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ABSTRACT

We study the contextual pricing problem, where in each round a seller observes
a context, sets a price, and receives a binary purchase signal. We adopt a semi-
parametric model in which the demand follows a linear parametric form composed
with an unknown link function from a §-Holder class. Prior work established
regret rates of O(T?/3) for 8 = 1 and O(T3/%) for 8 = 2. Under a uni-modality
condition, we propose a unified algorithm that combines the stationary subroutine
of Wang & Chen (2025) with local polynomial regression, achieving the general

rate @(T%) for all 8 > 1. This recovers and strengthens existing results, while
also addressing a gap in the prior analysis for 5 = 2. Our analysis develops tighter
semi-parametric confidence regions, removes derivative lower bound assumptions
from earlier work, and offers a sharper exploration—exploitation trade-off. These
insights not only extend theoretical guarantees to general 3 but also improve
practical performance by reducing the need for long forced-exploration phases.

1 INTRODUCTION

Dynamic pricing addresses a central problem in revenue management, where a seller repeatedly
interacts with users by offering personalized prices for the same product and collecting revenue
from the resulting sales (Cournot, 1927; Den Boer, 2015). Across these interactions, users exhibit
heterogeneous demand or private valuations, and the seller faces uncertainty in how demand responds
to the offered prices. This demand function effectively captures the market’s valuation of the product.
Consequently, the seller must learn the demand in real time while simultaneously aiming to maximize
revenue, which gives rise to the fundamental exploration—exploitation tradeoff in dynamic pricing
(Kleinberg & Leighton, 2003).

Recently, contextual dynamic pricing has gained significant traction in online retail, driven by
the widespread availability of user-specific and contextual information (Cohen et al., 2020; Wang
et al., 2021; Chen & Gallego, 2021; Luo et al., 2024; Wang & Chen, 2025). Modern platforms can
conveniently access rich side information—such as a user’s account profile, browsing and purchase
history, or relevant environmental factors—before deciding on a price. Incorporating such contextual
signals enables sellers to move beyond static or aggregate demand models and tailor prices to
individual users or market segments. To achieve this, firms need to find algorithms that learn how
demand depends jointly on both price and context and determine an optimal personalized price when
a context is revealed.

Among various formulations for capturing the contextual dependence, the formulation with linear
utility model and non-parametric noise is receiving increasing attention due to its flexibility compared
with fully parametric model (Javanmard & Nazerzadeh, 2019) and simplicity between fully non-
parametric models (Chen & Gallego, 2021). In this formulation, each user is associated with a
context vector ¢; € R? upon arrival and derives a private utility u; = ¢/ 0, + &, with 6, € R? being
an unknown parameter and & random noise. After offering a price p;, the seller receives revenue
feedback p;1{p;: < u:} from the user, which indicates whether a purchase is made (i.e., revenue is
generated) or not. If denoting the tail distribution function P(§; > z) by g(z), the expected demand
then reduces to D(p) = g(c/ 0. — p), this corresponds to the semi-parametric formulation (Ichimura,
1993; Hristache et al., 2001; Dalalyan et al., 2008).
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As in the statistical estimation literature, the regularity of g(-) affects the difficulty of demand
identification and thus decision making. Previous works have extensively studied the semi-parametric
pricing problem under different levels of regularlty of g, For instance, Tullii et al. (2024) and Wang
& Chen (2025) establish regret bound O(T'3) and O(T'3 ) respectively under first and second-order
smoothness assumptions. In contrast, characterizing the general 3-smooth regime for 8 € [1, +00)
plays an important role in understanding how regularity influences demand estimation and how
the non-parametric regime interpolates to the parametric rates (Hu et al., 2020). To the best of our
knowledge, the only prior Work that attempts to provide such a unified treatment is Fan et al. (2024)

which establishes an (’)(T i ) regret bound. However, this result does not recover the O(T'5 ) rate
under the conditions of Wang & Chen (2025) and even degenerates to linear regret when 8 = 1,
leaving room for further improvement.

OUR CONTRIBUTIONS

Motivated by this gap, we explore the semi-parametric pricing setting in this work and provide the
improved regret bounds, we summarize our contributions as the following:

Improved Regret Bound for 5 > 1 Regime. Under strong uni-modality (Assumption 3) as in Wang

& Chen (2025); Chen & Gallego (2021), we establish a regret upper bound of O(T ‘fﬂ%) for all
B > 1. For comparison, under uni-modality together with additional regularity, Fan et al. (2024)

obtain @(T% ); under these distinct assumptions, our bound achieves a smaller exponent in 7". Our
result matches the optimal contextual guarantees for 5 = 1 Luo et al. (2024); Tullii et al. (2024) and
B = 2 Wang & Chen (2025), and it interpolates to the parametric rate O(ﬁ ) as 3 — oco. Moreover,

S . . =Bl . .

it coincides with the tight non-contextual bound ©(7'25+1) for general 3 established in Wang et al.
(2021). Hence, under strong uni-modality, semi-parametric contextual pricing is provably no harder
than its non-contextual counterpart.

Unified Algorithm and Analysis. The proposed regret bound is achieved by developing a unified
joint estimation procedure and confidence bound analysis for the parametric and non-parametric parts
via local polynomial regression for 5 > 1. In particular, when S = 1, the resulting confidence bound
applies directly to yield (7)(T2/ 3) regret via the optimistic principle without strong uni-modality,
matching Tullii et al. (2024). When 8 > 2, a finer control of the parametric estimation error is
required to exploit higher-order smoothness. We combine our procedure with elements of Wang &
Chen (2025) to obtain the general bound, extending their algorithmic design from the case g = 2.

Improved Confidence Bound Analysis. Our confidence bound analysis generalizes Tullii et al.
(2024); Wang & Chen (2025). In particular, when 5 > 2, we encounter the same challenge
of leveraging higher-order smoothness as in Wang & Chen (2025). While we adopt the idea of
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constrained least squares from their work, extending it to general /3 requires substantially more
than a straightforward calculation. First, the analysis in Wang & Chen (2025) heavily relies on a
linear-time local exploration schedule. As we detail in Section 6, this works under uni-modality
when 5 = 2, but leads to a degenerate regret rate as /3 increases. Second, although Wang & Chen
(2025) pioneered the finite-sample analysis of constrained least squares, the complex dependency
beyond martingale structure in such a joint estimation procedure prevents the direct application
of standard concentration inequalities such as Azuma—Hoeffding. In their proof, this dependence
is overlooked and therefore cannot yield the claimed result, as we detailed in Appendix K. These
challenges motivate our improved analysis, which bypasses the dependence issue and significantly
shortens the exploration period. As an additional contribution, our analysis also removes the strictly
increasing CDF condition listed in Table 1, which has been assumed in prior smooth semi-parametric
settings Fan et al. (2024); Wang & Chen (2025), thereby broadening the applicability of the theory.

Notation. For n € Z,, we let [n] := {1,...,n} and denote by || - || the ¢3 norm. For a positive

definite matrix A € R™*" and v € R", write ||u|]|4 := VuT Au. For a matrix A, ||A]|F is the
Frobenius norm; Apin (A) and A\pax(A) are its extremal eigenvalues; and A = B means A — B is
positive semidefinite. For a € R, |a] is the greatest integer < a. We use a < b or a = O(b) to mean
there exists C' > 0 such that |a| < C|b|; a 2 b or a = Q(b) to mean there exists ¢ > 0 such that
la| > ¢|b]; and @ =< b or a = ©(b) to mean there exist ¢;, C; > 0 such that ¢1]b] < |a| < C1]b), all
those constants may only depend on 8. We also use O, €2, © to hide polylogarithmic factors.

2 PROBLEM FORMULATION

Dynamic Pricing with Linear Valuations. At each period ¢ € [T], a new customer arrives with
observable feature vector ¢; € R? drawn i.i.d. from an unknown distribution P- and generates
underlying valuation as u; = ¢ 6. + & for some 6, € R? and &; i.i.d. drawn from a distribution
P= with CDF Fz. After observing c;, the seller posts a price p; € [0, pmax] and observes the binary
purchase feedback y; = 1{u; > p;} and the corresponding revenue p;y;. If we denote the tail
function g(r) := 1 — Fz(r), the conditional revenue is then given by

R(Ct>pt) = ptE[yt | Ctapt] = Pt]P)(ﬁt =P — C;re* | Ct7pt) = ptg(Pt - CZG*)-

The goal of the seller, without knowing 6, and P=, is to determine an adaptive policy 7 for posting

prices p; to maximize the cumulative revenue E[Zthl R(ct, pt)]. The performance of the policy is
evaluated by the cumulative revenue gap relative to the optimal policy:

T
Regret(T) := E{Z max R(cs, p) — R(ce, pe) |- (1
P
t=1
For compactness we will use an augmented vector form: define z; := (¢, p;)" € R*! and

0 := (—0],1)" € R sothat ) 0y = p; — ¢ 0. and Ely; | ci, pe] = g/ 0p).
Smoothness Condition and Assumptions. For the parametric part of the model, we make the
following boundedness assumption:

Assumption 1. There exist constants Cc, Cy > 0 such that ||c;|| < Ce almost surely and ||6.|| < Cp.
Let V := C.Cy + Pmax- Furthermore, the noise distribution P= is supported on [V, V].

Under Assumption 1, the value-price gap z; 6y = ¢/ 0, — p; lies in [V, V] for all ¢, so g is only
evaluated on a compact interval.

For the non-parametric part, we make the following assumption on g(-), which is equivalent to
making an assumption on F= due to the relation g(-) = 1 — F().

Assumption 2 (3-Holder smoothness of g). There exist constants Ly > 0 and 3 > 0 such that
g:[=V,V]—[0,1] is | B] times continuously differentiable and, for all u, v’ € [-V, V],

’9(“/) - TQW(U) < Lyl —ul’.
k=0 ’
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This is a standard notation for describing smoothness in nonparametric estimation (Gyorfi et al., 2002;
Tsybakov, 2008). It unifies previous assumptions in the sense that 5 = 1 corresponds to the Lipschitz
setting studied in Tullii et al. (2024); Luo et al. (2024), and S = 2 corresponds to the “2nd-order
smooth” setting studied in Wang & Chen (2025); Luo et al. (2022). In this work, we provide a unified
treatment for all 3 > 1.

For the revenue function, we make the following assumption.

Assumption 3 (Strong uni-modality). For any |u| < C.Cy, under the shorthand notation r(u, p) :=
pg(p — u), the maximizer p*(u) := argmax,r(u, p) is unique and lies in the strict interior (0, Pmax)-
Moreover, there exist constants 0 < o < L, < 0o such that for all |u| < C.Cy and all p € [0, pmax),

Tl — () < r(up* () () < 2 lp— ).

Assumption 3 says that, given any valuation u fixed, the revenue function r(u, -) is locally strongly
convex around its maximizer. Such conditions has appeared in various pricing models (Broder &
Rusmevichientong, 2012; Wang et al., 2014; Chen & Gallego, 2021; Wang & Chen, 2025).

It is worth to note that while broadly-accepted, the strong uni-modality is tend to be believed as a
relative strong assumption in non-contextual pricing setting, in sense that a (’j(ﬁ) regret can be
achieved even under the Lipschitz condition (5 = 1) of Fz (Kleinberg & Leighton, 2003; Wang
et al., 2021). In sharp contrast, for the contextual setting, the Q(TS/ 5) regret lower bound under the
£ = 2 and Assumption 3 developed in Wang & Chen (2025) shows a clear separation between the
contextual and non-contextual cases, indicating that even under Assumption 3, the pricing problem is
not overly simplified in our setting.

