
Discrete Denoising Flows

Alexandra Lindt 1 Emiel Hoogeboom 1

Abstract
Discrete flow-based models are a recently pro-
posed class of generative models that learn invert-
ible transformations for discrete random variables.
Since they do not require data dequantization and
maximize an exact likelihood objective, they can
be used in a straight-forward manner for lossless
compression. In this paper, we introduce a new
discrete flow-based model for categorical random
variables: Discrete Denoising Flows (DDFs). In
contrast with other discrete flow-based models,
our model can be locally trained without introduc-
ing gradient bias. We show that DDFs outperform
Discrete Flows on modeling a toy example, bi-
nary MNIST and Cityscapes segmentation maps,
measured in log-likelihood.

1. Introduction
Due to their wide range of applications, flow-based gener-
ative models have been extensively studied in recent years
(Rezende & Mohamed, 2015; Dinh et al., 2016). Research
has mainly focused on modeling continuous data distribu-
tions, in which discretely stored data like audio or image
data must be dequantized prior to modeling. However, two
recent publications explore flow-based generative model-
ing of discrete distributions: Discrete Flows (Tran et al.,
2019) for categorical random variables and Integer Discrete
Flows (Hoogeboom et al., 2019) for ordinal discrete random
variables. Due to their discrete nature and exact likelihood
objective, these discrete flow-based models can be used
directly for lossless compression.

Unlike other approaches that use generative models for loss-
less compression, discrete flow-based models are advanta-
geous because they (i) enable efficient inference and (ii) can
encode single data samples efficiently. Approaches that use

1UvA-Bosch Delta Lab, University of Amsterdam, Am-
sterdam Netherlands. Correspondence to: Alexandra
Lindt <alex.lindt@protonmail.com>, Emiel Hoogeboom
<e.hoogeboom@uva.nl>.

Third workshop on Invertible Neural Networks, Normalizing
Flows, and Explicit Likelihood Models (ICML 2021). Copyright
2021 by the author(s).

the Variational Autoencoder (VAE) (Kingma & Welling,
2013) for lossless compression typically combine the model
with bits-back-coding (Hinton & Van Camp, 1993), which
is effective for compressing full data sets but inefficient for
encoding single samples. Autoregressive models such as
PixelCNN (Oord et al., 2016) can also be used for loss-
less compression, however, they are generally expensive to
decode.

Unfortunately, both Discrete Flows and Integer Discrete
Flows come with the drawback that each of their layers con-
tains a quantization operation. When optimizing them with
the backpropagation algorithm, the gradient of the quanti-
zation operation has to be estimated with a biased gradient
estimator, which may compromise their performance.

To improve training efficiency, reduce gradient bias and
improve overall performance, we introduce a new discrete
flow-based generative model for categorical random vari-
ables, Discrete Denoising Flows (DDFs). DDFs can be
trained without introducing gradient bias. They further
come with the positive side effect that the training is com-
putationally very efficient. This efficiency results from the
local training algorithm of the DDFs, which trains only one
layer at a time instead of all at once. We demonstrate that
Discrete Denoising Flows outperform Discrete Flows in
terms of log-likelihood.

2. Related Work & Background
This section first introduces normalizing flows as well as dis-
crete flows. It then goes on to describe alternate approaches
that use generative models for lossless compression.

Normalizing Flows The fundamental idea of flow-based
modeling is to express a complicated probability distribution
as a transformation on a simple probability distribution.
Given the two continuous random variables X and Z and
the invertible and differentiable transformation T : Z → X ,
X’s probability distribution pX(·) can be written in terms
of Z’s probability distribution pZ(·) as

pX(x) = pZ(z) |det JT (z)|−1 with z = T−1(x), (1)

using the change of variables formula. The Jacobian deter-
minant acts as normalizing term and ensures that pX(·) is
a valid probability distribution. The distribution pZ(·) is

Discrete Denoising Flows

referred to as the base distribution and the transformation
T as a normalizing flow. A composition of invertible and
differentiable functions can be viewed as a repeated appli-
cation of formula 1. Therefore, such compositions are also
referred to as normalizing flows throughout literature.

