

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 SEMI-PARAMETRIC CONTEXTUAL PRICING WITH GENERAL SMOOTHNESS

Anonymous authors

Paper under double-blind review

ABSTRACT

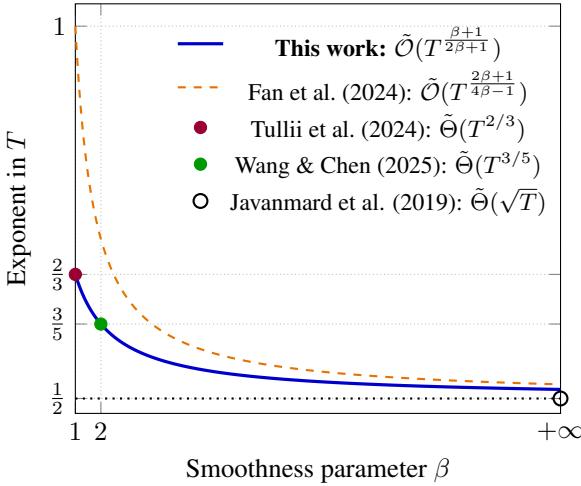
We study the contextual pricing problem, where in each round a seller observes a context, sets a price, and receives a binary purchase signal. We adopt a semi-parametric model in which the demand follows a linear parametric form composed with an unknown link function from a β -Hölder class. Prior work established regret rates of $\tilde{\mathcal{O}}(T^{2/3})$ for $\beta = 1$ and $\tilde{\mathcal{O}}(T^{3/5})$ for $\beta = 2$. Under a uni-modality condition, we propose a unified algorithm that combines the stationary subroutine of Wang & Chen (2025) with local polynomial regression, achieving the general rate $\tilde{\mathcal{O}}(T^{\frac{\beta+1}{2\beta+1}})$ for all $\beta \geq 1$. This recovers and strengthens existing results, while also addressing a gap in the prior analysis for $\beta = 2$. Our analysis develops tighter semi-parametric confidence regions, removes derivative lower bound assumptions from earlier work, and offers a sharper exploration–exploitation trade-off. These insights not only extend theoretical guarantees to general β but also improve practical performance by reducing the need for long forced-exploration phases.

1 INTRODUCTION

Dynamic pricing addresses a central problem in revenue management, where a seller repeatedly interacts with users by offering personalized prices for the same product and collecting revenue from the resulting sales (Cournot, 1927; Den Boer, 2015). Across these interactions, users exhibit heterogeneous demand or private valuations, and the seller faces uncertainty in how demand responds to the offered prices. This demand function effectively captures the market’s valuation of the product. Consequently, the seller must learn the demand in real time while simultaneously aiming to maximize revenue, which gives rise to the fundamental exploration–exploitation tradeoff in dynamic pricing (Kleinberg & Leighton, 2003).

Recently, contextual dynamic pricing has gained significant traction in online retail, driven by the widespread availability of user-specific and contextual information (Cohen et al., 2020; Wang et al., 2021; Chen & Gallego, 2021; Luo et al., 2024; Wang & Chen, 2025). Modern platforms can conveniently access rich side information—such as a user’s account profile, browsing and purchase history, or relevant environmental factors—before deciding on a price. Incorporating such contextual signals enables sellers to move beyond static or aggregate demand models and tailor prices to individual users or market segments. To achieve this, firms need to find algorithms that learn how demand depends jointly on both price and context and determine an optimal personalized price when a context is revealed.

Among various formulations for capturing the contextual dependence, the formulation with *linear utility model* and *non-parametric noise* is receiving increasing attention due to its flexibility compared with fully parametric model (Javanmard & Nazerzadeh, 2019) and simplicity between fully non-parametric models (Chen & Gallego, 2021). In this formulation, each user is associated with a context vector $c_t \in \mathbb{R}^d$ upon arrival and derives a private utility $u_t = c_t^\top \theta_* + \xi_t$, with $\theta_* \in \mathbb{R}^d$ being an unknown parameter and ξ_t random noise. After offering a price p_t , the seller receives revenue feedback $p_t \mathbf{1}\{p_t \leq u_t\}$ from the user, which indicates whether a purchase is made (i.e., revenue is generated) or not. If denoting the tail distribution function $\mathbb{P}(\xi_t \geq z)$ by $g(z)$, the expected demand then reduces to $D(p) = g(c_t^\top \theta_* - p)$, this corresponds to the *semi-parametric* formulation (Ichimura, 1993; Hristache et al., 2001; Dalalyan et al., 2008).

Figure 1: Exponent in T vs. smoothness β .

Assumptions	
(A) Strong uni-modality	(B) Context density LB
(C) $\Sigma \succ 0$	(D) $g'(\cdot) < 0$
Result	
Tullii et al. (2024) ($\beta = 1$)	None
Fan et al. (2024)* ($\beta \geq 1$)	(B)(C)(D)
Wang & Chen (2025) ($\beta = 2$)	(A)(C) [†] (D)
Our work ($\beta \geq 1$)	(A)(C) [†]

Table 1: Comparison of assumptions in semi- and non-parametric demand models. The strong uni-modality condition is given in Assumption 3, and $\Sigma = \mathbb{E}[\mathbf{c}_t \mathbf{c}_t^\top]$.

* Fan et al. (2024) does not require (A), but instead assumes another shape condition on $g(\cdot)$.

[†] In both Wang & Chen (2025) and our work, condition (C) is imposed only during the initial exploration period of length $\tilde{O}(T^{\frac{\beta+1}{2\beta+1}})$.

As in the statistical estimation literature, the regularity of $g(\cdot)$ affects the difficulty of demand identification and thus decision making. Previous works have extensively studied the semi-parametric pricing problem under different levels of regularity of g . For instance, Tullii et al. (2024) and Wang & Chen (2025) establish regret bound $\tilde{O}(T^{\frac{2}{3}})$ and $\tilde{O}(T^{\frac{3}{5}})$ respectively under first and second-order smoothness assumptions. In contrast, characterizing the general β -smooth regime for $\beta \in [1, +\infty)$ plays an important role in understanding how regularity influences demand estimation and how the non-parametric regime interpolates to the parametric rates (Hu et al., 2020). To the best of our knowledge, the only prior work that attempts to provide such a unified treatment is Fan et al. (2024), which establishes an $\tilde{O}(T^{\frac{2\beta+1}{4\beta-1}})$ regret bound. However, this result does not recover the $\tilde{O}(T^{\frac{3}{5}})$ rate under the conditions of Wang & Chen (2025) and even degenerates to linear regret when $\beta = 1$, leaving room for further improvement.

OUR CONTRIBUTIONS

Motivated by this gap, we explore the semi-parametric pricing setting in this work and provide the improved regret bounds, we summarize our contributions as the following:

Improved Regret Bound for $\beta \geq 1$ Regime. Under *strong uni-modality* (Assumption 3) as in Wang & Chen (2025); Chen & Gallego (2021), we establish a regret upper bound of $\tilde{O}(T^{\frac{\beta+1}{2\beta+1}})$ for all $\beta \geq 1$. For comparison, under uni-modality together with additional regularity, Fan et al. (2024) obtain $\tilde{O}(T^{\frac{2\beta+1}{4\beta-1}})$; under these distinct assumptions, our bound achieves a smaller exponent in T . Our result matches the optimal contextual guarantees for $\beta = 1$ Luo et al. (2024); Tullii et al. (2024) and $\beta = 2$ Wang & Chen (2025), and it interpolates to the parametric rate $\tilde{O}(\sqrt{T})$ as $\beta \rightarrow \infty$. Moreover, it coincides with the tight non-contextual bound $\tilde{O}(T^{\frac{\beta+1}{2\beta+1}})$ for general β established in Wang et al. (2021). Hence, under strong uni-modality, semi-parametric contextual pricing is provably no harder than its non-contextual counterpart.

Unified Algorithm and Analysis. The proposed regret bound is achieved by developing a unified joint estimation procedure and confidence bound analysis for the parametric and non-parametric parts via local polynomial regression for $\beta \geq 1$. In particular, when $\beta = 1$, the resulting confidence bound applies directly to yield $\tilde{O}(T^{2/3})$ regret via the optimistic principle without strong uni-modality, matching Tullii et al. (2024). When $\beta \geq 2$, a finer control of the parametric estimation error is required to exploit higher-order smoothness. We combine our procedure with elements of Wang & Chen (2025) to obtain the general bound, extending their algorithmic design from the case $\beta = 2$.

Improved Confidence Bound Analysis. Our confidence bound analysis generalizes Tullii et al. (2024); Wang & Chen (2025). In particular, when $\beta \geq 2$, we encounter the same challenge of leveraging higher-order smoothness as in Wang & Chen (2025). While we adopt the idea of

108 constrained least squares from their work, extending it to general β requires substantially more
 109 than a straightforward calculation. First, the analysis in Wang & Chen (2025) heavily relies on a
 110 linear-time *local exploration* schedule. As we detail in Section 6, this works under uni-modality
 111 when $\beta = 2$, but leads to a degenerate regret rate as β increases. Second, although Wang & Chen
 112 (2025) pioneered the finite-sample analysis of constrained least squares, the complex dependency
 113 beyond martingale structure in such a joint estimation procedure prevents the direct application
 114 of standard concentration inequalities such as Azuma–Hoeffding. In their proof, this dependence
 115 is overlooked and therefore cannot yield the claimed result, as we detailed in Appendix K. These
 116 challenges motivate our improved analysis, which bypasses the dependence issue and significantly
 117 shortens the exploration period. As an additional contribution, our analysis also removes the *strictly*
 118 *increasing CDF* condition listed in Table 1, which has been assumed in prior smooth semi-parametric
 119 settings Fan et al. (2024); Wang & Chen (2025), thereby broadening the applicability of the theory.
 120

121 **Notation.** For $n \in \mathbb{Z}_+$, we let $[n] := \{1, \dots, n\}$ and denote by $\|\cdot\|$ the ℓ_2 norm. For a positive
 122 definite matrix $A \in \mathbb{R}^{n \times n}$ and $u \in \mathbb{R}^n$, write $\|u\|_A := \sqrt{u^\top A u}$. For a matrix A , $\|A\|_F$ is the
 123 Frobenius norm; $\lambda_{\min}(A)$ and $\lambda_{\max}(A)$ are its extremal eigenvalues; and $A \succeq B$ means $A - B$ is
 124 positive semidefinite. For $a \in \mathbb{R}$, $\lfloor a \rfloor$ is the greatest integer $< a$. We use $a \lesssim b$ or $a = \mathcal{O}(b)$ to mean
 125 there exists $C > 0$ such that $|a| \leq C|b|$; $a \gtrsim b$ or $a = \Omega(b)$ to mean there exists $c > 0$ such that
 126 $|a| \geq c|b|$; and $a \asymp b$ or $a = \Theta(b)$ to mean there exist $c_1, C_1 > 0$ such that $c_1|b| \leq |a| \leq C_1|b|$, all
 127 those constants may only depend on β . We also use $\tilde{\mathcal{O}}$, $\tilde{\Omega}$, $\tilde{\Theta}$ to hide polylogarithmic factors.
 128

