex target distribution. We specifically
investigate stochastic bridges driven by fractional Brownian motion (fBM) [22, 23], a generaliza-
tion of BM with dependent increments, characterized by the Hurst index H , which governs both
roughness (i.e., pathwise regularity) and long-range dependence. However, directly using fBM as
the driving noise in a stochastic bridge introduces an intractable drift [24]. To address this, we
adopt a Markov approximation of fBM (MA-fBM) [25, 26] that enables efficient simulation. By
using MA-fBM as the driving process, we introduce a more expressive and flexible framework for
building bridges: when H = 0.5, fBM recovers classical BM, whereas other values of H flexibly
allow us to model a broader range of temporal behaviors, as demonstrated in our experiments. Our
framework, Fractional Diffusion Bridge Models (FDBM), enables generative bridge modeling with
fractional noise for both paired and unpaired training data, applicable across a broad range of ma-
chine learning tasks. In this work, we focus on predicting conformational changes in proteins to
explore effects in paired-data problems, as well as unpaired image translation. In the context of pro-
tein generation, diffusion processes driven by MA-fBM have proven effective in their superdiffusive
regime, showing improvements in both sample fidelity and diversity [17], potentially due to a better
capture of long-range correlations in protein structures. Building on this observation, we propose
MA-fBM-driven diffusion bridges as a principled extension for modeling conformational changes
in proteins. To the best of our knowledge, our framework is the first to incorporate fractional noise
into generative bridge modeling within machine learning. Our contributions are:
• We propose a method for learning generative diffusion bridges that interpolate between two un-

known distributions via a non-Markovian trajectory with controllable correlation of increments
and long-range dependencies, enabling more flexible modeling of real-world variability and bio-
logical dynamics.

• We prove that, for these generalized stochastic dynamics, there exists a process solving a stochastic
differential equation that preserves the coupling given in the training data.

• We formulate the Schrödinger bridge problem with a reference process approximating fractional
Brownian motion and propose a method to learn stochastic transport trajectories, whose roughness
and long-range dependencies are controlled by the Hurst index.

• We apply our framework broadly to common use cases of stochastic bridges in machine learning,
including inferring conformational changes in proteins and performing unpaired image transla-
tion, achieving lower root mean squared deviation (RMSD) of Cα atomic positions in protein
prediction, and improved Fréchet Inception Distance (FID) scores for image translation.

We accompany our work with several publicly available implementations to facilitate the adoption
of our framework in both paired and unpaired settings, as well as a stand-alone reimplementation of
the method proposed by Bortoli et al. [27].1 2 3

2 Background
Stochastic bridges interpolate between two given data points by conditioning a prior reference pro-
cess to start and end at prescribed values. A common choice for this reference process in machine
learning is a scaled BM X =

√
εB with ε > 0. Conditioning on the endpoints (x0, x1) ∈ Rd × Rd

yields the scaled Brownian bridge (BB) X|0,1, which starts at x0 and ends at x1, while evolving for
t ∈ (0, 1) according to the stochastic dynamics [28]

dX|0,1(t) = ε
x1 −X|0,1(t)

1− t
dt+

√
εdBt, X|0,1(0) = x0. (1)

This scaled BB, or a generalization thereof, serves as the starting point for many machine learning
applications [20, 21, 27, 29–34], where the goal is to learn a stochastic process X⋆ that interpolates
not only between the fixed endpoints (x0, x1), but in law between two unknown distributions Π0

and Π1 on Rd. Since the drift of such a stochastic process is generally intractable, the drift term
in eq. (1) serves as a target for a neural network, which is optimized by minimizing a conditional
expectation.

Coupling-preserving data translation. Data translation aims to map between two unknown dis-
tributions. In the setting where training data is provided in pairs—such as the unbound and bound

1https://github.com/GabrielNobis/FDBM_paired
2https://github.com/mspringe/FDBM_unpaired
3https://github.com/mspringe/Schroedinger-Bridge-Flow
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Figure 1: Trajectories from the approximate 2d-fractional Brownian bridge for different Hurst indices H .

states of a protein [31, 35], a distorted and a clean image [36, 37], or two snapshots of cell dif-
ferentiation recorded on different days [31]—the additional objective is to preserve the coupling
given in the training data. We build our framework for paired data translation on Augmented
Bridge Matching (ABM) [32], where a stochastic process X⋆ is learned that transports an unknown
distribution Π0 on Rd to another unknown distribution Π1 on Rd, while preserving the coupling
(X⋆

0 , X
⋆
1 ) ∼ Π0,1 on Rd × Rd. Additionally, X⋆ solves an SDE such that we can sample from the

coupling (x0, x1) ∼ Π0,1 by first sampling X⋆
0 = x0 ∼ Π0 according to the first marginal of Π0,1,

and then simulating the SDE forward in time to arrive at a sample X⋆
1 = x1 ∼ Π1. Bortoli et al. [32,

Proposition 3] show that for the scaled Brownian reference process X =
√
εB there exists such a

coupling preserving process X⋆ with associated path measure P⋆ that solves

dX⋆
t = εEP⋆

1|0,t

[
X⋆

1 −X⋆
t

1− t
|X⋆

t , X
⋆
0

]
dt+

√
εdBt, X⋆

0 ∼ Π0. (2)

The drift of X⋆ is intractable and approximated by a time-dependent neural network vθt , resulting
in a process Xθ with associated path measure Pθ. Minimizing now the KL divergence DKL(P⋆|Pθ)
with respect to the weight vector θ yields the loss function

LABM (θ) :=

∫ 1

0

EP⋆

[∥∥∥∥vθt (X⋆
0 , X

⋆
t )−

X⋆
1 −X⋆

t

1− t

∥∥∥∥2
]
dt. (3)

Given paired training data sampled from the unknown coupling Π0,1, we can approximate the above
loss function since, by construction, P⋆ = Π0,1Q|0,1, where Q|0,1 denotes the path measure of the
scaled BB X|0,1 solving eq. (1). Consequently, to compute the loss during training, we first sample
(x0, x1) ∼ Π0,1 and then sample xt ∼ Qt|0,1(· | x0, x1).

Unpaired data translation via the Schrödinger bridge. On the other hand, in unpaired data
translation via the Schrödinger bridge, the objective is to find the coupling that corresponds to the
optimal transport [38] between two unknown distributions. Here, we aim to learn the stochastic
process XSB corresponding to the solution of the dynamic Schrödinger bridge problem [39–42]

PSB = argmin
T∈P(Cd)

{DKL(T|Q) ; T0 = Π0, T1 = Π1} , (4)

where the minimization is taken over all path measures T defined on the set of continuous func-
tions Cd from the unit interval [0, 1] to Rd. We build our framework for unpaired data transla-
tion on Schrödinger Bridge Flow (SBFlow) [27], whose unique stationary point corresponds to the
Schrödinger bridge. See Section E for a detailed summary.

In the following, we incorporate fractional noise into generative diffusion bridge models in order
to control the roughness and long-range dependencies of the interpolating stochastic trajectories,
replacing the BM used as the driving noise in traditional diffusion bridge models. Our work builds
directly on Daems et al. [26] for the approximation of fBM, on Somnath et al. [31] and Bortoli et al.
[32] for the paired-data setting, and on Peluchetti [33], Shi et al. [34], and Bortoli et al. [27] for the
unpaired-data setting. See Section D for a detailed discussion of related work.

3 A stochastic bridge driven by fractional noise
We first define and characterize the fractional noise that serves as the driving process replacing BM.
For mathematical details, we refer the reader to Section B, along with the notational conventions in
Section A.

3.1 Fractional noise
We begin with the definition of Riemann-Liouville (Type II) fBM, a non-Markovian, centered Gaus-
sian process with non-stationary and correlated increments.
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Definition 1 (Type II Fractional Brownian motion [22]). Let B = (Bt)t≥0 be a (multidimensional)
standard Brownian motion (BM) and Γ the Gamma function. The centered Gaussian process

BH
t :=

1

Γ(H + 1
2 )

∫ t

0

(t− s)H−
1
2 dBs, t ≥ 0, (5)

is called Type II fractional Brownian motion (fBM) with Hurst index H ∈ (0, 1).

Compared to BM with independent increments (diffusion), the paths of fBM become smoother for
H > 0.5 due to positively correlated increments (super-diffusion) and rougher for H < 0.5 due to
negatively correlated increments (sub-diffusion), while H = 0.5 recovers BM. A stochastic bridge
can be derived for Gaussian processes, including fBM; however, the drift of the fractional Brown-
ian bridge (fBB) is intractable [24] and therefore unsuitable both for sampling from its marginals
and as a loss-function target analogous to eq. (3). Rather than introducing an additional approxi-
mation error by attempting to approximate the drift of the fBB, we follow Harms and Stefanovits
[25], Daems et al. [26] and first approximate fBM by a linear superposition of Ornstein–Uhlenbeck
(OU) processes. These augmenting OU processes are all driven by the same standard BM, thereby
approximating the time-correlated behavior of fBM.
Definition 2 (Markov approximation of fBM [25, 26]). Choose K ∈ N Ornstein–Uhlenbeck (OU)
processes

Y k
t :=

∫ t

0

e−γk(t−s)dBs, k = 1, . . . ,K, K ∈ N, t ≥ 0, (6)

with speeds of mean reversion γ1, ..., γK and dynamics dY k
t = −γkY

k
t dt + dBt. Given a Hurst

index H ∈ (0, 1) and a geometrically spaced grid γk = rk−n with r > 1 and n = K+1
2 we call the

process

B̂H
t :=

K∑
k=1

ωkY
k
t , H ∈ (0, 1), t ≥ 0, (7)

(multidimensional) Markov-approximate fractional Brownian motion (MA-fBM) with approximation
coefficients ω1, ..., ωK ∈ R.

While the choice of approximation coefficients in Harms [43] enables strong convergence to fBM
with high polynomial order in K for H < 0.5, we opt for the computationally more efficient method
proposed by Daems et al. [26]. This method selects the L2(P) optimal approximation coefficients
for a given K, achieving empirically good results in approximating fBM, even with a small number
of OU processes. See Daems, Rembert [44, Figures 3.13–3.15] for the approximation error of Type
II fBM. We fix K = 5 throughout all experiments presented in the main text.
Proposition 3 (Optimal Approximation Coefficients [26]). The optimal approximation coefficients
ω = (ω1, ..., ωK) ∈ RK for a given Hurst index H ∈ (0, 1), a terminal time T > 0 and a fixed
geometrically spaced grid to minimize the L2(P)-error

E(ω) :=
∫ T

0

E
[(

BH
t − B̂H

t

)2
]
dt (8)

are given in closed form by the linear system Aω = b, where A ∈ RK,K and b ∈ RK are known.

We now use MA-fBM, equipped with the optimal approximation coefficients, as a reference process
to approximate a fBB, thereby enabling efficient simulation and closed-form drift computation in
the stochastic bridge derived in the next section.

3.2 A Markov approximate fractional Brownian bridge

Towards the goal of defining a stochastic bridge driven by fractional noise we fix the reference
process to X =

√
εB̂H with ε > 0, and write Y = (Y 1, . . . , Y K) for the vector of the OU processes

and Z = (X,Y ) for the augmented reference process. The reference process X is non-Markovian
(see Theorem 8) and becomes Markovian only after augmenting it with the OU processes, resulting
in the Markovian process Z. To define a stochastic bridge connecting two given data points x0 ∼ Π0

and x1 ∼ Π1 via X, we only need to steer the first dimension of Z towards x1, while the terminal
values of Y are not required to attain a specific value. The dynamics of the resulting stochastic
bridge Z|x0,x1

can be derived directly from Daems, Rembert [44, Chapter 4], where a posterior SDE
steered towards x1 is constructed. In Section B, we present an alternative derivation using Doob’s
h-transform [2]. Both approaches yield the dynamics stated in the following proposition.
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Proposition 4 (Markov approximation of a fractional Brownian bridge [44, 45]). The partially
pinned process Z|x0,x1

:= Z|(X0 = x0, X1 = x1) solves for d = 1 the SDE

dZ|x0,x1
(t) = FZ|x0,x1

(t)dt+GGTu(t, Z|x0,x1
(t))dt+GdB(t), Z|x0,x1

(0) = (x0, 0K), (9)

u(t, z) = [1, ω1ζ1(t, 1), ..., ωKζK(t, 1)]
T x1 − µ1|t(z)

σ2
1|t

, (10)

where F ∈ RK+1,K+1 and G ∈ RK+1 are known, ζk(t, t + s) :=
√
ε(eγks − 1) and µ1|t(z) and

σ2
1|t denote the mean and the variance of the conditional terminal X1|(Zt = z), respectively. We

call the process Z|x0,x1
a scaled Markov-approximate fractional Brownian bridge (MA-fBB).

See Figure 1 for a visualization of two-dimensional MA-fBB trajectories for different Hurst indices.
We now incorporate fractional noise into generative diffusion bridge models by using the defined
MA-fBB for both paired and unpaired data translation.

4 Fractional diffusion bridge models
Paired data translation. Paired training data arises in tasks such as predicting conformational
changes in proteins, where the unbound and bound states of the same protein form a pair [31, 35, 46];

SBALIGN ABM

FDBM (H = 0.2) FDBM (H = 0.9)

Π1

Π0

Figure 2: Illustration of FDBM coupling-
preserving property shown in Theorem 5:
ABM and FDBM preserve the intended cou-
pling, unlike SBALIGN, while FDBM of-
fers a broader range of trajectories.

forecasting the future state of a cell, where two snapshots
of cell differentiation are recorded on different days [31];
or reconstructing a clean image from its distorted counter-
part [36, 37]. We assume access to paired training data
(xi

0, x
i
1)1≤i≤N independently sampled from the unknown

coupling (xi
0, x

i
1) ∼ Π0,1 on Rd × Rd, with unknown

marginals Π0 and Π1 on Rd. The goal is to transport Π0 to
Π1 via stochastic trajectories driven by MA-fBM, while
preserving the coupling Π0,1. To this end, we construct
in the following proposition a stochastic process X⋆ that
preserves the coupling in the sense that (X⋆

0 , X
⋆
1 ) ∼ Π0,1,

and that solves an SDE, generalizing the result of Bortoli
et al. [32] to a driving MA-fBM. See Section B.2 for the
proof.

Proposition 5. Fix the non-Markovian reference process
X =

√
εB̂H with associated path measure Q, and denote

by Z = (X,Y ) the augmented reference process with
associated path measure S. We write S11|t for the condi-
tional distribution of X1|Zt. Recall that Q|0,1 denotes the
path measure of the references process X conditioned on

(x0, x1) ∈ Rd × Rd, and define P = Π0,1Q|0,1 by integrating (x0, x1) with respect to Π0,1. Assum-
ing that P is absolutely continuous with respect to Q we can lift the path measure P to a coupling
preserving path measure P⋆ on the augmented space. Under the additional Assumption 2, the SDE

dZ⋆
t = FZ⋆

t dt+GGTEP⋆
1|0,t

[∇z log S11|t(X
⋆
1 |Z⋆

t )|Z⋆
0 , Z

⋆
t ]dt+GdBt, (11)

with initial vector Z⋆
0 = (X0, 0 . . . 0) admits a pathwise unique strong solution Z⋆ = (X⋆, Y ⋆)

with distribution P⋆. In particular, X⋆ preserves the coupling Π0,1, that is, (X⋆
0 , X

⋆
1 ) ∼ Π0,1.