Organization. In the remaining contexts, we divide our presentation into four parts. In Section 3,
we recall an initialization guarantee and discuss the potential trade-off incurred for general 8. In
Section 4, we describe a joint estimation procedure for semi-parametric estimation and its statistical
guarantee. Finally, we combine these two procedures with a policy improvement oracle introduced in
Section 5 to present the complete algorithm and its regret guarantee in Section 6.

3 INITIAL EXPLORATION PHASE

In the initial exploration, phase, our goal is to obtain a pilot estimator 6 € R? such that || — 0.2 < n
for certain error level 7.

As discussed in Wang & Chen (2025), such a pilot estimator may be obtained through initial access
to offline data. However, suitable offline data is not always available. In this section, we recall an
initial exploration guarantee under the diverse context distribution assumption from Fan et al. (2024):

Assumption 4. There exists some positive constant ¢,y so that E[(c/ 1) (¢} ,1)] = <ain],

Under Assumption 4, Fan et al. (2024) showed that by posting uniform exploration prices p; ~
Unif[0, V] for O(1~2) rounds, one can obtain the desired estimator through a suitable parametric
estimation procedure. The procedure is summarized in Algorithm 1, and we present the main result
below; its proof is provided in Appendix B for completeness.

Lemma 5. Suppose Assumption 1 and 4 hold. Fix § € (0,1). Algorithm 1 with O (n~2d®log(1/6))
running time can output a parametric estimator 6 with ||0 — 0.|| < n with probability at least 1 — 6.

In particular, every price posted in the exploration phase incurs a constant sub-optimality gap, so the

total regret from exploration scales as O(~2). To match the desired @(T%) regret bound under

2

the S-Holder condition, we require ™= =< T'25+1 | thus the pilot estimator accuracy must be restricted

to O(T_fﬁ%). When g = 1, as discussed later in Section 4.1, with n =< T—1/3 even a linear
level perturbation bound O(T'n) is sufficient to achieve the optimal @(TQ/ 3) regret. As (3 increases,
the required regret rate decreases while the pilot error increases, calling for a sharper approach to
exploiting smoothness information—this is precisely the challenge we attempt to address in this
work. For convenience, we fix the level of 7 for a given [ throughout the remaining discussion:
When discussing the setting with a specific 8 > 1, we set the corresponding pilot estimation error
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Algorithm 1 Pilot estimation (adapted from Fan et al. (2024))

1: Input: Running time t;

2: for the next t time periods do

3: Offer price p; ~ Unif[0, pmax] and let {D(t) = {c;, pt, Yt }eer } be the collected data;
4: Compute 0 < arg mingegas t=* Zte[t} (Prmax¥t — ¢ 0)2;

5: return 6

EES)| . N . . . .
ton = T 1+2. As noted in the earlier discussion, this choice is the sharpest possible rate under
Lemma 5 without violating the desired O(T' 25T ) regret.

Finally, we note that Assumption 4 is used only to obtain the pilot estimator and is therefore needed

only during the initial exploration period of length @(T% ). While careful readers may find the
phrase “needed only” unusual since our setting assumes i.i.d. contexts, here we allow the context
distribution to be two-phased: after the initial exploration period, the contexts may follow any
distribution that satisfies Assumption 1, not necessarily Assumption 4.

4 SEMI-PARAMETRIC ESTIMATION SUB-ROUTINE

4.1 PILOTED LOCAL POLYNOMIAL REGRESSION

Given a pilot estimate §y := (—0",1) " of 6, we introduce a piloted local polynomial regression
subroutine, with an input dataset D collected through a sub-routine conducted during a sub-interval
of the total horizon [T'], as the following.

Algorithm 2 Piloted Local Polynomial Regression

1: Inputs: pilot estimator y with ||y — 6| < 7; smoothness 3 > 1, dataset D := {c;, pi, ¥ }1 1,
precision of partition h.
2: Initialization: partition [-V, V] into M = [1/h] equal bins Iy, ..., Ips. For j € [M], set

Ti={iehl zi=(p) =0 €I}
and the polynomial degree ¢ = | 3].
forj=1,...,M do
if 7; #0 then
Pick arbitrary lij € I; with [|Z;]|| < Cc + Pmax-
For any 6 with [0 — || < 7 and any = with 276, € I, define

AN AN

Aj(@,0) =@ —7,)0,  Uj(x,0) = (1,8;(x,0),...,5;(z,0)") ",

and the Gram matrix A;(0) := >, U;(@i, 0) Uj (i, ) . Set the local estimator

(. ) TA(O) TS, Ui(x;,0 if A;(0) is invertibl
G| 0) = {U](x, ) A;(8) ZzeijzUJ(Iu ), if A;(6) is invertible,

0, else.
7: else
8: Set g;(- | 0) = 0 for all .
9: Output {g; (- | 0)};cran, j0—a0 )1 <n-

In Algorithm 2. The input dataset D is first binned into different intervals I;, j € [M] based on the
pilot estimator 6, then a local non-parametric estimation is performed for every candidate parameter
6 over interval I; to obtain g;(- | #). Let n; := |7;|. Now we present the following deterministic
estimation error guarantee of g; (- | #) without any requirement on the input dataset D :

'the existence of such Z; is straightforwardly ensured by 7; # 0.
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Proposition 6. Fix j € [M]and h > T ~ze, Under Assumptions 1 and 2, for any 6 with
0 — 0o|| < n and any x with ||z|| < Cc + pmax and x "0y € 1;, if A;(0) invertible then

9i(x 10) = gz 00) =v;(2,0)78;(0) + Uj(.0)" Y (ye — 9] 00) ) A7 (O)U; (1. 0)
‘et —_———

1=¢e¢

O (14 i U 0) y-10):
where, with X ;(z,0) :== (x — ;) ", ... . L((x —z;)T0) ' - (& — a’:j)T)T € R, we define
v;(,6) = X;(2,60) — Uj(2,0) A7 (0) )

@ (zT
5;(0) == (' (@ 80)(0 — 0p)T,..., 52 (g — ) T) T € R

T, Uj(xi,O)Xj(xi,H) € RZ,

In Proposition 6, the estimation error is decomposed into three terms. The first term, which arises
from the mismatch between the pilot estimator 6y and the underlying truth 6, creates a central
difficulty in the analysis for general®> 3 > 1, as discussed in Remark 7. Due to the  — 6 term
appearing in &;, we can only obtain an O(n) upper bound on |v;(z,8) " §;(6)| in general. On the

other hand, carrying such an O(n) bound yields an overall rate of O(Tn) = O(T% )—far above
the desired (’)(Tzﬂﬂ%) result.

This suboptimal O(n)-order term in Proposition 6 is the main motivation for using a refined estimator
of 0 beyond the initial pilot estimation, leading to the constrained least-squares estimator for refining
the parametric estimates in Section 4.2.

B+1 . ... . . .. .
Remark 7 (An O(T'25+1) regret via Proposition 6 without the first term). Since Proposition 6 is
quite general and requires no assumption on how D is collected, in Appendix J we show that, when

combining Algorithm 2 with an Upper-Confidence-Bound—based algorithm design, an o (T%)
regret can be achieved if the right-hand side of Proposition 6 does not contain the v;(z,0)";(0)
term. While the omission of this first term is in general impossible, this discussion mainly illustrates
how the problem can be simplified without it.

We also note that there are two special cases where such an omission can rigorously hold. First,
when B = 1, we have { = 0, and this analysis recovers the @(TQ/S) rate in Tullii et al. (2024)?,
which is minimax optimal. Second, in the non-contextual setting studied in Wang et al. (2021),
where ¢ = 0 and x = (0,p) only depends on price, one can show that v;((0,p),0)";(0) = 0.
In this case, our discussion recovers the general O(Ti’ﬂﬁ%) regret in Wang et al. (2021), which
is also minimax-optimal. We also note that throughout this discussion we do not need the strong

uni-modality condition in Assumption 3, and in the second setting we do not need the diversity
condition in Assumption 4 for exploration. This matches the minimal assumptions used in prior work.

Notation for Convenience: While Algorithm 2 is described with flexible precision h > T 257 for
1
generality, throughout the main text we by default set o = n™ 26+1 when inputted |D| = n.

4.2 CONSTRAINED LEAST SQUARED REFINEMENT

Using the local fits g; (- | §) from Algorithm 2, we refine the parametric estimate via a constrained
least—squares (LSE) subroutine, a standard device in semi-parametric estimation, cf. Hirdle et al.
(1993); Wang & Chen (2025). For each j € [M] (with 7; defined in Section 4.1), define
~ ) R 5
6; € argmin Y (y; — gj(xi | 6))”. ©)
6—6oll<n jeT;

We have the following statistical guarantee for such constrained LSE under additional conditional
independence assumption on D:

“Note that when 8 = 1, the v;(z, 8) " §,(8) term does not appear since £ = 0.
31t is worth noting that the algorithm in Tullii et al. (2024) can work even in an adversarial context setting
with adaptive initial exploration, as we discussed in Appendix J.
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Proposition 8. Fix any 6 € (0,1). Suppose Assumptions 1,2 hold and {y;}}_, are mutually
independent conditioned on {x;}?_,. Then under the condition that A;(0) is invertible and ¢ =<
nIFET = Q(d" log™/*(1/6)\/n), we have with probability at least 1 — O(nd), uniformly for all x
with "0y € I; and j € [M], the solution 0; to (2) satisfies

‘ﬁj(aj | 53) - g(a:TGO)‘ S Errj(z) + nfﬁ, Vj € [M] and Vx such that ' 0y € I;.  (3)

B ~ ~

Where Err;(z) := (\/ dlog(1/6)+ /myn~ 2+ ) : (||vj(x, 0;) H(gj(é\j)_,.gl)—l +[|U;(x, 05) ||A;1(§j))
and Ej (9) = ZzETJ v, (.Z‘z', 9)’1)]' (Jii, 9)T
Proposition 8 describes an error bound on the glued estimator

~ L Th RN "'

i) =" M0 € L} 3y | 6)),
which relies on a characterization for the parametric minimizer (2). A key difficulty is the dependence:
during the analysis of the constrained least squared estimator, the all samples in 7; are used compute 6;
and g; (- | -), this together with the non-linearity introduced in the squared loss, creating a complicated
dependency structure. In 8 = 2, Wang & Chen (2025) attempts to mitigate this dependency using a

leave-one-out argument and derive a bound similar to Proposition 8. Unfortunately, as we detail in
Appendix K, their argument cannot handle this dependency and thus fails to yield the desired result.

Instead, with the unified local polynomial approach, a key observation in our analysis is that such
complicated joint-lease squared form can be reduced to the concentration analysis of a quadratic form
involving observation noises, which then can be tackled via the standard Hanson-Wright inequality.

To see why Proposition 8 refines Proposition 6 and yields improved regret, we argue in aggregate
rather than pointwise. The right-hand side of Proposition 8 has a self-normalized vector form, which
implies the following bound under suitable distributional assumptions on x and D:

Theorem 9. Fix j € [M]. Assume in additional to Proposition 8 that T; allows a disjoint decomposi-
tion T; = T, U T with:

i) Samples from T* are i.i.d. from a stationary distribution Q; and |T?| > [n;/2],

ii) For any 0 with |0 — 0o < 1, Amin(HAP(0)H) Z \/nj with H = diag(1, M, ..., M=% e
REFDXEHD) gpg AP(0) = Eteij Uj(x, 0)Uj(x,0) 7.