2 PROBLEM FORMULATION

130 **Dynamic Pricing with Linear Valuations.** At each period $t \in [T]$, a new customer arrives with
 131 observable feature vector $\mathbf{c}_t \in \mathbb{R}^d$ drawn i.i.d. from an unknown distribution P_C and generates
 132 underlying valuation as $u_t = \mathbf{c}_t^\top \theta_* + \xi_t$ for some $\theta_* \in \mathbb{R}^d$ and ξ_t i.i.d. drawn from a distribution
 133 P_Ξ with CDF F_Ξ . After observing \mathbf{c}_t , the seller posts a price $p_t \in [0, p_{\max}]$ and observes the binary
 134 purchase feedback $y_t = \mathbf{1}\{u_t \geq p_t\}$ and the corresponding revenue $p_t y_t$. If we denote the tail
 135 function $g(r) := 1 - F_\Xi(r)$, the conditional revenue is then given by
 136

$$R(\mathbf{c}_t, p_t) := p_t \mathbb{E}[y_t | \mathbf{c}_t, p_t] = p_t \mathbb{P}(\xi_t \geq p_t - \mathbf{c}_t^\top \theta_* | \mathbf{c}_t, p_t) = p_t g(p_t - \mathbf{c}_t^\top \theta_*).$$

137 The goal of the seller, without knowing θ_* and P_Ξ , is to determine an adaptive policy π for posting
 138 prices p_t to maximize the cumulative revenue $\mathbb{E}[\sum_{t=1}^T R(\mathbf{c}_t, p_t)]$. The performance of the policy is
 139 evaluated by the cumulative revenue gap relative to the optimal policy:
 140

$$\text{Regret}(T) := \mathbb{E} \left[\sum_{t=1}^T \max_p R(\mathbf{c}_t, p) - R(\mathbf{c}_t, p_t) \right]. \quad (1)$$

141 For compactness we will use an augmented vector form: define $x_t := (\mathbf{c}_t^\top, p_t)^\top \in \mathbb{R}^{d+1}$ and
 142 $\theta_0 := (-\theta_*^\top, 1)^\top \in \mathbb{R}^{d+1}$, so that $x_t^\top \theta_0 = p_t - \mathbf{c}_t^\top \theta_*$ and $\mathbb{E}[y_t | \mathbf{c}_t, p_t] = g(x_t^\top \theta_0)$.
 143

144 **Smoothness Condition and Assumptions.** For the parametric part of the model, we make the
 145 following boundedness assumption:

146 **Assumption 1.** *There exist constants $C_c, C_\theta > 0$ such that $\|\mathbf{c}_t\| \leq C_c$ almost surely and $\|\theta_*\| \leq C_\theta$.
 147 Let $V := C_c C_\theta + p_{\max}$. Furthermore, the noise distribution P_Ξ is supported on $[-V, V]$.*
 148

149 Under Assumption 1, the value-price gap $x_t^\top \theta_0 = \mathbf{c}_t^\top \theta_* - p_t$ lies in $[-V, V]$ for all t , so g is only
 150 evaluated on a compact interval.

151 For the non-parametric part, we make the following assumption on $g(\cdot)$, which is equivalent to
 152 making an assumption on F_Ξ due to the relation $g(\cdot) = 1 - F_\Xi(\cdot)$.
 153

154 **Assumption 2** (β -Hölder smoothness of g). *There exist constants $L_g > 0$ and $\beta > 0$ such that
 155 $g : [-V, V] \mapsto [0, 1]$ is $\lfloor \beta \rfloor$ times continuously differentiable and, for all $u, u' \in [-V, V]$,*
 156

$$157 \left| g(u') - \sum_{k=0}^{\lfloor \beta \rfloor} \frac{(u' - u)^k}{k!} g^{(k)}(u) \right| \leq L_g |u' - u|^\beta.$$

162 This is a standard notation for describing smoothness in nonparametric estimation (Györfi et al., 2002;
 163 Tsybakov, 2008). It unifies previous assumptions in the sense that $\beta = 1$ corresponds to the Lipschitz
 164 setting studied in Tullii et al. (2024); Luo et al. (2024), and $\beta = 2$ corresponds to the “2nd-order
 165 smooth” setting studied in Wang & Chen (2025); Luo et al. (2022). In this work, we provide a unified
 166 treatment for all $\beta \geq 1$.

167 For the revenue function, we make the following assumption.

168 **Assumption 3** (Strong uni-modality). *For any $|u| \leq C_c C_\theta$, under the shorthand notation $r(u, p) :=$
 169 $pg(p - u)$, the maximizer $p^*(u) := \operatorname{argmax}_p r(u, p)$ is unique and lies in the strict interior $(0, p_{\max})$.
 170 Moreover, there exist constants $0 < \sigma_r \leq L_r < \infty$ such that for all $|u| \leq C_c C_\theta$ and all $p \in [0, p_{\max}]$,*

$$172 \quad \frac{\sigma_r}{2} |p - p^*(u)|^2 \leq r(u, p^*(u)) - r(u, p) \leq \frac{L_r}{2} |p - p^*(u)|^2.$$

175 Assumption 3 says that, given any valuation u fixed, the revenue function $r(u, \cdot)$ is locally strongly
 176 convex around its maximizer. Such conditions has appeared in various pricing models (Broder &
 177 Rusmevichientong, 2012; Wang et al., 2014; Chen & Gallego, 2021; Wang & Chen, 2025).

178 It is worth to note that while broadly-accepted, the strong uni-modality is tend to be believed as a
 179 relative strong assumption in non-contextual pricing setting, in sense that a $\tilde{\mathcal{O}}(\sqrt{T})$ regret can be
 180 achieved even under the Lipschitz condition ($\beta = 1$) of F_Ξ (Kleinberg & Leighton, 2003; Wang
 181 et al., 2021). In sharp contrast, for the contextual setting, the $\Omega(T^{3/5})$ regret lower bound under the
 182 $\beta = 2$ and Assumption 3 developed in Wang & Chen (2025) shows a clear separation between the
 183 contextual and non-contextual cases, indicating that even under Assumption 3, the pricing problem is
 184 not overly simplified in our setting.

185 **Organization.** In the remaining contexts, we divide our presentation into four parts. In Section 3,
 186 we recall an initialization guarantee and discuss the potential trade-off incurred for general β . In
 187 Section 4, we describe a joint estimation procedure for semi-parametric estimation and its statistical
 188 guarantee. Finally, we combine these two procedures with a policy improvement oracle introduced in
 189 Section 5 to present the complete algorithm and its regret guarantee in Section 6.

191 3 INITIAL EXPLORATION PHASE

193 In the initial exploration, phase, our goal is to obtain a *pilot estimator* $\bar{\theta} \in \mathbb{R}^d$ such that $\|\bar{\theta} - \theta_*\|_2 \leq \eta$
 194 for certain error level η .

195 As discussed in Wang & Chen (2025), such a pilot estimator may be obtained through initial access
 196 to offline data. However, suitable offline data is not always available. In this section, we recall an
 197 initial exploration guarantee under the diverse context distribution assumption from Fan et al. (2024):

199 **Assumption 4.** *There exists some positive constant c_{\min} so that $\mathbb{E}[(\mathbf{c}_t^\top, 1)^\top (\mathbf{c}_t^\top, 1)] \succeq \frac{c_{\min}}{d} I$.*

200 Under Assumption 4, Fan et al. (2024) showed that by posting uniform exploration prices $p_t \sim$
 201 $\text{Unif}[0, V]$ for $\tilde{\mathcal{O}}(\eta^{-2})$ rounds, one can obtain the desired estimator through a suitable parametric
 202 estimation procedure. [The procedure is summarized in Algorithm 1, and we present the main result
 203 below; its proof is provided in Appendix B for completeness.](#)

204 **Lemma 5.** *Suppose Assumption 1 and 4 hold. Fix $\delta \in (0, 1)$. Algorithm 1 with $\mathcal{O}(\eta^{-2}d^3 \log(1/\delta))$
 205 running time can output a parametric estimator $\bar{\theta}$ with $\|\bar{\theta} - \theta_*\| \leq \eta$ with probability at least $1 - \delta$.*

207 In particular, every price posted in the exploration phase incurs a constant sub-optimality gap, so the
 208 total regret from exploration scales as $\tilde{\mathcal{O}}(\eta^{-2})$. To match the desired $\tilde{\mathcal{O}}(T^{\frac{\beta+1}{2\beta+1}})$ regret bound under
 209 the β -Hölder condition, we require $\eta^{-2} \asymp T^{\frac{\beta+1}{2\beta+1}}$, thus the pilot estimator accuracy must be restricted
 210 to $\mathcal{O}(T^{-\frac{\beta+1}{4\beta+2}})$. When $\beta = 1$, as discussed later in Section 4.1, with $\eta \asymp T^{-1/3}$, even a linear
 211 level perturbation bound $\mathcal{O}(T\eta)$ is sufficient to achieve the optimal $\tilde{\mathcal{O}}(T^{2/3})$ regret. As β increases,
 212 the required regret rate decreases while the pilot error increases, calling for a sharper approach to
 213 exploiting smoothness information—this is precisely the challenge we attempt to address in this
 214 work. **For convenience, we fix the level of η for a given β throughout the remaining discussion:**
 215 When discussing the setting with a specific $\beta \geq 1$, we set the corresponding pilot estimation error

Algorithm 1 Pilot estimation (adapted from Fan et al. (2024))

```

216 1: Input: Running time  $t$ ;
217 2: for the next  $t$  time periods do
218 3:   Offer price  $p_t \sim \text{Unif}[0, p_{\max}]$  and let  $\{\mathcal{D}(t) \equiv \{c_t, p_t, y_t\}_{t \in [t]}\}$  be the collected data;
219 4:   Compute  $\bar{\theta} \leftarrow \arg \min_{\theta \in \mathbb{R}^d} t^{-1} \sum_{t \in [t]} (p_{\max} y_t - c_t^\top \theta)^2$ ;
220 5: return  $\bar{\theta}$ 
221
222
223
224
225 to  $\eta = T^{-\frac{\beta+1}{4\beta+2}}$ . As noted in the earlier discussion, this choice is the sharpest possible rate under
226 Lemma 5 without violating the desired  $\mathcal{O}(T^{\frac{\beta+1}{2\beta+1}})$  regret.
227 Finally, we note that Assumption 4 is used only to obtain the pilot estimator and is therefore needed
228 only during the initial exploration period of length  $\tilde{\mathcal{O}}(T^{\frac{\beta+1}{2\beta+1}})$ . While careful readers may find the
229 phrase “needed only” unusual since our setting assumes i.i.d. contexts, here we allow the context
230 distribution to be two-phased: after the initial exploration period, the contexts may follow any
231 distribution that satisfies Assumption 1, not necessarily Assumption 4.
232
233
234 4 SEMI-PARAMETRIC ESTIMATION SUB-ROUTINE
235
236 4.1 PILOTED LOCAL POLYNOMIAL REGRESSION
237
238 Given a pilot estimate  $\bar{\theta}_0 := (-\bar{\theta}^\top, 1)^\top$  of  $\theta_0$ , we introduce a piloted local polynomial regression
239 subroutine, with an input dataset  $\mathcal{D}$  collected through a sub-routine conducted during a sub-interval
240 of the total horizon  $[T]$ , as the following.
241
242


---


Algorithm 2 Piloted Local Polynomial Regression


---