Discrete Flows In the case of two discrete random vari-
ables X and Z, the change of variables formula for continu-
ous random variables given in formula 1 simplifies to

pX(x) = pZ(z) with z = T−1(x) (2)

Normalization with the Jacobian determinant is no longer
necessary as it corrects for a change in volume. Discrete
distributions, however, have no volume since they only have
support on a discrete set of points.

Discrete Flows (DFs) (Tran et al., 2019) are discrete flow-
based models that learn transformations on categorical ran-
dom variables. The authors define a bijective transformation
T : Z → X with X = Z = {1, . . . ,K}D in the form of a
bipartite coupling layer (Dinh et al., 2016). The coupling
layer input x is partitioned into two sets s.t. x = [xa, xb]
and then transformed into an output z = [za, zb] with

za = xa
zb = (sθ1(xa) ◦ xb + tθ2(xa)) modK ,

(3)

where ◦ denotes element-wise multiplication. Note that
the transformation is only invertible if each element of the
scale is coprime to the number of classes K. Scale sθ1(·)
and translation tθ2(·) are modeled by a neural network with
parameters θ1,2. To obtain discrete scale and translation
values, the authors use the argmax operator combined with
a relaxed softmax as gradient estimator (Jang et al., 2016) to
enable backpropagation. This introduces bias to the model
parameter gradients, which harms optimization. Note that
the example describes the bipartite version and not the au-
toregressive version of DFs. In (Tomczak, 2020) different
partitions for coupling layers are explored.

Generative Models for Lossless Compression The Vari-
ational Autoencoder (VAE) (Kingma & Welling, 2013) can
be used for lossless compression is by discretizing the con-
tinuous latent vector and applying bits-back coding (Hinton
& Van Camp, 1993). Recent methods that work according
to this approach include Bits-Back with ANS (Townsend
et al., 2019a), Bit-Swap (Kingma et al., 2019) and HiLLoC
(Townsend et al., 2019b). These methods obtain perfor-
mances close to the negative ELBO for compressing full
datasets. However, when encoding a single data sample they
are rather inefficient because the auxiliary bits needed for
bits-back coding cannot be amortized across many samples.
The same problem but in a scaled-up version due to multiple
latent variables arises when local bits-back coding is used in
normalizing flows (Ho et al., 2019). In this case, encoding

a single image would require more bits than the original
image. Mentzer et al. (Mentzer et al., 2019) use a VAE
with deterministic encoder to transform a data sample into
a set of discrete multiscale latent vectors. Although this
method does not require bits-back coding, it optimizes only
a lowerbound on the likelihood instead of the likelihood
directly. Another generative model that is well suited for
lossless compression is the PixelCNN (Oord et al., 2016).
PixelCNN organizes the pixels of an image as a sequence
and predicts the distribution of a pixel conditioned on all
previous pixels. Consequently, drawing samples from Pix-
elCNN requires multiple network evaluations and is very
costly. Nevertheless, PixelCNN achieves state-of-the-art
performances in lossless compression.

3. Method: Discrete Denoising Flows
In this section, we introduce Discrete Denoising Flows. Like
other flow-based models, DDFs consist of several bipartite
coupling layers that are easily invertible, the so-called de-
noising coupling layers.

3.1. Denoising Coupling Layer

Complying to the change of variables formula 2, we define
the denoising coupling layer as an invertible transformation
T : Z → X between two categorical variables X and Z
with domains X = Z = {1, . . . ,K}D. The inverse T−1,
representing the forward pass during training, is given as

za = xa
zb = cond perm(xb|n(xa))

(4)

That is, the input x ∈ {1, ..,K}D is partitioned into two
sets such that x = [xa, xb] and xa ∈ {1, ..,K}d . The first
part stays the same while the second part is transformed
conditioned on the first part. For this transformation, we use
a neural network n as well as the conditional permutation
operation cond perm(·|·).