Given a data point X⋆
0 = x0 ∼ Π0, and assuming we could simulate the coupling preserving process

Z⋆, we could sample from the coupling Π0,1 by simulating the SDE in eq. (11) forward in time on
[0, 1] to arrive at a sample X⋆

1 = x1. As X⋆ preserves the coupling, it follows that (x0, x1) is drawn
from Π0,1. However, the expectation in the drift of Z⋆ is intractable and hence we approximate this
expectation by a time-dependent neural network uθ. We now define Fractional Diffusion Bridge
Models (FDBM) for paired data translation as the stochastic process Zθ associated with the path
measure Pθ solving

dZθ
t = FZθ

t dt+GGTuθ(t,X0, Z
θ
t )dt+GdBt, Zθ

0 = (X0, 0, . . . , 0), (12)

uθ
i (t, x0, z) = [1, ω1ζ1(t, 1), . . . , ωKζK(t, 1)]T ũθ

i (t, x0, µ1|t(z)), uθ = (uθ
1, . . . , u

θ
d), (13)
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where ũθ = (ũθ
1, . . . , ũ

θ
d) is a time-dependent neural network that takes the starting value x0 and the

mean µ1|t(z) of the conditional terminal X1|(Zt = z) as an input. Note that the output dimensional-
ity of the neural network ũθ, trained in the following, correspond to the data dimension d. It is only
scaled via eq. (94) to obtain uθ

t , which has the output dimensionality of the augmented space. Hence,
for FDBM, we can employ exactly the same model architectures as in ABM and simply transform
the network input and output according to eq. (94). As a result, replacing BM with MA-fBM incurs
minimal additional computational cost compared to ABM, as shown in Section H. To train FDBM
for paired data translation we derive in Section B.2 the KL-divergence DKL(P⋆|Pθ), which yields
the loss function

Lpaired
FDBM(θ) :=

∫ 1

0

EP⋆

∥∥∥∥∥X⋆
1 − µ1|t(Z

⋆
t )

σ2
1|t

− ũθ(t,X0, µ1|t(Z
⋆
t ))

∥∥∥∥∥
2
 dt. (14)

To compute the above loss during training, we first sample (x0, x1) ∼ Π0,1 and t ∼ U [0, 1], and
then sample zt ∼ St|X0,X1

( · |x0, x1). This is justified since P⋆ = Π0,1S|X0,X1
by Corollary 12.

To provide a first proof of concept of FDBM in the paired data setting, and in particular to illustrate
the practical implications of Theorem 5, we replicate the toy experiment from Bortoli et al. [32,
Figure 1]. Initial samples from a Gaussian centered at (−2,−2) are paired with a Gaussian centered
at (2, 2), and samples from a Gaussian centered at (−2, 2) are paired with one centered at (2,−2).
In Figure 2, we observe that this coupling is not preserved by SBALIGN, in contrast to ABM.
Consistent with Theorem 5, FDBM preserves the intended coupling while offering a broader range
of trajectories. In the rough regime (H = 0.2), trajectories explore a larger portion of the space,
whereas in the smooth regime (H = 0.9), nearly straight-line paths emerge.

Unpaired data translation via optimal transport. For unpaired data translation, the goal is again
to transport Π0 to Π1, but the training data consist of unpaired samples from Π0 and Π1 without a
given coupling. The dynamic formulation of Entropic Optimal Transport (EOT) seeks the transport
plan between Π0 and Π1 as the solution to the Schrödinger Bridge (SB) problem [42], which induces
the corresponding optimal coupling. In the SB problem, the reference process defines the underlying
stochastic dynamics that regularize the transport, determining how probability mass evolves between
Π0 and Π1. We replace in the following the BM commonly used as a reference process in the
formulation of SB problems in machine learning [19–21, 27, 29, 30, 33, 34] Let X =

√
εB̂H be our

scaled MA-fBM reference process associated with the non-Markovian path measure Q. We seek a
solution to the dynamic Schrödinger Bridge problem

TSB = argmin
T∈P(Cd)

{DKL(T|Q) ; T0 = Π0, T1 = Π1} . (15)

We assume that TSB denotes a solution to eq. (15), inducing the coupling ΠSB
0,1 := TSB

0,1 . Assuming
that P := ΠSB

0,1 SX0,X1 is absolutely continuous with respect to Q and under Assumption 2, we can,
via Proposition 5, construct the ΠSB

0,1 -coupling preserving path measure P⋆ associated to the process
Z⋆ = (X⋆, Y ⋆) following the dynamics eq. (11). On the other hand, letting S be the path measure
associated with the augmented reference process Z, we define using the marginals of P⋆ the SB
problem on the augmented space via

VSB = argmin
V∈P(Cd·(K+1))

{DKL(V|S) ; V0 = P⋆
0, V1 = P⋆

1} . (16)

Since Z is a Markov process, the path measure solving the lifted SB problem in eq. (16) is associated
with a Markovian process [42], whereas Z⋆ in eq. (11) is non-Markovian due to its dependency on
X0 in the drift function. Motivated by this observation, we generalize in the following the definition
of a reciprocal class [34, 47] and the notation of a Markovian projection [21, 34, 48] to our setting
of a scaled MA-fBM reference process. We define the augmented reciprocal class Ra(S) of S as the
set of path measures V on the augmented space whose marginals can be sampled by first drawing
(x0, x1) ∼ VX0,X1

and then sampling zt ∼ St|X0,X1
(· | x0, x1).

Definition 6. We say that V ∈ P(Cd·(K+1)) is in the augmented reciprocal class Ra(S) of S if

V =

∫
Rd×Rd

S|X0,X1
( · |x0, x1)dVX0,X1(x0, x1) =: VX1,X0S|X0,X1

. (17)

For any V ∈ P(Cd·(K+1)) we define the augmented reciprocal projection by
projRa(S)(V) := VX0,X1S|X0,X1

. (18)
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(a) ABM(WSD : 0.015± 0.019) (b) FDBM(H = 0.7; WSD: 0.012± 0.002)

(c) ABM (WSD: 0.082± 0.028) (d) FDBM (H = 0.2; WSD: 0.048± 0.039)

Π1

Π0

Figure 3: Qualitative comparison on Moons and T-Shape. Plots and datasets design follow Somnath et al. [31].

Since we know that the solution to the lifted SB problem in eq. (16) is a Markovian measure, we
project any element of the augmented reciprocal class to a Markovian path measure by the following
definition.

Definition 7. For V ∈ P(Cd·(K+1)) with V ∈ Ra(S) we define the augmented Markovian projection
projMa

(V) by the path measure associated to M = (M1,M2, . . .MK+1) solving for M1
0 ∼ VM1

0

dMt = FMtdt+GGTEV1|t

[
∇mt

log S11|t(M
1
1 |Mt)|Mt

]
dt+GdBt, M0 = (M1

0 , 0K). (19)

Finally, we define FDBM for unpaired data translation as a stochastic process Zθ associated with
the path measure Pθ solving

dZθ
t = FZθ

t dt+GGT vθ(t, Zθ
t )dt+GdBt, Zθ

0 = (X0, 0, . . . , 0), (20)

vθi (t, z) = [1, ω1ζ1(t, 1), . . . , ωKζK(t, 1)]T ṽθ(t, µ1|t(z))i, vθ = (vθ1 , . . . , v
θ
d), (21)

where, in contrast to the paired setting in eq. (12), we do not provide the starting value X0 as an
input to the neural network vθt . We conjecture that the results of Peluchetti [33] and Shi et al. [34]
generalize to our setting, such that the path measure solving the lifted SB problem in eq. (16) is
the only Markovian path measure in the augmented reciprocal class Ra(S) and that a solution to
the lifted SB problem give in its first marginal a solution to the SB problem in eq. (15). Following
Bortoli et al. [27] we define for our scaled MA-fBM reference process a flow of path measures
(P̃s, P̂s)s≥0 recursively by

P̂0 = (Π0⊗Π1)S|X0,X1
, ∂sP̂s = projRa(S)(projMa(S)(P̂

s))−P̂s, P̃s = projMa(S)(P̂
s), (22)

and propose the generalized loss function

Lunpaired
FDBM (θ, P̃) =

∫ 1

0

∫
Rd·(K+1)

∫
(Rd)2

∥∥∥∥∥∥ṽθ
(t, µ1|t(zt))−

x1 − µ1|t(z)

σ2
1|t

∥∥∥∥∥∥
2

dP̃X0,X0
(x0, x1)dSt|X0,X1

(zt|x0, x1)dt. (23)

We define α-Iterative Markovian Fitting (α-IMF) with respect to a scaled MA-fBM reference pro-
cess using the loss function in eq. (23), following Bortoli et al. [27, Algorithm 1] with a two-stage
training procedure consisting of pretraining and finetuning. As discussed in Section B.5, simulating
the time reversal of eq. (20) is generally intractable, since the terminal value of the noise process de-
pends on information from the initial distribution Π0. We therefore adopt the forward-forward train-
ing strategy described in Bortoli et al. [27, Appendix I], and mitigate error accumulation through the
loss scaling proposed in Section B.5.

We emphasize that we do not claim convergence of the resulting algorithm to the solution of the
Schrödinger bridge problem in eq. (15). Empirically, we observe that the finetuning stage with an
MA-fBM reference process performs reliably only in regimes close to H = 0.5. We hypothesize
that this limitation arises from discrepancies between the Schrödinger bridge transforming Π0 → Π1

and the Schrödinger bridge transformation Π1 → Π0. See Section B.3 for more details on challenges
and limitations of FDBM in the unpaired data setting.
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D3PM Test Set [31]
RMSD(Å) ↓ % RMSD(Å) < τ ↑ ∆ RMSD(Å) ↑

Median Mean Std τ = 2 τ = 5 τ = 10 Median Mean Std

EGNN⋆ [31] 19.99 21.37 8.21 1% 1% 3% - - -
SBALIGN⋆

(10,10) [31] 3.80 4.98 3.95 0% 69% 93% - - -
SBALIGN⋆

(100,100) [31] 3.81 5.02 3.96 0% 70% 93% - - -
SBALIGN⋆ [35] 3.67 4.82 3.93 0% 71% 93% 1.30 1.92 2.59
Sesame⋆ [35] 2.87 3.65 2.95 38% 82% 96% 2.15 3.11 4.26
ABM [32] (retrained) 2.40 3.49 3.54 43% 84% 96% 2.43 3.35 4.29
FDBM(H = 0.3) (ours) 2.33 3.42 3.42 43% 85% 97% 2.52 3.49 4.39
FDBM(H = 0.2) (ours) 2.12 3.34 3.59 48% 86% 96% 2.44 3.39 4.28
FDBM(H = 0.1) (ours) 2.20 3.44 3.57 46% 83% 97% 2.47 3.45 4.29

Table 1: D3PM Con-
formational changes, re-
sults marked with an as-
terisk (⋆) are obtained
from the specified refer-
ence. Metrics for FDBM
and ABM are averaged
over 5 training trials.

5 Experiments

We evaluate the performance of FDBM on both paired and unpaired data translation tasks; see
Section I for a detailed description of the evaluation metrics. In the paired setting, we first show in a
proof-of-concept on synthetic data that the alignment of training data is preserved and then predict
conformational changes in proteins. In the unpaired setting, we consider image-to-image translation
across visually distinct domains. Detailed architectural specifications, compute resources, training
protocols, and dataset descriptions are provided in Sections F and G, additional experiments are
reported in Section K, and an additional use case on cell differentiation is presented in Section J.

5.1 Experiments on paired data translation

Synthetic data. We evaluate FDBM on the Moons and T-Shape datasets introduced by Somnath
et al. [31], and depicted in Figure 7, where the goal is to transport the initial distribution (blue) to
the target distribution (red) while preserving training data alignment. Quantitative performance is
assessed using the Wasserstein-1 distance (WSD) between the generated and true target distribu-
tions, averaged across the two data dimensions and over ten training trials, where for each training
trial 10,000 trajectories are sampled for evaluation. We first do in Table 8 an ablation on the best
performing diffusion coefficient

√
ε for our baseline ABM, where we find the best performance for√

ε = 0.8 on Moons and
√
ε = 0.2 on T-shape. In Table 9 we observe that FDBM improves the

quantiative performance on both datasets. For the Moons dataset, optimal performance is achieved
for

√
ε = 0.8 in the smoother regime with H ∈ {0.6, 0.7}, suggesting benefits from more regular

trajectories. Conversely, for the T-shape dataset, rougher dynamics with H = 0.2 and
√
ε = 0.1

yield the lowest WSD. In Figure 3, we observe that both ABM and FDBM preserve the training data
alignment, with FDBM showing qualitatively better performance on T-Shape.

Conformational changes in proteins. Following the training and evaluation setup of Somnath et al.
[31], we use their curated subset of the D3PM dataset [49] to evaluate the ability of FDBM to predict
3D ligand-bound (holo) structures from given 3D ligand-free (apo) unbound protein conformations.
Performance is quantified using the root-mean-square deviation (RMSD) over carbon atom coordi-
nates. To assess whether a predicted structure is closer to the target holo conformation than to the
initial apo conformation, we further compute the ∆RMSD, where positive values indicate better per-
formance [46]. We first optimize our baseline ABM with respect to the diffusion coefficient

√
ε and

find that a low value of
√
ε = 0.2 yields the best performance for ABM (see Table 10). We then use

the same training configuration and a diffusion coefficient of
√
ε = 0.2, to train ABM and FDBM

five times and report the averaged scores over sampled trajectories from these trials. We first observe
in Table 1 that ABM outperforms SBALIGN [31] across all variants and metrics, and Sesame [35]
in all but one metric, highlighting the strength of our baseline. For our FDBM, we find in Table 1
that all configurations in the rough regime (H = 0.3, 0.2, 0.1) of MA-fBM achieve equal or better
performance across all but one metric compared to the best-performing baseline, ABM. The best
overall performance for the ∆RMSD metric is achieved for H = 0.3, indicating that FDBM gener-
ated structures are closer to the target holo conformations-relative to their apo starting points-than
those produced by ABM or Sesame. For H = 0.2 and H = 0.3, FDBM matches or exceeds ABM
and Sesame across all evaluated metrics. In particular, an RMSD below 2Å is commonly used as a
threshold for correct bound structure prediction [50] and structural discernibility [31, 35]. Accord-
ingly, the proportion of predictions falling below this threshold is a direct indicator of the model’s
ability to generate physically realistic conformations. FDBM increases the proportion of correct and
discernible predictions (RMSD < 2Å ) from 43% with ABM to 48%, while also improving the
median RMSD from 2.40Å to 2.12Å . This indicates that, in the rough regime of MA-fBM, FDBM
produces on average a slightly higher fraction of near-native structures compared to ABM.
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(a) FDBM (H=0.4, K=5; FID: 30.11) for AFHQ-512 (b) FDBM (H=0.6, K=5; FID: 19.42) for AFHQ-256

(c) FDBM (H=0.4, K=5; FID: 14.27) for AFHQ-512 (d) FDBM (H=0.6, K=5; FID: 11.62) for AFHQ-256

Figure 4: Exemplary FDBM samples (ours) for wild → cat (a, b) and cat → wild (c, d) using DiT-
L/2 on AFHQ-512 and AFHQ-256. Left: inputs; right: Euler–Maruyama samples (distinct seeds).