```

```

243 1: Inputs: pilot estimator  $\bar{\theta}_0$  with  $\|\bar{\theta}_0 - \theta_0\| \leq \eta$ ; smoothness  $\beta \geq 1$ , dataset  $\mathcal{D} := \{c_i, p_i, y_i\}_{i=1}^n$ ,
244   precision of partition  $h$ .
245 2: Initialization: partition  $[-V, V]$  into  $M = \lceil 1/h \rceil$  equal bins  $I_1, \dots, I_M$ . For  $j \in [M]$ , set
246    $\mathcal{T}_j := \{i \in [n] : x_i = (c_i^\top, p_i)^\top, x_i^\top \bar{\theta}_0 \in I_j\}$ 
247   and the polynomial degree  $\ell = \lfloor \beta \rfloor$ .
248 3: for  $j = 1, \dots, M$  do
249 4:   if  $\mathcal{T}_j \neq \emptyset$  then
250 5:     Pick arbitrary  $\bar{x}_j \in I_j$  with  $\|\bar{x}_j\| \leq C_c + p_{\max}$ .
251 6:     For any  $\theta$  with  $\|\theta - \bar{\theta}_0\| \leq \eta$  and any  $x$  with  $x^\top \bar{\theta}_0 \in I_j$ , define
252     
$$\Delta_j(x, \theta) := (x - \bar{x}_j)^\top \theta, \quad U_j(x, \theta) := (1, \Delta_j(x, \theta), \dots, \Delta_j(x, \theta)^\ell)^\top,$$

253     and the Gram matrix  $\Lambda_j(\theta) := \sum_{i \in \mathcal{T}_j} U_j(x_i, \theta) U_j(x_i, \theta)^\top$ . Set the local estimator
254     
$$\hat{g}_j(x \mid \theta) := \begin{cases} U_j(x, \theta)^\top \Lambda_j(\theta)^{-1} \sum_{i \in \mathcal{T}_j} y_i U_j(x_i, \theta), & \text{if } \Lambda_j(\theta) \text{ is invertible,} \\ 0, & \text{else.} \end{cases}$$

255 7:   else
256 8:     Set  $\hat{g}_j(\cdot \mid \theta) \equiv 0$  for all  $\theta$ .
257 9: Output  $\{\hat{g}_j(\cdot \mid \theta)\}_{j \in [M], \|\theta - \bar{\theta}_0\| \leq \eta}$ .
258
259


---



```

In Algorithm 2. The input dataset \mathcal{D} is first binned into different intervals $I_j, j \in [M]$ based on the pilot estimator $\bar{\theta}_0$, then a local non-parametric estimation is performed for every candidate parameter θ over interval I_j to obtain $\hat{g}_j(\cdot \mid \theta)$. Let $n_j := |\mathcal{T}_j|$. Now we present the following *deterministic* estimation error guarantee of $\hat{g}_j(\cdot \mid \theta)$ without any requirement on the input dataset \mathcal{D} :

¹the existence of such \bar{x}_j is straightforwardly ensured by $\mathcal{T}_j \neq \emptyset$.

270 **Proposition 6.** Fix $j \in [M]$ and $h \geq T^{-\frac{1}{2\beta+1}}$. Under Assumptions 1 and 2, for any θ with
 271 $\|\theta - \theta_0\| \leq \eta$ and any x with $\|x\| \leq C_c + p_{\max}$ and $x^\top \theta_0 \in I_j$, if $\Lambda_j(\theta)$ invertible then
 272

$$273 \quad \widehat{g}_j(x \mid \theta) - g(x^\top \theta_0) = \mathbf{v}_j(x, \theta)^\top \boldsymbol{\delta}_j(\theta) + U_j(x, \theta)^\top \sum_{t \in \mathcal{T}_j} \underbrace{(y_t - g(x_t^\top \theta_0))}_{:= \varepsilon_t} \Lambda_j^{-1}(\theta) U_j(x_t, \theta) \\ 274 \quad + \mathcal{O}(h^\beta (1 + \sqrt{n_j} \|U_j(x, \theta)\|_{\Lambda_j^{-1}(\theta)})),$$

275 where, with $\mathbf{X}_j(x, \theta) := ((x - \bar{x}_j)^\top, \dots, \ell((x - \bar{x}_j)^\top \theta)^{\ell-1} \cdot (x - \bar{x}_j)^\top)^\top \in \mathbb{R}^\ell$, we define
 276

$$277 \quad \mathbf{v}_j(x, \theta) := \mathbf{X}_j(x, \theta) - U_j(x, \theta)^\top \Lambda_j^{-1}(\theta) \sum_{i \in \mathcal{T}_j} U_j(x_i, \theta) \mathbf{X}_j(x_i, \theta) \in \mathbb{R}^\ell, \\ 278 \quad \boldsymbol{\delta}_j(\theta) := (g'(\bar{x}_j^\top \theta_0)(\theta - \theta_0)^\top, \dots, \frac{g^{(\ell)}(\bar{x}_j^\top \theta_0)}{\ell!}(\theta - \theta_0)^\top)^\top \in \mathbb{R}^\ell.$$

283 In Proposition 6, the estimation error is decomposed into three terms. The first term, which arises
 284 from the mismatch between the pilot estimator $\bar{\theta}_0$ and the underlying truth θ_0 , creates a central
 285 difficulty in the analysis for general² $\beta > 1$, as discussed in Remark 7. Due to the $\theta - \theta_0$ term
 286 appearing in $\boldsymbol{\delta}_j$, we can only obtain an $\mathcal{O}(\eta)$ upper bound on $|\mathbf{v}_j(x, \theta)^\top \boldsymbol{\delta}_j(\theta)|$ in general. On the
 287 other hand, carrying such an $\mathcal{O}(\eta)$ bound yields an overall rate of $\mathcal{O}(T\eta) = \mathcal{O}(T^{\frac{3\beta+1}{4\beta+2}})$ —far above
 288 the desired $\mathcal{O}(T^{\frac{\beta+1}{2\beta+1}})$ result.
 289

290 This suboptimal $\mathcal{O}(\eta)$ -order term in Proposition 6 is the main motivation for using a refined estimator
 291 of θ_0 beyond the initial pilot estimation, leading to the *constrained least-squares estimator* for refining
 292 the parametric estimates in Section 4.2.

293 **Remark 7** (An $\mathcal{O}(T^{\frac{\beta+1}{2\beta+1}})$ regret via Proposition 6 without the first term). Since Proposition 6 is
 294 quite general and requires no assumption on how \mathcal{D} is collected, in Appendix J we show that, when
 295 combining Algorithm 2 with an Upper-Confidence-Bound-based algorithm design, an $\tilde{\mathcal{O}}(T^{\frac{\beta+1}{2\beta+1}})$
 296 regret can be achieved if the right-hand side of Proposition 6 does not contain the $\mathbf{v}_j(x, \theta)^\top \boldsymbol{\delta}_j(\theta)$
 297 term. While the omission of this first term is in general impossible, this discussion mainly illustrates
 298 how the problem can be simplified without it.
 299

300 We also note that there are two special cases where such an omission can rigorously hold. First,
 301 when $\beta = 1$, we have $\ell = 0$, and this analysis recovers the $\tilde{\mathcal{O}}(T^{2/3})$ rate in Tullii et al. (2024)³,
 302 which is minimax optimal. Second, in the non-contextual setting studied in Wang et al. (2021),
 303 where $\mathbf{c} \equiv \mathbf{0}$ and $x = (0, p)$ only depends on price, one can show that $\mathbf{v}_j((0, p), \theta)^\top \boldsymbol{\delta}_j(\theta) \equiv 0$.
 304 In this case, our discussion recovers the general $\mathcal{O}(T^{\frac{\beta+1}{2\beta+1}})$ regret in Wang et al. (2021), which
 305 is also minimax-optimal. We also note that throughout this discussion we do not need the strong
 306 uni-modality condition in Assumption 3, and in the second setting we do not need the diversity
 307 condition in Assumption 4 for exploration. This matches the minimal assumptions used in prior work.
 308

309 **Notation for Convenience:** While Algorithm 2 is described with flexible precision $h \geq T^{-\frac{1}{2\beta+1}}$ for
 310 generality, throughout the main text we by default set $h = n^{-\frac{1}{2\beta+1}}$ when inputted $|\mathcal{D}| = n$.
 311

312 4.2 CONSTRAINED LEAST SQUARED REFINEMENT

313 Using the local fits $\widehat{g}_j(\cdot \mid \theta)$ from Algorithm 2, we refine the parametric estimate via a constrained
 314 least-squares (LSE) subroutine, a standard device in semi-parametric estimation, cf. Härdle et al.
 315 (1993); Wang & Chen (2025). For each $j \in [M]$ (with \mathcal{T}_j defined in Section 4.1), define
 316

$$317 \quad \widehat{\theta}_j \in \arg \min_{\|\theta - \theta_0\| \leq \eta} \sum_{i \in \mathcal{T}_j} (y_i - \widehat{g}_j(x_i \mid \theta))^2. \quad (2)$$

319 We have the following statistical guarantee for such constrained LSE under additional *conditional*
 320 *independence* assumption on \mathcal{D} :
 321

322 ²Note that when $\beta = 1$, the $\mathbf{v}_j(x, \theta)^\top \boldsymbol{\delta}_j(\theta)$ term does not appear since $\ell = 0$.

323 ³It is worth noting that the algorithm in Tullii et al. (2024) can work even in an adversarial context setting
 324 with adaptive initial exploration, as we discussed in Appendix J.

324 **Proposition 8.** Fix any $\delta \in (0, 1)$. Suppose Assumptions 1,2 hold and $\{y_i\}_{i=1}^n$ are mutually
 325 independent conditioned on $\{x_i\}_{i=1}^n$. Then under the condition that $\Lambda_j(\theta)$ is invertible and $\zeta \asymp$
 326 $n^{\frac{\beta+1}{2\beta+1}} = \Omega(d^7 \log^{7/2}(1/\delta)\sqrt{n})$, we have with probability at least $1 - \mathcal{O}(n\delta)$, uniformly for all x
 327 with $x^\top \bar{\theta}_0 \in I_j$ and $j \in [M]$, the solution $\hat{\theta}_j$ to (2) satisfies
 328

$$329 \quad |\hat{g}_j(x \mid \hat{\theta}_j) - g(x^\top \theta_0)| \lesssim \text{Err}_j(x) + n^{-\frac{\beta}{2\beta+1}}, \quad \forall j \in [M] \text{ and } \forall x \text{ such that } x^\top \bar{\theta}_0 \in I_j. \quad (3)$$

330 Where $\text{Err}_j(x) := (\sqrt{d \log(1/\delta)} + \sqrt{n_j} n^{-\frac{\beta}{2\beta+1}}) \cdot (\|\mathbf{v}_j(x, \hat{\theta}_j)\|_{(\Sigma_j(\hat{\theta}_j) + \zeta I)^{-1}} + \|U_j(x, \hat{\theta}_j)\|_{\Lambda_j^{-1}(\hat{\theta}_j)})$
 331 and $\Sigma_j(\theta) := \sum_{i \in \mathcal{T}_j} \mathbf{v}_j(x_i, \theta) \mathbf{v}_j(x_i, \theta)^\top$.
 332

333 Proposition 8 describes an error bound on the glued estimator

$$334 \quad \hat{g}(x) := \sum_{j \in [M]} \mathbf{1}\{x^\top \bar{\theta}_0 \in I_j\} \hat{g}_j(x \mid \hat{\theta}_j),$$

335 which relies on a characterization for the parametric minimizer (2). A key difficulty is the dependence:
 336 during the analysis of the constrained least squared estimator, the all samples in \mathcal{T}_j are used compute $\hat{\theta}_j$
 337 and $\hat{g}_j(\cdot \mid \cdot)$, this together with the non-linearity introduced in the squared loss, creating a complicated
 338 dependency structure. In $\beta = 2$, Wang & Chen (2025) attempts to mitigate this dependency using a
 339 *leave-one-out* argument and derive a bound similar to Proposition 8. Unfortunately, as we detail in
 340 Appendix K, their argument cannot handle this dependency and thus fails to yield the desired result.
 341

342 Instead, with the unified local polynomial approach, a key observation in our analysis is that such
 343 complicated joint-least squared form can be reduced to the concentration analysis of a quadratic form
 344 involving observation noises, which then can be tackled via the standard Hanson-Wright inequality.
 345