Then it holds with probability at least 1 — § that

By, [Erry(z)] S d*log®(1/6) (n;% + nfzﬂ%). )

Theorem 9 states that under the distribution collecting (a subset of) D, one attains a parametric rate in
n; and a B-dependent non-parametric rate in 7 that matches the usual minimax-optimal rate under 3-
Holder smoothness (Tsybakov, 2008). In particular, when 7 is linear in 7", which is the scenario in our

) 28, . .
subsequent regret analysis, the second term of (4) scales as 17+, improving the linear dependency 7
rate as we discussed in Section 4.1.

Remark 10. In Theorem 9, we assume an §)(,/n;) eigenvalue lower bound condition on normalized
version of A (), mainly to carry out the perturbation analysis involving the inverse of the empirical
matrix. By contrast, Lemma EC.11 of Wang & Chen (2025) states a similar result for 5 = 2, but
under the stronger condition A;(0) = n;l 4 As we note in the subsequent Remark 12, relaxing the

B+1
eigenvalue condition is key to extending the analysis to 8 > 2 while maintaining the T 25 1 regret.

5 HANDLING POLICY-INDUCED DISTRIBUTION SHIFT

Theorem 9 is stated under a stationarity assumption: the distribution of = used to evaluate the expected
gap matches the distribution of D used to fit the joint estimator. This is generally hard to use for
regret-minimizing policies, which update adaptively and thus induce nonstationary distributions. To
address this, we adopt the distribution-shift subroutine from the recent advance of Wang & Chen
(2025) to design an epoch-wise algorithm, where the distribution mismatch between epochs is well
controlled, so that Theorem 9 can be applied to the regret analysis.

*The key improvement comes from applying self-normalizing arguments based on the RHS of (3).
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Figure 3: Total Regret incurred by linear versus
sub-linear times of local exploration. The total cost
of the local exploration operation (lines 11-13 of Algo-
rithm 3) is plotted. At each bin j and epoch 7, the total
exploration time of Wang & Chen (2025) is ©(n. ;),

28—1
whereas ours is ©(,/n;), resulting in ©(7"25+1) re-

Figure 2: Forced exploration via price round-
ing. At the s;-th time that a raw price p; de-
termined utility is piloted to interval ;. If s;
is the L;-th element in 7exp, the raw price will
be rounded so that the piloted utility lies at the
(L; mod | B])-th equi-partition points of I;. This
figure illustrates the case s; = 4,8 = 6, which

B+1 . . .
gret and ©(T'25+1) regret, respectively, as discussed in
corresponds to L; = 2-nd element of Texp.

Remark 12.

Similar to Section 3, since the design of the algorithm is fully credits to Wang & Chen (2025),
we present only the key properties needed for our application here and defer the full algorithm to
Appendix C for completeness.

Proposition 11 (Wang & Chen (2025)). Suppose Assumptions 1 and 3 hold. Consider a stochastic
policy 11 containing all conditional uniform stochastic policies:

IT:= {7 : C — A([0, pmax]) | 7w(c) ~ Unif[x(c),7(c)] for some m(c) < 7(c),Ve € C}.

Then there exists an policy improvement oracle A (see Algorithm 4 in Appendix C for details), so that
with any input tuple m € I, G(+) : C X [0, pmax] = R, CB(+) : C X [0, Pmax] — R satisfying

(S1) p*(c"8.) € Supp(n(c)) forallc € C;
(82) [g(x) — g(x"6o)| < CB(c,p) forallx = (c",p)"

Its output 7' = A(w, g, CB) € I satisfies:

(i) p*(c"6,) € Supp(m zrforallc ecC;
(”) Echg,pwﬂ"(c) [R( R(C p)]

131213' ]ECNPC ,p~m(c) [CB(Ca p)} .

withc € C and p € [0, pmax)-

1Ecwpe prr(o)[R(c, p*(c16.)) — R(c,p)] +

Proposition 11 guarantees the existence of a policy improvement oracle .4 so that its output policy
improves upon the input policy in the sense that it discounts the regret of the input policy by a
factor of 1/4, and adding an expectation of the confidence bounds evaluated under the input policy’s
distribution. This makes it possible to apply Theorem 9 for our regret analysis.

6 THE LPSP ALGORITHM AND REGRET RESULTS

In this section, we put all components introduced from Section 3 to 5 into an epoch-wise design to
present our main algorithm in Algorithm 3. In Algorithm 3, after an initial phase for calculating
the pilot estimator fy, the algorithm then enters an epoch-wise> phase to balance exploration and
exploitation. At each epoch 7, the algorithm posts prices based on a fixed stochastic policy (71

SEpoch-wise convention. Throughout epoch 7, we use the same constructions as in the subroutines but
computed from the epoch-7 dataset D and partition {;}c(as,1: for any quantity Q;(-) defined earlier, we

write Q, ;(-) for its epoch-7 version (e.g., A~ ;, gf’j, CB-rj, T+,j)-
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Algorithm 3 Local Polynomial regression-based Semi-parametric Pricing(LPSP) Algorithm

1: Inputs: Smoothness parameter 3, total time horizon 7', hyer-parameter cq, Ng, C.

Initialization: 7(*)(c) < Unif[0, pay] for all ¢, pilot error level 7 = T~ 5% and exploration
length tg specified in Lemma 5. Epoch length schedule N, = 2" Ny, 7 > 1.
// Initialization Phase as described in Section 3
Estimate the pilot estimator 6 and 6y := (=07, 1) using t time-steps through Algorithm 1.
forr=1,2,... until meets t > T do

/I Decision Making & Data Collection

_1
initialize D, := ), Toxp := {k* : k > 1}, partition [V, V] into M, := [N;7"""] equal bins
Ii,.... Iz, ,5et Ly =1,5; =0,Vj € [MT]
8: fors=1,...,N, do

»

AN A

9: Meets the ¢-th customer with context ¢; and sample p; ~ 7D ().

10: Compute u; := p; — ¢/ 6 and compute j; so that u, € I;,, s;, < s;, + 1.

11: if s;, is the L;-th element in 7oy, then

12: pr < p} with p}, — ¢/ @ is the (L; mod | 3])-th | 3]-equi-partition point of I;.
14: Present p; to the customer and receive feedback y;. Add (ct, pt, y1) to D

15: t+—t+1

16:  Compute 7, ; :={t € D, : z/ 0y € I;}

17: /1 Joint Estimation Phase as described in Section 4

18: Obtain joint estimators {g ; (- | 07 ;) }je[as,) using D, with Algorithm 2 and (2).
19:  Compute the glued estimator g-(z) := 3. cppr Ha 0o € I}, 5(x | 0. ;) and the glued
confidence bound

— L ) ~
CBT({E) = Z 1{$T§0 c [J} . Cl (EI‘I‘T,j(l’) + NT 2ﬁ+1) lfHAT,]'(QT’j)H t Coml,
jE[M,] 1 otherwise.

with Err; defined as in right-hand-side of (3) and N, ; = |7; ;|.
20: // Policy Improvement via .4 described in Section 5
21: Update 7(7) + A(7("=1) G, ,CB,)

determined by the previous epoch, with a portion of prices rounded for exploration. With such design,
Theorem 9 can be applied to analyze the regret incurred by unrounded prices based on Proposition 11,
and the key is to ensure the conditions in Theorem 9 holds, which relies on the localized exploration
procedure we introduced in line 11-13 (see also Figure 2), as detailed below:

Localized Exploration. The goal of the localized exploration procedure in lines 11-13 is to construct
the 7;-“’ part so that condition ii) in Theorem 9 is satisfied. This procedure plays a key role on keep
the design matrix of local polynomial regression well-conditioned even without diverse context
assumption in Assumption 4. To see how this works, we provide a high-level analysis for 6, and leave
the full details to Appendix G. Note that the normalized matrix HA°; (o) H admits a Vandermonde

decomposition HA;‘?j(éo)H =27, ZTT’]- with

Zrj = (1, Aj(2e,00) /b, . ., (Aj(a:t,éo)/h)é)—r]te,coj e RUADx(Li=1)

The lower bound on its singular values depends on the separation between A (z, 0) for different
t (Gautschi, 1963). The equi-partition rounding procedure then creates constant-level separations,
which ensures that Apin (HAP;(00)H) = 02,,(Z7 ;) 2 |L;/B]. Moreover, a basic calculation

based on the definition of 7ey,, yields that L; = o(/n, j), which leads to the eigenvalue lower
bound co,/n;; for HA, ; (6p) H, provided that n. ; exceeds a constant depending only on cg, 3.

Remark 12 (Cost of Localized Exploration). From our exploration schedule, we have the total
exploration step at the T-th epoch is given by O(3_ ¢y, /Mrj) = O(VN-M;) = (’)(N.rz%%).
Since Algorithm 3 stops after O(log T') epochs, the total exploration steps amount to @(T% ). This
leads to the @(T%) total costs. In contrast, as discussed in Remark 10, Wang & Chen (2025)
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requires a linear-in-T' number of exploration steps to satisfy their eigenvalue lower bound conditions.
They use uni-modality to control the local exploration cost, which results in a per-epoch exploration

28-1 _
regret of O(N, M%) = O(N;7°"") leading to a total exploration cost ofO(T% ). While this rate
matches their O(T?’/ 5) regret when (3 = 2, it deteriorates when (3 > 2. This shows that shortening

~ B+1
the local exploration length to /N, M. is crucial for attaining the desired O(T 25%7) regret for
general 3, we illustrate the comparison of total exploration costs in Figure 3.

Implementation Details of Algorithm 3. Careful readers may notice that in the description of
Algorithm 3 and its sub-routines, we implicitly require storing parameterized functions such as
g(- | 0) and 77 (]) for 0 and | in a d-dimensional space. This would necessitate a discretization-based
design and lead to computational inefficiency. In Appendix L.1, we provide a detailed discussion of
how to implement the algorithm without incurring heavy storage costs. Now, we claim the regret
guarantee of Algorithm 3 as the following:

Theorem 13. Suppose Assumptions 1-4 hold for some 8 > 1, Algorithm 3 with hyper-parameters
co, No, C1 larger than some constant depending on [ satisfies

Regret(T) < d*log®/? (T)T% + Poly(d®,log T).

On the dependency on d. Our regret bound stated in Theorem 13 has d* dependency in the leading
order term and Poly(d”) dependency in the second order term.

The source of the d* term in the leading order is the in-distribution prediction error result in Theorem 9,
which is the consequence on using self-normalized argument for bounding the E[||v;(z, 0;)|/s;-1]
J

and the union bound taken over  and . On the other hand, the additive Poly(d®,log T') term is a
technical by-product of the covariance regularization used in our analysis. Specifically, to invoke

Proposition 8, we require the matrix regularization level to satisfy ¢ > d’ log7/ 2 (T)V/T, so that
the regularized empirical covariance dominates its population analogue, as required in Lemma 18.

2

+1
Since our algorithm ties ( to the pilot accuracy via ¢ < n~* < T'26+1, the above condition may fail

for T3 < d7, resulting in a finite burn-in phase of 7" whose contribution is summarized by the
Poly(d?,log T') term.

We would note that, despite the heavy d-dependency is included due to artificial reasons as explained
above, during the running of our algorithm only a (’)(\/&)—level confidence radius and a (d®/cpin )-
level initialization period used, this may leads to much better empirical performance regarding d, as
provided in our simple simulation in Appendix L.2. We believe that more careful analysis can either
improve the leading-order d*-dependency or remove this burn-in without worsening the polynomial
dependence on d in the leading term, and we leave this refinement as an interesting future direction.