5.2 Unpaired data translations

Unpaired data translation is evaluated for the cat and wild subsets of the AFHQ dataset [51]. Ex-
periments range from low-resolution pixel space (32 × 32) to high-resolution latent space settings
(256×256, 512×512) [52]. Following the regime in Bortoli et al. [27], we report Fréchet Inception
Distance (FID) [53] and Learned Perceptual Image Patch Similarity (LPIPS) [54] scores. Given the
sensitivity of metrics—especially at low resolutions where pixel-level perturbations dominate—each
configuration is evaluated at ten distinct seeds, with mean and standard deviation (or error bands)
reported. To ensure comparability, pixel data is normalized by the standard deviation of AFHQ-32,
while latent representations are scaled using the standard deviation of the latent space. This harmo-
nization enables consistent settings for ε in both domains, leading to consistent performance trends
(Figures 5a and 5d). We use a Diffusion Transformer (DiT) [55] backbone, where DiT-B/2 is used
for ablations and DiT-L/2 for final evaluations. Pretraining is conducted for 100K steps, followed
by 4K finetuning steps, samplings follow the Euler–Maruyama method [1]. We compare to SBFlow
and adopt an SBFlow-optimized entropic regularization parameter for FDBM experiments. Further,
we evaluate Hurst indices H ∈ {0.1, 0.2, . . . , 0.9} and the number of OU processes K ∈ {1, . . . , 6}
to analyze sensitivity in sparse (AFHQ-32) and dense (AFHQ-256 and AFHQ-512) features.

Results for unpaired data translation. The ablation study reveals stable generation performance
for H ≥ 0.4 and K ≤ 5, with instabilities and accuracy degradation observed for K > 5 and
H < 0.3, see Figures 5b, 5c, 5e and 5f. Our method remains stable for high dimensional data, such
as AFHQ-512 even for 0.4 ≤ H < 0.5 (see Figure 4). Across various configurations, our method
consistently outperforms the SBFlow pretraining- and online finetuning baseline (see Table 2, as well
as Figure 5). Notably, with K = 5 we do not recover BM, as we fix γ1, . . . , γK , even when H = 0.5.
MA-fBM with H = 0.5 and K = 5 is non-Markovian, though its distribution is empirically close
to BM. This subtle differences may be the reason why FDBM performs better than SBFLow on
AFHQ when H = 0.5 and K = 5. Bortoli et al. [27] propose a finetuning method for processes
driven by BM, which can yield significant improvements over their proposed pretraining for natural
images. The online finetuning assumes the bidirectional processes to transition on the same bridge
with matching pairings and respective terminal distributions. In our framework, we can not assume
a shared Schrödinger bridge for the transformation Π0 → Π1 and Π1 → Π0. In general, two
distinct bridges are learned. Improvements during fine-tuning were observed only for MA-fBM
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Table 2: Results for AFHQ-32 and AFHQ-256 (10 runs average). Standard deviations are reported
beside each score. Bold indicates the best result and those within one standard deviation.

(a) AFHQ-32 results with hyperparameters ε = 1 and H = 0.5,K = 5.

Method Architecture
Pretraining Online Finetuning

cats→ wild cats← wild cats→ wild cats← wild

FID ↓ LPIPS ↓ FID ↓ LPIPS ↓ FID ↓ LPIPS ↓ FID ↓ LPIPS ↓

SBFlow DiT-B/2 59.04 ±1.14 0.104 ±0.001 74.36 ±1.02 0.151 ±0.001 43.85 ±0.48 0.083 ±0.001 64.77 ±0.78 0.107 ±0.000

SBFlow DiT-L/2 50.68 ±0.72 0.106 ±0.001 71.77 ±0.77 0.152 ±0.001 33.92 ±0.59 0.091 ±0.000 54.10 ±0.72 0.098 ±0.001

FDBM (ours) DiT-B/2 40.21 ±1.18 0.097 ±0.001 45.74 ±0.69 0.154 ±0.002 25.66 ±0.81 0.073 ±0.001 28.33 ±0.35 0.078 ±0.001

FDBM (ours) DiT-L/2 35.99 ±0.72 0.101 ±0.001 48.84 ±0.75 0.165 ±0.002 20.26 ±0.59 0.079 ±0.001 26.79 ±0.50 0.085 ±0.001

(b) AFHQ-256 results with hyperparameters ε = 1 and H = 0.6,K = 5.

Method Architecture
Pretraining Online Finetuning

cats→ wild cats← wild cats→ wild cats← wild

FID ↓ LPIPS ↓ FID ↓ LPIPS ↓ FID ↓ LPIPS ↓ FID ↓ LPIPS ↓

SBFlow DiT-B/2 15.67 ±0.65 0.578 ±0.002 30.75 ±0.88 0.594 ±0.001 17.50 ±0.87 0.528 ±0.001 25.86 ±0.32 0.537 ±0.001

SBFlow DiT-L/2 16.62 ±0.83 0.604 ±0.001 33.96 ±0.87 0.600 ±0.001 16.98 ±0.53 0.560 ±0.001 27.82 ±0.41 0.547 ±0.001

FDBM (ours) DiT-B/2 16.77 ±0.71 0.530 ±0.002 19.14 ±0.38 0.551 ±0.001 – – – –
FDBM (ours) DiT-L/2 11.62 ±0.73 0.548 ±0.002 19.42 ±0.41 0.561 ±0.002 – – – –
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Figure 5: DiT-B/2 ablation for AFHQ-32 (a-c) and AFHQ-256 (d-f); (c): H = 0.5, and (f): H = 0.6.
We show error bands with averages over 10 runs. SBFlow baselines are marked in (b, c, e), and (f).

with H = 0.5, likely because the forward (Π0 → Π1) and backward bridge (Π1 → Π0) are close—
though not identical—to the Brownian case with a bidirectional bridge. However, this effect does not
generalize to other H , and developing a principled finetuning strategy for FDBMs distinct bridges
remains an important direction for future work. Table 2 shows that our method can significantly
improve the fidelity of generated samples, while maintaining data alignment. Figure 4 highlights
that we can obtain cohesive data alignment without online finetuning for H = 0.4 and H = 0.6 at
scale. See Section K and in particular Figures 5 and 6 for samplings at scale.

6 Conclusion
We introduced Fractional Diffusion Bridge Models (FDBM), a new generative framework that ex-
tends diffusion bridges beyond the Markovian assumptions by incorporating a Markovian approx-
imate fractional Brownian motion to retain computational tractability while preserving long-range
dependencies or roughness that are absent in Brownian generative models. Our fractional generative
diffusion bridge is coupling-preserving in the paired case and generalizes the Schrödinger bridge
formulation for unpaired settings. In the paired regime, FDBM improved the near-native structures
of predicted protein conformations potentially by capturing non-local dependencies; in the unpaired
regime, it achieved superior quality in image translation scaling robustly across high-dimensional
domains and image resolutions.

FDBM opens a broader avenue for generative modeling, bridging fractional stochastic dynamics and
machine learning, and poses a foundation for learning from the correlated, memory-rich phenomena
in real-world. Future work includes theoretical guarantees for fractional Schrödinger bridges, fine-
tuning of asymmetric bridges, and extensions to manifold-valued fractional processes.
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A Notational conventions

Rm m ∈ N dimensional Euclidean space

B (Rm) Borel-σ-algebra on Rm

S = (St)t∈[0,T ] Stochastic process taking values in Rm

Cm Set of continuous functions (paths) Cm = C([0, 1],Rm) from the unit time interval [0, 1] to Rm

B (Cm) Borel-σ-algebra on Cm

P(Cm) Set of probability measures on (Cm,B (Cm))

P ∈ P(Cm) Path measure

PSt1
,...Stn

Distribution of (St1 , . . . Stn) under the path measure P
Pt1,...tn Path measure P is associated with a process S and Pt1,...tN denotes the distribution of (St1 , . . . Stn)

Pt1,...tn|r1,...rl Conditional distribution of (St1 , . . . Stn) given (Sr1 , . . . Srl)

P|r1,...rl Conditional distribution of S given (Sr1 , . . . Srl)

d ∈ N Data dimension

Π0, Π1 Source and target distribution on Rd

Π0,1 Joint (coupling) distribution on Rd × Rd

B (Multidimensional) standard Brownian motion

BH (Multidimensional) Riemann-Liouville (Type II) fractional Brownian motion (fBM)

Y γ (Multidimensional) OrnsteinUhlenbeck (OU) process with speed of mean reversion γ ∈ R
K, k ∈ N Number of augmenting processes K and 1 ≤ k ≤ K

γ1, ..., γK Geometrically spaced grid

ω1, ..., ωK Approximation coefficients

B̂H (Multidimensional) Markov-approximate fractional Brownian motion (MA-fBM)

X Scaled MA-fBM reference process X =
√
εB̂H with ε > 0

Q Path measure of the reference process

Π0,1Q|0,1 Mixture of bridge measures
∫
Rd×Rd Q|0,1(·|x0, x1)dΠ0,1(x0, x1)

Y k Augmenting process Y k = Y γk

Y Stacked augmenting OU processes Y = (Y 1, . . . , Y K) taking values in RdK

Z Augmented process Z = (X,Y ) on Rd·(K+1)

S Path measure of the augmented process Z

F Drift matrix F ∈ Rd(K+1),d(K+1) of the augmented forward process

G Diffusion vector G ∈ Rd(K+1) of the augmented forward process

Z|X0,X1
Partially pinned process Z|(X0, X1)

S|X0,X1
Path measure associated with the partially pinned process Z|X0,X1

TSB Solution to the dynamic Schrödinger bridge problem

V Path measure on the augmented path space P(Cd(K+1))
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B Mathematical framework of fractional diffusion bridge models

In this section, we present the mathematical details of Fractional Diffusion Bridge Models (FDBM).
The main contribution of this section is the proof of Theorem 5 in Section B.2, which generalizes
the construction of a coupling-preserving stochastic process by Bortoli et al. [32] to our fractional
noise setting.

Notation. For any m ∈ N, we equip the Euclidean space Rm with its Borel-σ-algebra B(Rm).
Below, m will typically be either equal to 1, d, dK, or d(K+1). Next, we write Cm = C([0, 1],Rm)
for the set of continuous functions (or continuous “paths”) from the unit time interval [0, 1] to Rm

and equip this set with its Borel-σ-algebra B(Cm) where open sets are understood with respect to
the topology of uniform convergence. The set of probability measures on (Cm,B(Cm)) is denoted
by P(Cm), and we refer to the elements of this set as path measures. If X is a stochastic process and
P ∈ P(Cm) denotes the distribution of X , we subsequently say that the path measure P is associated
with the process X . Observe that any P ∈ P(Cm) is associated with some stochastic process X , as
we may take the space (Cm,B(Cm),P) as our probability space and let X be the canonical process
given by

Xt(ω) := ωt, t ∈ [0, 1], ω ∈ Cm. (24)

Given a path measure P ∈ P(Cm) associated with a process X and time points t1, . . . , tn ∈ [0, 1]
for some n ∈ N, we write Pt1,...,tn for the joint distribution of (Xt1 , . . . , Xtn), that is

Pt1,...,tn := P({ω ∈ Cm : (ω(t1), . . . , ω(tn)) ∈ · }). (25)

In particular, Pt denotes the marginal distribution of X(t) for any t ∈ [0, 1]. More-
over, given s1, . . . , sℓ ∈ [0, 1] and xs1 , . . . , xsℓ ∈ Rm, we write Pt1,...,tn|s1,...,sℓ and
Pt1,...,tn|s1,...,sℓ( · |xs1 , . . . , xsℓ) for the (regular) conditional distribution of (Xt1 , . . . , Xtn) given
(Xs1 , . . . , Xsℓ) and {Xs1 = xs1 , . . . , Xsℓ = xsℓ}, respectively. In the same spirit, we write
P|s1,...,sℓ and P|s1,...,sℓ( · |xs1,...,xsℓ

) for the (regular) conditional distribution of the process X given
(Xs1 , . . . , Xsℓ) and {Xs1 = xs1 , . . . , Xsℓ = xsℓ}, respectively.

B.1 A Markov approximate fractional Brownian bridge.

We fix a d-dimensional Brownian motion B and define the Riemann–Liouville (Type II) fractional
Brownian motion (fBM) [22] with Hurst index H ∈ (0, 1) via

BH
t :=

1

Γ(H + 1
2 )

∫ t

0

(t− s)H−
1
2 dBs, t ≥ 0. (26)

For a given Hurst index H ∈ (0, 1), we consider a Markovian approximation of fBM [25, 26]. For
K ∈ N and geometrically-spaced speed of mean reversion parameters γ1, . . . , γK > 0, we consider
Ornstein–Uhlenbeck (OU) processes of the form

Y k
t :=

∫ t

0

e−γk(t−s)dBs, t ∈ [0, 1], k = 1, . . . ,K. (27)

With this, for a given scaling parameter ε > 0 and suitably chosen approximation weights
ω1, . . . , ωK ∈ R, the process X :=

√
εB̂H defined in terms of the weighted superposition

B̂H :=

K∑
k=1

ωkY
k (28)

of the OU processes is a scaled Markovian approximation of fBM (MA-fBM). While the choice of
approximation coefficients in Harms [43] enables strong convergence to fBM with high polynomial
order in K for H < 0.5, we opt for the computationally more efficient method proposed by Daems
et al. [26]. This method selects the L2(P) optimal approximation coefficients for a given Hurst index
H ∈ (0, 1) and a given K ∈ N by minimizing

(ω1, . . . , ωK) = argmin
ω1,...,ωK

{∫ T

0

E
[(

BH
t − B̂H

t

)2
]
dt

}
. (29)
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Following [26, Proposition 5], the so defined optimal approximation coefficients ω = (ω1, . . . , ωK)
solve the system Aω = b, where A and b are given in closed form [26, eq. (19), eq. (21)] and hence
we choose ω := A−1b. Note that these optimal approximation coefficients depend on the Hurst
index H ∈ (0, 1) and the number of OU processes K ∈ N, since the matrix A and the vector b
are functions of these parameters. We subsequently refer to X =

√
εB̂H as the reference process,

Y := (Y 1, . . . , Y K) as the vector of OU processes, and Z := (X,Y ) as the augmented reference
process, respectively. Note that the dynamics of the augmented reference process are given by
[16, 26]

dZt = FZtdt+GdBt (30)
for a matrix F ∈ Rd(K+1),d(K+1) and avector G ∈ Rd(K+1) [16, 26]. The path measure associ-
ated with the reference process X is denoted by Q ∈ P(Cd), whereas the path measure associated
with the augmented reference process is denoted by S ∈ P(Cd(K+1)) and we write S11|t for the
conditional distribution of X1|Zt. Note that the reference process X , as well as its corresponding
path measure Q is non-Markovian and becomes Markovian only after augmenting it with the OU
processes, resulting in the Markovian augmented reference process Z.
Proposition 8. The reference process X is for K > 1 and all H ∈ (0, 1) the non-Markovian process

Xt+s = Xt +

K∑
k=1

ωkζk(t, t+ s)Y k
t +

√
ε

K∑
k=1

ωk

∫ t+s

t

e−γk(t+s−u)dBu, (31)

where for each k = 1, . . . ,K , and t, s ∈ [0, 1] with t+ s ≤ 1

ζk(t, t+ s) := −
√
εγk

∫ t+s

t

e−γk(u−t)du =
√
ε(eγks − 1). (32)

In particular, we see that S1t+s|t( · |z) is Gaussian and hence for d = 1, with s = 1− t,

∇z log S11|t(x1|z) = [1, ω1ζ1(t, 1), . . . , ωKζK(t, 1)]T
x1 − µ1|t(z)

σ2
1|t

, (33)

where
µ1|t(z) := x+

∑
k

ωkykζk(t, 1), z = (x, y1, .., yK) (34)

denotes the conditional mean and

σ2
1|t := ε

K∑
k,ℓ=1

ωkωℓ

γk + γℓ

(
1− e−(1−t)(γk+γℓ)

)
(35)

the conditional variance of the reference process X1|(Zt = z).

