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Reproducibility Summary1

This work evaluates the reproducibility of the paper “CNN-generated images are surprisingly easy to spot... for now”2

by Wang et al. published at CVPR 2020. The paper addresses the challenge of detecting CNN-generated imagery,3

which has reached the potential to even fool humans. The authors propose two methods which help an image classifier4

to generalize from being trained on one specific CNN to detecting imagery produced by unseen architectures, training5

methods, or data sets.6

Scope of Reproducibility7

The paper proposes two methods to help a classifier generalize: (i) utilizing different kinds of data augmentations and8

(ii) using a diverse data set. This report focuses on assessing if these techniques indeed help the generalization process.9

Furthermore, we perform additional experiments to study the limitations of the proposed techniques.10

Methodology11

We decided to implement the methods from scratch to highlight possible hurdles for practitioners who want to adopt the12

results. For our experiments, we utilized the training and test data provided by the authors, as well as, creating our own13

data set to analyze how the proposed techniques perform on different data sets. Note that overall we estimate the entire14

experiments to take around 590 GPU hours.15

Results16

In general, we were able to replicate the overall results reported in the paper. However, we also found significant17

differences in our experiments. After further investigations, we discovered that we implemented two data augmentations18

slightly different. Additionally, we identified three test data sets, which exhibit fluctuating results across multiple19

runs with the same setup. However, the overall trends of our experiments matched the original publication, i.e., data20

diversity and augmentations help generalization. We also performed several additional experiments on other data sets,21

highlighting limitations and clarifying the methods.22

What was Easy23

The paper is very detailed and we could faithfully replicate the experiments (bar the aforementioned exception). We24

only utilized the authors’ code sparingly, but the repository is very well documented and provides pre-trained models.25

What was Difficult26

The naming of one of the augmentations caused confusion on our part. Note that the description in the paper is correct,27

however, the naming suggest the method works different than actually implemented. This resulted in us implementing a28

variation of the proposed technique. Surprisingly, our method actually improved on the original results.29

Communication with Original Authors30

Most of our question could be resolved by comparing our implementation against the authors’ code. We contacted the31

first author regarding our different results, he was very responsive and answered all of our questions.32

Submitted to ML Reproducibility Challenge 2020. Do not distribute.



1 Introduction33

High-quality implementations of state-of-the-art image synthesis methods are available to the general public [Karras34

et al., 2020]. This technology is astonishing and concerning at the same time. One the one hand, such algorithms can be35

used for practical use cases like image-to-image translation [Isola et al., 2017, Liu et al., 2017, Zhu et al., 2017] or36

image super-resolution [Lai et al., 2017, Ledig et al., 2017, Lim et al., 2017]. On the other hand, they can generate37

images which even trick human observers [Simonite, 2019]. Recently, fake news and tampered media have become38

practical problems which even have the potential to influence democratic processes [Thompson and Lapowsky, 2017,39

Hao, 2019].40

Recognizing these problems, Wang et al. [2020] propose a “universal” detector for CNN-generated images. While41

creating a detector for know architectures has been done before [Zhang et al., 2019, Wang et al., 2019a], the authors42

of this paper ask whether it is conceivable to train a classifier which generalizes to new, unseen architectures. The43

authors demonstrated that with a diverse data set and with carefully chosen data augmentation methods, a standard44

image classifier can achieve this goal. More specifically, they train a ResNet50 [He et al., 2016] classifier on a data set45

consisting of images generated by 20 different instances of ProGAN [Karras et al., 2018]. Additionally, they augment46

the training process by utilizing aggressive image filtering techniques (i.e., Gaussian Blur and JPEG compression).47

Combining both techniques allows them to create an image classifier which even generalized to StyleGAN2 [Karras48

et al., 2020], which was published concurrently.49

Scope of reproducibility: We opted to reimplement the methods from scratch, aiming at highlighting difficulties for50

practitioners who want to adapt these methods. While the authors released a very well documented code repository,51

we initially abstained from inspecting the source code to not prime ourselves. In the later stages of our analysis, we52

used their repository to uncover some small implementation differences, which lead to our implementation actually53

improving on the original results.54

Using our implementation, we aim at verifying the two main claims of the paper:55