The conditional permutation operation is the core compo-
nent of the denoising coupling layer. For notation clarity, we
define the variable θ = n(xa) with θ ∈ R(D−d)×K as the
output of the neural network n. The conditional permutation
operation is then defined as

cond permi(xbi |θi) = permθi(xbi) (5)

permθi =

(
1 2 . . . K
argsort toph(θi)

)
(6)

per dimension i ∈ {1, . . . , D−d}, where we used Cauchy’s
two-line notation for permutations to define the permutation
permθi . We also introduced the argsort toph(·) operation
with the additional hyperparameter h ∈ {1, ..,K}. This
operation acts similar to the regular argsort operation, with

Discrete Denoising Flows

Figure 1. Functionality of argsort toph(θi) illustrated for an ex-
ample θi with number of classes K = 5.

the difference that it only sorts the top h largest elements
while leaving the remaining elements in their previous po-
sitions. Figure 1 illustrates this functionality. The intuition
behind the operation is that only the most predictable classes
are permuted, leaving more of the structure intact than an
entire argsort. Also, observe that in the binary case K = 2
and for h = K, argsort and argsort toph are equivalent.

The conditional permutation operation is easily invertible as

cond perm−1
i (xbi |θi) = perm−1

θi
(xbi) (7)

perm−1
θi

=

(
argsort toph(θi)
1 2 . . . K

)
(8)

per dimension i ∈ {1, . . . , D−d}. Using this definition, we
can write the transformation T representing the denoising
coupling layer at inference time as

xa = za
xb = cond perm−1(zb|n(za))

(9)

3.2. Training Denoising Discrete Flows

For training a denoising coupling layer, we simply train a
neural network n to predict xb from xa. To this end, we use
the mean cross-entropy loss between n(xa) and xb as our
objective function. After training, the fixed neural network
n can be employed in a denoising coupling layer. When we
apply the conditional permutation operation in

zb = cond perm(xb|n(xa)),

the more the argmax of n(xa) resembles xb, the more likely
it is for a value in xb to be switched to one of the smaller
class values. Consequently, given that the argmax of n(xa)
somewhat resembles xb, the outcome of the conditional per-
mutation operation zb, is more likely to contain smaller class
values than xb. This makes the value of the random variable
Z more predictable than the value of the random variable
X , when looking at those dimensions in isolation. In other
words, we decorrelated the random variable X into the ran-
dom variable Z. As a direct consequence, modeling the

Algorithm 1 transform(ddf, S, x). Transforms x 7→ z

Input: x, ddf // ddf is a list of classifiers [n1, n2, . . .]

Let z = x
for n, shuffle in ddf, S do

Split [za, zb] = z
zb = cond perm(zb|θ = n(za))
Combine z = [za, zb]
z = shuffle(z)

end for
return z

Algorithm 2 optimize(nnew, z). Optimize a new layer.

Input: nnew, z // nnew is a pixel-wise classifier
Split [za, zb] = z
Optim. log C(zb|θ=nnew(za)) // Equiv. to cross-entropy

Algorithm 3 Training DDFs

Input: number of layers L
ddf = [] // create DFF with 0 layers
Init S = [shuffle1, . . . shuffleL] // Init L shuffling layers
while i < L do

Init nnew // new classifier
while nnew not converged do

Sample x ∼ Data
z = transform(ddf, S, x)
optimize(nnew, z)

end while
ddf.append(nnew)

end while
return ddf

distribution pZ(·) with a D-dimensional i.i.d. categorical
distribution will result in a smaller mismatch than it would
for the distribution pX(·). To give some more intuition
on this functionality, we include an illustrating example in
appendix A and provide additional augment for the case
K = 2 in appendix B.

Shuffling and Splitpriors Algorithms 1, 2 and 3 describe
the training process of DDFs. Note that only one denoising
coupling layer is trained at a time. Moreover, we use in-
vertible shuffle operations such that the input is partitioned
differently in each coupling layer. Note that instead of prop-
agating the full input vector x through all layers of the DDF,
we factor out parts of the input vector at regular intervals
and model these parts conditioned on the other parts follow-
ing the splitprior approach in (Dinh et al., 2016; Kingma &
Dhariwal, 2018). As a result, the following coupling layers
operate on lower-dimensional data. Not only is this more
efficient, but it also allows for some additional dependencies
between parts of the output vector z.

Discrete Denoising Flows

(a) (b)

Figure 2. Qualitative results for (a) Discrete Flows and (b) Discrete
Denoising Flows on the quantized eight Gaussians toy data set.