Finally, we would note that there are several future directions opened by our result, including:

Removing the Strong Uni-modality Assumption 3. While strong uni-modality does not drastically
simplify the contextual pricing problem (as discussed below Assumption 3), we believe that the
final step in this line of work will eventually match our regret upper bound without relying on this
condition—much like what was ultimately achieved in the non-contextual setting by Wang et al.
(2021). In our analysis and algorithm design, the only part requiring Assumption 3 is the stationary
subroutine we called from Wang & Chen (2025). From a technical view, we believe we have already
moved a bit forward from Wang & Chen (2025) in the forced-exploration by removing the need for
strong uni-modality in theirs argument via sharper analysis. We hope this provides a foundation on
which future work can further relax or eliminate this assumption entirely.

Achieving Adaptivity on the Smoothness Parameter 5. Another promising direction building on
our work is to study adaptivity to the smoothness parameter 8. Following the progression seen in
non-parametric bandits and pricing, where adaptive methods (Gur et al., 2022; Ye & Jiang, 2024)
build on earlier non-adaptive algorithms (Hu et al., 2020; Wang et al., 2021), we believe similar
adaptivity can be achieved in our setting under additional self-similarity assumptions. More precisely,
one potential reference is Gong & Zhang (2025), which also investigates adaptivity in contextual
pricing. While their model differs from ours, we expect that some of their conceptual insights could
be adapted. However, making these ideas fully rigorous would require substantial technical work and
worth an independent study.

10
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DETAILS OF LLM USAGE

In writing this paper, the LLM was applied to polish our sentences and correct potential typos. In the
experimental section (Appendix L.2), we also used an LLM to help organize the code structure and
implement the benchmark algorithms.
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A OTHER RELATED WORKS

Dynamic Pricing. There are extensive studies in dynamic pricing (Kleinberg & Leighton, 2003;
Den Boer, 2015; Wang et al., 2014; Filippi et al., 2010; Broder & Rusmevichientong, 2012; Qiang
& Bayati, 2016; Cohen et al., 2020). In the contextual setting with a linear demand model, O(v/T)
regret can be obtained when the noise distribution is either fully known (Filippi et al., 2010; Ban &
Keskin, 2021; Qiang & Bayati, 2016; Broder & Rusmevichientong, 2012) or assumed to belong to a
parametric family (Javanmard & Nazerzadeh, 2019). The semi-parametric setting considered in our
work and in Fan et al. (2024); Tullii et al. (2024); Bracale et al. (2025); Wang & Chen (2025); Luo
et al. (2022; 2024); Xu & Wang (2022) generalizes this framework by allowing the noise distribution
to be fully unknown. Among these works, apart from those listed in Table 1, Bracale et al. (2025);
Luo et al. (2022) consider the 5 = 1 case and achieve @(T3/ 4) regret, while Luo et al. (2024)

achieves @(TQ/ 3) regret but additionally assumes an online estimation oracle. Finally, there also
exist works that consider pricing with fully non-parametric demand (Chen & Gallego, 2021; Tullii
et al., 2024; Javanmard et al., 2020) or other additional structures (Bu et al., 2020; Allouah et al.,
2023; Keskin & Zeevi, 2014; Miao & Chao, 2021), which are beyond our scope.

Semi-Parametric Regression and Single-Index Models. Our setting is closely connected to semi-
parametric single—index models, where an unknown low-dimensional index is coupled with a non-
parametric link (Powell et al., 1989; Hérdle et al., 1993; Ichimura, 1993). Classical work establishes

14
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root-n estimation of the index under regularity and recovers the link via one-dimensional smoothing
(Klein & Spady, 1993; Ichimura, 1993; Carroll et al., 1997). Foundational kernel procedures—
Nadaraya—Watson and local polynomial regression—underpin these analyses, with well-understood
uniform convergence and optimal-rate properties (Nadaraya, 1964; Watson, 1964; Stone, 1982). The
literature also covers binary responses and generalized or partially linear single-index structures
(Klein & Spady, 1993; Carroll et al., 1997), setting with discrete or irregular covariates (Horowitz &
Hirdle, 1996), and single—index coefficient models under strong mixing (Xia & Li, 1999). Compre-
hensive expositions and survey treatments can be found in (Gyorfi et al., 2002; Ruppert et al., 2003;
Tsybakov, 2008; Horowitz, 2009). Despite this extensive theory, many results assume smooth design
densities and emphasize asymptotics, assumptions that need not hold in contextual pricing where
prices are policy—driven and the induced design can be irregular; hence the classical guarantees are
informative but not directly applicable without further adaptation.

B PILOT ESTIMATION

In this section we introduce a simple pilot estimation stage under a mild diversity assumption on
covariates Amin(E[cic{ ]) > co/d. We estimate 6, by least squares. This procedure appeared in Fan
et al. (2024); we include it here for completeness.

Theorem 14. Let 0 be the output of Algorithm 1. Suppose that Amin(Ecic]) > co/d for some
co > 0. Then there exists some constant Cy > 0 such that for t > Cyd, the following holds with

probability at least 1 — Cy6 — 2¢~t/Cod” .
d3log(1/9)
—

Remark 15. For any target error level ), we may choose t = ©(d® /n?) to guarantee that ||6y—0,|| <
n, which results in a regret of order O(d?/n?).

160 — 0.1 < Co

Proof of Theorem 14. Let H = py,.y and for any 6 € R¢
1
LO) = > (Hyr — ¢/ 0).
te(t]
We may compute the gradient and Hessian of £(6) as follows:

2
VoL(0) = < > (/0 - Hy)-c; € RY,

te(t]
Z cic, € R4,
te [t]

A second order expansion yields that for some 0 lying between 6 and 0.,

0> L(B) ~ L(0.) = (VoL(0.),0 — 0.) + <e 0., V3L(G)(0 - 6.))

= (VoL(6,),0 —6,) 0 0., ) crel (6 —06.)
te(t]
This implies that
mm( > ) ) 16— 6.2 < 9 0., e/ (0 —0,)) < (VoL(0s),0. —0)
te(t] telt]

V||VoL(0.)]| - 16— 6.]]-

IN

Lower bounding A, (£ ", el cic/ ). By the matrix concentration in (Vershynin, 2010, remark

5.40), there exists some constant ¢; > 0 such that for t > cl_ld, we have with probability at least
1— 2€—c1t/d2

mln( Z CiCy ) > Annn (]Eclcl H Z thf EC1C1

te(t] te(t]

>i
—d
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Algorithm 4 A subroutine for handling distribution shift (adapted from Wang & Chen (2025))

1: Inputs: {(x(c),7(c))}eecc, A(,+), g(-,+), K =12L, /0., kK = /L, /o,
> Input parameters: prior policy that offers price p ~ Unif([x(c),7(c)]), error quantification
A(+, ), estimated model § : C X [0, pmax] — [0, 1].

2: for every c € C do

3: Partition J = [r(c),7(c)] into K intervals of equal lengths, denoted as .Jy, ..., Jx; write
|.Ji| for length and Jy, = [p(k),B(k)].

4: fork=1,2,...,K do
> Estimated average reward 7(.J;) and its uncertainty quantiﬁcation A(Jy)

5: P(Jk) < [Je|7" [, pale,p)dp;  A(Jy) = [Jx|7" [, Alc,p)dp.
> F1nd the optimal price for context ¢ together with its uncertainty A

6k arg maxe g 7(Jk); A k1T % + maxge(K] A(Jx)?.
> Update the pricing range for context c, by stretching out A from the price interval J;;

72 [@(e), 7 (c)] < [p(k) — A, B(k) + ANV [0, pma]-

8: return {7’ (c), 7 (¢)}cec > renewed policy is p ~ Unif([7’(c), 7 (c)])

Upper bounding || VL (6))||s. Note that for any ¢ € [t] and i € [d], we have |(c/ g — Hy,) -
cm’ < 1and

E(c) 0. — Hyy) - cpi

=E[c/ 0. - cri — HE[y | ci] - cr4]

= E[Cje* ¢ — HE[1{p; < ¢/ 0. +&) |l 'Ct,i]

= E[CIQ* cri— B[] 0. + & | ¢ ccpi] = 0.

Therefore, by applying Hoeffding’s inequality and a union bound argument, there exists some constant
C1 > 0 such that for t > Cd, we have with probability at least 1 — CJ that

IVoL (0.0 < Ct M_

Combining the above estimates, we have for t > ( vy,

| d? log(/)
16— 9H< o

holds with probability at least 1 — C,6 — 2e— 1/ @ The claim follows by adjusting constants. [J

C DISTRIBUTION SHIFT SUBROUTINE

For completeness, we include Algorithm 4 (adapted from Wang & Chen (2025)). Given a prior range
[7(c),7(c)], an estimator g, and an envelop A, the subroutine returns a renewed range [7’(c), 7 (c)]
for uniform pricing.

D PROOF OF PROPOSITION 6

Recall that for any z with 2" 0y € I;,

95(x | 0) :=Uj(x,0)"A;H(0) Y y:Uj (i, 0 ©)
i€T;
and X (z, 9) ((z— jj)T,..., 18] ((x—z,)To)AI-1. (xfij)T)T Recall also that v;(z, 0) :=
Xj(x,0)=Uj(x,0)TA Lo ) 2ier; Us(wi, 0)- X (i, 0) and 55(0) == 3, v;(zi,0)vj(x;,0) 7.
For any 6 with ||§ — ]| < 1, we set

_ Oz 6o T
5(0) = (9/(a] 00)(0 — 60)T, ..., =G0~ 6)T) .
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1
Let h =n~ 25+1,

We first decompose the error as follows: for any x such that =" 6y € I,

9i(@ | 0) = g(z"00) = g;(x | 0) = g;(x | 60) +9;(x | o)

—g(z" o).

=17 = To

(6)

Estimating 7;. We begin by expressing the response as y; = g(z; 0) + &4, where E[g; | 2] = 0.

Then based on the closed form (5), we can further decompose Z; as follows:

T = {Us(@.0) Y 9(al 00)AT (O)Uj(1.0) = Us(w,00)7 Y gl 0047 (60)U; (a1, 60)}

teT; teT;
=T
+{Us(z.0)7 Y = 5(2,8) = Us(,00) T S 20A (00) Uy, 60) }
teT; teT;
=712

Consider the | 3]-order expansion of g(-) at =" @ for each ¢, we have by 3-Holder continuity and

n < h,
g(x] 0) = D] Uj(4,0) + &

for some &; = O(h?). Then we have

Ill Z A xt,H)Uj(:Et,t%) D U .%' 90 Z A
teT; teT,
)TN G O)U; (. 0) — Us(x,60)T Y GAS
teT; teT;
QU (,0)T S A HO)U (e, 0)Uj(we, 60) Dy — Ui, 80) T Y AL
teT; teT]
)Ty GAy (1, 0) (€,60)" > &A;
teT] teT;
Z A $t79)(Uj(l‘t, 90) — Uj(a?t, 9))TDj
teT;
+ (Us(,0) = Us(,00) T 32, AT O)U; (20, 0)U; (0,6) " D
=I
)Ty GAy (e, 0) (€,00)" > &A;
teT; teT;

mta 00)

l‘t, 60)

3‘1‘790)

$t790) (mhao)

th H)Uj(ﬂft, G)TD]‘

(N

Here, in (i) we have used the identity ;. U; (2, 0)Uj (x4, 0)T = A;(0) for all 6. Now noticing

that forany 1 < s < | 8],

Aj(x,00) — A3 (x,0) = ((z = 75) " 00)* — ((z — 7;) " 0)°

=s((@—2;)"0)""" - (x—7;) " (6 — 0) + O(n

we have

(U;(x,0) — Uj(x,60)) " D;

= (8)@.0) ~ Ay(@.00) ... A (w0) A (. 0,))
LﬁJ'

17
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=(@-z)" ... Bl(@—z)TOWI" (z-z))7) 1 +O(n?),
g(LBJ)(iTGO)
:XJT($,0) ij(ﬁ — 90)

=6;(0)
we can further writing 77, as

T = X;(2,0)76;(0) + O(n*) = Uj(2,0)TA;H(0) Y Uj(e,0) (X(x,0)76;(0) + O(n*))

teT;

-
— (X000~ U0 A O K, Vo) Xy(o6) ) 6500
v;(x,0)
0P (1 4+ U, 2.0) 35,

where we have used the Cauchy-Schwartz’s inequality:

> OWPU;(z,0)TA;H(O)U (xt,G))‘

teT;
1/2
< n2( (2,0)TAT(0) Y Uj(ae, 0)U;(1,0) Ajl(H)Uj(x,9)> :
teT;
=A;(6)
This completes the estimation for Z;.
Estimating 7. For Z,, we have
IQ 37 90 Z ytA xtveo) (mTeo)
teT;
= {Uj<x,eof > e = 9] 00))A7 (B0)Us (0, 00)}
teT;
+ {5,007 S gl 00)A5 (00)U; (1, 60) — 9(= T 60) }
teT;
{ x, (90 Z EtA ItyeO)}
teT;
+ {Uj(x,eof S gl 00)A (00)U; (20, 8) — (xTHO)}
teT;
{ IB 90 Z €tA ztaao)}
teT;
{ (x,00) Z A Uj(zt,00)U;j(x,0) " D; —g(xTﬁo)}
teT;
+ Uj(x,00) Z&g U (x4, 60)
teT;
=Uj(x,00)" > e (00)Uj (1, 00) + Uj(x,00) T > &AT (x4, 00)
teT; teT;

+{U;(,00)"D; — gl 00) } .