346 To see why Proposition 8 refines Proposition 6 and yields improved regret, we argue in aggregate
 347 rather than pointwise. The right-hand side of Proposition 8 has a *self-normalized* vector form, which
 348 implies the following bound under suitable distributional assumptions on x and \mathcal{D} :

349 **Theorem 9.** Fix $j \in [M]$. Assume in addition to Proposition 8 that \mathcal{T}_j allows a disjoint decomposition
 350 $\mathcal{T}_j = \mathcal{T}_j^{\text{ra}} \cup \mathcal{T}_j^{\text{ro}}$ with:

351 i) Samples from $\mathcal{T}_j^{\text{ra}}$ are i.i.d. from a stationary distribution Q_j and $|\mathcal{T}_j^{\text{ra}}| \geq \lceil n_j/2 \rceil$,
 352 ii) For any θ with $\|\theta - \bar{\theta}_0\| \leq \eta$, $\lambda_{\min}(H \Lambda_j^{\text{ro}}(\theta) H) \gtrsim \sqrt{n_j}$ with $H = \text{diag}(1, M^{-1}, \dots, M^{-\ell}) \in$
 353 $\mathbb{R}^{(\ell+1) \times (\ell+1)}$ and $\Lambda_j^{\text{ro}}(\theta) := \sum_{t \in \mathcal{T}_j^{\text{ro}}} U_j(x_t, \theta) U_j(x_t, \theta)^\top$.
 354

355 Then it holds with probability at least $1 - \delta$ that

$$356 \quad \mathbb{E}_{x \sim Q_j} [\text{Err}_j(x)] \lesssim d^4 \log^2(1/\delta) (n_j^{-\frac{1}{2}} + n^{-\frac{\beta}{2\beta+1}}). \quad (4)$$

357 Theorem 9 states that under the distribution collecting (a subset of) \mathcal{D} , one attains a parametric rate in
 358 n_j and a β -dependent non-parametric rate in n that matches the usual minimax-optimal rate under β -
 359 Hölder smoothness (Tsybakov, 2008). In particular, when n is linear in T , which is the scenario in our
 360 subsequent regret analysis, the second term of (4) scales as $\eta^{\frac{2\beta}{\beta+1}}$, improving the linear dependency η
 361 rate as we discussed in Section 4.1.

362 **Remark 10.** In Theorem 9, we assume an $\Omega(\sqrt{n_j})$ eigenvalue lower bound condition on normalized
 363 version of $\Lambda_j(\theta)$, mainly to carry out the perturbation analysis involving the inverse of the empirical
 364 matrix. By contrast, Lemma EC.11 of Wang & Chen (2025) states a similar result for $\beta = 2$, but
 365 under the stronger condition $\Lambda_j(\theta) \succeq n_j I$.⁴ As we note in the subsequent Remark 12, relaxing the
 366 eigenvalue condition is key to extending the analysis to $\beta \geq 2$ while maintaining the $T^{\frac{\beta+1}{2\beta+1}}$ regret.
 367

368 5 HANDLING POLICY-INDUCED DISTRIBUTION SHIFT

369 Theorem 9 is stated under a stationarity assumption: the distribution of x used to evaluate the expected
 370 gap matches the distribution of \mathcal{D} used to fit the joint estimator. This is generally hard to use for
 371 regret-minimizing policies, which update adaptively and thus induce nonstationary distributions. To
 372 address this, we adopt the *distribution-shift* subroutine from the recent advance of Wang & Chen
 373 (2025) to design an epoch-wise algorithm, where the distribution mismatch between epochs is well
 374 controlled, so that Theorem 9 can be applied to the regret analysis.

375 ⁴The key improvement comes from applying self-normalizing arguments based on the RHS of (3).

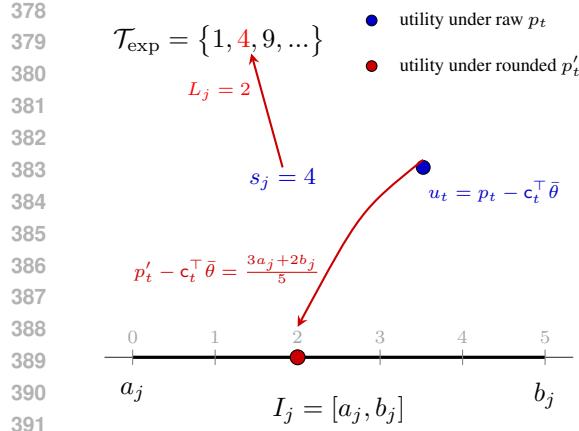


Figure 2: **Forced exploration via price rounding.** At the s_j -th time that a raw price p_t determined utility is piloted to interval I_j . If s_j is the L_j -th element in \mathcal{T}_{exp} , the raw price will be rounded so that the piloted utility lies at the $(L_j \bmod \lfloor \beta \rfloor)$ -th equi-partition points of I_j . This figure illustrates the case $s_j = 4$, $\beta = 6$, which corresponds to $L_j = 2$ -nd element of \mathcal{T}_{exp} .

Similar to Section 3, since the design of the algorithm is fully credits to Wang & Chen (2025), we present only the key properties needed for our application here and defer the full algorithm to Appendix C for completeness.

Proposition 11 (Wang & Chen (2025)). *Suppose Assumptions 1 and 3 hold. Consider a stochastic policy Π containing all conditional uniform stochastic policies:*

$$\Pi := \left\{ \pi : \mathcal{C} \rightarrow \Delta([0, p_{\max}]) \mid \pi(c) \sim \text{Unif}[\underline{\pi}(c), \bar{\pi}(c)] \text{ for some } \underline{\pi}(c) \leq \bar{\pi}(c), \forall c \in \mathcal{C} \right\}.$$

Then there exists an policy improvement oracle \mathcal{A} (see Algorithm 4 in Appendix C for details), so that with any input tuple $\pi \in \Pi$, $\hat{g}(\cdot) : \mathcal{C} \times [0, p_{\max}] \rightarrow \mathbb{R}$, $\text{CB}(\cdot) : \mathcal{C} \times [0, p_{\max}] \rightarrow \mathbb{R}$ satisfying

(S1) $p^*(\mathbf{c}^\top \theta_*) \in \text{Supp}(\pi(\mathbf{c}))$ for all $\mathbf{c} \in \mathcal{C}$;
 (S2) $|\hat{g}(x) - g(x^\top \theta_0)| \leq \text{CB}(\mathbf{c}, p)$ for all $x = (\mathbf{c}^\top, p)^\top$ with $\mathbf{c} \in \mathcal{C}$ and $p \in [0, p_{\max}]$.

Its output $\pi' \equiv A(\pi, \hat{q}, \text{CB}) \in \Pi$ satisfies:

(i) $p^*(c^\top \theta_*) \in \text{Supp}(\pi'(c))$ for all $c \in \mathcal{C}$;
(ii) $\mathbb{E}_{c \sim P_{\mathcal{C}}, p \sim \pi'(c)}[R(c, p^*(c^\top \theta_*)) - R(c, p)] \leq \frac{1}{4} \mathbb{E}_{c \sim P_{\mathcal{C}}, p \sim \pi(c)}[R(c, p^*(c^\top \theta_*)) - R(c, p)] + \frac{18L_r^3}{\sigma^2} \mathbb{E}_{c \sim P_{\mathcal{C}}, p \sim \pi(c)}[\text{CB}(c, p)].$

Proposition 11 guarantees the existence of a policy improvement oracle \mathcal{A} so that its output policy improves upon the input policy in the sense that it discounts the regret of the input policy by a factor of $1/4$, and adding an expectation of the confidence bounds evaluated under the *input policy's* distribution. This makes it possible to apply Theorem 9 for our regret analysis.

6 THE LPSP ALGORITHM AND REGRET RESULTS

In this section, we put all components introduced from Section 3 to 5 into an epoch-wise design to present our main algorithm in Algorithm 3. In Algorithm 3, after an initial phase for calculating the pilot estimator θ_0 , the algorithm then enters an epoch-wise⁵ phase to balance exploration and exploitation. At each epoch τ , the algorithm posts prices based on a fixed stochastic policy $\pi^{(\tau-1)}$

⁵**Epoch-wise convention.** Throughout epoch τ , we use the same constructions as in the subroutines but computed from the epoch- τ dataset \mathcal{D}_τ and partition $\{I_j\}_{j \in [M_\tau]}$: for any quantity $\mathcal{Q}_j(\cdot)$ defined earlier, we write $\mathcal{Q}_{\tau,j}(\cdot)$ for its epoch- τ version (e.g., $\Lambda_{\tau,i}$, $\hat{\theta}_{\tau,i}$, $\text{CB}_{\tau,i}$, $\mathcal{T}_{\tau,i}$).

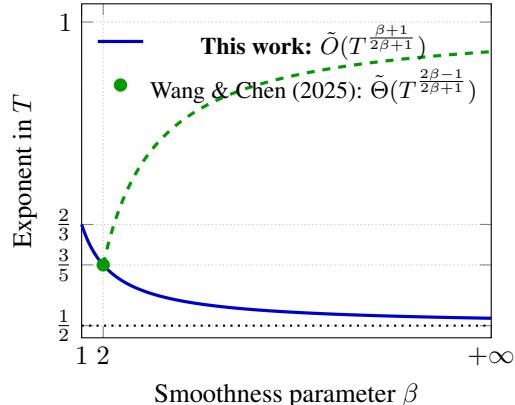


Figure 3: **Total Regret incurred by linear versus sub-linear times of local exploration.** The total cost of the local exploration operation (lines 11–13 of Algorithm 3) is plotted. At each bin j and epoch τ , the total exploration time of Wang & Chen (2025) is $\Theta(n_{\tau,j})$, whereas ours is $\Theta(\sqrt{n_{\tau,j}})$, resulting in $\Theta(T^{\frac{2\beta-1}{2\beta+1}})$ regret and $\Theta(T^{\frac{\beta+1}{2\beta+1}})$ regret, respectively, as discussed in Remark 12.

432 **Algorithm 3** Local Polynomial regression-based Semi-parametric Pricing(LPSP) Algorithm

433 1: **Inputs:** Smoothness parameter β , total time horizon T , hyer-parameter c_0, N_0, C_1 .

434 2: **Initialization:** $\pi^{(0)}(c) \leftarrow \text{Unif}[0, p_{\max}]$ for all c , pilot error level $\eta = T^{-\frac{\beta+1}{4\beta+2}}$ and exploration

435 length t_β specified in Lemma 5. Epoch length schedule $N_\tau = 2^\tau N_0, \tau \geq 1$.

436 3: // Initialization Phase as described in Section 3

437 4: Estimate the pilot estimator $\bar{\theta}$ and $\bar{\theta}_0 := (-\bar{\theta}^\top, 1)^\top$ using t_β time-steps through Algorithm 1.

438 5: **for** $\tau = 1, 2, \dots$ until meets $t > T$ **do**

439 6: // Decision Making & Data Collection

440 7: **initialize** $\mathcal{D}_\tau := \emptyset, \mathcal{T}_{\exp} := \{k^2 : k \geq 1\}$, partition $[-V, V]$ into $M_\tau := \lceil N_\tau^{\frac{1}{2\beta+1}} \rceil$ equal bins

441 I_1, \dots, I_{M_τ} , set $L_j = 1, s_j = 0, \forall j \in [M_\tau]$.

442 8: **for** $s = 1, \dots, N_\tau$ **do**

443 9: Meets the t -th customer with context c_t and sample $p_t \sim \pi^{(\tau-1)}(c_t)$.

444 10: Compute $u_t := p_t - c_t^\top \bar{\theta}$ and compute j_t so that $u_t \in I_{j_t}, s_{j_t} \leftarrow s_{j_t} + 1$.