4. Experiments
In this section we explore how the compression rate in bits
per dimension (BPD) of Discrete Denoising Flows com-
pares to Discrete Flows on three different data sets. Each
experiment was conducted at least three times; we show
the average results as well as the standard deviation in Ta-
ble 1. To fully capture the difference in modeling capacity
between DFs and DDFs, we trained both models with and
without splitpriors. All experimental details and samples
from the models trained without splitpriors can be found in
appendices C and D. In each experiment, we use equally
sized neural networks in the coupling layers of DFs and
DDFs to ensure comparability.

DATA SET SPLITPRIORS? DF DDF (ours)

8 GAUSSIANS NO 5.05 ± 0.05 4.58 ± 0.02
BIN. MNIST NO 0.37 ± 0.01 0.23 ± 0.01
CITYSCAPES NO 1.46 ± 0.00 0.79 ±0.01

BIN. MNIST YES 0.17 ± 0.01 0.16 ± 0.01
CITYSCAPES YES 0.65 ± 0.03 0.59 ± 0.03

Table 1. Comparison of achieved BPD of Discrete Flow (DF) and
Denosing Discrete Flow (DDF) per data set.

Eight Gaussians As a first experiment, we train DDFs
and DFs on a two-dimensional toy data set also used by Tran
et al. (2019). This data set is a mixture of Gaussians with 8
means uniformly distributed around a circle and discretized
into 91 bins (i.e. K = 91 classes). We model the data with
a single coupling layer per model and set h = K for the
DDF coupling layer. For 2D no splitpriors are used, because
that would already make the model universal and we cannot
see how well the flow itself performs. As apparent from the
qualitative results in Figure 2 as well as the achieved BPD
given in Table 1, DDFs outperform DFs.

Binary MNIST In a second experiment, we train both
DFs and DDFs on the binarized MNIST data set. Since the
data set has K = 2 classes, we have h = 2 for the DDF
coupling layers. The samples given in Figure 3 and the
achieved BPDs in table 1 show that DDFs outperform DFs.

Cityscapes To test the performance of DDFs on image-
type data, we use a 8-class version of the Cityscapes data set

(a) (b)

Figure 3. Qualitative results for (a) Discrete Flows and (b) Discrete
Denoising Flows on the binarized MNIST data set.

(a)

(b)

(c)

Figure 4. Qualitative results for (a) Discrete Flows and (b) Discrete
Denoising Flows on the Cityscapes data set. Figure (c) shows
samples from the 8-class Cityscapes data set.

(Cordts et al., 2016) modified by Hoogeboom et al. (2021).
This data set contains 32× 64 segmentation maps, samples
are given in figure 4c. Since we use multiple coupling
layers in this experiment and have a data set with a number
of classes K > 2, there is a trade-off between permuting
classes and maintaining structure in each coupling layer.
Therefore, after performing a grid search, we set h = 4 for
all DDF coupling layers. From the samples in figure 4 and
the BPD rates in table 1, we can see that DDFs outperform
DFs.

5. Conclusion
In this paper, we have introduced a new discrete flow-based
generative model for categorical data distributions, Discrete
Denoising Flows. We showed that our model outperforms
Discrete Flows in terms of log-likelihood.

Discrete Denoising Flows

References
Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler,

M., Benenson, R., Franke, U., Roth, S., and Schiele, B.
The cityscapes dataset for semantic urban scene under-
standing. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR, 2016.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density esti-
mation using real nvp. arXiv preprint arXiv:1605.08803,
2016.

Hinton, G. E. and Van Camp, D. Keeping the neural net-
works simple by minimizing the description length of the
weights. In Proceedings of the sixth annual conference
on Computational learning theory, pp. 5–13, 1993.

Ho, J., Lohn, E., and Abbeel, P. Compression with flows via
local bits-back coding. arXiv preprint arXiv:1905.08500,
2019.

Hoogeboom, E., Peters, J., van den Berg, R., and Welling,
M. Integer discrete flows and lossless compression. In
Advances in Neural Information Processing Systems, pp.
12134–12144, 2019.