Proof. For the scaled MA-fBM we have for s, t ∈ [0, 1] with t + s ≤ 1 by the Stochastic Fubini
Theorem [25]

Xt+s = −
K∑

k=1

ωkγk

∫ t

0

Y k
r dr +

K∑
k=1

ωkBt −
K∑

k=1

ωkγk

∫ t+s

t

Y k
r dr +

K∑
k=1

ωk(Bt+s −Bt) (36)

= B̂H
t −

K∑
k=1

ωkγk

∫ t+s

t

[e−γk(r−t)Y k
t +

∫ r

t

e−γk(r−u)dBu]dr +

K∑
k=1

ωk(Bt+s −Bt) (37)

= B̂H
t +

K∑
k=1

ωk

[
Y k
t (e−γks − 1) + (Bt+s −Bt)− γk

∫ t+s

t

∫ r

t

e−γk(r−u)dBudr

]
(38)

= B̂H
t +

K∑
k=1

ωk

[
Y k
t (e−γks − 1) + (Bt+s −Bt)− γk

∫ t+s

t

∫ t+s

u

e−γk(r−u)drdBu

]
(39)

= B̂H
t +

K∑
k=1

ωkY
k
t (e−γks − 1) +

K∑
k=1

ωk

∫ t+s

t

[1− γk

∫ t+s

u

e−γk(r−u)dr]dBu (40)

= Xt +

K∑
k=1

ωkζk(t, t+ s)Y k
t +

√
ε

K∑
k=1

ωk

∫ t+s

t

e−γk(t+s−u)dBu. (41)
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Additionally, we calculate via eq. (41) with s = 1− t and z = (x, y1, .., yK) the conditional mean

µ1|t(z) := E [X1|Zt = zt] = x+
∑
k

ωkykζk(t, 1), z = (x, y1, .., yK) (42)

and the conditional variance

σ2
1|t := Cov (X1, X1|Zt = z) = ε

K∑
k,ℓ=1

ωkωℓ

γk + γℓ

(
1− e−(1−t)(γk+γℓ)

)
, (43)

where we use Itô’s isometry. To see that X is non-Markovian, we note that the future Xt+s depends
not only on Xt but also on Y 1

t , ..., Y
K
t which depend on the path of B up to time t. For a more

precise argument, we have by definition

B̂H
t =

∫ t

0

K∑
k=1

ωke
−γk(t−u)dBu (44)

and note that a process X̂ = (X̂t)t∈[0,1] with

X̂t =

∫ t

−∞
κ(t, u)dBu (45)

is a Markov process, if and only if we can find functions f and g such that [56, Theorem II.1]

κ(t, u) = f(t)g(u). (46)

Since we have γ1 6= γ2 6= · · · 6= γK for the defined MA-fBM, functions f and g satisfying

√
ε

K∑
k=

ωke
−γk(t−u) = f(t)g(u) (47)

exist for K > 1 if and only if ωj 6= 0 for at most one 1 ≤ j ≤ K. Hence, MA-fBM—and therefore
our reference process X—is not a Markov-process for K > 1 and any choice of H ∈ (0, 1).

To define a stochastic bridge with respect to X connecting two given points x0 ∈ Rd and x1 ∈ Rd,
observe that we only have to steer the first dimension of the augmented reference process Z =
(X,X) towards x1, while the terminal values Y are not required to attain a specific value.

Proposition 9 (Markov approximation of a fractional Brownian bridge [45]). Let X =
√
εB̂H be

a scaled MA-fBM, ε > 0 and Z = (X,Y ) the augmented reference process. The partially pinned
process Z|x0,x1

:= Z|(X0 = x0, X1 = x1) associated to the path measure S|x0,x1
follows the

dynamics

dZ|x0,x1
(t) = FZ|x0,x1

(t)dt+GGTu(t, Z|x0,x1
(t))dt+GdBt, (48)

ui(t, z) = [1, ω1ζ1(t, 1), ..., ωKζK(t, 1)]
T

[
x1 − µ1|t(z)

σ2
1|t

]
, u = (u1, . . . , ud) (49)

Proof. Daems et al. [45] use a Gaussian expression for the reference process to construct the pos-
terior SDE that is steered towards x1. We derive for a fixed data pair (x0, x1) the dynamics of the
partially pinned process Z|x0,x1

= Z|(X1 = x0, X1 = x1) using Doob’s h-transform [2], resulting
in the same dynamics as in Daems et al. [45]. Towards that goal, we define the transform

h : [0, 1]× Rd(K+1) → [0, 1], (t, z) 7→ S11|t(x1|z), (50)

where S11|t satisfies

P(X1 ∈ A|Zt = z) =

∫
A

S11|t(x|z)dx, A ⊂ Rd. (51)

Denote by St(z) = St(x, y) the density of Zt such that

S11(x) =
∫
RdK

S1(x, y)dy (52)
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Figure 6: Evolution of variance in MA-fBM.

and write St+s|s(z̃|z)for the transition density of Z from time t to t + s. To show that h defined in
eq. (50) satisfies the space-time regularity property we mimic the proof of [2, Theorem 7.11]. We
write with Bayes rule

St+s|t,x1
(z̃|z, x1) =

S11|t+s,t(x1|z̃, z)St+s|t(z̃|z)
S11|t(x1|z)

=
S11|t+s(x1|z̃)St+s|t(z̃|z)

S11|t(x1|z)
(53)

where we use for the second equation that Z is a Markov process. Hence, equivalently

St+s|t(z̃|z)S11|t+s(x1|z̃) = St+s|t,x1
(z̃|z, x1)S11|t(x1|z) (54)

such that ∫
Rd(K+1)

St+s|s(z̃|z)h(t+ s, z)dz̃ =

∫
Rd(K+1)

St+s|s(z̃|z)S11|t(x1|z)dz̃ (55)

=

∫
Rd(K+1)

St+s|t,x1
(z̃|z, x1)S11|t(x1|z)dz̃ (56)

= S11|t(x1|z)
∫
Rd(K+1)

St+s|t,x1
(z̃|z, x1)dz̃︸ ︷︷ ︸

=1

(57)

= h(t, z) (58)

Hence, by Särkkä and Solin [2, eq. (7.73) - eq. (7.78)], we conclude that the partially pinned process
Z|x0,x1

satisfies

dZ|x0,x1
(t) = FZ|x0,x1

(t)dt+GGT∇z log S11|t(x1|Z|x0,x1
(t))dt+GdBt. (59)

Moreover, from eq. (33), we obtain ∇z log S11|t =
([

∇z log S11|t
]
1
, . . . ,

[
∇z log S11|t

]
d

)
with

[
∇z log S11|t

]
i
(x1|z) = [1, ω1ζ1(t, 1), . . . , ωKζK(t, 1)]T

[
x1 − µ1|t(z)

σ2
1|t

]
i

=: u(t, z)i. (60)

See Figure 6 for a visualization of 1d-trajectories and Figure 1 for 2d-trajecotires of the above
defined Markov approximate fractional Brownian bridge (MA-fBB).

B.2 Theoretical framework for paired training data

Fix a probability measure Π0,1 on Rd × Rd, which we refer to as the coupling measure. The
marginals of this measure are denoted by Π0 and Π1, respectively, which means that

Π0(A) :=

∫
A×Rd

dΠ0,1(x0, x1) and Π1(A) :=

∫
Rd×A

dΠ0,1(x0, x1), A ∈ B(Rd).

Our goal is to construct a stochastic process X⋆ that preserves the coupling in the sense that
(X⋆

0 , X
⋆
1 ) ∼ Π0,1, and that X⋆ solves a stochastic differential equation (SDE). If that is achieved,
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we can sample from the coupling Π0,1 by first sampling X⋆
0 = x0 ∼ Π0 according to the first

marginal of Π0,1, and then simulating the SDE forward in time on [0, 1] to arrive at a sample
X⋆

1 = x1. As X⋆ preserves the coupling, it follows that (x0, x1) is drawn from Π0,1. Recall
that Q|0,1( · |x0, x1) ∈ P(Cd) denotes the path measure of the reference process X conditioned on
(X0, X1) = (x0, x1) ∈ Rd × Rd. We define a new path measure P ∈ P(Cd) by integrating (x0, x1)
with respect to Π0,1, that is

P :=

∫
Rd×Rd

Q|0,1( · |x0, x1)dΠ0,1(x0, x1). (61)

To wit, the process X⋆ associated with P is the reference process conditioned on (X∗0 , X
∗
1 ) ∼ Π0,1.

Indeed, this is seen immediately as for any Borel sets A0, A1 ⊂ Rd we have

P({ω ∈ Cd : ω(0) ∈ A0, ω(1) ∈ A1})

=

∫
Rd×Rd

Q|0,1({ω ∈ Cd : ω(0) ∈ A0, ω(1) ∈ A1}|x0, x1)dΠ0,1(x0, x1) (62)

=

∫
Rd×Rd

1A0
(x0)1A1

(x1)dΠ0,1(x0, x1) (63)

= Π0,1(A0 ×A1). (64)

A key assumption for establishing the existence of an SDE whose solution X⋆ has distribution P is
that P is absolutely continuous with respect to Q.
Assumption 1. The path measure P ∈ P(Cd) is absolutely continuous with respect to the path
measure Q ∈ P(Cd) of the reference process X . In particular, there exists a density

dP
dQ

: Cd → [0,∞). (65)

The density dP/dQ allows us to lift the measure P to a path measure P⋆ on the augmented path
space Cd(K+1) via the Radon–Nikodým density

dP⋆

dS
(ω) :=

dP
dQ

, ω = (ωX , ωY ) ∈ Cd(K+1). (66)

As a first step, we show that P⋆ still preserves the coupling.
Lemma 10. For any Borel sets A0, A1 ∈ Rd, it holds that

P⋆({ω ∈ Cd(K+1) : ω(0) ∈ A0 × RdK , ω(1) ∈ A1 × RdK}) = Π0,1(A0 ×A1). (67)

In other words, P⋆ preserves the coupling Π0,1.

Proof. Any ω ∈ Cd(K+1) decomposes uniquely into a pair ω = (ωX , ωY ) with ωX ∈ Cd and
ωY ∈ CdK . Next, we subsequently write Qy( · |ωX) for the (regular) conditional distribution of
the OU process Y conditional on the path of the reference process X being ωX ∈ Cd. Using the
disintegration theorem, it therefore follows that

P⋆({ω ∈ Cd(K+1) : ω(0) ∈ A0 × RdK , ω(1) ∈ A1 × RdK}) (68)

= P⋆({ω ∈ Cd(K+1) : ωX(0) ∈ A0, ωX(1) ∈ A1}) (69)

=

∫
Cd(K+1)

dP
dQ

(ωX)1A0
(ωX(0))1A1

(ωX(1))dS(ω) (70)

=

∫
Cd

dP
dQ

(ωX)1A0(ωX(0))1A1(ωX(1))

∫
CdK

dQy(ωY |ωX)dQ(ωX) (71)

=

∫
Cd

dP
dQ

(ωX)1A0
(ωX(0))1A1

(ωX(1))dQ(ωX) (72)

= P({ω ∈ Cd : ω(0) ∈ A0, ω(1) ∈ A1}) (73)
= Π0,1(A0 ×A1), (74)

showing that P⋆ preserves the coupling Π0,1.
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For any z0 ∈ Rd(K+1), we subsequently denote by

dP⋆
1|0

dS1|0
( · |z0) : Rd(K+1) → [0,∞) (75)

the density of P⋆
1|0( · |z0) with respect to S1|0( · |z0). In the same spirit, given x0 ∈ Rd, we write

dP1|0

dQ1|0
( · |x0) : Rd → [0,∞) (76)

for the density of P1|0( · |x0) with respect to Q1|0( · |x0). By eq. (66), it follows that

dP⋆
1|0

dS1|0
(z1|z0) = 1{0}(y0)

dP1|0

dQ1|0
(x1|x0) (77)

for all z0 = (x0, y0), z1 = (x1, y1) ∈ Rd(K+1). Now introduce two functions

h1 : Rd(K+1) × Rd → [0,∞), (z0, x1) 7→ h1(z0, x1) := 1{0}(y0)
dP1|0

dQ1|0
(x1|x0) (78)

and, with this, h : Rd(K+1) × [0, 1]× Rd(K+1) → [0,∞) given by

h(z0, t, z) :=

∫
Rd(K+1)

h1(z0, x1)S1|t(dz1|z), (z0, t, z) ∈ Rd(K+1) × [0, 1]× Rd(K+1). (79)

Observe that

h(z0, t, z) = ES1|t [h1(z0, X1)|Z0 = z0, Zt = z] = ES1
1|t
[h1(z0, X1)|Z0 = z0, Zt = z], (80)

where S11|t denotes the conditional distribution of X1 given Zt. In particular, h(z0, 1, z) = h1(z0, x)

whenever z = (x, y). In what follows, we enforce the following assumptions on h.
Assumption 2. The function h defined in eq. (79) is jointly measurable. Moreover, for all fixed
z0 ∈ Rd(K+1), the mapping (t, z) 7→ h(z0, t, z) satisfies

inf{h(z0, t, z) : (t, z) ∈ [0, 1]× Rd(K+1)} > 0 (81)

and is a member of C2
b ([0, 1] × Rd(K+1), [0,∞)), the space of bounded and twice continuously

differentiable functions with bounded first- and second-order derivatives.

Under these assumptions, it is possible to show that the coupling preserving augmented measure P⋆

is the distribution of a solution of a stochastic differential equation.
Proposition 11. The SDE

dZ⋆
t = FZ⋆

t dt+GGTEP⋆
1|0,t

[∇z log S11|t(X
⋆
1 |Z⋆

t )|Z⋆
0 , Z

⋆
t ]dt+GdBt, Z⋆

0 = (X0, 0 . . . 0), (82)

admits a pathwise unique strong solution Z⋆ = (X⋆, Y ⋆) with distribution P⋆. In particular, X⋆

preserves the coupling Π0,1, that is, (X⋆
0 , X

⋆
1 ) ∼ Π0,1.

Proof. For z0 ∈ Rd(K+1) and t ∈ [0, 1], consider the linear differential operator L z0
t mapping

functions φ ∈ C2
b (Rd(K+1)) to

L z0
t φ(z) = 〈Fz+(GGT )∇z log h(z0, t, z),∇φ(z)〉+ 1

2
tr(GGT∇2φ(z)), z ∈ Rd(K+1). (83)

Due to the assumptions imposed on h, it follows from Lemma 3.1 in Palmowski and Rolski [57] that
the local martingale problem associated with the operator L z0

t and initial distribution δz0 is solved
by P⋆

|0( · |z0). Thus, by Theorem 18.7 in Kallenberg [58], it follows that the stochastic differential
equation

dZ⋆(t) = FZ⋆(t)dt+GGT∇z log h(z0, t, Z
⋆
t )dt+GdBt, Z⋆

0 = z0 (84)

admits a weak solution in Z⋆
0 = z0 with associated path measure P⋆

|0( · |z0). Next, since h(z0, · ) ∈
C2

b ([0, 1] × Rd(K+1), [0,∞)) implies that (t, z) 7→ ∇z log h(z0, t, z) is Lipschitz continuous and
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therefore the solution of the SDE is even strong and pathwise unique. Finally, it follows that the
pathwise unique strong solution Z⋆ of

dZ⋆(t) = FZ⋆(t)dt+GGT∇z log h(Z
⋆
0 , t, Z

⋆
t )dt+GdBt, Z⋆

0 = (X0, 0, . . . , 0) (85)

has distribution P⋆ as P⋆
0 = Π̃0. We conclude since

∇z log h(Z
⋆
0 , t, Z

⋆
t ) = EP⋆

1|0,t
[∇z log S11|t(X

⋆
1 |Z⋆

t )|Z⋆
0 , Z

⋆
t ] (86)

using eq. (80) and following the arguments in Bortoli et al. [32, Proof of Proposition 3].