1. The proposed data augmentations (usually) improve generalization.56

2. More diverse data sets help the classifier generalize to unseen architectures.57

We recreate parts of the original experiments which directly investigate these two claims (see Section 4.2, Section 4.3,58

Table 2, and the Figures 2 and 3 in the original paper [Wang et al., 2020]). Departing from their work, we perform several59

additional experiments: First, we further investigate the first claim, training multiple additional data set combinations to60

clarify differences between our results and the original paper. Second, we generate a new training set from a different61

CNN generator (StyleGAN2 [Karras et al., 2020]) and evaluate if the results transfer. Finally, we investigate if the62

method is exclusive to the specific image classifier used in the paper. To this end, we train two other classifiers and63

compared them to the original results: A different image classifier architecture [Simonyan and Zisserman, 2015] and a64

classifier which leverages spectral analysis [Frank et al., 2020].65

2 Methodology66

In this section, we provide an overview of our methodology. We start by presenting the different data sets used in our67

experiments. Then, we describe the overall experimental setup, including the models we studied, data augmentations68

performed, details on the training procedure, our evaluation criteria, and computational requirements. All of our69

reproducibility efforts are based on the arXiv version of the paper (v2 – submitted 04. April 2020) and the corresponding70

GitHub repository1 (commit f692c13 – 26. October 2020). We also make our implementation, our pre-trained models71

and our data set publicly available 2.72

2.1 Data Sets73

For training our networks, we used two different data sets: The first one is provided by the original publication. The74

authors used 20 ProGAN [Karras et al., 2018] models, each trained on a different LSUN category [Yu et al., 2015],75

to sample 18K generated images per model. They also collected 18K training images for each of the corresponding76

classes, resulting in a total data set of (18.000 + 18.000) · 20 = 720.000 images.77

Additionally, we created a new data set to study the proposed techniques on a different base generator. We downloaded78

the pre-trained models for StyleGAN2 [Karras et al., 2020]. Using these models, we generated a training set of 36K79

1available at https://peterwang512.github.io/CNNDetection/
2available at https://github.com/mlreprochallenge/CNNEasyToSpot
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train (18K fake and 18K real) images for the LSUN cat and horse data sets, following the pre-/post-processing steps80

outlined in the original publication. Since these categories are also contained in the data set by Wang et al., this allows81

for a one-to-one comparison.82

We exclusively used the test data set provided by the authors. The data set consists of images from 11 different synthesis83

models:84

• GANs: The data set contains samples from six different Generative Adversarial Networks (GANs): Pro-85

GAN [Karras et al., 2018], StyleGAN [Karras et al., 2019], BigGAN Brock et al. [2019], GauGAN [Park et al.,86

2019], CycleGAN [Zhu et al., 2017], and StarGAN [Choi et al., 2018].87

• Perceptual loss: The authors also include samples from generative models which are directly trained to88

optimize a perceptual loss: Cascaded Refinement Networks (CRN) [Chen and Koltun, 2017] and Implicit89

Maximum Likelihood Estimation (IMLE) [Li et al., 2019].90

• Image manipulation models: It includes samples from Seeing In The Dark (SITD) [Chen et al., 2018], which91

approximates long-exposure photography, and the Second-Order Attention Network (SAN) [Dai et al., 2019],92

which generates images at a higher resolution.93

• Deep fakes: Finally, the authors include samples from the FaceForensics++ [Rössler et al., 2019] data set.94