Hoogeboom, E., Nielsen, D., Jaini, P., Forré, P., and Welling,
M. Argmax flows and multinomial diffusion: Towards
non-autoregressive language models. arXiv preprint
arXiv:2102.05379, 2021.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 4700–4708, 2017.

Jang, E., Gu, S., and Poole, B. Categorical repa-
rameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016.

Kingma, D. P. and Dhariwal, P. Glow: Generative
flow with invertible 1x1 convolutions. In Advances
in Neural Information Processing Systems, pp. 10215–
10224, 2018.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Kingma, F., Abbeel, P., and Ho, J. Bit-swap: Recursive bits-
back coding for lossless compression with hierarchical
latent variables. In International Conference on Machine
Learning, pp. 3408–3417. PMLR, 2019.

Mentzer, F., Agustsson, E., Tschannen, M., Timofte,
R., and Gool, L. V. Practical full resolution learned
lossless image compression. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 10629–10638, 2019.

Oord, A. v. d., Kalchbrenner, N., Vinyals, O., Espeholt,
L., Graves, A., and Kavukcuoglu, K. Conditional im-
age generation with pixelcnn decoders. arXiv preprint
arXiv:1606.05328, 2016.

Rezende, D. J. and Mohamed, S. Variational inference with
normalizing flows. arXiv preprint arXiv:1505.05770,
2015.

Tomczak, J. M. General invertible transformations for
flow-based generative modeling. CoRR, abs/2011.15056,
2020.

Townsend, J., Bird, T., and Barber, D. Practical lossless
compression with latent variables using bits back coding.
arXiv preprint arXiv:1901.04866, 2019a.

Townsend, J., Bird, T., Kunze, J., and Barber, D. Hilloc:
Lossless image compression with hierarchical latent vari-
able models. arXiv preprint arXiv:1912.09953, 2019b.

Tran, D., Vafa, K., Agrawal, K., Dinh, L., and Poole, B. Dis-
crete flows: Invertible generative models of discrete data.
In Advances in Neural Information Processing Systems,
pp. 14692–14701, 2019.

Discrete Denoising Flows

A. Denoising Coupling Layer: Example
Consider the distribution

PX1X2

x1 \ x2 0 1
0 0.4 0.2
1 0.1 0.3

If we were to directly model PX1X2
with a factorized

Bernoulli distribution

Pmodel(x) = Bern(x1|p) · Bern(x2|q),

the highest achievable log likelihood would be

Ex∼PX1X2
[log2 Pmodel(x)]

= Ex∼PX1X2
[log2(Bern(x1|p) · Bern(x2|q))]

≈ −1.97

with p = 0.4 and q = 0.5. Suppose now we have
trained a neural net n to predict x2 from x1, such that
argmaxn(x1) = x2. Using n in a denoising coupling
layer T−1 : X → Z as defined in equation 4 with K = 2
and implicitly h = 2 we obtain the distribution PZ1Z2 . In
this new distribution essentially the events with probability
0.3 and 0.1 are swapped.

PZ1Z2

z1 \ z2 0 1
0 0.4 0.2
1 0.3 0.1

When modeling PZ1Z2 with a factorized Bernoulli distribu-
tion, the highest achievable log likelihood is

Ex∼PX1X2
[log2 Pmodel(T

−1(x))]

= Ex∼PZ1Z2
[log2(Bern(z1|p) · Bern(z2|q))]

≈ −1.85

with p = 0.4 and q = 0.7. We can see that PZ1Z2
is now

modeled higher log-likelihood than the factorized Bernoulli
distribution on PX1X2

.

B. Denoising Coupling Layer: General
Binary Case

In the following, we generalize the example given in ap-
pendix A to provide further insight into the functionality
of the denoising coupling layer. Consider again a two-
dimensional binary random variable X with probability
distribution PX1X2 defined as

PX1X2

x1 \ x2 0 1
0 p1 p2
1 p3 p4

We train a neural network n to predict x2 from x1, such that
argmaxn(x1) = x2. Using n in a denoising coupling layer
as defined in equation 4 with K = 2 and implicitly h = 2,
we obtain the distribution PZ1Z2 .