=o(h)

This completes the estimation for Z,.

18
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Combining two expansions and canceling red colored terms and blue colored terms, we have

9i(x 10) — g(x"00) = v;(x,0)"8;(0) + Uj(x,0)" > &rA; (0)U; (x4, 0)
teT;
)T GATHOU;(x,0) + O((h° + 1) (1 + ;| U(, 0) -1 g)))-
teT;

Finally, by Cauchy Schwartz’s inequality, we have the third term can be further bounded by

U;(2,0)" > &M (0)U; (2, 6)] < 2P ||U; (, 0) o+
teT;

Ok

This concludes that proof. O

E PROOF OF PROPOSITION 8

The proof of Proposition 8 relies on the following two lemmas, whose proofs are deferred to Appendix
H. Recall that h = n~ 7571,

Lemma 16. For any 0 with ||0 — 0y|| < n, it holds that

Gz [8) — g(x"60) = v;(z,6)"8;(6) )T e (0)U; (x4, 6)

teT;
+O(h°(1+ \/"j”Uj(m»e)HA;l(e)))
uniformly for all x with 70y € I; and j € [M].
Lemma 17. For any 0 with ||0 — 0o|| < 0, it holds with probability at least 1 — O(n;6) that

£(0) =3 (v~ Gyl | 9))° Zeﬁ@( TY,(0)8,(0))

teT; teT;

+0( log(1/4) - (\/6 5;(0 )+n3h2ﬁ) +log(1/8) + n hQﬁ)

We now prove Proposition 8.

Proof of Proposition 8. In the proof below, we consider = such that 270y € I ;- Recall that @ =
argming_g,| <, £;(¢) and we write # = 0; for simplicity.

It follows from Lemma 17 and a standard e-net argument over #—Ileading to an multiplicative d
factor before log(1/0)—that

)= 2 +0(5,0)7%,0)8,0))

teT;

~

+(’)( dlog(1/6) - (\/5 A 0;( )—&-njh%)+dlog(1/6)+njh2ﬂ>
holds with probability at least 1 — O(dlogn). As L;(8 ) < L;(6p), we can derive that
8;(0)"%(8)3;(0) + n;h*”
< /d1og(1/3) - \/8,(8) T, (0)5,(8) + n;h® + dlog(1/8) + n;h*’.
Using the facts that a2 < ba + ¢ = a < b+ /¢, Ya, b, ¢ > 0 and ¢[|8;(6)]|2 = O(1), we obtain

= = 1/2
\/54(9)@,( )6;(8) +n;h?8 < \/dloa(1/5) + (dlog(1/5) +n;h*)

— \J8;0)T(%50) + CD6; (B) < /Alog(1/0) + ysh’. ®)
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On the other hand, by Lemma 16, we have

@(z8) - Q(IT%))‘ <

v;(2,6)78;(0)| + )" > AT O)U;(a, )‘
R , teT;
V1 pS

FO(W (14 VI D)+ 3).

Term Y;: Using Cauchy-Schwarz together with (8) yields that

RN (\/W"‘ \/TTjhﬁ) . \/»Uj(m7§)'l'(zj(é\) + Cf)fl’vj(a;gé\),

Term Ys: Applying Hoeffding’s inequality with an e-net argument, we have with probability at least
1 —O(9) that

V2 S \Jdlog(1/6)U; (2,0)TAT* B)U (. ).
Combining the estimates for ); and ) concludes the proof. O
F PROOF OF THEOREM 9
For any j € [M], let 7, be the index set that collects the samples that are sampled i.i.d. from a

stationary distribution Q] and 7/° := T; \ T/?. Let n}? = |T/?| and n? = |T°|. Then we have
T; =T;2UT/°and n; = n} + n“’ The populatzon level quantltles are deﬁned as

V;i(0) :==E.q, [Uj(z,0)X Z Uj(x,0)Uj(24,0) 7,
J teTye
/_\j(G) = EzNQj [UJ(Z,Q)UJ( Z U l’t, xt,H)T
J teTr®
v;(x,0) == X;(x,0) — U (z,0)A; (0)V;(0),  ;(0) := Y 0;(4,0)0;(4,0) 7.
teT;

Lemma 18. Assume the same conditions as in Theorem 9. It holds with probability at least 1 — 0(9)
that uniformly for all x such that =" 0, € I; and 0 such that ||6 — 6o < n,

(i) [0 (2, 0) = 03w, 0) 2 S d7/10g™>(1/6) - (m; VA 1Us (2, O)lI5-+ () + 31U (. 0) 1) )-
(ii) Moreover, if ¢ < n=2 = Q(d" log"/?(1/5 )\/T5), we have
v;(2,0) " (5;(0) + C1) vy (x,0) S 05(,0) T (£5(0) + ¢I) 195 (x, )
+d"log? (1/6) - (n; P (. 0)15 1) + 13 CHT @03 1 )

The proof of Lemma 18 is deferred to Appendix I.1. Now we prove Theorem 9.

Proof of Theorem 9. Recall that h = n~ 75 and
EI‘I‘J (\/leg 1/5 +./n hB) (||U-j<x’9j)“(2j(§j)+c[)7l + HUJ(x,Qj)HA?_l(g]))

With Lemma 18 and the fact { 2, nl-/ %, we can now define the population-level confidence bound as

Exrj(x) = (V/dlog(1/0) + yjh®) - (19 (x.0)ll,@,)+cry- + Ui 01) -1 a,))

_ ~ 1/2
7 log3/2<1/6> (5 U@ B gy + (L gk U ) )

20
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It follows that for any = ~ Q;, if ¢ =< n=2 = Q(d" log"/?(1/8) /m7),
J J
Einq, [Errj(2)] S Esng, [Errj(2))-

Let

~ ~

Errj,(2) := \/@‘(Jﬂv 0,)7S; " (6,)0,(x,0;),

Errjo(z) == \/nj—1|Uj(a:, aj)\lfxﬂ(@) + (14 n,h28) - |U;(x, 9]-)||i,1(5
J J J

We then have

Eonq, [Brrj(2)] = (V/dlog(1/9) +\/”Tahﬂ) e~ [Brrjp ()]
472 log2(1/8)E, g, [Bry ().

Bounding E,q, [Err; 1(2)]. Asin proof of Lemma 18, we decompose 3; into

£i0) = 3 vi(e 00w 0)" + 37, 0@ 0@ )" +¢T = E70)).
teTe

=572 (8;)

Then by Jensen’s inequality,

Evn, (B4 ()] < \/Esno, [0, (2. 0,) TS5 (0,)3(x,0;)]
< wr«:wNQ,- [@»(oc,ejw(z;-a)—l@)@w@)]
R o B R o 1/2
= ()7 @) Bame o103, )7] = = (57@) — ¢ + o ((55) ), (276 <) )

=1 O(y/dlog(1/8)/n;) =0(1/n%)

1/2
<) (Cl dlog(l/é)/nj—i-l/nj) < 4/dlog(1/8)/n;.

with probability at least 1 — §. Where (i) is by matrix Hoeffding’s inequality and a simple union
bound, (ii) is by Zra( ) = ¢I = n~2I and n;? < n;. Therefore, we have with probability at least
1-46,

(V/dlog(1/6) + /ity jhP)Epng, [Errj i (2)] S dlog®?(1/8) - n >4 hP\/dlog(1/6).
Bounding E,..¢, [Err;»(2)]. By Jensen’s inequality, for every j with n; > 0,
Eonq; [Erj2(2)]

S (U ) \/nglzaxNQj[Uj<a:,oj>;J_l(@)} B, 10 00121 5 )|
J j J

— =~ A =~ A 1 ra(p -1(Q L (), 7, "
= (1+ ym;h?) - < (AT Aj(ej)>+<Aj(9j)—mAj(9j>:Aj1<9j>>+nra<Aj(9j)’Ajl(9j)>)
=0(1) J ] o
=0 (y/dlog(1/8)/n;)

N(lll) leg(1/5 /TLJ +h5 leg 1/5

with probability at least 1 — §. Where (i) is by matrix’s Hoeffding’s inequality and a simple union
bound, (ii) is by

(A(F), A = 3" Ui, 0,)TAT O)U (x4, 6))

teT?
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< N U0, ) TATTH6,)U; (20, 65) = O(1),
teTr

(iii) is by ey /m;1; < A, (6;).
Now we arrive at the same bound as in Err; ;:
d"?10g**(1/6)Eynq, [Errja(x)] < d*log?(1/6) -n; '/? + d*log?(1/5) - h

thus the same argument leads to the desired result.

Combining above bounds, we have the desired result. O

G PROOF OF THEOREM 13

Let n, j := |T- ;|. According to the algorithm design, the regret splits into the contribution from
uniform sampling and the rounding term:
[1052 T
Regretp (7 Z N E, [ e~ Pe prom(™) () [T(CTQ*,p*(cTQ*)) — r(cTﬁ*,p)]]

[Ing T M,

+ > E[Zuﬂaoefj}\/m}
=0

j=1
The first sum is the uniform sampling regret. The second sum is the rounding regret.
Bounding the rounding regret. By Cauchy-Schwarz inequality,

[log, T M, _ [log, T
3 E[Z 1B € I}, w] <Y VRs NO ISV,
7=0 j=1
Bounding the sampling regret. For any 7 > 0, recall that
__B_
Err, ;(z) :=(\/dlog(1/8) + \/nr;N: 77"
% (10732, 8-, 3,y + 10302415 )-

For any 7 > 0, we define the event

_ _B
O = {[77(x) —g(z"00)| < Y 1{a"0 € I;}Errj(x) + N, 7,
J€[M]

p*(c"0.) € Supp(n(7)(c)), Ve € C,p € [0, Prmax], andz = (c",p) T }.
It follows from Proposition 8 that IP’( N Ei%f m QI) >1—0Tlog, T

On the other hand, by the definition of the rounding samples, for any unit vector u € RLAJ+1,

nejul HAosOrg)Huz 30 w2 2
kellymr3/(181+1)]]
. \/TTJ J ' min 0-2' Z 2 Nr.j, (9)
” hm + 11 kellyn5/(181+1)]] min(Zk) Z /1o j

where Zy, is a (| 8]+ 1) dimensional Vandermonde matrix with ©(1) separation and in the penultimate
step we have used (Gautschi, 1963, Theorem 1) to derive that 02, (Zx) = 1. Similarly, we have

uw' HA, (0, ) Hu > /ir;. (10)
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So when ¢ = 72 = Q(d"1log"/*(1/6)v/T), Theorem 9 is applicable and with P, ; being the
distribution of z = (¢, p) T such that c ~ P¢, p ~ w(7)(c) at 7-th epoch condition on 2 such that
270y € I;, we have P( ﬂfi%z m QF) > 1 — 6T log, T, where for 7 > 0,

= {Eunr,, [Ere, ()] S d'og?(1/8)(n-}/% + N7 7). j € M},

Let P, be the distribution of 2 = (c',p)" such that ¢ ~ Pz,p ~ 7(7)(c) at 7-th epoch. The
Chernoff’s bound yields that IP( ﬂrlOg? T QT) >1— 6T log, T, where for 7 > 0,

QF = {n,; +1 2 max {E[n, ;] — \/E[n,;]log(1/6),0} + 1, Vj € [M.]}.