In Theorem 11 we constructed the coupling-preserving path measure P⋆ associated with the stochas-
tic process we wish to learn. The following corollary establishes that we can obtain samples z⋆t ∼ P⋆

t
by first sampling (x0, x1) ∼ Π0,1 and subsequently sampling zt ∼ St|X0,X1

(· | x0, x1).

Corollary 12. For the coupling-preserving process Z⋆ constructed in Theorem 11, the associated
path measure satisfies P⋆ = Π0,1S|X0,X1

.

Proof. Since P⋆ preserves the coupling Π0,1, we have

P⋆ =

∫
Rd×Rd

P⋆
|X0,X1

(·|x0, x1)dP⋆
X0,X1

(x0, x1) (87)

=

∫
Rd×Rd

P⋆
|X0,X1

(·|x0, x1)dΠ0,1(x0, x1) (88)

= Π0,1P⋆
|X0,X1

. (89)

For X⋆
1 = x1 we find

EP⋆
1|0,t

[∇z log S11|t(X
⋆
1 |Z⋆

t )|Z⋆
0 , Z

⋆
t ]X⋆

1=x1
= EP⋆

1|0,t
[∇z log S11|t(x1|Z⋆

t )|σ(Z⋆
0 , Z

⋆
t )] (90)

= ∇z log S11|t(x1|Z⋆
t ), (91)

since ∇z log S11|t(x1|Z⋆
t ) is measurable with respect to σ(Z⋆

0 , Z
⋆
t ). Therefore Z⋆

X⋆
0 ,X

⋆
1

solves the

SDE in eq. (48) of the partially pinned process and we conclude Z⋆
X0,X1

d
= ZX0,X1 such that

P⋆ = Π0,1SX0,X1 . (92)

Given a data point X⋆
0 = x0 ∼ Π0, and assuming we could simulate the coupling preserving process

Z⋆, we could sample from the coupling Π0,1 by simulating the SDE in eq. (11) forward in time on
[0, 1] to arrive at a sample X⋆

1 = x1. As X⋆ preserves the coupling, it follows that (x0, x1) is drawn
from Π0,1. However, the expectation in the drift of Z⋆ is intractable and hence we approximate this
expectation by a time-dependent neural network uθ

t . We now define Fractional Diffusion Bridge
Models (FDBM) for paired data translation as the stochastic process Zθ associated with the path
measure Pθ solving

dZθ
t = FZθ

t dt+GGTuθ(t,X0, Z
θ
t )dt+GdBt, Zθ

0 = (X0, 0, . . . , 0), (93)

uθ
i (t, x0, z) = [1, ω1ζ1(t, 1), . . . , ωKζK(t, 1)]T ũθ

i (t, x0, µ1|t(z)), uθ = (uθ
1, . . . , u

θ
d), (94)

where ũθ := (ũθ
1, . . . , ũ

θ
d) is a time-dependent neural network that takes the starting value x0 and

the mean µ1|t(z) of the conditional terminal X1|(Zt = z) as an input. Denote

ṽ(t) = [1, ω1ζ1(t, 1), . . . , ωKζK(t, 1)]
T ∈ RK+1 (95)

and define

v(t) =


ṽ(t) 0 . . . 0
0 ṽ(t) . . . 0
...

. . . . . . 0
0 . . . . . . ṽ(t)

 ∈ Rd(K+1),d. (96)
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Since t 7→ ‖GT ṽ(t)‖22 is continuous, it attains its maximum on the compact interval [0, 1]. Hence,
we find ‖GT v(t)‖22 ≤ c for some constant c > 0. Parameterizing the learnable process Zθ associated
with the path measure Pθ according to eq. (93) we aim to minimize the KL-divergence DKL(P⋆|Pθ).
We calculate using Girsanovs theorem (See Blessing et al. [59, eq. (30)] for our setting), together
with the stochastic Fubini theorem and Jensens inequality

DKL(P⋆|Pθ) = EP⋆0,t

[
1

2

∫ 1

0

∥∥∥GT
{
EP⋆

1|0,t

[
∇z log S1

1|t(X
⋆
1 |Z⋆

t )|Z⋆
0 , Z

⋆
t

]
− uθ(t,X0, Z

⋆
t )
}∥∥∥2

2
dt

]
(97)

=
1

2

∫ 1

0

EP⋆0,t

[
∥GT

{
EP⋆

1|0,t
[∇z log S1

1|t(X
⋆
1 |Z⋆

t )− uθ(t,X0, Z
⋆
t )|Z⋆

0 , Z
⋆
t ]
}
∥22
]
dt (98)

≤ 1

2

∫ 1

0

EP⋆0,t

[∥∥∥GT v(t)
∥∥∥2

2

∥∥∥∥∥EP⋆
1|t,0

[
X∗1 − µ1|t(Z

⋆
t )

σ2
1|t

− ũθ(t,X0, Z
⋆
t ))

∣∣∣Z⋆
0 , Z

⋆
t

]∥∥∥∥∥
2

2

]
dt

(99)

≤ c

2

∫ 1

0

EP⋆0,t

[∥∥∥∥∥EP⋆
1|t,0

[
X∗1 − µ1|t(Z

⋆
t )

σ2
1|t

− ũθ(t,X0, Z
⋆
t ))

∣∣∣Z⋆
0 , Z

⋆
t

]∥∥∥∥∥
2

2

]
dt (100)

≤ c

2

∫ 1

0

EP⋆0,t

[
EP⋆

1|t,0

[∥∥∥∥∥X∗1 − µ1|t(Z
⋆
t )

σ2
1|t

− ũθ(t,X0, Z
⋆
t ))

∥∥∥∥∥
2

2

∣∣∣Z⋆
0 , Z

⋆
t

]]
dt (101)

=
c

2

∫ 1

0

EP⋆

[∥∥∥∥∥X∗1 − µ1|t(Z
⋆
t )

σ2
1|t

− ũθ(t,X0, Z
⋆
t ))

∥∥∥∥∥
2

2

]
dt. (102)

Hence, we aim to minimize Equation (102) in order to learn the stochastic process Z⋆. During
training, the loss is computed by first sampling (x0, x1) ∼ Π0,1 and subsequently sampling z⋆t ∼
St|X0,X1

(· | x0, x1). This procedure is justified since P⋆ = Π0,1S|X0,X1
by Corollary 12.

B.3 Theoretical framework for unpaired data

Given two unknown distributions Π0 and Π1 and the reference process X =
√
ϵB̂H we seek to find

a solution to the dynamic Schrödinger Bridge problem [39, 40, 42]

TSB = argmin
T∈P(Cd)

{DKL(T|Q) ; T0 = Π0, T0 = Π1} . (103)

By Föllmer [41], Léonard [42, Proposition 2.3] there is at most one solution TSB to the dynamic
Schrödinger bridge problem in eq. (103) and if the solution TSB exists, then TSB

01 is the solution to
the static Schrödinger bridge problem. Assume there exists a solution TSB for the above dynamik
Schrödinger bridge w.r.t. Q such that ΠSB

0,1 := TSB
0,1 is the solution to the corresponding static

Schrödinger bridge problem. By the above Theorem 11 we can construct a process Z⋆ = (X⋆, Y ⋆)
with path measure P⋆ and dynamics

dZ∗t = FZ∗t dt+GGTEP⋆
1|0,t

[∇z log S11|t(X
∗
1 |Z∗t )|Z∗0 , Z∗t ]dt+GdB(t) (104)

that preserves the coupling ΠSB
0,1 . In contrast to the setting of paired training data, we have no access

to samples of ΠSB
0,1 . On the other hand, letting S be the path measure associated with the augmented

reference process Z, we define using the marginals of P⋆ the SB problem on the augmented space
via

VSB = argmin
V∈P(Cd·(K+1))

{DKL(V|S) ; V0 = P⋆
0, V1 = P⋆

1} . (105)

Since Z is a Markov process, the path measure solving the lifted SB problem in eq. (105) is associ-
ated with a Markovian process [42], whereas Z⋆ in eq. (11) is non-Markovian due to its dependency
on X0 in the drift function. Motivated by this observation, we generalize in the following the defi-
nition of a reciprocal class [34, 47] and the notation of a Markovian projection [21, 34, 48] to our
setting of a scaled MA-fBM reference process. We define the augmented reciprocal class Ra(S)
below as the set of path measures V on the augmented space whose marginals can be sampled by
first drawing (x0, x1) ∼ VX0,X1

and then sampling zt ∼ St|X0,X1
(· | x0, x1).

Definition 13. We say that V ∈ P(Cd·(K+1)) is in the augmented reciprocal class Ra(S) of S if

V =

∫
Rd×Rd

S|X0,X1
( · |x0, x1)dVX0,X1

(x0, x1) =: VX1,X0
S|X0,X1

. (106)
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For any V ∈ P(Cd·(K+1)) we define the augmented reciprocal projection by
projRa(S)(V) := VX0,X1S|X0,X1

. (107)

Since we know that the solution to the lifted SB problem in eq. (105) is a Markovian measure, we
project any element of the augmented reciprocal class to a Markovian path measure by the following
definition.
Definition 14. For V ∈ P(Cd·(K+1)) with V ∈ Ra(S) we define the augmented Markovian pro-
jection projMa

(V) by the path measure associated to M = (M1,M2, . . .MK+1) solving for
M1

0 ∼ VM1
0

dMt = FMtdt+GGTEV1|t

[
∇mt log S11|t(M

1
1 |Mt)|Mt

]
dt+GdBt, M0 = (M1

0 , 0K). (108)

Bortoli et al. [27] introduce a flow of path measures (Ps,Ps)s≥0 and show that, for a reference
process driven by BM, a time discretization of this flow with step size α ∈ (0, 1] yields a family of
procedures called α-IMF, all of which converge to the Schrödinger bridge. For a reference process
driven by MA-fBm, we propose to define a flow of path measures (P̃s, P̂s)s≥0 recursively by

P̂0 = (Π0 ⊗Π1)S|X0,X1
, ∂sP̂s = projRa(S)(projMa(S)(P̂

s))− P̂s, P̃s = projMa(S)(P̂
s),
(109)

Both procedures α-IMF and IMF are based on the loss function [27, 34]

L(v, P) =

∫ t

0

Lt(vt, P)dt =

∫ 1

0

∫
(Rd)3

∥∥∥∥vθ
t (xt)−

x1 − xt

1− t

∥∥∥∥2

dP(x0, x1)dQt|0,1(xt|x0, x1)dt. (110)

We propose to replace the above loss function with

Lunpaired
FDBM (θ, P̃) =

∫ 1

0

∫
(Rd·(K+1))

∫
(Rd)2

∥∥∥∥∥ṽθt (µ1|t(zt))−
x1 − µ1|t(z)

σ2
1|t

∥∥∥∥∥
2

dP̃x(x0, x1)dSt|X0,X1
(zt|x0, x1)dt.

(111)
to define α-IMF with respect to a scaled MA-fBM reference process.

Challenges & Limitations. The dynamic Schrödinger bridge problem can be formulated with a
scaled fBM as the reference process, since Léonard [42] includes non-Markovian processes with
continuous paths. To sample paths from the resulting solution, one must draw from a fractional
Brownian bridge (fBB). Janak [24] constructs such a bridge by leveraging the fact that fBM is a
Gaussian process and additionally derives an integral equation characterizing the fBB [24, Theo-
rem 5]. However, the drift of the derived bridge involves an integral that is not available in closed
form [24, eq. (17)], necessitating an approximation of this drift term when sampling from an (ap-
proximate) solution to the dynamic Schrödinger bridge problem. Hence, we first approximate fBM
using a Markovian approximation [25, 26] to enable simulation—up to discretization error—of the
exact bridge, which corresponds to a partially pinned process. We leave the analysis of how well
the solution to the thus-defined dynamic Schrödinger bridge problem approximates the solution of
the corresponding problem with a scaled fBM as the reference process for future work. We empha-
size that in the unpaired training data setting, we only propose a method for using FDBM and do
not prove convergence of the algorithm to the corresponding solution of the dynamic Schrödinger
bridge problem. To the best of our knowledge, the setting of Léonard et al. [47, Theorem 2.14] is
not applicable here, as our pinned path measure refers to a partially pinned process, rather than a
fully pinned process. As a result, proving the convergence of our method would require an adapta-
tion of Léonard et al. [47, Theorem 2.14], which is beyond the scope of this work. Additionally we
point out that we are only able to simulate the learned bridges forward in time, since the terminal
distribution of the augmenting processes of the learned stochastic bridge depends on the initial data
distribution, see Section B.5 for details.

B.4 Sampling from partially pinned process

In this section, we derive the marginal distribution of the partially pinned process for any t ∈ (0, 1),
enabling simulation-free sampling. For s < t < 1 we know that (Xt, Yt, X1)|(Zs = z) is Gaussian
[2] with

(Xt, Y
1
t , ..., Y

K
t , X1|Zs = z)T ∼ N

((
ηt|s(z)
µ1|s(z)

)
,

(
Σt|s Σ12(t|s)

Σ21(t|s) σ2
1|s

))
, (112)
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with
ηt|s(z) = (η1t|s(z), η

2
t|s(z), ..., η

K+1
t|s (z))T (113)

and
Σ12(t|s) = (cov(Xt, X1), cov(Y

1
1 , X1), ..., cov(Y

K
t , X1))

T = ΣT
21(t|s). (114)

Hence, the process partially pinned at (xs, x1) follows the distribution

Zt|(Xs = xs, X1 = x1) ∼ N (η̄t|xs,x1
, Σ̄t|s,1), (115)

with

η̄t|x0,xs
(z) = ηt|s(z) +

1

σ2
1|s

Σ12(t|s)(x1 − µ1|s(z)) (116)

s=0
= (x0, 0, ..., 0)

T +
1

σ2
1|0

Σ12(t|s)(x1 − x0) (117)

and

Σ̄t|s,1 = Σt|s −
1

σ2
1|t

Σ12(t|s)Σ21(t|s) = Σt|s −
1

σ2
1|t

Σ12(t|s)ΣT
12(t|s). (118)

We further calculate for a constant diffusion coefficient g(t) ≡ g ∈ R

ζk(s, t) =

∫ t

s

−γkg(u)e
−γk(u−s)du = −gγk

∫ t

s

e−γk(u−s)du = g(e−γk(t−s) − 1) (119)

and

µ1|t(z) = x+
∑
k

ωkykζk(t, 1) = x+ g

K∑
k=1

ωk(e
−γk(1−t) − 1)yk. (120)

Left to calculate are the entries of Σt|s and Σ12(t|s). With s < t ≤ 1 we calculate

Cov(Xt, X1|Zs = z) =

K∑
i,j=1

ωiωj

∫ t

s

(ζi(u, t) + g) (ζj(u, 1) + g) du (121)

= g2
K∑

i,j=1

ωiωj

∫ t

s

(
(e−γk(t−u) − 1) + 1

)(
(e−γk(1−u) − 1) + 1

)
du

(122)

= g2
K∑

i,j=1

ωiωj

∫ t

s

(
e−γi(t−u)

)(
e−γj(1−u)

)
du, (123)

Cov(Y i
t , Y

j
1 |Zs = z) =

∫ t

s

e−γi(t−u)e−γj(1−u)du =
e−γj−tγi (etγj+tγi − esγj+sγi)

γj + γi
, (124)

and for s = 0

Cov(Y l
t , X1) =

K∑
k=1

ωk

∫ t

0

e−γl(t−u)(ζk(u, 1) + g(u))du (125)

= g

K∑
k=1

ωk

∫ t

0

e−γl(t−u)e−γk(1−u)du (126)

= g

K∑
k=1

ωk

(
et(γl+γk) − 1

)
e−tγl−γk

γl + γk
. (127)
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B.5 Loss regularization via the reverse pinned process