2.2 Experiment Setup95

In the following, we provide an overview of the different experiments performed in the paper. We start by discussing96

the different models used, present the data augmentations proposed by Wang et al., and, proceed by presenting the97

training schedule used in all experiments. Finally, we conclude by discussing how the evaluation and with an overview98

of the computational requirements needed for reproducing this report.99

Models used: Following the original paper, we use a ResNet50 [He et al., 2016] model as the image classifier for the100

majority of our experiments. The classifier is pre-trained on ImageNet [Russakovsky et al., 2015]. We use random101

crops (to 224× 224 pixels) and horizontal flipping during training of all of our classifiers. Additionally, we scale the102

image to the range [0, 1], remove the mean, and scale them to unit variance.103

For the experiments presented in Section 3.3.2, we also train a VGG-11 [Simonyan and Zisserman, 2015] model and a104

classifier which utilizes spectral information [Frank et al., 2020]. The VGG model is also pre-trained on ImageNet105

and uses the same preprocessing as our ResNet models. The spectral classifier also uses random crops and horizontal106

flipping as outlined above. Afterwards, we follow Frank et al. and use Discrete Cosine Transfrom-II [Ahmed et al.,107

1974] (DCT-II) to transform the images from the spatial to the spectral domain. Afterwards, we use MinMax-scaling to108

scale the images to the range [0, 1] and train a ResNet50 model from scratch on the transformed data.109

Data augmentations: Wang et al. proposed several data augmentations which help their classifier generalize to110

unseen architectures:111

• Gaussian blur (Blur): Before cropping, with 50% probability, the images are blurred with σ ∼ Uniform{0, 3}112

• JPEG-compressiong (JPEG): with 50% probability images are JPEG-ed by two popular image libraries,113

OpenCV and PIL, with quality ∼ Uniform{30, . . . , 100}.114

• Blur + JPEG (Blur & JPEG (0.5)): images are possibly blurred and JPEG-ed, each with 50% probability.115

• Blur + JPEG (Blur & JPEG (0.1)): similar to the previous, but the probability is dropped to 10%.116

All augmentations are applied before cropping and flipping (to the entire training set). Additionally, we also evaluate no117

augmentations (No Aug.) as a baseline. Note that the JPEG standard only specifies quality setting in the range [30, 95].118

However, the authors sample in the range [30, 100]. We follow their sampling, but clip all values to the allowed range.119

Training details: At the start of the training, we randomly sample 10% of the training set for validation. We train all120

model using Adam [Kingma and Ba, 2015] with β1 = 0.9, β2 = 0.999, a batch size of 64, and an initial learning rate121

of 10−4. We drop the learning rate by 10× when the validation accuracy stagnates for 5 epochs. When the learning rate122

reaches 10−7, we terminate training and select the best classifier based on the validation accuracy.123

We abstained from validating additional combinations of (Adam-) hyperparameters, learning rate, and batch size.124

The selection of data augmentation and data set variety is already computational challenging and can be viewed as a125

hyperparameter in its own right. However, we note that this might be an interesting direction for future experiments.126
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Table 1: Average Precision of training a ResNet50 classifier on the entire data set with different augmentations.
We report the average precision for both our results (Reproduced) and the the original publication (Wang et al.).
Additionally, we report the results of a (Corrected) implementation of the Blur + JPEG augmentation. Chance is 50%,
the best possible results is 100%, and we highlight the ProGAN results in gray since the classifier is trained on similar
data. We train on the entire data set (20 classes).

Name Result ProGAN StyleGAN BigGAN CycleGAN StarGAN GauGAN CRN IMLE SITD SAN DeepFake mAP

No Aug. Wang et al. 100.0 96.3 72.2 84.0 100.0 67.0 93.5 90.3 96.2 93.6 98.2 90.1
Reproduced 100.0 96.8 73.5 81.9 100.0 68.2 95.1 88.8 97.1 87.2 98.4 89.7

Blur Wang et al. 100.0 99.0 82.5 90.1 100.0 74.7 66.6 66.7 99.6 53.7 95.1 84.4
Reproduced 100.0 94.0 71.7 81.9 100.0 71.0 63.5 63.1 93.8 83.9 98.6 83.8