PZ1Z2

x1 \ x2 0 1
0 max(p1, p2) min(p1, p2)
1 max(p3, p4) min(p3, p4)

We now want to show that applying the denoising coupling
layer results in a distribution that can be modelled more
accurately with a factorized Bernoulli distribution

Pmodel(x) = Bern(x1|p) · Bern(x2|q),

with parameters 0 ≤ p, q ≤ 1 in z-space than in x-space.
To this end, we demonstrate that the model log-likelihood
for PZ1Z2

is always higher than or equal to the model log-
likelihood for PX1X2

.

The model log-likelihood of PX1X2 is given as

Ex∼PX1X2
[logPmodel(x)]

= Ex[log(Bern(x1|p)) + log(Bern(x2|q))]
= log(p) · (p1 + p2) + log(1− p) · (p3 + p4)

+ log(q) · (p1 + p3) + log(1− q) · (p2 + p4)

= −H(p)−H(q)

where the last line assumes the optimal choice for p = p1 +
p2 and q = p1+p3 andH denotes the binary entropy defined
asH(p) = −p log p− (1− p) log(1− p). Analogously for
PZ1Z2

using Bernoulli parameters q̂, p̂

Ez∼PZ1Z2
[logPmodel(z)]

= log(p̂) · (max(p1, p2) + min(p1, p2))

+ log(1− p̂) · (max(p3, p4) + min(p3, p4))

+ log(q̂) · (max(p1, p2) + max(p3, p4))

+ log(1− q̂) · (min(p1, p2) + min(p3, p4))

= −H(p̂)−H(q̂)

with optimal choice p̂ = max(p1, p2) + min(p1, p2) =
p1 + p2 which is the same, and the new q̂ = max(p1, p2) +
max(p3, p4). Since H(p) = H(p̂) we only need to com-
pare the terms containing q̂ and q. We use that −H is a
monotonic increasing function when only considering the

Discrete Denoising Flows

interval [0.5, 1.0] and thatH(p) = H(1−p). First we check
if p1 + p3 ≥ 0.5 or otherwise p2 + p4 ≥ 0.5. Let this value
be a so that a ≥ 0.5, and the other value b with b ≤ 0.5.
From the symmetry we have:

−H(p1 + p3) = −H(a) = −H(p2 + p4) = −H(b).

Next, observe that q̂ = max(p1, p2) + max(p3, p4) ≥
max(p1 + p3, p2 + p4) = a and since −H is monotoni-
cally increasing on [0.5, 1.0] it follows that:

−H(q̂) ≥ −H(a) = −H(q).

Plugging this back into the previous equation gives us the
desired identity:

Ez∼PZ1Z2
[logPmodel(z)] ≥ Ex∼PX1X2

[logPmodel(x)]

under optimal choice of the Bernoulli parameters.

C. Experimental Details
We train Discrete Flows and Discrete Denoising Flows on
three data sets. In each experiment, both models use the
same architecture to ensure comparability.

Throughout the experiments, we use the Adam optimizer,
a learning rate of 0.001, and a batch size of 64. The base
distribution is always a factorized categorical distribution
with K classes. K varies between the data sets. Recall
that in the coupling layers of both DFs and DDFs, the D-
dimensional coupling layer input x is split into two parts
such that x = [xa, xb], at a split index d. For all of our
experiments, we set d = D

2 .

Eight Gaussians In this experiment, we train a single-
layer Discrete Flow and a single-layer Discrete Denoising
Flow. For both models, we use an MLP consisting of 4
linear layers with 256 hidden units and ReLU activations to
parameterize the coupling layer. This small model size is
sufficient for modeling our 2D toy data set.

Consisting of only one coupling layer, preserving the struc-
ture of the input vector for later coupling layers is not rele-
vant for the DDF model. Consequently, we set the parameter
h in the denoising coupling layer to the number of classes
in the data set K = 91.

Binary MNIST In this experiment, we work with binary
image data. Consequently, each DF and DDF coupling
layer is parameterized by a DenseNet (Huang et al., 2017)
consisting of 8 dense building blocks. For DDFs, modeling
binary data implies that h equals the number of classes K,
i.e. h = K = 2.