In the derivation of the previous section (Section B.4), we see from eq. (117) that the terminal
values of the noise process Y directly depend on x0, i.e., on information from the initial distribution
Π0. Hence, initializing the time reversal of the partially pinned process is only feasible when the
desired endpoint is already known, which makes simulating the time reversal of FDBM impractical
in general. However, we derive below the time reversal of the partially pinned process, which
allows us to use the drift of the reversed process to regularize the loss function during training in
the unpaired setting, where we condition on both an initial and a terminal state. Whenever X =
(X(t))t∈[0,1] is a stochastic process and g is a function on [0, 1], we write X̄(t) = X(1 − t) for
the reverse-time model and ḡ(t) = g(1 − t) for the reverse-time function. In Bortoli et al. [27] the
reverse pinned process connecting x1 and x0 is again a Brownian bridge. For our reference process,
the reverse model of the partially pinned process follows [60]
dZ̄|x0,x1

(t) =
[
FZ̄|x0,x1

(t) + GG
T
u
→

(1− t, Z̄|x0,x1
(t))−GG

T∇z log p̄t(Z̄|x0,x1
(t)|x0, x1)

]
dt + GdB̄(t) (128)

=
{
FZ̄|x0,x1

(t) + GG
T [

u
→

(1− t, Z̄|x0,x1
(t))−∇z log p̄t(Z̄|x0,x1

(t)|x0, x1)
]}

dt + GdB̄(t) (129)

=
{
FZ̄|x0,x1

(t) + GG
T [
∇z log q1|t(x1|Z̄|x0,x1

(t))−∇z log p̄t(Z̄|x0,x1
(t)|x0, x1)

]}
dt + GdB̄(t)

(130)

where q1|t(·|z) := S11|t(·|z) is the density of X1|(Zt = z), pt := St is the marginal density of the
augmented reference process Z, pt(·|x0, x1) := St|X0,X1

(·|x0, x1) is the marginal density of the
partially pinned process defined in eq. (9) and u→ := u according to eq. (10). We find with Bayes’
theorem

pt(z|x0, x1) =
ρt(z, x0, x1)

π0,1(x0, x1)
, (131)

where π0,1 is the joint density associated to Π0,1 and ρt is the joint density of (Zt, X0, X1). Since
Z is Markov with Z0 = (X0, 0dK), we have

q1|t,x0
(x1|z, x0) = q1|t,s(x1|zt, z0) = q1|t(x1|zt) (132)

and

q1|t(x1|zt) = q1|t(x1|zt, z0) =
ρt(zt, x0, x1)

p(zt, x0)
=

ρt(zt, x0, x1)

pt(zt|x0)π0(x0)
, (133)

where π0 corresponds to Π0. Hence, by the above equations
log q1|t(x1|zt)− log pt(zt|x0, x1) (134)

= log

(
ρt(zt, x0, x1)

pt(zt|x0)π0(x0)
· λ(x0, x1)

ρt(zt, x0, x1)

)
(135)

= log

(
λ(x0, x1)

pt(zt|x0)π0(x0)

)
(136)

= log λ(x0, x1)− log pt(zt|x0)− log π0(x0) (137)
and we find for the gradient

∇z

[
log q1|t(x1|zt)− log pt(zt|x0, x1)

]
= −∇z log pt(zt|x0), (138)

such that
dZ̄|x0,x1

(t) =
[
FZ̄|x0,x1

(t)−GGT∇z log p̄t(z1−t|x0)
]
dt+GdB̄(t). (139)

Hence, the reverse dynamics of the partially pinned process coincide with the reverse dynamics of
the reference process conditioned on x0. In addition, we have

log pt(zt|x0) = ∇y[log p
x
t (xt|y1t , ..., ykt , x0) + log pyt (y

1
t , ..., y

k
t |x0)] (140)

= ∇y[log p
x
t (xt|y1t , ..., ykt , x0) + log pyt (y

1
t , ..., y

k
t )], (141)

where we use the independence of (Y 1, ..., Y K
t ) and X0. To calculate further, we note that

Xt|(Y 1
t = y1, ..., Y K

t = yK , X0 = x0) ∼ N (µt(y, x0), σ
2
t|Y ) is normal distributed with

µt(y, x0) = E
[
Xt|(Y 1

t = y1, ..., Y K
t = yK , X0 = x0)

]
(142)

(41)
= x0 +

K∑
k=1

ωkζk(0, t)yk(t) (143)

= µt|0(z)− x+ x0, (144)
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where z = (x, y1, ..., yK) and

σ2
t|Y = V

[
Xt|(Y 1

t = y1, ..., Y K
t = yK , X0 = x0)

]
(145)

=
√
ϵ

K∑
i,j=1

ωiωj

γi + γj
(1− e−t(γi+γj)) (146)

(35)
= σ2

t|0. (147)

Therefore

∂x log pt(zt|x0) (148)

= ∂x[log p
x
t (xt|y1t , ..., ykt , x0) + log pyt (y

1
t , ..., y

k
t )] (149)

= ∂x log pt(xt|y1t , ..., ykt , x0) (150)

= −
xt − [x0 +

∑K
k=1 ωkζk(0, t)y

k
t ]

σ2
t|0

(151)

=
x0 − xt +

∑K
k=1 ωkζk(0, t)yk(t)

σ2
t|0

(152)

and

∇y log pt(zt|x0) = ∇y[log p
x
t (xt|y1t , ..., yKt , x0) + log pyt (y

1
t , ..., y

K
t )] (153)

= −
xt − µt|(Y,x0)

σ2
t|0

[−∇yµt|(Y,x0)] +∇y log p
y
t (y

1
t , ..., y

K
t ) (154)

= [ω1ζ1(0, t), ..., ωKζK(0, t)]T
xt − µt|(Y,x0)

σ2
t|0

−


0

Λ−1t

 y1t
...

yKt


 , (155)

(156)

such that, in total

dZ̄|x0,x1
(t) =

{
FZ̄|x0,x1

(t)−GGTu←(1− t, Z̄|x0,x1
(t))

}
dt+GdB̄(t), (157)

with

u←(t, z) = [1,−ω1ζ1(0, t), ...,−ωKζK(0, t)]T
x0 − x+

∑K
k=1 ωkζk(0, t)yk

σ2
t|0

−


0

Λ−1(t)

 y1
t

...
yK
t


 .

(158)

We use the above calculations to derive a backward loss. Let Z|0,1(t) ∼ N (Σ̄t, µ̄t) with

µ̄t = (x0, 0, ..., 0)
T +

1

σ2
1|0

Σ12(t|0)(x1 − x0) (159)

and

Σ̄t = Σt|0 −
1

σ2
T |t

Σ12(t|0)ΣT
12(t|0) (160)

according to the derivations in Section B.4. Since by the calculations of this section

∇z log q1|t(x1|z)−∇z log p̄t(z|x0, x1)− u←(t, z) = 0d(K+1), (161)

we aim to enforce

0d(K+1) = [1, ω1ζ1(t, 1), ..., ωKζK(t, 1)]
T
v
θ
t (µ1|t(z))−∇z log pt(Z|0,1(t)|x0, x1)− u

←
(t, z) (162)
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for the neural network vθt learned to approximation the forward dynamics transforming π0 to π1.
Moreover, since

∇z log pt(Z|0,1(t)|x0, x1) = −Σ̄−1t (Z|0,1(t)− µ̄t), (163)

we aim for

0K+1
d
= Σ̄t

{
[1, ω1ζ1(t, 1), ..., ωKζK(t, 1)]T v→t (µ1|t(Z|0,1(t)))− u←(t, Z|0,1(t))

}
− (Z|0,1(t)− µ̄t)

(164)
and define

L←t (θ, zt, x0, x1) :=
∥∥∥Σ̄t

{
[1, ω1ζ1(t, 1), ..., ωKζK(t, 1)]

T
v
θ
t (µ1|t(Z|0,1(t)))− u

←
(t, Z|0,1(t))

}
− (Z|0,1(t)− µ̄t)

∥∥∥2
,

(165)

with

u
←

(t, z) =

[1,−ω1ζ1(0, t), . . . ,−ωKζK(0, t)]
T x0 − x +

∑K
k=1 ωkζk(0, t)yk

σ2
t|0

−


0

Λ−1(t)


y1

...
yK




 (166)

to minimize for some λ ∈ [0, 1]

Lt(θ, v
θ
, P̃) (167)

=

∫
Rd(K+1)

∫
(Rd)2

∥∥∥∥∥v→t (µ1|t(zt))−
x1 − xt −

∑
k ωkζk(t, 1)yk(t)

σ2
1|t

∥∥∥∥∥
2

dP̃X0,X1
(x0, x1)dSt|X0,X1

(zt|x0, x1)

+ λ

∫
Rd(K+1)

∫
(Rd)2

L←t (θ, zt, x0, x1)dP̃X0,X1
(x0, x1)dSt|X0,X1

(zt|x0, x1), (168)

incorporating, for λ > 0, the drift of the time-reversal of the partially pinned process.
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C Broader impact

Fractional Diffusion Bridge Models (FDBM) introduce non-Markovian stochastic dynamics into
generative modeling, enabling the learning of long-range dependencies and memory effects ob-
served in real systems. This is largely a theoretical contribution. This framework can benefit
scientific domains where temporal correlations are fundamental, including molecular design, pro-
tein dynamics, materials discovery, and biological simulation, by improving the physical fidelity of
generative models.

By bridging stochastic physics and machine learning, FDBM contributes to more interpretable and
physically grounded generative tools, potentially reducing experimental costs and accelerating dis-
covery. Nevertheless, as with any generative model, misuse for fabricating deceptive or unsafe data
is possible. To mitigate this, our open-source release emphasizes research and educational use with
clear documentation.

D Related work

Diffusion based generative modeling. Diffusion models [61, 62] have achieved remarkable suc-
cess in generative modeling, setting state-of-the-art performance across image [52, 63] and molecule
generation [64, 65]. They have had a major impact across a broad range of domains, includ-
ing materials and drug discovery [66, 67], realistic audio synthesis [68, 69], 3D object and tex-
ture generation [4, 5, 70], medical imaging [71, 72], aerospace design [73], and DNA sequence
modeling [74, 75]. Building on the seminal contribution of Song et al. [3], who introduced a
continuous-time framework for score-based diffusion models via stochastic processes with an ex-
act reverse-time model, a large body of subsequent work has expanded this perspective by analyzing
its properties [76–78] and generalizing it to subspaces [79], Riemannian manifolds [80, 81], alter-
native stochastic dynamics such as non-linear drifts [82], general corruptions [12] and reflecting
processes [83, 84], as well as by learning the drift of the forward process [85]. A unifying per-
spective on diffusion and diffusion bridge models has been proposed through mixtures of diffusion
bridges [21], optimal control [86], and the generalized Schrödinger bridge problem [59, 87], with
applications to sampling from unnormalized densities. Recent methods incorporated non-Gaussian
priors, as well as non-Gaussian conditioning into diffusion modeling and considered the boundary
value problem through diffusion bridges [88–90]. In line with our research, non-standard noise
sources for continuous-time diffusion models have been explored, including heavy-tailed Lévy pro-
cesses [14, 15], and non-Markovian fractional Brownian motion [11, 16, 17].

Fractional Brownian motion in machine learning. Memory-aware fractional Brownian motion
has been employed in machine learning for generative modeling [11, 16, 17, 91], variational in-
ference [26], and stochastic optimal control [45]. Our work builds directly on the Markovian ap-
proximation of fractional Brownian motion (MA-fBM) introduced by Harms and Stefanovits [25]
and further refined through the derivation of optimal approximation coefficients by Daems et al.
[26]. Daems et al. [26] demonstrate how variational inference can be performed for SDEs driven
by MA-fBM, a framework later enhanced by Daems et al. [45] using techniques from stochastic
optimal control. Nobis et al. [16] introduced a continuous-time score-based diffusion model driven
by MA-fBM, which Liang et al. [17] extended to protein generation.

The Schrödinger bridge problem. The Schrödinger bridge problem [39–42] is a stochastic opti-
mal control formulation that serves as an entropy-regularized generalization of the optimal transport
problem on path spaces. It offers a principled alternative to Diffusion Models[3, 61, 62] and Flow
Matching approaches [30, 92], by directly interpolating between marginal distributions via maxi-
mum entropy dynamics [19, 20]. While the algorithm proposed by Bortoli et al. [19] was based
on Iterative Proportional Fitting (IPF) [93–97], Shi et al. [34] and Peluchetti [33] concurrently in-
troduced Iterative Markovian Fitting (IMF) for Brownian-driven diffusion processes, which directly
learns the time-dependent drift of a stochastic process solving an SDE. Specifically, Shi et al. [34]
considered a scalar, positive diffusion function, whereas Peluchetti [33] formulated their approach
for matrix-valued diffusion functions that may depend on the state of the process. For unpaired data
translation, we build upon the framework of Bortoli et al. [27], where IMF is extended to α-IMF,
an online variant of IMF, summarized in detail in Section E. See also Peyré and Cuturi [38] for a
comprehensive overview of optimal transport methods.

34



Stochastic bridges for paired data translation. Recent studies have extended stochastic bridges
to the paired data settings. Liu et al. [30] proposed a structured diffusion framework for constrained
domains, alongside a task-specific training loss. Liu et al. [36] propose a generative bridge model
for image-to-image translation and Somnath et al. [31] introduced aligned diffusion bridges that in-
terpolate between matched samples and evaluated the method on toy datasets, cell differentiation,
and predicting conformational changes in proteins. Bortoli et al. [32] identified limitations in pre-
serving the coupling of the training data in the approach of Somnath et al. [31] and Liu et al. [36],
which they resolved by augmenting the drift of the learned process with the starting value. Our
framework FDBM in the paired setting is built upon the repository provided by Somnath et al. [31]4,
including the training setup, model architectures, data visualization, and all used datasets. Concep-
tually, we adopt the viewpoint of Bortoli et al. [32], providing the initial value to the neural network,
approximating the drift, at all points in time.

E The Schrödinger bridge problem for unpaired data translation

In this section, we summarize the Schrödinger Bridge Flow (SBFlow) introduced by Bortoli et al.
[27], which our FDBM builds upon for unpaired data translation. Adopting the perspective of En-
tropic Optimal Transport (EOT) and assuming unpaired data samples from the distributions Π0 and
Π1 on Rd, Bortoli et al. [19] seek to find the coupling distribution

Π⋆ = arg min
Π∈P(Rd×Rd)

{∫
Rd×Rd

1

2
||x0 − x1||2dΠ(x0, x1)− εH(Π)

}
, (169)

where the differential entropy H(Π) can be controlled by a regularization parameter ε > 0, and
P(Rd × Rd) is the set of coupling probability measures on Rd × Rd. Adopting EOT rather than
optimal transport (OT)—restored when ε = 0—allows a degree of regularizing stochasticity when
solving for a transport map. The formulation of EOT in eq. (169) can be understood as a static
version of the dynamic formulation of the Schrödinger bridge problem described eq. (4). We refer
the reader to Léonard [42] for a detailed discussion of the relation between the static and dynamic
Schrödinger bridge Problem

TSB = arg min
T∈P(Cd)

{DKL(T|Q) ; T0 = Π0,T1 = Π1} , (170)

where we now seek a path measure PSB with marginal distributions Π0 and Π1.The reference path
measure Q in Bortoli et al. [27] is associated with a scaled Brownian motion

√
εBt with ε > 0.

Remarkably, under some assumptions, eq. (169) and eq. (170) share the same unique solution [42]
for the coupling distribution in the sense that TSB = Π⋆

0,1.