JPEG Wang et al. 100.0 99.0 87.8 93.2 91.8 97.5 99.0 99.5 88.7 78.1 88.1 93.0
Reproduced 100.0 99.4 89.4 93.3 94.5 96.4 99.1 99.3 91.1 69.7 92.5 93.2

Blur +
JPEG (0.5)

Wang et al. 100.0 98.5 88.2 96.8 95.4 98.1 98.9 99.5 92.7 63.9 66.3 90.8
Reproduced 100.0 99.4 88.8 94.1 96.7 96.2 98.5 99.1 92.9 72.3 93.7 93.8
Corrected 100.0 99.1 88.8 94.8 94.5 97.5 99.3 99.4 84.8 74.1 73.0 91.4

Blur +
JPEG (0.1)

Wang et al. 100.0 99.6 84.5 93.5 98.2 89.5 98.2 98.4 97.2 70.5 89.0 92.6
Reproduced 100.0 99.5 85.7 93.3 97.9 93.6 99.2 99.4 95.5 77.7 95.0 94.2
Corrected 100.0 99.6 86.5 94.7 97.1 92.5 99.1 99.4 95.3 82.2 96.9 94.8

We highlight differences (w.r.t the original publication) greater 5% in bold and greater 10% additionally in cursive.

We use the same settings for training the VGG network. When training the DCT-ResNet we change the initial learning127

rate to 10−3 since we train the underlying model from scratch.128

Evaluation criteria: We follow the authors and use Average Precision (AP) as our evaluation metric. It is a ranking-129

based metric which is not sensitive to the “base rate” of the fraction of fake images and thus commonly used throughout130

the literature [Zhou et al., 2018, Huh et al., 2018, Wang et al., 2019b]. Additionally, we compute the mean Average131

Precision (mAP) over all data sets, to compute an overall tendency. During testing, all images are center cropped132

without resizing to match the training dimension (without augmentations).133

Computational requirements: All our experiments are run on two desktop machines. Each machine is running134

Ubuntu 18.04, with 64GB RAM, a AMD Ryzen 7 3700X 8-Core Processor, and two GeForce RTX 2080Ti. Training a135

single ResNet50 model on one GPU on the entire data set (20 classes) takes around 42 hours. Most of the experiments136

are conducted on smaller data set (2–8 classes), which significantly reduces the training time to roughly 6 hours. Overall,137

we estimate the entire experiments to take around 590 GPU hours, not including initial testing runs.138

3 Results139

Overall we were able to reproduce the trends of the original results and verify the two claims of the publication. In140

Section 3.1, we examine the first claim, studying in detail the different data augmentations proposed by the authors. In141

Section 3.2, we examine the second claim, evaluating if more diverse data help generalization. Finally, in Section 3.3,142

we depart from the original experiments and investigate further to gain additional insights into the proposed methods.143

3.1 Claim: Data augmentations improve generalization144

First, we investigate the claim that data augmentations improve generalization and reproduce the second half of Table 2145

in the original publication. Specifically, we train five classifier on the entire training set, with each classifier trained on146

one data augmentation introduced in Section 2.2. The results are presented in Table 1.147

Results: We can successfully recreate the general trend that data augmentations help generalization. However, for148

specific cases our results differ heavily from the reported results by Wang et al.. This is especially noticeable for the blur149

augmentation, where our results differ in multiple data sets (StylGAN, BigGAN, CycleGAN, CRN, SITD and SAN).150

The results for the SAN data set even differ by 30.2%. We also seem to slightly outperform the results by Wang et al..151

We verified our implementation against the original published code and noticed two substantial differences: First, we152

implemented Gaussian filtering with the build-in methods provided by PyTorch [Paszke et al., 2019], while Wang153

et al. build their own method using SciPy [Virtanen et al., 2020]. Second, we apply blurring in conjunction with JPEG154

compression with a probability of 50%. In contrast, Wang et al. first apply blurring with a probability of 50% and then155

apply JPEG with a probability of 50%. Note that the paper describes this correctly.156
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Table 2: Average Precision (AP) of training a ResNet50 classifier on different subsets of the training data. We
report the average precision over 11 different CNN generators for both, our results (Reproduced) and the results from
the original publication (Wang et al.). Chance is 50% and the best possible results is 100%. Note that the classifier
is trained on ProGAN and we thus display the results in gray. The mean Average Precision (mAP) is obtained by
taking the mean of the individual APs. Note that we apply blurring and JPEG compression with 50% probability during
training.