445 11: **if** s_{j_t} is the L_j -th element in \mathcal{T}_{\exp} **then**

446 12: $p_t \leftarrow p'_t$ with $p'_t - c_t^\top \bar{\theta}$ is the $(L_j \bmod \lfloor \beta \rfloor)$ -th $\lfloor \beta \rfloor$ -equi-partition point of I_j .

447 13: $L_j \leftarrow L_j + 1$

448 14: Present p_t to the customer and receive feedback y_t . Add (c_t, p_t, y_t) to \mathcal{D}_τ .

449 15: $t \leftarrow t + 1$

450 16: Compute $\mathcal{T}_{\tau,j} := \{t \in \mathcal{D}_\tau : x_t^\top \bar{\theta}_0 \in I_j\}$

451 17: // Joint Estimation Phase as described in Section 4

452 18: Obtain joint estimators $\{\hat{g}_{\tau,j}(\cdot | \hat{\theta}_{\tau,j})\}_{j \in [M_\tau]}$ using \mathcal{D}_τ with Algorithm 2 and (2).

453 19: Compute the glued estimator $\hat{g}_\tau(x) := \sum_{j \in [M_\tau]} \mathbf{1}\{x^\top \bar{\theta}_0 \in I_j\} \hat{g}_{\tau,j}(x | \hat{\theta}_{\tau,j})$ and the glued

454 confidence bound

455

456 $\text{CB}_\tau(x) := \sum_{j \in [M_\tau]} \mathbf{1}\{x^\top \bar{\theta}_0 \in I_j\} \cdot \begin{cases} C_1(\text{Err}_{\tau,j}(x) + N_\tau^{-\frac{\beta}{2\beta+1}}) & \text{if } H\Lambda_{\tau,j}(\hat{\theta}_{\tau,j})H \succeq c_0 \sqrt{N_{\tau,j}} I, \\ 1 & \text{otherwise.} \end{cases}$

457

458 with Err_j defined as in right-hand-side of (3) and $N_{\tau,j} = |\mathcal{T}_{\tau,j}|$.

459 20: // Policy Improvement via \mathcal{A} described in Section 5

460 21: Update $\pi^{(\tau)} \leftarrow \mathcal{A}(\pi^{(\tau-1)}, \hat{g}_\tau, \text{CB}_\tau)$

462

463

464 determined by the previous epoch, with a portion of prices rounded for exploration. With such design,

465 Theorem 9 can be applied to analyze the regret incurred by unrounded prices based on Proposition 11,

466 and the key is to ensure the conditions in Theorem 9 holds, which relies on the *localized exploration*

467 *procedure* we introduced in line 11–13 (see also Figure 2), as detailed below:

468 **Localized Exploration.** The goal of the localized exploration procedure in lines 11–13 is to construct

469 the $\mathcal{T}_{\tau,j}^{\text{ro}}$ part so that condition ii) in Theorem 9 is satisfied. This procedure plays a key role on keep

470 the design matrix of local polynomial regression well-conditioned even without diverse context

471 assumption in Assumption 4. To see how this works, we provide a high-level analysis for $\bar{\theta}_0$ and leave

472 the full details to Appendix G. Note that the normalized matrix $H\Lambda_{\tau,j}^{\text{ro}}(\bar{\theta}_0)H$ admits a Vandermonde

473 decomposition $H\Lambda_{\tau,j}^{\text{ro}}(\bar{\theta}_0)H = Z_{\tau,j} Z_{\tau,j}^\top$ with

474

475
$$Z_{\tau,j} := [(1, \Delta_j(x_t, \bar{\theta}_0)/h, \dots, (\Delta_j(x_t, \bar{\theta}_0)/h)^\ell)^\top]_{t \in \mathcal{T}_{\tau,j}^{\text{ro}}} \in \mathbb{R}^{(\ell+1) \times (L_j - 1)}.$$

476 The lower bound on its singular values depends on the separation between $\Delta_j(x_t, \bar{\theta}_0)$ for different

477 t (Gautschi, 1963). The equi-partition rounding procedure then creates constant-level separations,

478 which ensures that $\lambda_{\min}(H\Lambda_{\tau,j}^{\text{ro}}(\bar{\theta}_0)H) = \sigma_{\min}^2(Z_{\tau,j}) \gtrsim \lfloor L_j/\beta \rfloor$. Moreover, a basic calculation

479 based on the definition of \mathcal{T}_{\exp} yields that $L_j = \Theta(\sqrt{n_{\tau,j}})$, which leads to the eigenvalue lower

480 bound $c_0 \sqrt{n_{\tau,j}}$ for $H\Lambda_{\tau,j}(\bar{\theta}_0)H$, provided that $n_{\tau,j}$ exceeds a constant depending only on c_0, β .

481 **Remark 12** (Cost of Localized Exploration). *From our exploration schedule, we have the total*

482 *exploration step at the τ -th epoch is given by $\mathcal{O}(\sum_{j \in [M_\tau]} \sqrt{n_{\tau,j}}) = \mathcal{O}(\sqrt{N_\tau M_\tau}) = \mathcal{O}(N_\tau^{\frac{\beta+1}{2\beta+1}})$.*

483 *Since Algorithm 3 stops after $\mathcal{O}(\log T)$ epochs, the total exploration steps amount to $\tilde{\mathcal{O}}(T^{\frac{\beta+1}{2\beta+1}})$. This*

484 *leads to the $\tilde{\mathcal{O}}(T^{\frac{\beta+1}{2\beta+1}})$ total costs. In contrast, as discussed in Remark 10, Wang & Chen (2025)*

486 requires a linear-in- T number of exploration steps to satisfy their eigenvalue lower bound conditions.
 487 They use uni-modality to control the local exploration cost, which results in a per-epoch exploration
 488 regret of $\mathcal{O}(N_\tau M_\tau^{-2}) = \mathcal{O}(N_\tau^{\frac{2\beta-1}{2\beta+1}})$ leading to a total exploration cost of $\mathcal{O}(T^{\frac{2\beta-1}{2\beta+1}})$. While this rate
 489 matches their $\mathcal{O}(T^{3/5})$ regret when $\beta = 2$, it deteriorates when $\beta > 2$. This shows that shortening
 490 the local exploration length to $\sqrt{N_\tau M_\tau}$ is crucial for attaining the desired $\tilde{\mathcal{O}}(T^{\frac{\beta+1}{2\beta+1}})$ regret for
 491 general β , we illustrate the comparison of total exploration costs in Figure 3.
 492

493 **Implementation Details of Algorithm 3.** Careful readers may notice that in the description of
 494 Algorithm 3 and its sub-routines, we implicitly require storing parameterized functions such as
 495 $\hat{g}(\cdot | \theta)$ and $\pi^\tau(\cdot)$ for θ and τ in a d -dimensional space. This would necessitate a discretization-based
 496 design and lead to computational inefficiency. In Appendix L.1, we provide a detailed discussion of
 497 how to implement the algorithm without incurring heavy storage costs. Now, we claim the regret
 498 guarantee of Algorithm 3 as the following:

499 **Theorem 13.** Suppose Assumptions 1-4 hold for some $\beta \geq 1$, Algorithm 3 with hyper-parameters
 500 c_0, N_0, C_1 larger than some constant depending on β satisfies

$$501 \text{Regret}(T) \lesssim d^4 \log^{5/2}(T) T^{\frac{\beta+1}{2\beta+1}} + \text{Poly}(d^\beta, \log T).$$

502 **On the dependency on d .** Our regret bound stated in Theorem 13 has d^4 dependency in the leading
 503 order term and $\text{Poly}(d^\beta)$ dependency in the second order term.

504 The source of the d^4 term in the leading order is the in-distribution prediction error result in Theorem 9,
 505 which is the consequence on using self-normalized argument for bounding the $\mathbb{E}[\|\mathbf{v}_j(x, \hat{\theta}_j)\|_{\Sigma_j^{-1}}]$
 506 and the union bound taken over x and θ . On the other hand, the additive $\text{Poly}(d^\beta, \log T)$ term is a
 507 technical by-product of the covariance regularization used in our analysis. Specifically, to invoke
 508 Proposition 8, we require the matrix regularization level to satisfy $\zeta \gtrsim d^7 \log^{7/2}(T) \sqrt{T}$, so that
 509 the regularized empirical covariance dominates its population analogue, as required in Lemma 18.
 510 Since our algorithm ties ζ to the pilot accuracy via $\zeta \asymp \eta^{-2} \asymp T^{\frac{\beta+1}{2\beta+1}}$, the above condition may fail
 511 for $T^{\frac{1}{4\beta+2}} \lesssim d^7$, resulting in a finite burn-in phase of T whose contribution is summarized by the
 512 $\text{Poly}(d^\beta, \log T)$ term.

513 We would note that, despite the heavy d -dependency is included due to artificial reasons as explained
 514 above, during the running of our algorithm only a $\mathcal{O}(\sqrt{d})$ -level confidence radius and a (d^3/c_{\min}) -
 515 level initialization period used, this may leads to much better empirical performance regarding d , as
 516 provided in our simple simulation in Appendix L.2. We believe that more careful analysis can either
 517 improve the leading-order d^4 -dependency or remove this burn-in without worsening the polynomial
 518 dependence on d in the leading term, and we leave this refinement as an interesting future direction.

519 Finally, we would note that there are several future directions opened by our result, including:

520 **Removing the Strong Uni-modality Assumption 3.** While strong uni-modality does not drastically
 521 simplify the contextual pricing problem (as discussed below Assumption 3), we believe that the
 522 final step in this line of work will eventually match our regret upper bound without relying on this
 523 condition—much like what was ultimately achieved in the non-contextual setting by Wang et al.
 524 (2021). In our analysis and algorithm design, the only part requiring Assumption 3 is the stationary
 525 subroutine we called from Wang & Chen (2025). From a technical view, we believe we have already
 526 moved a bit forward from Wang & Chen (2025) in the forced-exploration by removing the need for
 527 strong uni-modality in theirs argument via sharper analysis. We hope this provides a foundation on
 528 which future work can further relax or eliminate this assumption entirely.

529 **Achieving Adaptivity on the Smoothness Parameter β .** Another promising direction building on
 530 our work is to study adaptivity to the smoothness parameter β . Following the progression seen in
 531 non-parametric bandits and pricing, where adaptive methods (Gur et al., 2022; Ye & Jiang, 2024)
 532 build on earlier non-adaptive algorithms (Hu et al., 2020; Wang et al., 2021), we believe similar
 533 adaptivity can be achieved in our setting under additional self-similarity assumptions. More precisely,
 534 one potential reference is Gong & Zhang (2025), which also investigates adaptivity in contextual
 535 pricing. While their model differs from ours, we expect that some of their conceptual insights could
 536 be adapted. However, making these ideas fully rigorous would require substantial technical work and
 537 worth an independent study.