The difficulty of solving eq. (170) stems from the need to optimize over the infinite-dimensional
space of path measures. Traditional approaches like Iterative Proportional Fitting (IPF) [93–97]
become computationally costly in high dimensions as they require simulating complex conditioned
processes. The Iterative Markov Fitting (IMF), concurrently introduced by Peluchetti [33], Shi et al.
[34], bypasses this bottleneck by operating directly on learning the time-evolving drift of a stochastic
process solving an SDE. It operates by iteratively alternating between fitting a forward-time process
and a backward-time process. Bortoli et al. [27] introduced an online version of IMF called α-IMF
that is described in the following.

α-IMF, much like IMF, builds on reciprocal projections and Markovian projections [33, 34, 47].
These projections accomplish two key objectives. Projections to the reciprocal class ensure match-
ing terminal distributions Π0, Π1, while Markovian projections ensure that the drift of the learned
process depend only in expectation on X1 and that the learned process satisfies an SDE. A path
measure P is in the reciprocal class of some other path measure Q if

P =

∫
Rd×Rd

Q(·|x0, x1)dP0,1(x0, x1) =: P0,1Q|0,1. (171)

Now, when we assume that Q is induced by the scaled Brownian Motion (
√
εBt)t∈[0,1], then follow-

ing Bortoli et al. [27, Definition 2.2] and Shi et al. [34, Definition 1] the Markovian projection of the
path measure Π is the Markovian path measure M associated with X ′ solving

dX ′t = vt(X
′
t)dt+ (

√
εdBt), X ′0 = X0 (172)

4https://github.com/vsomnath/aligned_diffusion_bridges
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and the intractable drift function

vt(xt) =
EΠ1|t [X1|Xt = xt]− xt

1− t
(173)

being learned by a neural network. In the following we will refer to the projection for the recipro-
cal class (see eq. (171)) of Q as projQ(·) and to the Markovian projection associated to the SDE
in eq. (172) as projM(·). Bortoli et al. [27] consider IMF from the perspective of a flow of path
measures (Ps, P̂s)s≥0, describing Markovian and reciprocal class states respectively

P̂0 = (Π0 ⊗Π1)Q|0,1, (174)

Ps = projM(P̂s), (175)

∂P̂s = projQ(projM(P̂s))− P̂s, (176)

where the only fixed point w.r.t. the vector field of the flow of path measures in (176) is the
Schrödinger bridge. Finaly Bortoli et al. [27] propose a novel discretization approach

P̂s+1 = (1− α)P̂s + α projQ(Ps), (177)

which converges to the Schrödinger bridge [27, Theorem 3.1] and recovers IMF for α = 1.

To counteract error accumulation issues, a bidirectional online procedure can be implemented to
achieve α-IMF. This involves concurrently training two models or a single direction-conditioned
model: one approximating the forward drift for the Π0 → Π1 process, and another approximating
the backward drift for the Π1 → Π0 process. Bortoli et al. [27] first pretrain a bridge matching
model vθ for both directions following DSBM [34] w.r.t. eq. (174), where samples are drawn from
Π0 ⊗ Π1, such that vθt (x) ≈ (EP̂0

1|t
[X1|Xt = x] − x)/(1 − t). Furthermore, they propose a

bidirectional loss formulation of the online procedure of α-DSBM, where samples are drawn from
the opposing directional processes

Lt(v
→
t , v←t ,P→,P←) =

∫
(Rd)3

∣∣∣∣∣∣∣∣v→t (xt)−
x1 − xt

1− t

∣∣∣∣∣∣∣∣2 dP←0,1(x0, x1)dQt|0,1(xt|x0, x1)

+

∫
(Rd)3

∣∣∣∣∣∣∣∣v←1−t(xt)−
x1 − xt

t

∣∣∣∣∣∣∣∣2 dP→0,1(x0, x1)dQt|0,1(xt|x0, x1)

(178)

with associated forward and backward SDEs following the Markovian projection, as described by
eq. (172), in respective directions.

F Implementation details for paired data translation

In the followign we will provide implementation details for all experiments with paired data transla-
tions. We emphasize here again that the implementation of FDBM in the paired setting is built upon
the repository provided by Somnath et al. [31]5, including the training setup, model architectures,
data visualization, and all used datasets.

F.1 Network architectures

Toy experiments and cell differentiation. For SBALIGN, we use two multilayer perceptrons
(MLPs) to approximate the drift bθ and Doobs h-score mϕ. For ABM and FDBM, we use only
the MLP employed in SBALIGN to approximate the drift bθ, but the initial state x0 is additionally
provided to the network by concatenating it with the input, following Bortoli et al. [32]. This setup
is used in the experiments shown in Figures 2 and 7, on the Moons and T-shape datasets, as well as
in the cell differentiation task, with the respective number of parameters reported in Table 4.

Conformational changes in proteins. We use the GNN architecture from Somnath et al. [31].
However, following Bortoli et al. [32], the initial state x0 is additionally provided to the network by
concatenating it with the input. See Table 4 for a comparison of the number of parameters.

5https://github.com/vsomnath/aligned_diffusion_bridges
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F.2 Training & Sampling

Toy experiment. We follow precisely the training of Somnath et al. [31]. For sampling, we use 100
steps of the Euler–Maruyama method and generate a single trajectory for each test starting point.
This procedure is used both for calculating the WSD and for the visualization in Figure 3, whereas
Somnath et al. [31, Figure 2] report trajectories averaged over multiple trials.

Cell differentiation. We follow precisely the training and sampling setup of Somnath et al. [31].

Conformational changes in proteins. The results reported in Table 1 were obtained by averaging
over 5 training trials, each run for 300 epochs, and performing one sampling trial per trained model,
generating a single path over 100 time steps. The remaining training set-up closely follows Somnath
et al. [31]. We use the AdamW [98] optimizer with an initial learning rate of 0.001 and a training
batch size of 2. During validation, inference is performed using the exponential moving average of
the model parameters, which is updated at every optimization step with a decay rate of 0.9. After
each epoch, we simulate trajectories on the validation set and compute the mean RMSD. The model
achieving the lowest mean RMSD on the validation set is selected for final evaluation on the test
set. We observe that the best model was saved for ABM and FDBM towards the end of training,
indicating that a longer training could further improve the overall results.

F.3 Compute

The toy experiments were run locally on a CPU and completed within minutes. Each trial of 300
training epochs for the protein conformational change task was completed within 24 hours on a
single NVIDIA A100 GPU (40 GB VRAM).

F.4 Datasets

Toy datasets. The Moons dataset is obtained by generating two moons to produce samples from Π0

and then rotating them clockwise 90 degrees around the center to produce samples from Π1. The
T-Shape dataset is produced by a bi-modal distribution, where Π0 is supported on two of the four
extremes of an imaginary T-shaped area. The target distribution Π01 is created by shifting Π0 to the
opposite side. The rotations and shifts imply paired data, since there is a one-to-one correspondence
between samples in Π0 and Π1.For a detailed description of the datasets, we refer the reader to
Somnath et al. [31], who designed both datasets. See Figure 7 for a visualization of the dataset
marginals.

Figure 7: Marginals of the Moons dataset and the T-shape dataset introduced by Somnath et al. [31].

Cell differentiation. We use a dataset of genetically traced cells during the process of blood forma-
tion, created by Weinreb et al. [99] and curated by Somnath et al. [31]. The dataset consists of two
snapshots: one recorded on day 2, when most cells remain undifferentiated, and another on day 4,
which includes a diverse set of mature cell types. For a detailed descirption of the dataset we refer
the reader to Somnath et al. [31].

Conformational changes in proteins. We use the curated subset from Somnath et al. [31] of the
D3PM dataset [49], which focuses on structure pairs with Cα RMSD > 3Å . This subset initially
comprises of 2, 370 ligand-free (apo) - ligand-bound (holo) pairs. To ensure high-quality alignment,
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Somnath et al. [31] compute the Cα RMSD between pairs of proteins common residues superim-
posed using the Kabsch algorithm [100] and retain only those examples where the computed RMSD
closely matches the original D3PM value. This results in a cleaned dataset of 1, 591 pairs, which is
split into training, validation, and test sets of 1, 291/150/150 examples, respectively. All structures
are Kabsch-superimposed to remove global translational and rotational artifacts, ensuring that the
model focuses solely on internal conformational changes. For more details see Somnath et al. [31].

G Implementation details for unpaired data translation

In the followign we will provide implementation details for all experiments with upaired data trans-
lations on AFHQ [51].

G.1 Experiments on unpaired data translation

Network architecture. The Diffusion Transformer (DiT) [55] is a scalable architecture that adapts
the Vision Transformer (ViT) [101] for generative modeling with diffusion processes. Unlike
convolution-based U-Nets commonly used in image diffusion models, a DiT model treats denois-
ing as a sequence modeling task by operating directly on (latent) patches of an image, capturing
long-term dependencies via Attention [102]. DiT architectures are grouped into small (DiT-S), base
(DiT-B), large (DiT-L), and extra large (DiT-XL) variants, where Peebles and Xie [55] observed di-
minishing returns after scaling from DiT-L to DiT-XL. Notably, Peebles and Xie [55] show that the
model scales with FLOPs, rather than parameter size. Therefore, a smaller model with more tokens
(i.e., smaller patches) can achieve identical performance to a larger model with fewer patches. Fol-
lowing this finding, we used the models with the most tokens for respective parameter sizes. Hence,
we selected the variants DiT-B/2 and DiT-L/2—where the “/2” indicates a patch size of 2 × 2 for
respective tokens—as suitable backbone architectures for all experiments on imaging data.

Training & sampling parameterization. We used the same training and sampling parameteri-
zations for all datasets and experiments. Parameterizations for DiT-B/2 and DiT-L/2 were kept
identical. See Table 3 for detailed parameterizations of all experiments.

Model Optimizer Learning Rate EMA Rate Linear Warmup Cosine Decay Online Finetuning Euler–Maruyama Steps Parameters

DiT-B/2 lion [103] 0.0001 0.999 10K 90K 4K 200 130M
DiT-L/2 lion [103] 0.0001 0.999 10K 90K 4K 200 458M

Table 3: Hyperparameters for experiments with Diffusion Transformers.

Compute. Experiments were conducted in single- and mutli-GPU settings, using full precision
(FP32) for all runs. Computation times are denoted in an equivalent of A100 GPU (40GB VRAM)
hours, as a common reference for scientific compute time. All pretrainings of 100K steps for the
AFHQ-32 and AFHQ-256 datasets were completed in 16 hours (A100) for the DiT-B/2 variant and
54 hours (A100) for the DiT-L/2 variant. The online finetunings of 4K steps were completed in
12 hours (A100) for the DiT-B/2 variant and 43 hours (A100) for the DiT-L/2 variant. Samplings
experiments were completed in 0.5 hours (A100) for the DiT-B/2 variant and 1.5 hours (A100) for
the DiT-L/2 variant. All pretrainings of 100K steps for the AFHQ-512 datasets were completed in
256 hours (A100) for the DiT-L/2 variant. Samplings experiments were completed in 5 hours (A100)
for the DiT-L/2 variant.

H Computational efficiency

Number of learnable parameters. We use the GNN architecture from Somnath et al. [31], but fol-
lowing Bortoli et al. [32] the initial state x0 is additionally provided to the network by concatenating
it with the input. Nevertheless, the GNN we use for ABM and FDBM has fewer parameters, since
Somnath et al. [31] approximate two functions (bt and ∇x log ht) with a single GNN resulting in
more parameters in the output layer. We emphasize that ABM and FDBM deploy the same model
architecture and summarize the number of learnable parameters in Table 4. Throughout all unpaired
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data translation experiments, we use the same model architecture for both SBFlow and FDBM with
the same number of learnable parameters.

# parameters per task SBALIGN [31] ABM [32] FDBM

Coupling-preserving (Figure 2) 58, 692 31, 618 31, 618
Moons 58, 692 31, 618 31, 618

T-Shape 19, 204 10, 754 10, 754
Cell Differentiation 310, 372 177, 970 177, 970

Predicting Conformations 545, 220 537, 900 537, 900

Table 4: Number of learnable parameters in SBALIGN, ABM, and FDBM.

Runtime comparison. We provide a runtime comparison of FDBM in the paired setting in Ta-
ble 5. The runtime per training step is averaged over 1000 training steps, and the runtime to sample
one conformation is averaged over the 150 test samples of the D3PM test set. Training times for
ABM and FDBM are nearly identical and both outperform SBALIGN, which requires approximat-
ing two functions and thus involves a larger model. For sampling, ABM and FDBM again show an
advantage over SBALIGN. FDBM requires, on average, only 0.0422 seconds more than ABM to
sample a conformation over 100 Euler–Maruyama steps. This slight increase is due to simulating a
higher-dimensional stochastic process. However, the effect is minor, as the dominant computational
cost during sampling comes from forward passes through the GNN, which are identical for both
ABM and FDBM. Throughout all unpaired data translation experiments, we use the same model
architecture for both SBFlow and FDBM.

The differing components during training are the sampling from the (partially) pinned process and
the loss computation, both showing nearly identical runtime in Table 6. The sampling algorithm of
FDBM during inference is identical for the paired and unpaired settings. All computations of this
section were performed on an NVIDIA A100 GPU (40 GB VRAM).

Average Runtime [s] SBALIGN[31] ABM[32] FDBM

Training step 0.0159± 0.0075 0.01438± 0.0065 0.01412± 0.0063
Sampling one conformation over 100 sampling steps 0.7078± 0.3409 0.6424± 0.2992 0.6846± 0.3021

Table 5: Runtime comparison of SBALIGN, ABM, and FDBM.

Average Runtime [s] SBFlow[27] FDBM

Sampling from (partially) pinned process 0.0010± 0.0002 0.0011± 0.0003
Calculation of loss term 0.0132± 0.0074 0.0132± 0.0018

Table 6: Runtime comparison of SBFlow and FDBM. The runtimes are averaged over 1000 compu-
tations. All computations were performed on an NVIDIA A100 GPU (40 GB VRAM).

I Evaluation metrics

Wasserstein distance. To measure the distance from the original data distribution from the pre-
dicted data distribution we use Wasserstein-1 distance [104]. The Wasserstein-1 distance between
ground truth data distribution pt and sampled data distribution ps is defined as

W1(pt, ps) = inf
γ∼Π(pt,ps)

E(x,x̂)[||x− x̂||]. (179)

The lower the Wasserstein distance, the better are the distributions pt and ps aligned.

Root Mean Square Deviation. Root mean square deviation of Cα atomic positions is a distance
between two superimposed molecules/proteins. If x is an observed 3D structure/configuration of the
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protein and x̂ is a predicted configuration of the protein then

RMSD(x, x̂) =

√√√√ 1

n

n∑
i=1

||xi − x̂i||2. (180)

The lower the RMSD, the lower their L2-distance w.r.t. some unit of measure. In our example, the
unit of the measure is Angstrom, Å.

Fréchet Inception Distance (FID). The Fréchet Inception Distance (FID) [53] measures the dis-
tance between the feature distributions of real and generated images, typically using embeddings
from a pretrained Inception network. Given the empirical mean and covariance of real images
(µr,Σr) and generated images (µg,Σg) in this feature space, FID is defined as

FID(X,Y ) = ‖µr − µg‖22 +Tr
(
Σr +Σg − 2(ΣrΣg)

1/2
)
, (181)

where X and Y denote the sets of real and generated images, respectively. The first term captures
differences in mean features (style/content shifts), while the second term accounts for differences
in variability. FID is widely used in image generation and style transfer as it correlates well with
human judgment of realism and diversity.