Setting Result ProGAN StyleGAN BigGAN CycleGAN StarGAN GauGAN CRN IMLE SITD SAN DeepFake mAP

2-class Wang et al. 98.8 78.3 66.4 88.7 87.3 87.4 94.0 97.3 85.2 52.9 58.1 81.3
Reproduced 99.3 81.0 71.8 88.4 83.5 89.7 98.8 99.5 82.0 72.3 61.5 84.3

4-class Wang et al. 99.8 87.0 74.0 93.2 92.3 94.1 95.8 97.5 87.8 58.5 59.6 85.4
Reproduced 99.8 90.6 79.7 92.5 91.2 93.5 98.1 98.7 95.0 74.6 75.7 90.0

8-class Wang et al. 99.9 94.2 78.9 94.3 91.9 95.4 98.9 99.4 91.2 58.6 63.8 87.9
Reproduced 100.0 96.7 81.8 92.7 92.6 95.0 98.2 99.3 85.7 69.8 77.9 90.0

16-class Wang et al. 100.0 98.2 87.7 96.4 95.5 98.1 99.0 99.7 95.3 63.1 71.9 91.4
Reproduced 100.0 98.5 87.0 94.5 95.0 96.8 99.2 99.3 84.5 77.9 76.8 91.8

20-class Wang et al. 100.0 98.5 88.2 96.8 95.4 98.1 98.9 99.5 92.7 63.9 66.3 90.8
Reproduced 100.0 99.4 88.8 94.1 96.7 96.2 98.5 99.1 92.9 72.3 93.7 93.8

We highlight differences (w.r.t the original publication) greater 5% in bold and greater 10% additionally in cursive.

To investigate if the results are indeed connected to our implementation, we perform an additional experiment. We157

implemented a corrected version of the Blur + JPEG augmentation and rerun the experiment. The results are mixed.158

While we achieve a closer result for the DeepFake data set, the changes lead to even higher differences in the159

SAN and SITD data sets. We repeat the experiment two additional times to investigate if this might be related to160

chance. We obtained widely varying results on the SITD (84.8/85.9/90.7), the SAN (72.6/74.1/78.3), and the161

DeepFake (72.4/73.0/76.1) data sets. A full table can found in the supplementary material.162

The authors already noted the SAN and DeepFake data set as exceptions. Our model recovers better from using a163

combination of blurring and JPEG compression for these sets. Thus, we hypothesize that our implementation may apply164

more aggressive preprocessing (we always apply blurring and JPEG compression), but on fewer training examples (our165

implementation is all or nothing; Wang et al. can apply blurring, JPEG compression, or both). The probabilistic nature of166

these data augmentations can also explain the fluctuation in the SITD, SAN, and DeepFake results. Obtaining statistical167

guarantees for our results would be ideal. However, we would need to perform multiple runs of ours’ and Wang et al.’s168

implementation. With a single run already taking 42 GPU hours, we abstain from further investigation. We also do not169

investigate the hand-crafted blurring implementaion. We assume that future practitioners will preferably use the build-in170

PyTorch method we utilized (unavailable at the time of original publication). We hypothesize that our experiments171

better reflect future results.172

3.2 Claim: More diverse data improves generalization173

Second, we investigate how diversity of the data set affects the results by reproducing the rest of Table 2. Similar to the174

original paper, we train five different classifiers on subsets of the original training data ({2, 4, 8, 16, 20}-classes) and175

use blurring and JPEG compression with a probability of 50% during training. The results are displayed in Table 2.176