We embed the coupling layers into a multi-layer architecture
of coupling layers, split priors, and squeeze operations (Dinh

et al., 2016). The squeeze changes the vector size from
[channels×H ×W] to [4 · channels× H

2 ×
W
2].

The overall model architecture consists of 2 blocks that
consisting of the following layers (in that order):

{squeeze - coupling - splitprior - coupling - splitprior}

Note that each coupling layer is preceded by a shuffling
operation applied to the channels of the input vector. Further
the splitprior factors out the opposite part that the coupling
transformed (so if the coupling layer transforms xb 7→ zb
then za is factored out).

Cityscapes In this experiment, we’re again dealing with
image-type data, this time with K = 8 classes. Like in the
previous experiment, we utilize a DenseNet (Huang et al.,
2017) in the DF and DDF coupling layers. However, here
it consists of 15 dense building blocks. We perform a grid
search for the DDF parameter h on {1, 2, 4, 6, 8} and find
that h = 4 leads to the best performance. Since the last
coupling layer does not have a trade-off between permuting
classes and maintaining structure for the next coupling layer
to work on, we can set h = K = 8 in the last layer.

In analogy to the previous experiment, we embed the cou-
pling layers in a multi-layer architecture of coupling layers,
splitpriors and squeeze operations. For this experiment, the
model architecture consists of 3 building blocks with the
following layers (in that order):

{squeeze - coupling - splitprior - coupling - splitprior}

Again, the splitprior factors out the opposite part that the
coupling transformed (so if the coupling layer transforms
xb 7→ zb then za is factored out).

D. Training without splitpriors
In the experiments without splitpriors, we propagate the
full input vector x through all layers of the Discrete Flow
and Discrete Denoising Flow models. We perform this
additional set of experiments to further illustrate the dif-
ference in modeling capacity between Discrete Flows and
Discrete Denoising Flows. When both models are trained
with splitpriors, the splitpriors allow for additional depen-
dencies between the input and output of the model, thus
increasing modeling capacity. If we omit the splitpriors,
the model performance depends solely on the coupling lay-
ers, allowing us to better see the difference in performance
between the two types of flows.

D.1. Experimental Setup

Similar to the experiments with splitpriors, we use the Adam
optimizer, a learning rate of 0.001, a batch size of 64 and
set the split index d = D

2 with D being the dimensionality
of the input x for all experiments without splitpriors.

Discrete Denoising Flows

Binary MNIST Equivalent to the MNIST binary exper-
iment described in Appendix C, each DF and DDF cou-
pling layer is parameterized by a DenseNet (Huang et al.,
2017) consisting of 8 dense building blocks, and we set
h = K = 2 for the DDF model. The overall model architec-
ture for this experiment consists of 2 building blocks with
the following layers (in that order):

{squeeze - coupling - coupling }

where each coupling layer is preceded by a shuffling opera-
tion applied to the channels of the input vector.

Cityscapes Like in the Cityscapes experiment described
in Appendix C, each DF and DDF coupling layer is param-
eterized by a DenseNet (Huang et al., 2017) consisting of
15 dense building blocks, and we set h = 4 for each DDF
coupling layer but the last, where we set h = K = 8.

The model architecture for this experiment consists of 1
building block with layers (in that order)

{squeeze - coupling }

followed by 2 building blocks with layers (in that order)

{squeeze - coupling - coupling }

where each coupling layer is preceded by a shuffling opera-
tion applied to the channels of the input vector.

D.2. Evaluation

Figure 5 and figure 6 show samples from the trained DF
and DDF models on the binary MNIST data set and on
the Cityscapes data set. As we can see from the samples
as well as from the quantitative results given in table 1,
there is a bigger difference in performance between DFs
and DDFs when they are trained without splitpriors. The
reason is that splitpriors already increase the model capacity,
making the relative difference smaller. Therefore, this com-
parison shows even more clearly the improved modeling
performance of our DDFs over DFs.

(a) (b)

Figure 5. Qualitative results for (a) Discrete Flows and (b) Dis-
crete Denoising Flows trained without splitpriors on the binarized
MNIST data set.

(a)

(b)

Figure 6. Qualitative results for (a) Discrete Flows and (b) Discrete
Denoising Flows trained without splitpriors on the Cityscapes data
set