540 DETAILS OF LLM USAGE
541542 In writing this paper, the LLM was applied to polish our sentences and correct potential typos. [In the](#)
543 [experimental section \(Appendix L.2\), we also used an LLM to help organize the code structure and](#)
544 [implement the benchmark algorithms.](#)546 REFERENCES
547548 Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic
549 bandits. *Advances in neural information processing systems*, 24, 2011.550 Amine Allouah, Achraf Bahamou, and Omar Besbes. Optimal pricing with a single point. *Management*
551 *Science*, 69(10):5866–5882, 2023.553 Gah-Yi Ban and N Bora Keskin. Personalized dynamic pricing with machine learning: High-
554 dimensional features and heterogeneous elasticity. *Management Science*, 67(9):5549–5568, 2021.555 Daniele Bracale, Moulinath Banerjee, Yuekai Sun, Kevin Stoll, and Salam Turki. Dynamic pricing in
556 the linear valuation model using shape constraints. *arXiv preprint arXiv:2502.05776*, 2025.558 Josef Broder and Paat Rusmevichientong. Dynamic pricing under a general parametric choice model.
559 *Operations Research*, 60(4):965–980, 2012.560 Jinzhi Bu, David Simchi-Levi, and Yunzong Xu. Online pricing with offline data: Phase transition
561 and inverse square law. In *international conference on machine learning*, pp. 1202–1210. PMLR,
562 2020.564 Raymond J Carroll, Jianqing Fan, Irene Gijbels, and Matt P Wand. Generalized partially linear
565 single-index models. *Journal of the American Statistical Association*, 92(438):477–489, 1997.566 Ningyuan Chen and Guillermo Gallego. Nonparametric pricing analytics with customer covariates.
567 *Operations Research*, 69(3):974–984, 2021.569 Maxime C Cohen, Ilan Lobel, and Renato Paes Leme. Feature-based dynamic pricing. *Management*
570 *Science*, 66(11):4921–4943, 2020.572 Antoine Augustin Cournot. *Researches Into the Mathematical Principles of the Theory of Wealth*.
573 New York: Macmillan Company, 1927 [c1897], 1927.574 Arnak S Dalalyan, Anatoly Juditsky, and Vladimir Spokoiny. A new algorithm for estimating the
575 effective dimension-reduction subspace. *The Journal of Machine Learning Research*, 9:1647–1678,
576 2008.577 Arnoud V Den Boer. Dynamic pricing and learning: Historical origins, current research, and new
578 directions. *Surveys in operations research and management science*, 20(1):1–18, 2015.580 Jianqing Fan, Yongyi Guo, and Mengxin Yu. Policy optimization using semiparametric models for
581 dynamic pricing. *Journal of the American Statistical Association*, 119(545):552–564, 2024.583 Sarah Filippi, Olivier Cappe, Aurélien Garivier, and Csaba Szepesvári. Parametric bandits: The
584 generalized linear case. *Advances in neural information processing systems*, 23, 2010.585 Walter Gautschi. On inverses of vandermonde and confluent vandermonde matrices. ii. *Numerische*
586 *Mathematik*, 5:425–430, 1963.588 Xueping Gong and Jiheng Zhang. Parameter-adaptive dynamic pricing. *arXiv preprint*
589 *arXiv:2503.00929*, 2025.590 Yonatan Gur, Ahmadreza Momeni, and Stefan Wager. Smoothness-adaptive contextual bandits.
591 *Operations Research*, 70(6):3198–3216, 2022.593 László Györfi, Michael Kohler, Adam Krzyżak, and Harro Walk. *A distribution-free theory of*
594 *nonparametric regression*. Springer, 2002.

594 Wolfgang Härdle, Peter Hall, and Hidehiko Ichimura. Optimal smoothing in single-index models.
 595 *The Annals of Statistics*, pp. 157–178, 1993.
 596

597 Joel L Horowitz. *Semiparametric and nonparametric methods in econometrics*, volume 12. Springer,
 598 2009.

599 Joel L Horowitz and Wolfgang Härdle. Direct semiparametric estimation of single-index models with
 600 discrete covariates. *Journal of the American Statistical Association*, 91(436):1632–1640, 1996.
 601

602 Marian Hristache, Anatoli Juditsky, and Vladimir Spokoiny. Direct estimation of the index coefficient
 603 in a single-index model. *Annals of Statistics*, pp. 595–623, 2001.

604 Yichun Hu, Nathan Kallus, and Xiaojie Mao. Smooth contextual bandits: Bridging the parametric
 605 and non-differentiable regret regimes. In *Conference on Learning Theory*, pp. 2007–2010. PMLR,
 606 2020.

607 Hidehiko Ichimura. Semiparametric least squares (sls) and weighted sls estimation of single-index
 608 models. *Journal of Econometrics*, 58(1-2):71–120, 1993.

609

610 Adel Javanmard and Hamid Nazerzadeh. Dynamic pricing in high-dimensions. *Journal of Machine
 611 Learning Research*, 20(9):1–49, 2019.

612

613 Adel Javanmard, Hamid Nazerzadeh, and Simeng Shao. Multi-product dynamic pricing in high-
 614 dimensions with heterogeneous price sensitivity. In *2020 IEEE International Symposium on
 615 Information Theory (ISIT)*, pp. 2652–2657. IEEE, 2020.

616

617 N Bora Keskin and Assaf Zeevi. Dynamic pricing with an unknown demand model: Asymptotically
 618 optimal semi-myopic policies. *Operations research*, 62(5):1142–1167, 2014.

619

620 Roger W Klein and Richard H Spady. An efficient semiparametric estimator for binary response
 621 models. *Econometrica: Journal of the Econometric Society*, pp. 387–421, 1993.

622

623 Robert Kleinberg and Tom Leighton. The value of knowing a demand curve: Bounds on regret
 624 for online posted-price auctions. In *44th Annual IEEE Symposium on Foundations of Computer
 625 Science, 2003. Proceedings.*, pp. 594–605. IEEE, 2003.

626

627 Yiyun Luo, Will Wei Sun, and Yufeng Liu. Contextual dynamic pricing with unknown noise: Explore-
 628 then-ucb strategy and improved regrets. *Advances in Neural Information Processing Systems*, 35:
 629 37445–37457, 2022.

630

631 Yiyun Luo, Will Wei Sun, and Yufeng Liu. Distribution-free contextual dynamic pricing. *Mathematics
 632 of Operations Research*, 49(1):599–618, 2024.

633

634 Sentao Miao and Xiuli Chao. Dynamic joint assortment and pricing optimization with demand
 635 learning. *Manufacturing & Service Operations Management*, 23(2):525–545, 2021.

636

637 Elizbar A Nadaraya. On estimating regression. *Theory of Probability & Its Applications*, 9(1):
 638 141–142, 1964.

639

640 James L Powell, James H Stock, and Thomas M Stoker. Semiparametric estimation of index
 641 coefficients. *Econometrica: Journal of the Econometric Society*, pp. 1403–1430, 1989.

642

643 Sheng Qiang and Mohsen Bayati. Dynamic pricing with demand covariates. *arXiv preprint
 644 arXiv:1604.07463*, 2016.

645

646 David Ruppert, Matt P Wand, and Raymond J Carroll. *Semiparametric regression*. Number 12.
 647 Cambridge university press, 2003.

648

649 Charles J Stone. Optimal global rates of convergence for nonparametric regression. *The Annals of
 650 statistics*, pp. 1040–1053, 1982.

651

652 Alexandre B. Tsybakov. *Introduction to Nonparametric Estimation*. Springer Publishing Company,
 653 Incorporated, 1st edition, 2008. ISBN 0387790519.

648 Matilde Tullii, Solenne Gaucher, Nadav Merlis, and Vianney Perchet. Improved algorithms for
 649 contextual dynamic pricing. *Advances in Neural Information Processing Systems*, 37:126088–
 650 126117, 2024.

651

652 Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. *arXiv preprint*
 653 *arXiv:1011.3027*, 2010.

654

655 Yining Wang and Boxiao Chen. Tight regret bounds in contextual pricing with semi-parametric
 656 demand learning. *Available at SSRN 5133677*, 2025.

657

658 Yining Wang, Boxiao Chen, and David Simchi-Levi. Multimodal dynamic pricing. *Management*
 659 *Science*, 67(10):6136–6152, 2021.

660

661 Zizhuo Wang, Shiming Deng, and Yinyu Ye. Close the gaps: A learning-while-doing algorithm for
 662 single-product revenue management problems. *Operations Research*, 62(2):318–331, 2014.

663

664 Geoffrey S Watson. Smooth regression analysis. *Sankhyā: The Indian Journal of Statistics, Series A*,
 665 pp. 359–372, 1964.

666

667 Yingcun Xia and Wai Keung Li. On single-index coefficient regression models. *Journal of the*
 668 *American Statistical Association*, 94(448):1275–1285, 1999.

669

670 Jianyu Xu and Yu-Xiang Wang. Towards agnostic feature-based dynamic pricing: Linear policies vs
 671 linear valuation with unknown noise. In *International Conference on Artificial Intelligence and*
 672 *Statistics*, pp. 9643–9662. PMLR, 2022.

673

674 Zeqi Ye and Hansheng Jiang. Smoothness-adaptive dynamic pricing with nonparametric demand
 675 learning. In *International Conference on Artificial Intelligence and Statistics*, pp. 1675–1683.
 676 PMLR, 2024.

677

678 CONTENTS

678 1	Introduction	1
680 2	Problem formulation	3
683 3	Initial exploration phase	4
685 4	Semi-parametric estimation sub-routine	5
687 4.1	Piloted Local Polynomial Regression	5
688 4.2	Constrained least squared refinement	6
690 5	Handling policy-induced distribution shift	7
692 6	The LPSP algorithm and regret results	8
694 A	Other related works	14
697 B	Pilot estimation	15
699 C	Distribution shift subroutine	16
701 D	Proof of Proposition 6	16

702	E Proof of Proposition 8	19
703		
704		
705	F Proof of Theorem 9	20
706		
707	G Proof of Theorem 13	22
708		
709	H Proofs of Lemmas in Appendix E	24
710		
711	H.1 Preliminary Notations	24
712	H.2 Proof of Lemma 16	24
713	H.3 Proof of Lemma 17	24
714	H.3.1 Proofs of Lemmas 19 and 20	24
715		
716		
717	I Proof of Lemma in Appendix F	26
718		
719	I.1 Proof of Lemma 18	26
720		
721	J Proof of Remark 7	30
722		
723	K A discussion on Wang & Chen (2025)	32
724		
725	L Numerical Experiments	32
726		
727	L.1 Implementation Details of Algorithm	32
728	L.1.1 Constrained Least Squared Solution in Equation (2).	32
729	L.1.2 Sampling of the Context-wise Pricing Policy Interval.	32
730		
731	L.2 Experiment Setup	33
732	L.2.1 Effect of β on Regret	34
733	L.2.2 Effect of d on Regret	34
734		
735	L.2.3 Comparison to Fan et al. (2024).	35
736		
737		
738	A OTHER RELATED WORKS	
739		

Dynamic Pricing. There are extensive studies in dynamic pricing (Kleinberg & Leighton, 2003; Den Boer, 2015; Wang et al., 2014; Filippi et al., 2010; Broder & Rusmevichientong, 2012; Qiang & Bayati, 2016; Cohen et al., 2020). In the contextual setting with a linear demand model, $\tilde{\mathcal{O}}(\sqrt{T})$ regret can be obtained when the noise distribution is either fully known (Filippi et al., 2010; Ban & Keskin, 2021; Qiang & Bayati, 2016; Broder & Rusmevichientong, 2012) or assumed to belong to a parametric family (Javanmard & Nazerzadeh, 2019). The semi-parametric setting considered in our work and in Fan et al. (2024); Tullii et al. (2024); Bracale et al. (2025); Wang & Chen (2025); Luo et al. (2022; 2024); Xu & Wang (2022) generalizes this framework by allowing the noise distribution to be fully unknown. Among these works, apart from those listed in Table 1, Bracale et al. (2025); Luo et al. (2022) consider the $\beta = 1$ case and achieve $\tilde{\mathcal{O}}(T^{3/4})$ regret, while Luo et al. (2024) achieves $\tilde{\mathcal{O}}(T^{2/3})$ regret but additionally assumes an online estimation oracle. Finally, there also exist works that consider pricing with fully non-parametric demand (Chen & Gallego, 2021; Tullii et al., 2024; Javanmard et al., 2020) or other additional structures (Bu et al., 2020; Allouah et al., 2023; Keskin & Zeevi, 2014; Miao & Chao, 2021), which are beyond our scope.