Results: Overall, we can again recreate the general trend that data diversity improves generalization. The results177

mostly match, but we can again observe widely different results for the SITD, SAN and DeepFake data sets. We178

attribute these differences to the earlier observed sensitivity to the random character of these experiments.179

The original publication observed that data diversity helped with generalization up to a specific point. The authors180

hypothesized that at this point (16 to 20 classes) the training set may be diverse enough for practical generalization. We181

agree that data set diversity helps with generalization. We cannot fully agree that there exists a point of diminishing182

returns. Utilizing more classes allows our classifiers to achieve significantly better results on the DeepFake (76.8→ 93.7183

AP) and SITD (84.5→ 92.9 AP) data sets.184

While the diminishing returns might be related to chance, we additionally investigate if they are connected to the185

aggressive data augmentations used in the original experiments. We perform a control experiment where we again train186

multiple classifiers on subsets of the training data with all augmentations disabled. Note the original publication only187

assessed subsets with augmentations enabled.188

The results are presented in Figure 1, a full table can be found in the supplementary material. Contrary to our hypothesis,189

the data augmentation help the model generalize in the presence of more diverse data. However, they also lead to190
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Figure 1: Comparison of different data set sizes. When training with augmentations we observe a steady increase in
performance while increasing the diversity of the data set. We get mixed results for training without augmentations.
Apparently, the higher data diversity can only be utilized with the aid of data augmentations. Best viewed in color.
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Figure 2: Comparison between two training sets generated by ProGAN and StyleGAN2. The classifier trained
on data sets generated by ProGAN generalizes significantly better to other architectures. Blurring seems to help the
classifier trained on StyleGAN2 to generalize better, the other augmentations hurt performance. Best viewed in color.

varying results on the SITD, SAN, and DeepFake data set. We assume the same probabilistic nature observed in191

Section 3.1 is related to the fluctuations. For the other data sets, we assume that the augmentations act as a regularizer,192

preventing the model from overfitting to the training set. We study this phenomena further in Section 3.3.1. Overall we193

conclude that more diverse data improves generalization.194

3.3 Results beyond the original paper195

We perform further experiments to get more insights into the original paper. First, we investigate if the results are196

dependent on the generator used to create the training set by sampling a second data sets from StyleGAN2 [Karras et al.,197

2020]. Second, we investigate if the results are dependent on the classifier used by comparing the ResNet50 against a198

different image classifier (VGG-11) and a classifier which leverages spectral analysis [Frank et al., 2020].199

3.3.1 Research Question: Do the results depend on the generator which creates the data set?200

We want to investigate if the generalization capabilities depend on the generator which creates the training set. As201

described in Section 2.1, we utilized pre-trained StyleGAN2 models to create a novel data set.202
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Table 3: Comparison of different classifiers trained with different data augmentations. We compare the AP and
mAP across different classifiers which are trained on the 8-class data set. The Blur + JPEG augmentations refers to the
50% variant. Chance is 50%, the best possible results is 100%, and we highlight the ProGAN results in gray since the
classifier is trained on similar data. For each classifier we highlight its best result per colum in bold.

Classifier Augmentation ProGAN StyleGAN BigGAN CycleGAN StarGAN GauGAN CRN IMLE SITD SAN DeepFake mAP

ResNet50

No Aug. 100.0 97.9 77.0 81.9 100.0 73.5 98.0 95.4 96.8 84.9 97.6 91.2
Blur 100.0 97.1 71.6 84.7 100.0 67.0 78.2 76.4 97.6 75.5 98.0 86.0
JPEG 100.0 96.7 83.5 91.6 90.2 95.9 98.8 99.4 86.1 71.6 85.2 90.8
Blur + JPEG 100.0 96.7 81.8 92.7 92.6 95.0 98.2 99.3 85.7 69.8 77.9 90.0