Learned Perceptual Image Patch Similarity (LPIPS). The LPIPS metric [54] quantifies percep-
tual similarity between two images by comparing deep features extracted from a pretrained network
(e.g., VGG, AlexNet). Let x and y be two images. The LPIPS score is computed by comparing their
normalized feature maps f̂l(x), f̂l(y) at multiple layers l

LPIPS(x, y) =

L∑
l=1

1

HlWl

Hl∑
h=1

Wl∑
w=1

∥∥∥wl �
(
f̂l(x)h,w − f̂l(y)h,w

)∥∥∥2
2
, (182)

where wl are learned per-channel weights, and Hl,Wl denote the spatial dimensions of layer l.
LPIPS has been shown to align well with human perceptual similarity judgments, making it valuable
for evaluating and training generative models, especially in style transfer tasks where pixel-wise
metrics fall short.

J Cell Differentiation

Methods MMD ↓ Wε ↓ ℓ2(PS) ↓ RMSD ↓

FBSB∗ 1.55e-2 12.50 4.08 9.64e-1
FBSB WITH SBALIGN∗ 5.31e-3 10.54 0.99 9.85e-1
SBALIGN∗ 1.07e-2 11.11 1.24 9.21e-1
ABM 4.10e-2 9.50 0.89 8.72e-1
FDBM(H = 0.3) (ours) 5.34e-2 9.32 0.89 8.11e-1
FDBM(H = 0.4) (ours) 4.52e-2 9.35 0.85 8.21e-1

Table 7: Comparison of performance on the cell differentiation task. Results marked with an asterisk
(∗) are obtained from Somnath et al. [31].

We evaluate FDBM on the cell differentiation task introduced by Somnath et al. [31]. We fix the
diffusion coefficient to

√
ε = 1 across all retrained methods SBALIGN, ABM and FDBM. All

scores are averaged over 10 training trials and 10 sampling trials for each trained model. We follow
the approach of Somnath et al. [31] and average for each prediction over 20 sampled paths. This
task allows us to assess FDBM for cell differentiation prediction on both the distributional quality
and perturbation accuracy of the generated data using distributional metrics such as Wasserstein-2
distance (Wε) [105] and kernel maximum mean discrepancy (MMD) [106], as well as the Pertur-
bation signature ℓ2(PS) [107] and RMSD. The dataset consists of two snapshots: one recorded on
day 2, when most cells remain undifferentiated, and another on day 4, which includes a diverse set
of mature cell types. We assess the performance of FDBM against forward-backward Schrödinger
bridge models (FBSB) [108], SBALIGN, and ABM. Consistent with our findings on protein con-
formational changes, we observe in Table 7 that ABM shows superior performance compared to all
other Brownian baselines in all metrics except MMD. FDBM achieves the best performance in the
rough regime (H = 0.3 and H = 0.4), with slightly better average Wϵ and RMSD scores, while
ABM remains superior in terms of MMD.
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K Extended Experiments

In the following we provide more details on the results reported in the main paper. Detailed scores
of all ablations are listed in Tables 12 to 14. Additional evaluations of AFHQ-256 Dogs ↔ Wild
and Dogs ↔ Cats are listed in Table 15. Additional visual examples for AFQH-512 samples are
displayed in Figures 10 and 11 and for AFHQ-256 in Figures 8 and 9. Additional results for the
D3PM dataset are listed in Table 10, as well as additional experiments with toy data in Tables 8
and 9.

Table 8: Average Wasserstein distance over 10 runs between samples generated by the Brownian-
driven baseline and the target distribution, for varying diffusion coefficient

√
ε.

BM driven Wasserstein Distance ↓
√
ε = 1.0

√
ε = 0.8

√
ε = 0.6

√
ε = 0.4

√
ε = 0.2

√
ε = 0.1

√
ε = 0.05

√
ε = 0.01

Moons 0.020±0.008 0.015±0.005 0.019±0.006 0.025±0.003 0.033±0.011 0.206±0.008 0.121±0.016 0.206±0.019
T-shaped 0.395±0.045 0.346±0.029 0.251±0.008 0.154±0.010 0.082±0.028 0.178±0.049 0.529±0.007 0.570±0.092

Table 9: Wasserstein distance (10 runs average) between generated samples and target distribution.

Wasserstein Distance ↓

H = 0.8 H = 0.7 H = 0.6 ABM [32] H = 0.4 H = 0.3 H = 0.2

Moons 0.017±0.002 0.012±0.002 0.012±0.003 0.015±0.019 0.029±0.006 0.033±0.008 0.048±0.016
T-shaped 0.082±0.043 0.091±0.041 0.083±0.031 0.082±0.028 0.068±0.015 0.062±0.013 0.048±0.039

Table 10: Ablation of the diffusion coefficient
√
ε of our Brownian driven baseline ABM [32].

Additionally compared to the scores reported in Somnath et al. [31].

RMSD(Å) % RMSD(Å) < τ

D3PM Test Set [31] Median Mean Std τ = 2 τ = 5 τ = 10

EGNN [31, 109] 19.99 21.37 8.21 1% 1% 3%
SBALIGN(10,10) [31] 3.80 4.98 3.95 0% 69% 93%
SBALIGN(100,100) [31] 3.81 5.02 3.96 0% 70% 93%

ABM(ε = 1.0) [32] (1 trial) 3.14 4.11 3.32 1% 79% 97%
ABM(ε = 0.8) [32] (1 trial) 2.68 3.93 3.39 23% 79% 96%
ABM(ε = 0.6) [32] (1 trial) 2.47 3.65 3.59 35% 85% 97%
ABM(ε = 0.4) [32] (1 trial) 2.47 3.60 3.66 43% 86% 95%
ABM(ε = 0.2) [32] (1 trial) 2.20 3.58 3.45 45% 81% 97%
ABM(ε = 0.1) [32] (1 trial) 2.70 3.67 3.54 43% 83% 96%
ABM(ε = 0.05) [32] (1 trial) 2.69 3.59 3.83 35% 82% 95%
ABM(ε = 0.01) [32] (1 trial) 2.96 3.78 4.08 30% 77% 93%

ABM(ε = 0.2) [32] (5 trials) 2.40 3.49 3.54 43% 84% 96%
FDBM(H = 0.4, ε = 0.2) (5 trials) 2.24 3.39 3.57 45% 84% 97%
FDBM(H = 0.3, ε = 0.2) (5 trials) 2.33 3.42 3.42 43% 85% 97%
FDBM(H = 0.2, ε = 0.2) (5 trials) 2.12 3.34 3.59 48% 86% 96%
FDBM(H = 0.1, ε = 0.2) (5 trials) 2.20 3.44 3.57 46% 83% 97%

Table 11: Comparison of FID and LPIPS for AFHQ-512 across Cats → Wild and Wild → Cats
translation tasks.

AFHQ-512 cats→ wild wild→ cats

FID ↓ FID ↓

SBFlow 17.79± 0.66 24.17± 0.81
FDBM (H=0.4) 14.27± 0.86 30.11± 0.75
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Table 12: Pretraining ablation for entropic regularization ε of the SBFlow [27] baseline.

(a) AFHQ-32 with DiT-B/2.

Method ε
cats→ wild cats← wild

FID ↓ LPIPS ↓ FID ↓ LPIPS ↓

SBFlow 0.75 161.95 ±2.19 0.159 ±0.002 138.20 ±2.27 0.135 ±0.001

SBFlow 1 59.04 ±1.14 0.104 ±0.001 74.36 ±1.02 0.151 ±0.001

SBFlow 1.125 77.24 ±0.85 0.106 ±0.001 77.90 ±1.40 0.163 ±0.001

SBFlow 1.25 96.66 ±1.37 0.110 ±0.001 88.77 ±1.16 0.172 ±0.001

(b) AFHQ-256 with DiT-B/2.

Method ε
cats→ wild cats← wild

FID ↓ LPIPS ↓ FID ↓ LPIPS ↓

SBFlow 0.75 42.67 ±0.73 0.659 ±0.001 46.42 ±0.89 0.588 ±0.001

SBFlow 1 15.67 ±0.65 0.578 ±0.002 30.75 ±0.88 0.594 ±0.001

SBFlow 1.125 33.46 ±1.25 0.592 ±0.001 37.36 ±0.93 0.609 ±0.002

SBFlow 1.25 54.05 ±1.10 0.623 ±0.001 48.63 ±1.16 0.629 ±0.001

Table 13: Pretraining ablation for hurst index H related parameterization of our method. K = 5
was fixed for all experiments. The best results and results where the mean is within the standard
deviation of the best result are highlighted in boldface.

(a) AFHQ-32 with DiT-B/2 and K = 5 for FDBM
(ours).

Method H cats→ wild cats← wild

FID ↓ LPIPS ↓ FID ↓ LPIPS ↓

FDBM 0.9 47.03 ±1.53 0.099 ±0.001 52.38 ±1.06 0.155 ±0.002

FDBM 0.8 45.18 ±1.05 0.095 ±0.001 50.59 ±0.65 0.155 ±0.001

FDBM 0.7 48.36 ±0.92 0.095 ±0.001 51.65 ±0.74 0.156 ±0.002

FDBM 0.6 43.45 ±0.93 0.097 ±0.001 48.79 ±0.73 0.155 ±0.001

FDBM 0.5 40.21 ±1.18 0.097 ±0.001 45.74 ±0.69 0.154 ±0.002

FDBM 0.4 44.84 ±1.32 0.096 ±0.001 47.65 ±0.97 0.152 ±0.001

FDBM 0.3 58.27 ±0.97 0.090 ±0.001 54.89 ±0.78 0.153 ±0.001

FDBM 0.2 83.62 ±1.45 – 68.05 ±1.21 –
FDBM 0.1 131.04 ±1.51 – 123.20 ±1.92 –

(b) AFHQ-256 with DiT-B/2 and K = 5 for
FDBM (ours).

Method H cats→ wild cats← wild

FID ↓ LPIPS ↓ FID ↓ LPIPS ↓

FDBM 0.9 21.15 ±1.26 0.522 ±0.002 19.50 ±0.36 0.539 ±0.002

FDBM 0.8 19.65 ±1.39 0.523 ±0.001 19.88 ±0.63 0.542 ±0.002

FDBM 0.7 18.64 ±1.11 0.529 ±0.002 19.46 ±0.46 0.547 ±0.002

FDBM 0.6 16.77 ±0.71 0.530 ±0.002 19.14 ±0.38 0.551 ±0.001

FDBM 0.5 16.19 ±0.83 0.534 ±0.002 21.91 ±0.55 0.565 ±0.002

FDBM 0.4 17.02 ±0.78 0.542 ±0.002 24.32 ±0.63 0.577 ±0.001

FDBM 0.3 28.50 ±1.68 0.549 ±0.002 30.53 ±0.79 0.591 ±0.001

FDBM 0.2 59.83 ±2.36 – 37.17 ±0.62 –
FDBM 0.1 81.36 ±1.38 – 43.69 ±1.00 –

Table 14: Pretraining ablation for hurst index H related parameterization of our method. K = 5
was fixed for all experiments. The best results and results where the mean is within the standard
deviation of the best result are highlighted in boldface.

(a) AFHQ-32 with DiT-B/2, ε = 1 and H = 0.5.

Method K cats→ wild cats← wild

FID ↓ LPIPS ↓ FID ↓ LPIPS ↓

FDBM 6 63.99 ±2.13 0.091 ±0.001 53.46 ±0.72 0.150 ±0.001

FDBM 5 40.21 ±1.18 0.097 ±0.001 45.74 ±0.69 0.154 ±0.002

FDBM 4 41.13 ±1.19 0.097 ±0.001 46.92 ±0.89 0.155 ±0.002

FDBM 3 41.32 ±1.38 0.096 ±0.001 47.82 ±0.82 0.154 ±0.001

FDBM 2 42.14 ±1.45 0.095 ±0.001 44.61 ±0.93 0.154 ±0.002

FDBM 1 41.15 ±1.11 0.097 ±0.001 46.64 ±0.97 0.153 ±0.002

(b) AFHQ-256 with DiT-B/2, ε = 1 and H = 0.6.

Method K cats→ wild cats← wild

FID ↓ LPIPS ↓ FID ↓ LPIPS ↓

FDBM 6 59.08 ±1.95 0.547 ±0.001 38.54 ±1.11 0.592 ±0.002

FDBM 5 16.77 ±0.71 0.530 ±0.002 19.14 ±0.38 0.551 ±0.001

FDBM 4 18.67 ±0.75 0.528 ±0.002 19.77 ±0.52 0.555 ±0.002

FDBM 3 17.89 ±0.88 0.528 ±0.002 20.27 ±0.45 0.555 ±0.001

FDBM 2 19.20 ±1.04 0.527 ±0.002 21.74 ±0.48 0.555 ±0.002

FDBM 1 19.98 ±0.86 0.550 ±0.002 30.61 ±1.20 0.594 ±0.001

Table 15: Additional evaluations of AFHQ-256 Dogs ↔ Wild and Dogs ↔ Cats. The best results
and results where the mean is within the standard deviation of the best result are highlighted in
boldface.

(a) AFHQ-256 with DiT-B/2 and K = 5 for
FDBM (ours).

Method H dogs→ wild dogs← wild

FID ↓ LPIPS ↓ FID ↓ LPIPS ↓

SBFlow 20.74 ± 0.64 0.53 ± 0.002 47.07 ± 0.80 0.56 ± 0.002

FDBM 0.9 20.37 ± 0.98 0.52 ± 0.002 43.11 ± 0.68 0.54 ± 0.002
FDBM 0.8 19.22 ± 0.83 0.53 ± 0.003 41.76 ± 0.84 0.55 ± 0.002

FDBM 0.7 18.11 ± 0.75 0.53 ± 0.002 40.08 ± 0.73 0.56 ± 0.002

FDBM 0.6 18.43 ± 0.72 0.53 ± 0.002 39.84 ± 0.89 0.57 ± 0.002

FDBM 0.5 14.74 ± 0.53 0.55 ± 0.002 37.68 ± 0.55 0.58 ± 0.002

FDBM 0.4 15.78 ± 0.85 0.56 ± 0.002 38.51 ± 0.64 0.59 ± 0.001

(b) AFHQ-256 with DiT-B/2 and K = 5 for
FDBM (ours).

Method H dogs→ cats dogs← cats

FID ↓ LPIPS ↓ FID ↓ LPIPS ↓

SBFlow 18.38 ± 0.36 0.56 ± 0.002 50.08 ± 1.38 0.56 ± 0.002

FDBM 0.9 19.86 ± 0.67 0.55 ± 0.002 45.19 ± 0.74 0.55 ± 0.002
FDBM 0.8 20.14 ± 0.64 0.56 ± 0.002 45.08 ± 0.98 0.55 ± 0.001
FDBM 0.7 21.12 ± 0.62 0.56 ± 0.002 43.44 ± 0.82 0.56 ± 0.002

FDBM 0.6 22.06 ± 0.57 0.57 ± 0.001 41.35 ± 0.90 0.57 ± 0.002

FDBM 0.5 22.15 ± 0.75 0.58 ± 0.002 42.36 ± 0.77 0.58 ± 0.002

FDBM 0.4 24.79 ± 0.68 0.59 ± 0.002 41.21 ± 1.12 0.59 ± 0.002
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(a) AFHQ-256 cats → wild (b) AFHQ-256 wild → cats

Figure 8: A detailed look at exemplary samplings with our method with H=0.4, K=5 for AFHQ-256.

(a) AFHQ-256 cats → wild (b) AFHQ-256 wild → cats

Figure 9: Overview of exemplary samplings with our method with H=0.4, K=5 for AFHQ-256.
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(a) AFHQ-512 cats → wild (b) AFHQ-512 wild → cats

Figure 10: A detailed look at exemplary samplings with our method with H=0.4, K=5 for AFHQ-
512.

(a) AFHQ-512 cats → wild (b) AFHQ-512 wild → cats

Figure 11: Overview of exemplary samplings with our method with H=0.4, K=5 for AFHQ-512.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
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