Semi-Parametric Regression and Single-Index Models. Our setting is closely connected to semi-parametric single-index models, where an unknown low-dimensional index is coupled with a non-parametric link (Powell et al., 1989; Härdle et al., 1993; Ichimura, 1993). Classical work establishes

root- n estimation of the index under regularity and recovers the link via one-dimensional smoothing (Klein & Spady, 1993; Ichimura, 1993; Carroll et al., 1997). Foundational kernel procedures—Nadaraya–Watson and local polynomial regression—underpin these analyses, with well-understood uniform convergence and optimal-rate properties (Nadaraya, 1964; Watson, 1964; Stone, 1982). The literature also covers binary responses and generalized or partially linear single-index structures (Klein & Spady, 1993; Carroll et al., 1997), setting with discrete or irregular covariates (Horowitz & Härdle, 1996), and single-index coefficient models under strong mixing (Xia & Li, 1999). Comprehensive expositions and survey treatments can be found in (Györfi et al., 2002; Ruppert et al., 2003; Tsybakov, 2008; Horowitz, 2009). Despite this extensive theory, many results assume smooth design densities and emphasize asymptotics, assumptions that need not hold in contextual pricing where prices are policy–driven and the induced design can be irregular; hence the classical guarantees are informative but not directly applicable without further adaptation.

B PILOT ESTIMATION

In this section we introduce a simple pilot estimation stage under a mild diversity assumption on covariates $\lambda_{\min}(\mathbb{E}[\mathbf{c}_1 \mathbf{c}_1^\top]) \geq c_0/d$. We estimate θ_* by least squares. This procedure appeared in Fan et al. (2024); we include it here for completeness.

Theorem 14. *Let $\bar{\theta}$ be the output of Algorithm 1. Suppose that $\lambda_{\min}(\mathbb{E}[\mathbf{c}_1 \mathbf{c}_1^\top]) \geq c_0/d$ for some $c_0 > 0$. Then there exists some constant $C_0 > 0$ such that for $t \geq C_0 d$, the following holds with probability at least $1 - C_0 \delta - 2e^{-t/C_0 d^2}$:*

$$\|\bar{\theta} - \theta_*\| \leq C_0 \sqrt{\frac{d^3 \log(1/\delta)}{t}}.$$

Remark 15. *For any target error level η , we may choose $t = \tilde{\Theta}(d^3/\eta^2)$ to guarantee that $\|\bar{\theta}_0 - \theta_0\| \leq \eta$, which results in a regret of order $\tilde{O}(d^3/\eta^2)$.*

Proof of Theorem 14. Let $H \equiv p_{\max}$ and for any $\theta \in \mathbb{R}^d$

$$\mathcal{L}(\theta) \equiv \frac{1}{t} \sum_{t \in [t]} (H y_t - \mathbf{c}_t^\top \theta)^2.$$

We may compute the gradient and Hessian of $\mathcal{L}(\theta)$ as follows:

$$\begin{aligned} \nabla_\theta \mathcal{L}(\theta) &= \frac{2}{t} \sum_{t \in [t]} (\mathbf{c}_t^\top \theta - H y_t) \cdot \mathbf{c}_t \in \mathbb{R}^d, \\ \nabla_\theta^2 \mathcal{L}(\theta) &= \frac{2}{t} \sum_{t \in [t]} \mathbf{c}_t \mathbf{c}_t^\top \in \mathbb{R}^{d \times d}. \end{aligned}$$

A second order expansion yields that for some $\tilde{\theta}$ lying between $\bar{\theta}$ and θ_* ,

$$\begin{aligned} 0 \geq \mathcal{L}(\bar{\theta}) - \mathcal{L}(\theta_*) &= \langle \nabla_\theta \mathcal{L}(\theta_*), \bar{\theta} - \theta_* \rangle + \frac{1}{2} \langle \bar{\theta} - \theta_*, \nabla_\theta^2 \mathcal{L}(\tilde{\theta})(\bar{\theta} - \theta_*) \rangle \\ &= \langle \nabla_\theta \mathcal{L}(\theta_*), \bar{\theta} - \theta_* \rangle + \frac{1}{t} \langle \bar{\theta} - \theta_*, \sum_{t \in [t]} \mathbf{c}_t \mathbf{c}_t^\top (\bar{\theta} - \theta_*) \rangle. \end{aligned}$$

This implies that

$$\begin{aligned} \lambda_{\min} \left(\frac{1}{t} \sum_{t \in [t]} \mathbf{c}_t \mathbf{c}_t^\top \right) \cdot \|\bar{\theta} - \theta_*\|^2 &\leq \frac{1}{t} \langle \bar{\theta} - \theta_*, \sum_{t \in [t]} \mathbf{c}_t \mathbf{c}_t^\top (\bar{\theta} - \theta_*) \rangle \leq \langle \nabla_\theta \mathcal{L}(\theta_*), \theta_* - \bar{\theta} \rangle \\ &\leq \sqrt{d} \|\nabla_\theta \mathcal{L}(\theta_*)\|_\infty \cdot \|\bar{\theta} - \theta_*\|. \end{aligned}$$

Lower bounding $\lambda_{\min}(\frac{1}{t} \sum_{t \in [t]} \mathbf{c}_t \mathbf{c}_t^\top)$. By the matrix concentration in (Vershynin, 2010, remark 5.40), there exists some constant $c_1 > 0$ such that for $t \geq c_1^{-1} d$, we have with probability at least $1 - 2e^{-c_1 t/d^2}$,

$$\lambda_{\min} \left(\frac{1}{t} \sum_{t \in [t]} \mathbf{c}_t \mathbf{c}_t^\top \right) \geq \lambda_{\min}(\mathbb{E}[\mathbf{c}_1 \mathbf{c}_1^\top]) - \left\| \frac{1}{t} \sum_{t \in [t]} \mathbf{c}_t \mathbf{c}_t^\top - \mathbb{E}[\mathbf{c}_1 \mathbf{c}_1^\top] \right\| \geq \frac{c_1}{d}.$$

Algorithm 4 A subroutine for handling distribution shift (adapted from Wang & Chen (2025))

```

810
811
812 1: Inputs:  $\{(\underline{\pi}(c), \bar{\pi}(c))\}_{c \in \mathcal{C}}$ ,  $\Delta(\cdot, \cdot)$ ,  $\hat{g}(\cdot, \cdot)$ ,  $K = 12L_r/\sigma_r$ ,  $\kappa = \sqrt{L_r/\sigma_r}$ 
813   ▷ Input parameters: prior policy that offers price  $p \sim \text{Unif}([\underline{\pi}(c), \bar{\pi}(c)])$ , error quantification
814    $\Delta(\cdot, \cdot)$ , estimated model  $\hat{g} : \mathcal{C} \times [0, p_{\max}] \rightarrow [0, 1]$ .
815 2: for every  $c \in \mathcal{C}$  do
816   3:   Partition  $J = [\underline{\pi}(c), \bar{\pi}(c)]$  into  $K$  intervals of equal lengths, denoted as  $J_1, \dots, J_K$ ; write
817    $|J_k|$  for length and  $J_k = [\underline{p}(k), \bar{p}(k)]$ .
818   4:   for  $k = 1, 2, \dots, K$  do
819     ▷ Estimated average reward  $\hat{r}(J_k)$  and its uncertainty quantification  $\Delta(J_k)$ 
820     5:      $\hat{r}(J_k) \leftarrow |J_k|^{-1} \int_{J_k} p \hat{g}(c, p) dp$ ;  $\Delta(J_k) \leftarrow |J_k|^{-1} \int_{J_k} \Delta(c, p) dp$ .
821     ▷ Find the optimal price for context  $c$  together with its uncertainty  $\hat{\Delta}$ 
822     6:      $\hat{k} \leftarrow \arg \max_{k \in [K]} \hat{r}(J_k)$ ;  $\hat{\Delta} \leftarrow \kappa \sqrt{|J_{\hat{k}}|^2 + \max_{k \in [K]} \Delta(J_k)^2}$ .
823     ▷ Update the pricing range for context  $c$ , by stretching out  $\hat{\Delta}$  from the price interval  $J_{\hat{k}}$ 
824     7:      $[\underline{\pi}'(c), \bar{\pi}'(c)] \leftarrow [\underline{p}(\hat{k}) - \hat{\Delta}, \bar{p}(\hat{k}) + \hat{\Delta}] \cap [0, p_{\max}]$ .
825 8: return  $\{\underline{\pi}'(c), \bar{\pi}'(c)\}_{c \in \mathcal{C}}$                                 ▷ renewed policy is  $p \sim \text{Unif}([\underline{\pi}'(c), \bar{\pi}'(c)])$ 
826
827

```

828 **Upper bounding** $\|\nabla_{\theta} \mathcal{L}(\theta_0)\|_{\infty}$. Note that for any $t \in [t]$ and $i \in [d]$, we have $|(c_t^{\top} \theta_0 - Hy_t) \cdot c_{t,i}| \leq 1$ and

$$\begin{aligned}
& \mathbb{E}(c_t^{\top} \theta_* - Hy_t) \cdot c_{t,i} \\
&= \mathbb{E}[c_t^{\top} \theta_* \cdot c_{t,i} - H\mathbb{E}[y_t | c_t] \cdot c_{t,i}] \\
&= \mathbb{E}[c_t^{\top} \theta_* \cdot c_{t,i} - H\mathbb{E}[\mathbf{1}\{p_t \leq c_t^{\top} \theta_* + \xi_t\} | c_t] \cdot c_{t,i}] \\
&= \mathbb{E}[c_t^{\top} \theta_* \cdot c_{t,i} - \mathbb{E}[c_t^{\top} \theta_* + \xi_t | c_t] \cdot c_{t,i}] = 0.
\end{aligned}$$

830 Therefore, by applying Hoeffding's inequality and a union bound argument, there exists some constant $C_1 > 0$ such that for $t \geq C_1 d$, we have with probability at least $1 - C_1 \delta$ that

$$\|\nabla_{\theta} \mathcal{L}(\theta_*)\|_{\infty} \leq C_1 \sqrt{\frac{\log(1/\delta)}{t}}.$$

831 Combining the above estimates, we have for $t \geq (c_1^{-1} \vee C_1)d$,

$$\|\bar{\theta} - \theta_*\| \leq \frac{C_1}{c_1} \sqrt{\frac{d^3 \log(1/\delta)}{t}}$$

832 holds with probability at least $1 - C_1 \delta - 2e^{-c_1 t / d^2}$. The claim follows by adjusting constants. \square

C DISTRIBUTION SHIFT SUBROUTINE

840 For completeness, we include Algorithm 4 (adapted from Wang & Chen (2025)). Given a prior range $[\underline{\pi}(c), \bar{\pi}(c)]$, an estimator \hat{g} , and an envelop Δ , the subroutine returns a renewed range $[\underline{\pi}'(c), \bar{\pi}'(c)]$ for uniform pricing.

D PROOF OF PROPOSITION 6

845 Recall that for any x with $x^{\top} \bar{\theta}_0 \in I_j$,

$$\hat{g}_j(x | \theta) := U_j(x, \theta)^{\top} \Lambda_j^{-1}(\theta) \sum_{i \in \mathcal{T}_j} y_i U_j(x_i, \theta). \quad (5)$$

850 and $\mathbf{X}_j(x, \theta) := ((x - \bar{x}_j)^{\top}, \dots, \lfloor \beta \rfloor ((x - \bar{x}_j)^{\top} \theta)^{\lfloor \beta \rfloor - 1} \cdot (x - \bar{x}_j)^{\top})^{\top}$. Recall also that $\mathbf{v}_j(x, \theta) := \mathbf{X}_j(x, \theta) - U_j(x, \theta)^{\top} \Lambda_j^{-1}(\theta) \sum_{i \in \mathcal{T}_j} U_j(x_i, \theta) \cdot \mathbf{X}_j(x_i, \theta)$ and $\Sigma_j(\theta) := \sum_{i \in \mathcal{T}_j} \mathbf{v}_j(x_i, \theta) \mathbf{v}_j(x_i, \theta)^{\top}$.