VGG-11

No Aug. 100.0 96.6 76.8 78.3 100.0 60.7 56.8 56.8 99.7 91.4 94.5 82.9
Blur 100.0 94.9 79.1 81.2 100.0 56.6 51.6 51.5 99.9 82.2 92.1 80.9
JPEG 100.0 98.7 87.3 91.1 97.6 85.8 98.8 99.1 94.1 80.3 91.1 93.1
Blur + JPEG 99.8 94.5 85.3 93.3 89.3 91.2 98.4 98.0 95.0 68.2 77.5 90.1

DCT-
ResNet

No Aug. 100.0 98.0 87.5 63.1 97.2 96.0 65.7 75.6 43.7 52.2 57.0 76.1
Blur 100.0 97.5 82.5 71.7 99.5 96.9 71.4 86.0 49.2 47.4 59.3 78.3
JPEG 100.0 93.1 69.0 50.8 58.0 43.9 79.8 95.7 96.5 61.4 71.9 74.5
Blur + JPEG 100.0 98.2 86.8 54.4 88.5 74.9 82.0 95.7 97.9 59.3 68.7 82.4

We then trained five ResNet50 classifier using the augmentation proposed by Wang et al.. For comparison, we also203

trained five classifier on LSUN cat and horse data generated by ProGAN. In contrast to our previous experiments, we204

also include a StyleGAN2 test set which was provided by Wang et al. after the original publication. The results are205

displayed in Figure 2 and the corresponding Table can be found in the supplementary material.206

1) Data augmentations help ProGAN generalise to StyleGAN2: When utilizing the proposed data set augmenta-207

tion, the classifiers trained on ProGAN generalize to detect images from StyleGAN2 (87.6→ {86.3, 87.1, 89.2, 97.1}208

AP). However, the same does not apply for StyleGAN2. Data generated by StyleGAN2 already achieves quite a high209

performance on ProGAN, thus adding data augmentations does only slightly improve or even hurts performance.210

2) Data augmentations are specific to the data set: Blurring seems to generally hurt the ProGAN classifier (Cycle-211

GAN, GauGAN, CRN, IMLE, SAN, and overall mAP), while it allows the StyleGAN2 classifier to generalize to the212

ProGAN, the StarGAN, the SITD, and, the DeepFake data set. It also achieves the best overall performance. Thus, data213

augmentations seem to be specific to the training data set used and should be evaluated carefully.214

3) ProGAN serves as a better prior for generalization: If we compare the individual performance and the overall215

mAP, the classifiers trained on ProGAN seem to better generalize to other architectures. We hypothesize that this is due216

to the fact that StyleGAN2 is a very recent proposal (released in 2020), while all other generators were proposed earlier217

(2016-2019). ProGAN is itself an older generator (2018), thus the images generated by it might have more in common218

with older architectures.219

We conclude that the results indeed depend on the generator used for creating the data set. The data augmentations do220

not transfer and our results imply that going forward, practitioners might have to continuously update their training data221

sets to generalize to new architectures. Note that we only performed experiments with two classes, adding more classes222

might improve the performance of StyleGAN2 as a training set.223

3.3.2 Research Question: Do data augmentations transfer to other classifier?224

Finally, we want to investigate the question if the results transfer to other classifiers. We train two other classifiers to225

compare our results: a VGG-11 model and a classifier which utilizes spectral information (DCT-ResNet). The results226

are depicted in Table 3, additionally, we provide a plot of the results in the supplementary material. When we report227

relative numbers, these are in reference to the results without augmentations (No Aug.).228

When using (No. Aug/Blur) augmentations the VGG model is incapable of generalizing to the GauGAN (60.7/56.6 AP),229

CRN (56.8/51.5 AP) and IMLE (56.8/51.5 AP) data sets. This can be circumvented by utilizing the JPEG augmentation,230

which also leads to the overall best result (93.1 mAP). Yet, the augmentation does cause a drop in AP for the StarGAN,231