Therefore, on the event [ Ei%f g (QF N QT), we can derive that
Eonp, [ Y 1{azTb eI} Errm(a:)] = Y Pr(a"0 € I;)Egp,, [Err, ;(2)]
JE[M-] j€[M,]
_ __B_
< d'log?(1/8) > Pr(x"8 € Ij)(n,j/* + N 7T

JE[M-]

TO, ) __8
5d410g2(1/5)< Z PT(ZL' QOGIJ)+N 2ﬁ+1>

e Nrj+ 1

oAy 2 ] n"’d 2ﬁﬂ+1
= d*log?(1/6) ( %: ”+1 )

(@) / __B_
5 d4 10g5/2(1/5) . < % +NT 2B+1>7 (11)

where in (i), we have used the elementary inequality

c+1, Va,c¢>0.

a <
max {a — \/ac,0} +1 ~
Write ) := ﬂrlOg? "H(Q7 N Q5 N QF). By Proposition 11, for 7 > 1,
Er [Eerope prontor o€ 0,7 (76.)) = r(cT 6, )]
= B [ py i 0 [r(€ 709 (76.)) = 77602, p)] - 1{02}]
+ Er [Beope pronto o [r(€T 00, p7(702)) = (700, p)] - 107}
e gt (@ [(€ 00" (70.)) = 7(cT0..,p)] - 1{2}]

eor [ Y0 U8 € I} Brrpy(@)] - 1{Q}] + pruacP(Q)
je[]M ]

»Jk\'—‘

il
[
ﬂ{ b prrt -0 (@[ 097 (€ 0.)) = (70, p)]]

d*log®?(1/6) - (1/% + N, w“)—«—éTlogQT).

0

By choosing ¢ sufficiently small, i.e., § = T-10 we arrive at

Er [Eew pe gt 01705 (76.)) = 7702, p)]]

1 A
< B [Beep oo lr(c 00,0 (76.)) = (0, p)] + O(d4 log®(T) - N; 7* )
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Iterating the above bound, we have

[log, T’
Z N Ex {Echc,pwﬂ'(T)(c) [T(CTG*’p*(CTQ*» - T(CT9*7p)}]
7=0

< No + d*1og?/2(T) - T#71 < d*log®X(T) - 7951 |

Combining the rounding regret and the sampling regret, we have if n=2 = T =
Q" 1og” 2 (T)WWT) = T2 = Q(d" log”*(T)),

Regret(T) < d*log®(T) T
Adding the burn-in time term completes the proof. O

H PROOFS OF LEMMAS IN APPENDIX E

H.1 PRELIMINARY NOTATIONS

) (2] 0o)

For each j € [M], we denote D; = (Djo,...,D;5)" € RFIF with D;, = £ for
s €{0,1,..., ]}, under which the local polynomial expansion of g at Z, 6 up to | 3] order can be
written as D U (z, 0).

H.2 PROOF OF LEMMA 16

The claim follows from Proposition 6. With 7 = O(n~19%2 ) we have 2 = O(h(*+)) = O(hF).
O

H.3 PROOF OF LEMMA 17

Noticing that

Li0) =" (ye—gi(z 10))> = (9(x/ 60) — (s | 0) + &)

teT; teT;
~ ~ 2
= Do +2) algile[0) — g 00)] + ) [9(x] 00) —Gi(xe | 0)].
teT; teT; teT;
——
independent of 0 = &1(0) = E5(0)

Lemma 19 (Bounds on &;). With probability at least 1 — O(§), we have

&1(0) = O (VB3] - (/80 25008,00) 4,17 +1) ).

Lemma 20 (Bounds on &). With probability at least 1 — O(n;0), we have
£:(0) = @(@(9) zj(e)aj(e)) + O (log(1/5) +njh®).

The proofs for the above lemmas are defered to Section H.3.1. Combining the bounds for £ (6), £2(6),
we get the desired result.

H.3.1 PROOFS OF LEMMAS 19 AND 20

Proof of Lemma 19. By Lemma 16,
E10) =2 erv(26,0)16;(0) + D e - O + ) er - /i |Uj(we,0)l 51 g - O(7)

teT; teT; teT;

:=£11(0)

24



Under review as a conference paper at ICLR 2026

+2 Z Et .’Kﬁ Z Et/A fEﬂ 9)

teT; tET;

::(‘:12 (9)

Term £11(0): Noticing that condition on {z;}},, {¢}}_ are mutually independent and zero-mean
random variables. By Hoeffding’s inequality, with probability at least 1 — O(0),

£1(6) £ VoaT17) - (/350 25008,0) + vt + (3 nit (e d)TA; 00 0)) )

teT;
Using the fact that
> Usa, 0) A1 O)U;(1,0) = tx (A710) 3 Uslan, O)U; (20,0) ") = 18] +1,  (12)
teT; teT;

we arrive at

&11(0) < /log(1/9) - (\/5 0TS ()+\ﬁhﬁ)

Term E12(0): For j € [M], let
ej = (et)ier; ER™,C) = (Uj(xt,e)TAgl(e)Uj(xt,,e))ng € RWX"i
Then £15(0) can be rewritten as
E12(0) = EICjej
Applying the standard Hanson-Wright inequality leads to

p(|512(9) — BE1(6)] > u) < 2exp (- ¢ min {HCZIIQ ngﬁw})

for some absolute constant ¢ > 0. On the other hand, using the facts that

_1 2
ma (|G 2 < ma [yl = max | > [Usar, 6)TA; (0)Uj (e, 0)]

€Ml t,t'€T;
1/2
= (Z Uj(2,0)" Z Uj(z,0)Uj(zr,0) " Aj_l(Q)Uj(xt,G))
teT; t'eT;
=A;(0)
1/2 (12)
_ (Z UJ-(xt,e)TAjl(e)Uj(xt,e)) NS

teT;

and ||C;||% = O(1), we may then select u > +/log(1/8) + log(1/4) to obtain that with probability
atleast 1 — O(9),

|£12(0) — E&12(0)| < V/1og(1/9).
Finally, as

E&12(0) = Z E[e7)U; (xt,H)TA OU; (x4, 0) < rtréax]E[ef] . (A;l,AJ) = 0(1),

teT; ]

we have with probability at least 1 — O(0)

&12(0) < 1og(1/6)
This completes the proof of Lemma 19. O
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Proof of Lemma 20. 1t follows from Lemma 16 and the elementary inequality —4b? < (a+b)? <
2a? + 2b% that

£:(0)=0(5,0)72,0)8)) + O( X [U3(00)7 3 cod 00 e.0)] )

teT; t'eT;
=801 (0)
+o( SR 43T k20U, (@, 0) A O)U (xt,t?))
teT; teT;
=E22(0)

Term E51(0): By Hoeffding’s inequality, we have with probability at least 1 — O(nd),

(12)
E1(0) S1og(1/8) Y Uj(wr,0) TA; (O)Uj (2, 0) < log(1/0).
teT;

Term E22(0): 1t can be directly bounded that

(12)
Exa(0) S b + nh® N " Ui(we, 0) T AN O)Uj(1,0) S nh®.
teT;

This completes the proof of Lemma 20. O

I PROOF OF LEMMA IN APPENDIX F

I.1 PROOF OF LEMMA 18
(i) Recall that H = diag(1, h, ..., ht) € REFDXEHD) and b = 7777, Note that
v;(z, 0) — v;(, 0)

— (U (2,0))" [(HAA@)HV - <n;aHAj<9>H>1] S HU; (20,0) X (10,0)

teT;
.
+ (HU;(x,0)) T (HA; (0 [ = > HUj(x,0 (Jct,ﬁ)—HVj(H)}
& teT;
=Ro

Term Ry: For any unit vector w, let Y; := (HU;(z,0)) " (HA;(0)H) Y HU; (x4, 0) X (24, 0)w.
Then we have

AS Awin (WP HA(0)H) A Anin(HA; (0)H) 2 /77, we have [Y;| < nl/*||U; (x, 0)]| A1 (o) Using

further

E’MNQJ' [}/152] = El‘tNQj[(Xj(xtve)w) (.23 G)TA (9) (xtaa)U(xtve)T/_\j_l(o)UJ(xba)]

S Uj(x,0)TA; 1 (0) (EZNQJ[ i(2,0)U; Z Uj(x4,0 xt,e)T)A;l(e) (2, 6)
J teTe

= Uj(,0) "A;7H(0)U;(x,6)

together with matrix Bernstein’s inequality, we can obtain that with probability at least 1 — O(4),

log(1/d
Row S AHU (z, )”A;l(@)'
nj
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Now taking union bound over w in the unit ball, we can get with probability at least 1 — O(9),
dlog(1/9)
n

J

IRzl < 1U; (2, )l 3-1(s)-

Term R;: We first decompose the term as follows:

R1 :(HUj(x,O))T[(HAj(H)H)_ — (nPHA( L; HU;(x4,0) X (x4, 6)
Ru

Jr(HUj(x,@))T{(HAj(G)H) — (nPHA( ]teszHU z4,0)X (¢, 6)
Riz

For R4, for any unit vector w, by Bernstein’s inequality, we have with probability at least 1 — O(9),

1 _ _
Rigw = ﬁUj(ac,e)TA;l(e) [n;aAj(e) ] Z Uj(24,0) X j (24, 0)w
J teTre
log(1/6
< 2800) 1, 0) 5+,
"

~

where we have also used the condition that Ain (2P HA;(0)H) A Ain(HA;(0)H) 2, \/7;.

For R11, we have for any unit vector w, with V;(0) := E..q,U;(z,0) X, (z,0),

Ruvw = (HU;(2.0))7 [(HAM)H)I - <n;aHAj<o>H>1} S (HU, (0, 0) X (21, 6) — HV;(0)w
teTr

=Ri11

+(HUj(x,9))T[(HAj(9)H)_ — (nPHA( } > HV;(0

teT?

=Ri12
As )\min(n;aHl_Xj (Q)H) AN )\min(HAj(Q)H) Z W,

[Runal < 0j 2 |Us(2,0) |19y - 07 HA;(O)H = HA;O)H] - | Y Y] (@4,0) = Evpng, Y (2,0,
teT?

where Y/ (x4, 0) := (n}aH]\j(Q)H)’l/Q Zteij HU;(z¢,0)X; (x4, 0)w. Using

EoinQ, 1Y (e, 0)|* = Eapng, [w' X (21,0) T (HU;(x4,0)) " (0 HA;(0)H) ™" (HU; (x4, 0)) X (24, 0)w]
< Eoung, [(HU;(24,0)) " (nf HA;(0)H) ™' (HU;(2¢,6))]

1 1
S —Eerg,[IU(2,0)
J

310

and [|Y] (24, 0)|| < o 12 n?PHA;(0)H) < n'/* together with the Bernstein’s inequality, we have

min J

with probability at least 1 — O(0),
1> ¥/ (@,0) = B, Y (0, 0)| = O(Viog(1/0) +n; / 10g(1/9)).

te7—jra

Moreover, by the matrix Bernstein’s inequality, we have with probability at least 1 — O(d) that

InHA;(0)H — HA;(0)H |2 < y/n;log(1/5).
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Combining the estimates in the above displays, we have with probability at least 1 — O(J) that
[Run| S 1og(1/8)[|U; (2, 0[5~ 9)-

Next, we consider the bound for R112. Note that

Rire = (HU;(x,0)) " (HA;(0)H)™* l:n;aH/_\j(Q)H - HAj(H)H] (HA;(0)H) ' HV;(0)w

= —(HU]'(%@))T(HAJ'(@)H)_l{ > —Ewaj)[HUj(fftﬁ)(HUj(%9))T]} (HA;(0)H) ™" H

t€7—jra

Let Z; == E.q,[X;(z,0)w- HU;(zy,0)(HU;(¢,0)) " (HA;(0)H) "' HU, (2, 6)], the above term
can be rewritten as

Ruio = —(HU;(x,0)) " (HA;(0)H) ™ Z (Zt = Eg,nq, Zt)

te7—]:ra
= —(HU;(x,0)) " (nPHA(O)H) ™ > (Zt — B, Z0)
t€7;'a
=Ri121
b (HU, 2,0) (P HA O )™ — (HAOH) ™) Y 20— Fana,20).
t€7—j""
=Ri122

For R1121, note that
~ raryr A — 1
24| := |(HU;(2,0)) " (nf HA;(0)H) ™' Z4| < ﬁllUj(x,H)IIA_j(e)

and
E[Z7] = Ba, [(B[X; (2, 0)w - Uj(w,0) T (0 A;(0)) U (e, 0)U; (4, 0) A (0)U;(2,6)|2 "6
S6 B, (U (2, 0) T (P A) 7 U (e, 0)Uj (1, 0) T ASH(O) U (e, 0)Uj (1, 6) T (n

Sn;QHUj(x,e)uA;l() o (U (2, 6) A (O)U; (21, 6))7)

_ —3/2
Sy 15 1T (2, 0) 13 -1 ) * Bar 1T (22, O)II3 1)) Sain 75 / 1T (@, 0) 115 -+ (5

(13)
where (i) is by Jensen’s inequality and | X;(z, 0)w| = O(1); (ii) is by E. [||U; (2, 0)||?\‘_1(9)] =0(1),

(iii) is by
Amin (HA; (0)H) 20 /?
EZt[HUj(mt7 >||A (9)] N maX ”U (z 9)”?‘\;1(9) 5 ALIE
Then we may use Bernstein’s inequality to obtain that with probability at least 1 — O(4),

—1/4 —
Ruszr S v1og(1/8)n; |[Uj (. 0)l| 51 g) +log(1/8)n; U (2,0) 151 g)-

For R1122, note that
[Runza| < U (2, 0) [ 5-1g) - [(HA;(0)H) ™2 (HA;(0)H — nf HA;(0)H)(nf HA;(0)H) '/

with probability at least 1—O(5), <4/log(1/4)

(nPHA;(0)H) /2 Y (2, — Er, Z)]|.
te7’;a

It can be easily bound that |(n7 HA, (0)H)~1/2Z;| < 1 and by the same reason as in (i) of (13),

E[ll(n?4;(6))/*Z413]
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Snle[UjT(z,@)A (OVUj(zy, 0)U; (24, )TA OU (l’t,Q)Uj(ﬂitﬁ)T]\;l(G)Uj(z 0)]

1E[tr(U <xt,e)Ujm,0>TA;1<0>Uj<a:t,9>Uj<xt,e>TA;1<9>)1

nj

1 _
—E[||Uj (x4, )”%_;1(9)] < 42

~ )
n;j
Then we may use Bernstein’s inequality to obtain that with probability at least 1 — O(4),
Rz S (n}/*log(1/6) +1og"?(1/6)) - |U; (2, 0)]] 1)

Combining all of the above estimates, for any unit vector w, we have with probability at least
1-0(9),

(Ryw| < 10g**(1/8) - (n; H|U; (2, 0) 514 + 1y 103 (2,0) 1514
Standard e-net argument then leads to, with probability at least 1 — O(4),
IRall2 £ d*210g%2(1/8) - (n U (2, 0)l1 515y + 103 (,0) 51 ))-
Therefore, with probability at least 1 — O(4),
[ (2,0) — v (. 0)ll2 £ d*/*10g*>(1/8) - (n; *|U; (2,0l 514 + i 103 (@, 0) 51 5)-

The claim in (i) follows by further taking union bounds on x and 6.

(ii). With the bound in (i), we have with probability at least 1 — O(9),
v; (2, 0) " (25(0) + ¢~ (2, 0) = ||v;(2,0) — 0;(x, )5, (9)rcry
+0j(z,0) T (Z;(0) + (1) o;(,0) + (v;(z,0) — v;(, 9)) (3;(0) + <) 1o,(z,0)
< oy (e,0) — o (a, O35, (0)1cry-r + 03(2,0) T (35(0) + CI) "1, (x, 0)
< d"10g>(1/8) - (ny 2T )13 -1 ) + 3 CHIU (. 0) 1)
Ty, 0) T (55(0) + CD) 1 (2,0)

where in (i) we have used ab < a? + b2, It remains to replace 3;(0) + (I by £;(0) + ¢I. Note by
the bound in (i), it holds with probability at least 1 — O(9) that

Z(vj(zta 0) - 6j(xt>9))(vj(xt> 9) - ﬁj(ztv 0))T

teT;

< d"1og*(1/6) - > (n AU (2, 0)12

teT;

< a7 10g3(1/5) . < Z n;l/Q‘IUj(mt’e)”?\;l(e) +n1/2>

teT;

2

+ )| U (e, 0)

A1) I3-1(6))

= d"log*(1/0) - ( 7Y =B (0131 + 15 D B 10 (0, 0)[13 1) +

teT; teT; )

2 1/2

< d"log?(1/6) - ( -1/ 2(1 —Ewt)||Uj(a;t,9)||f-\;1(9) +n; / )
teT;

As maxz:zTéelj ||U](Z’ 0)”%]—1(0) Sz VI and Eft [”UJ (wt’ )H2] )] 1, we may apply Hoeffd-

ing’s inequality to obtain that with probability at least 1 — O(§),

Y (e, 0) — 05 (e, 0)) (v (21, 0) — B;(we,0)) 7

< d"log™?(1/8) - n}/?
teT;
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Then using the fact that bb " < 2aa ' + 2(a — b)(a — b) T holds for any vectors a, b, we have

Si(0)+CI =Y (s, 0)0;(21,0) " + (I

teT;
<2 vy, 0)v; (e, 0) " +2)  (v)(4,0) — (e, 0)) (v (24, 0) — (24, 0)) T + T
teT; teT;
=2 vi(we, 0)vj (e, 0) T + (T + O<d7 log™/2(1/6) - @) I.

teT;
By the choice of (, we arrive at

25 (0) + ¢ = 2(%,(0) + CT).

This concludes the proof. O

J PROOF OF REMARK 7

In this section, we provide a detailed algorithm design and regret guarantee with the first term of
right-hand-side in Proposition 6 is omitted. Throughout the analysis, we only use g;(- | 6p), thus we
simplify the notation via

U](x) = Uj((E,é@), Aj = AJ(é())

Moreover for the quantities (e.g. A;, 7;) defined in Algorithm 2 when it is called at ¢-th step, we use
the notation A ;, T¢ ; to denote them..

Algorithm 5 Piloted UCB Algorithm with Local Polynomial Regression

1: Inputs: pilot estimator 6y with ||#g — 6y|| < n; smoothness 3 > 1, hyper-parameter a > 0.

2: Initialization: fix the polynomial degree level £ = |3],D = 0, set h = T~ partition
[-V,V]into M = [1/h] intervals {I;};ecnr, t = 1.

3:forj=1,...,M do

4: forL=1,...,[VTh] do ~
5: After observing c;, selecting a price p; so that x| 6 is the (L mod ¢)-th /-equi-partition

point of I;. //Forced Exploration for every I;.
Add z; and the feedback y; to D.
t+t+1.
while t <T do .
Compute gy ;(- | 6p) for j € [M] via Algorithm 2 with input D and precision h = T'~ 25+1

0 e R

Glued Estimator:g;(z) := Z 1{z "0y € I;}g;(z | Oo)
je[M]
Glued Confidence Bound:CB,(z) := Z 1{z "0y € I;}CBy (),
jelM]

with CBy ; defined as in (14).
10: Computing §_$CB (z) := gi(x) + aCB(z) pull the UCB price p so that for observed c;, and
z(p) == (C;I',p) )

Pt = afgmaxpe[o,pmax]p@\ECB(Zt (p)Téo)-

11: Observe the feedback y; and add (z:(p), y:) to D.

Initial Exploration. In the line 3-7, we first computing the rounded prices for every fine intervals
{L;}je[nm)> as we discussed in Section 6 and rigorously proved in Appendix G, we have this ensures
that when computing A, ; over each j € [M] invertible and has the eigenvalue lower bound Q(1/7")
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for all subsequent ¢. The total regret incurred in this phase is bounded by the total exploration steps,

which is given by
O(VTh/h) = O(/T/h) = O(T*7),
thus it suffices to bound the regret incurred over line 8 to 13.

UCB Phase. In the UCB phase, we first compute a confidence bound on g; based on Proposition 6:
when the first term is omitted, we have the output g; ;(x | 6p) satisﬁes

Gog(@ | 00) — g(z"00) =Us(x) " > esh;jUs(zs) +O(T7 %

s€Ttj

T+ VU @)y 0))-

=Aj
for es == ys — g(z/ o) and t; = |T; ;|. Now for A;, we have the following self-normalized
martingale concentration result:

Lemma 21 (Theorem 1 and 2 of Abbasi-Yadkori et al. (2011)). For any 6 > 0, with probability at
least 1 — 9, it holds that

13" e[ 2Us (20|l S V1og(T/0), ¥t € [T).

SET,;

Thus we have with probability at least 1 — 9,
A5 S 1055, ioa(TN/S), € [M).

Andby M =T~ ’wﬁ, we can give the confidence bound as

CBila) = Y- 147l € 1) (0503 VIorlT) + 777 ), (14)
i€ ’
it then holds that with probability at least 1 — O(1/T),
1¢.5(x) — gz 6o)| < aCBy(2)
uniformly for all £ at UCB phase and z for some large enough o depending only on S3.

As a result, we have with probability at least 1 — O(1/T), for z; == (¢, ,ps) "

> Rlct,p*(c] 6.)) — Rlce, i) < Z (ptngB — prg(x] 90)) < apmax Y CBy (1)
t t
_ B
< apne Y3 1Tl efj}(nvj(z)nA,; Vog(T) + 7 5 )

t je[M]

< OPmaxy/1og T <T2f*+1+ Z > @)l )

M) t€TT ;

<) @Pmax/log T <T2ﬁ+1 +1og(T) Y /TJ) <(iiy Pmax 777 log¥/2 T
Je[M]
Where in (i) we have used the elliptic potential lemma (see e.g. Lemma 11 of Abbasi-Yadkori et al.
(2011)) and in (ii) we have used

N VT < VTM < T#r,
J

as desired.