SITD, SAN and DeepFake data sets. This performance drop can also not be offset by using both augmentations in232

conjunction.233

The performance of the DCT based classifier is worse overall (76.1/78.3/74.5/82.4 mAP). Blur seem to help general-234

ization, allowing for better results on CycleGAN, StarGAN, CRN and IMLE data sets. JPEG augmentation allows235

the classifier to drastically improve its results on SITD (+52.8 AP) and helps generalization to CRN (+14.1 AP),236

IMLE (+20.1 AP), SAN (+9.2 AP) and DeepFake (+14.9 AP). However, it severely hurts performance for Star-237
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GAN (−39.2 AP) and GauGAN (−52.1 AP), and, to a lesser extend, StyleGAN, BigGAN and CycleGAN. Combining238

both augmentations leads to a good compromise, achieving the best overall performance (82.4 mAP) and reducing the239

negative effects for StarGAN (−8.7 AP) and GauGAN (−21.1 AP).240

Overall, we conclude that the proposed data augmentations transfer to other classifiers. However, there exists no silver241

bullet which helps generalization in general.242

4 Discussion243

Since we focused our efforts on reproducing the paper from scratch, we can only partially comment on the source code.244

However, we later used it to compare our implementation against. In the following, we want to give an overview of our245

observations.246

4.1 What was easy?247

The overall description in the paper is very detailed. The authors discuss in detail how they collected the data for the248

test set, provide a good description of their training procedure, and summarize their results clearly with the aid of tables249

and figures. Additionally, the authors include a long appendix with further details. We did find one description in the250

paper confusing, which we discuss in more detail in Section 4.2.251

As discussed above, we only had a limited exposure to using the authors’ code. The parts we looked at were of good252

code quality, however, sometimes could use more comments. The README file of the repository is very detailed, it253

includes clear instruction on how to set up the code, download the corresponding data, train models from scratch, and254

evaluate the results. Additionally, the authors include links to download pre-trained models. We used these models to255

validate our results and found them quite intuitive to use.256

4.2 What was difficult?257

We came across very few hurdles when reproducing the code. However, we did end up slightly miss-implementing258

one of the data augmentations. In the paper, the authors describe their introduced data augmentations in Section 4.1.259

The description for the Blur+JPEG augmentation states: “the image is possibly blurred and JPEG-ed, each with 50%260

probability”. However, the shorthand explicitly uses a plus sign and in the remainder of the paper only the shorthand is261

used. Thus, based on the frequent use of the plus sign, we assumed the augmentation always applies the blurring and262

JPEG compression together. This resulted in us implementing a slightly different version of the data augmentation,263

where we apply both in conjunction with 50% probability. We want to stress that the paper states this correctly, we264

simply missed the last part of the description.265

4.3 Communication with original authors266

Due to the quality of the paper and the availability of the code repository, we could resolve every question. We did267

message the authors regarding our different results for the Blur and JPEG augmentation. They agreed that it is difficult268

to conclude an exact reason why and how augmentations help generalization. For further research direction, they269

suggested further research into which features the CNN learns.270

5 Conclusion271

In summary, we believe the paper to be reproducible. We successfully recreated the original experiments from scratch.272

While our results are different, the overall trend remains the same. However, our additional experiments revealed several273

limitations to these claims.274

More diverse data sets help the classifier generalize to unseen architectures, but: the choice of generator is crucial275

and data set-specific augmentations have to be used. When using no augmentations, more data diversity hurts the276

performance of the classifier trained on ProGAN. When we instead use StyleGAN2 as the generator for the data277

set, we achieve significantly lower performance for all tested configurations. This suggest the possibility that future278

practitioners might have to constantly update their training sets with new architectures.279

Also, the data augmentations seem to be specific for the training data set used. When using ProGAN generated data280

as the training set, the augmentations transfer across different classifiers. However, only blurring helps StyleGAN2281

generalize, while the other proposed augmentations hurt performance. Thus, we advice practitioners to carefully282

investigate which augmentations help their current situation.283
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