Remark 22 (Adversarial Context Setting and Adaptive Exploration.). We note that throughout our
algorithm and analysis, the only component that requires a stochastic context assumption is the
initial construction of a pilot estimator with error O(n), which is needed to satisfy the conditions
of Proposition 6. On the other hand, in 3 = 1 setting, Tullii et al. (2024) propose an adaptive
exploration procedure for estimating 0y that works even under adversarial contexts. We believe
their approach could also be incorporated here. However, since this discussion is intended solely to
illustrate the difficulty created by the first term in Proposition 6—a term we deliberately omit in our
analysis—we keep our algorithmic design simple and aligned with the main paper’s structure for
clarity.
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K A DISCUSSION ON WANG & CHEN (2025)

In the analysis of constrained LSE estimators (EC.2.3.) of Wang & Chen (2025), specifically their
analysis for Az term in (EC. 70), a Hoeffding’s inequality is applied to bounding the term

> eD; ()

for

i i A A00T
D7(0) = 55w — ot T00) + /7 00) ( (T G5 ) = )0~ 00 ).
J

with p; = Elz|z "0y € I;], A; == E[(x — p;)(x — p;) |z "6 € I;] and g;* the leave-one-
out estimator obtained via taking local polynomial regression over all smalls except for the ¢-th
observation. In the paragraph between (EC.71) and (EC.72), they claim that the {¢;D;*(0)}!"_, are
mutually independent. However, while the leave-one-out argument can ensure independence
between ¢; and D; ‘(6), it cannot ensure independence between D; ‘ and D, " for i # k, as
they both depend on all other observations except the i-th and k-th. This makes the mutual
independence claim invalid for Wang & Chen (2025), and the Hoeffding inequality or its martingale-
difference-sequence extensions does not apply. Instead, in our argument for analyzing the constrained
LSE, we do not introduce the leave-one-out estimator, but directly use the analytical form of the
local polynomial regression estimator and show that, under this form, the dependency can be directly
handled by Hanson—Wright’s inequality for the concentration of quadratic forms, as detailed in the
proof of Lemma 19.

L NUMERICAL EXPERIMENTS

L.1 IMPLEMENTATION DETAILS OF ALGORITHM

In this section, we discuss several details in implementing Algorithm 3. Note that in the description
of the algorithm, we frequently use quantities {g;(-|0) }9co and {7(c)}.cc for continuous spaces
O, C. However, from a computational perspective, maintaining these quantities would require keeping
parameterized functions simultaneously for all possible values of # or c over a continuous range,
which requires a discretization over ©, C, leads to computational inefficiency®. In the following, we
provide details on how to efficiently bypass the operations that would seem to require maintaining
these quantities.

L.1.1 CONSTRAINED LEAST SQUARED SOLUTION IN EQUATION (2).

Note that the only procedure in the algorithm that requires querying g(+|¢) for continuously varying
6 is when solving (2). An important observation is that, given the data {(z;, y;)} collected within
each epoch, we can compute g(x;|6) for any 6. This allows us to rewrite the objective function in (2)
purely in terms of 6, which can be evaluated directly using the collected data. As a result, solving (2)
becomes feasible using standard black-box continuous constrained-optimization methods.

We also note that, as a function of 6, the objective in (2) is generally non-convex even when [ = 2
(as in the setting of Wang & Chen (2025) and in earlier statistical literature such as Hirdle et al.
(1993); Ichimura (1993); Horowitz & Hirdle (1996)). Following the approach of Wang & Chen
(2025), we apply a general interior-point method for this continuous optimization problem during the
experiment. While this method is only guaranteed to return a local minimum, it already demonstrates
good empirical performance in our implementation.

L.1.2 SAMPLING OF THE CONTEXT-WISE PRICING POLICY INTERVAL.

Another subtle challenge in efficiently implementing Algorithm 3 is that the context-wise pricing
policy interval must be queried at every round. Since this interval is defined separately for each
context ¢ over a continuous space of dimension d, even an approximate tabulation would require

SNote that both ©, C are d-dimensional, and find its minimum e-covering requires © (¢~ %) storage
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storage that scales exponentially in d. In this section, we describe a “lazy update” approach that
stores only the historical datasets and computes the pricing interval solely for those contexts c; that
actually appear during online decision making. This procedure can be implemented efficiently by
repeatedly calling the policy-improvement procedure (Algorithm 4) for O(log T') iterations, thereby
eliminating the exponential storage cost in exp(d).

Roughly speaking, we treat the policy-improvement procedure used at epoch ¢, denoted by Ay, as an
operator and store only the data required to evaluate 4, in future rounds. When a context c arrives in
epoch 7, we compose the previously saved operators:

[E(T_l)(c), 7*-(-(7'_1)((:)] — (-Ar—l o---0 Al) (C)>

which exactly matches the interval that would have been obtained had we maintained and updated it
epoch-by-epoch, yet without requiring any per-context storage.

Data Required for Evaluating A,. At the end of each epoch ¢, we store the dataset 1, that
contains:

1. The pilot estimator and per-bin constrained least-squares estimators: 0, and {é\g itieM,)-

2. Bin-wise local polynomial design matrices under @7 jt

{ AE] GZJ Z yt xt?glﬂ))}jE[Mg].

teTe,;

This information is sufficient for computing each {gy ; (x@ ;)} and the glued estimator gy (z) and its
confidence bound CBy(x) for any x = (c, p).

Computing 7("~1)(c) for a given c. Suppose a context c is observed at epoch 7. We now describe
how to compute 7(7—1) (c) from the stored datasets Uy, V. Foreachstep ¢ = 1,2,...,7 — 1, given
the input context ¢ and the current policy interval [z~ (c), =1 (c)],” the algorithm evaluates
the integrals appearing in 7(.J;,) and A(.J},) for each sub-interval .J;, using numerical integration with

discretization length 1 /¢ for ¢ = 1/+/T.3 This requires O(v/T) queries to CBy(-) and gy(-), both of
which are computable from V.

L.2 EXPERIMENT SETUP

In this section, we present numerical simulations under several setups to illustrate the performance of
our algorithm and to compare it with previous work Fan et al. (2024). In the following sections, we
describe the setup and purpose of four different experiments, including:

1. Tllustration of the effect of 5 on regret: given an underlying smooth environment, whether
using a larger § parameter in the algorithm input leads to better regret.

2. Tllustration of the effect of d on regret, especially whether the Poly(d”) term in the main
theorem significantly influences the empirical results.

3. Comparison with the algorithms in Fan et al. (2024).
(S-smooth Tail Function Generation. Before describing more details of setup in each setting, we
first recall the noise sampling procedure proposed in Fan et al. (2024) for generating a 3y-smooth

g, which we will frequently call in each setup: Given any smoothness factor Sy, we set the density
function of &; as

fa(z) o (1/4 = 2%)P/2 . 1{]2| < 1/2}. (15)

It can be verified that f3(-) is (8 — 1)-smooth function, thus its corresponding CDF( and g) is
[3-smooth.
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(a) Relative regret( the regret normalized by T") under (b) Same results as in Figure 4a with the starting point
Bo = 6,d = 2 environment with algorithm parame-  of each curve aligned to illustrate the regret decay rate.
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Figure 4: Illustration of 3 effect in regret.

Regret

Figure 5: Regret under 8y = 6,7 = 1000 environment, with changing d € {2,5,10,20} and
algorithm parameters 5 € {2,4,6}.

L.2.1 EFFECT OF 8 ON REGRET

In Figure 4, we test our algorithm under a d = 2 environment with underlying smoothness /3y = 6,
with the underlying parameter 6y = (0.25, 0.25), coordinate-wise i.i.d. context distribution with the
density function

Fm(@) o (2/3—x2)m“-1{|x| < \/%} (16)

We test the LPSP algorithm under this environment with input smoothness parameters 5 = 2,4, 6
and time horizons 7' € {50, 200, 500, 1000}, and we report the relative regrets (regret divided by T')
in Figure 1(a). To further compare the regret rates while reducing the influence of absolute constants,
we additionally align the starting y-axis values in Figure 1(b).

From Figure 4a, we observe that larger 8 values (3 = 4, 6) do not necessarily lead to smaller regret
compared with 8 = 2 when T is relatively small, likely due to the 5-dependent constants hidden
in the regret bound. However, as T increases, the performance of the larger-£ algorithms begins to
match or outperform the 5 = 2 setting. Figure 4b provides more direct evidence of better long-run
regret: after aligning the starting regrets for each f3, so that only the decay rate matters, we see that
larger ( generally leads to a sharper decay rate, consistent with our theoretical findings.

L.2.2 EFFECT OF d ON REGRET

In Figure 5, we report the regret of our algorithm for 5 € {2,4,6} with ' = 1000 under different
dimensions d. As in the previous setup, the demand noise is generated with smoothness 3y = 6
using (15). The underlying parameter is chosen as § = (1/v/d,...,1/+/d) € R?, and the context
distribution follows (16) without additional normalization. Hence Assumption 4 is satisfied with

Cmin = d, which implies an exploration length of order O (\/gT%)

"By initialization, [x(?, 7(©] = [0, pmax].
8This contributes at most O(1/+/T) error to the calculation, which is dominated by the CB(-) term.
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Figure 6: Comparison with the explore-then-commit algorithm in Fan et al. (2024) under different
smoothness parameters.

The figure illustrates that although the regret increases at least linearly in d, the choice of /3 does not
appear to affect the growth rate significantly. This suggests that the Poly(d?) factor appearing in
our second-order regret bound may be an artifact of the analysis rather than a fundamental barrier.
The empirical trend also indicates the possibility of further improving the d* dependence in the
leading-order term.

L.2.3 COMPARISON TO FAN ET AL. (2024).

In Figure 6, we compare the cumulative regret for 7' € {50, 200, 500, 1000} of our algorithm with
Fan et al. (2024) under different environments, with d = 2, #; and context distribution described
same as in Section L.2.1, and noise distribution under different 3y are generated as in (15).

While our algorithm achieves consistently smaller regret than Fan et al. (2024) in both experimental
settings, we emphasize that this comparison is not fully fair. The primary message we aim to convey
is simply that both algorithms are able to exploit the underlying smoothness: as the true smoothness
parameter /3 increases, the regret curves decrease accordingly.

The key subtlety lies in the computational scale of the two methods. The algorithm of Fan et al. (2024)
is simple to implement and computationally lightweight, which enables them to run experiments
with very large time horizons (e.g., up to 7' ~ 12,000 in their paper). In contrast, our method
involves several computationally intensive steps—such as the constrained least-squares refinement and
repeated distribution-shift corrections—as discussed in Section L.1. These components significantly
increase runtime, which limits our experiments to relatively small horizons (up to 7" = 1000). This
difference in feasible scale may disadvantage Fan et al. (2024) in our plots: in their original setup,
the initial exploration length is fixed at 500, whereas in our smaller-7" regime we can only afford
an initial phase of roughly 20-100 rounds. Consequently, their algorithm may not reach its typical
performance regime under the smaller horizons we are able to simulate. We also emphasize that the
primary focus of this work is theoretical: our goal is to push the boundary of regret guarantees for
semi-parametric pricing by showing that improved rates are achievable—albeit through a relatively
complicate algorithm that may not yet be practical. Developing simpler, more efficient, and easy-to-
implement algorithms that attain the same theoretical regret remains an important direction for future
work.
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