855 For any θ with $\|\theta - \bar{\theta}_0\| \leq \eta$, we set

$$\delta_j(\theta) := \left(g'(\bar{x}_j^{\top} \theta_0)(\theta - \theta_0)^{\top}, \dots, \frac{g^{(\ell)}(\bar{x}_j^{\top} \theta_0)}{\ell!} (\theta - \theta_0)^{\top} \right)^{\top}.$$

864 Let $h = n^{-\frac{1}{2\beta+1}}$.
 865

866 We first decompose the error as follows: for any x such that $x^\top \bar{\theta}_0 \in I_j$,

$$867 \quad 868 \quad 869 \quad 870 \quad 871 \quad 872 \quad 873 \quad 874 \quad 875 \quad 876 \quad 877 \quad 878 \quad 879 \quad 880 \quad 881 \quad 882 \quad 883 \quad 884 \quad 885 \quad 886 \quad 887 \quad 888 \quad 889 \quad 890 \quad 891 \quad 892 \quad 893 \quad 894 \quad 895 \quad 896 \quad 897 \quad 898 \quad 899 \quad 900 \quad 901 \quad 902 \quad 903 \quad 904 \quad 905 \quad 906 \quad 907 \quad 908 \quad 909 \quad 910 \quad 911 \quad 912 \quad 913 \quad 914 \quad 915 \quad 916 \quad 917$$

$$\widehat{g}_j(x | \theta) - g(x^\top \theta_0) = \underbrace{\widehat{g}_j(x | \theta) - \widehat{g}_j(x | \theta_0)}_{:= \mathcal{I}_1} + \underbrace{\widehat{g}_j(x | \theta_0) - g(x^\top \theta_0)}_{:= \mathcal{I}_2}. \quad (6)$$

Estimating \mathcal{I}_1 . We begin by expressing the response as $y_t = g(x_t^\top \theta_0) + \varepsilon_t$, where $\mathbb{E}[\varepsilon_t | x_t] = 0$. Then based on the closed form (5), we can further decompose \mathcal{I}_1 as follows:

$$\mathcal{I}_1 = \underbrace{\left\{ U_j(x, \theta)^\top \sum_{t \in \mathcal{T}_j} g(x_t^\top \theta_0) \Lambda_j^{-1}(\theta) U_j(x_t, \theta) - U_j(x, \theta_0)^\top \sum_{t \in \mathcal{T}_j} g(x_t^\top \theta_0) \Lambda_j^{-1}(\theta_0) U_j(x_t, \theta_0) \right\}}_{:= \mathcal{I}_{11}} \\ + \underbrace{\left\{ U_j(x, \theta)^\top \sum_{t \in \mathcal{T}_j} \varepsilon_t \Lambda_j^{-1}(\theta) U_j(x_t, \theta) - \textcolor{red}{U_j(x, \theta_0)^\top \sum_{t \in \mathcal{T}_j} \varepsilon_t \Lambda_j^{-1}(\theta_0) U_j(x_t, \theta_0)} \right\}}_{:= \mathcal{I}_{12}}.$$

Consider the $\lfloor \beta \rfloor$ -order expansion of $g(\cdot)$ at $x^\top \theta$ for each t , we have by β -Hölder continuity and $\eta \leq h$,

$$g(x_t^\top \theta) = D_j^\top U_j(x_t, \theta) + \xi_t$$

for some $\xi_t = \mathcal{O}(h^\beta)$. Then we have

$$\mathcal{I}_{11} = U_j(x, \theta)^\top \sum_{t \in \mathcal{T}_j} \Lambda_j^{-1}(\theta) U_j(x_t, \theta) U_j(x_t, \theta_0)^\top D_j - U_j(x, \theta_0)^\top \sum_{t \in \mathcal{T}_j} \Lambda_j^{-1}(\theta_0) U_j(x_t, \theta_0) U_j(x_t, \theta_0)^\top D_j \\ + U_j(x, \theta)^\top \sum_{t \in \mathcal{T}_j} \xi_t \Lambda_j^{-1}(\theta) U_j(x_t, \theta) - U_j(x, \theta_0)^\top \sum_{t \in \mathcal{T}_j} \xi_t \Lambda_j^{-1}(\theta_0) U_j(x_t, \theta_0) \\ \stackrel{(i)}{=} U_j(x, \theta)^\top \sum_{t \in \mathcal{T}_j} \Lambda_j^{-1}(\theta) U_j(x_t, \theta) U_j(x_t, \theta_0)^\top D_j - U_j(x, \theta_0)^\top \sum_{t \in \mathcal{T}_j} \Lambda_j^{-1}(\theta) U_j(x_t, \theta) U_j(x_t, \theta_0)^\top D_j \\ + U_j(x, \theta)^\top \sum_{t \in \mathcal{T}_j} \xi_t \Lambda_j^{-1}(\theta) U_j(x_t, \theta) - U_j(x, \theta_0)^\top \sum_{t \in \mathcal{T}_j} \xi_t \Lambda_j^{-1}(\theta_0) U_j(x_t, \theta_0) \\ = U_j(x, \theta)^\top \sum_{t \in \mathcal{T}_j} \Lambda_j^{-1}(\theta) U_j(x_t, \theta) (U_j(x_t, \theta_0) - U_j(x_t, \theta))^\top D_j \\ + (U_j(x, \theta) - U_j(x, \theta_0))^\top \underbrace{\sum_{t \in \mathcal{T}_j} \Lambda_j^{-1}(\theta) U_j(x_t, \theta) U_j(x_t, \theta)^\top D_j}_{= I} \\ + U_j(x, \theta)^\top \sum_{t \in \mathcal{T}_j} \xi_t \Lambda_j^{-1}(\theta) U_j(x_t, \theta) - \textcolor{blue}{U_j(x, \theta_0)^\top \sum_{t \in \mathcal{T}_j} \xi_t \Lambda_j^{-1}(\theta_0) U_j(x_t, \theta_0)}. \quad (7)$$

Here, in (i) we have used the identity $\sum_{t \in \mathcal{T}_j} U_j(x_t, \theta) U_j(x_t, \theta)^\top = \Lambda_j(\theta)$ for all θ . Now noticing that for any $1 \leq s \leq \lfloor \beta \rfloor$,

$$\Delta_j^s(x, \theta_0) - \Delta_j^s(x, \theta) = ((x - \bar{x}_j)^\top \theta_0)^s - ((x - \bar{x}_j)^\top \theta)^s \\ = s((x - \bar{x}_j)^\top \theta)^{s-1} \cdot (x - \bar{x}_j)^\top (\theta_0 - \theta) + \mathcal{O}(\eta^2),$$

we have

$$(U_j(x, \theta) - U_j(x, \theta_0))^\top D_j \\ = \begin{pmatrix} \Delta_j(x, \theta) - \Delta_j(x, \theta_0) & \dots & \Delta_j^{\lfloor \beta \rfloor}(x, \theta) - \Delta_j^{\lfloor \beta \rfloor}(x, \theta_0) \end{pmatrix} \begin{pmatrix} g'(\bar{x}_j^\top \theta_0) \\ \vdots \\ \frac{1}{\lfloor \beta \rfloor!} g^{(\lfloor \beta \rfloor)}(\bar{x}_j^\top \theta_0) \end{pmatrix}$$

$$\begin{aligned}
&= \underbrace{\left((x - \bar{x}_j)^\top \dots \lfloor \beta \rfloor ((x - \bar{x}_j)^\top \theta)^{\lfloor \beta \rfloor - 1} \cdot (x - \bar{x}_j)^\top \right)}_{= \mathbf{X}_j^\top(x, \theta)} \underbrace{\begin{pmatrix} g'(\bar{x}_j^\top \theta_0)(\theta - \theta_0) \\ \vdots \\ \frac{g^{(\lfloor \beta \rfloor)}(\bar{x}_j^\top \theta_0)}{\lfloor \beta \rfloor!}(\theta - \theta_0) \end{pmatrix}}_{= \boldsymbol{\delta}_j(\theta)} + \mathcal{O}(\eta^2),
\end{aligned}$$

we can further writing \mathcal{I}_{11} as

$$\begin{aligned}
\mathcal{I}_{11} &= \mathbf{X}_j(x, \theta)^\top \boldsymbol{\delta}_j(\theta) + \mathcal{O}(\eta^2) - U_j(x, \theta)^\top \Lambda_j^{-1}(\theta) \sum_{t \in \mathcal{T}_j} U_j(x_t, \theta) (\mathbf{X}_j(x_t, \theta)^\top \boldsymbol{\delta}_j(\theta) + \mathcal{O}(\eta^2)) \\
&= \left(\underbrace{\mathbf{X}_j(x, \theta) - U_j(x, \theta)^\top \Lambda_j^{-1}(\theta) \sum_{t \in \mathcal{T}_j} U_j(x_t, \theta) \cdot \mathbf{X}_j(x_t, \theta)}_{\mathbf{v}_j(x, \theta)} \right)^\top \boldsymbol{\delta}_j(\theta) \\
&\quad + \mathcal{O}(\eta^2(1 + \sqrt{n_j} \|U_j(x, \theta)\|_{\Lambda_j^{-1}(\theta)})),
\end{aligned}$$

where we have used the Cauchy-Schwartz's inequality:

$$\begin{aligned}
&\left| \sum_{t \in \mathcal{T}_j} \mathcal{O}(\eta^2 U_j(x, \theta)^\top \Lambda_j^{-1}(\theta) U_j(x_t, \theta)) \right| \\
&\lesssim \eta^2 \left(n_j U_j(x, \theta)^\top \Lambda_j^{-1}(\theta) \underbrace{\sum_{t \in \mathcal{T}_j} U_j(x_t, \theta) U_j(x_t, \theta)^\top \Lambda_j^{-1}(\theta) U_j(x, \theta)}_{= \Lambda_j(\theta)} \right)^{1/2}.
\end{aligned}$$

This completes the estimation for \mathcal{I}_1 .

Estimating \mathcal{I}_2 . For \mathcal{I}_2 , we have

$$\begin{aligned}
\mathcal{I}_2 &= U_j(x, \theta_0)^\top \sum_{t \in \mathcal{T}_j} y_t \Lambda_j^{-1}(\theta_0) U_j(x_t, \theta_0) - g(x^\top \theta_0) \\
&= \left\{ U_j(x, \theta_0)^\top \sum_{t \in \mathcal{T}_j} (y_t - g(x_t^\top \theta_0)) \Lambda_j^{-1}(\theta_0) U_j(x_t, \theta_0) \right\} \\
&\quad + \left\{ U_j(x, \theta_0)^\top \sum_{t \in \mathcal{T}_j} g(x_t^\top \theta_0) \Lambda_j^{-1}(\theta_0) U_j(x_t, \theta_0) - g(x^\top \theta_0) \right\} \\
&= \left\{ U_j(x, \theta_0)^\top \sum_{t \in \mathcal{T}_j} \varepsilon_t \Lambda_j^{-1}(\theta_0) U_j(x_t, \theta_0) \right\} \\
&\quad + \left\{ U_j(x, \theta_0)^\top \sum_{t \in \mathcal{T}_j} g(x_t^\top \theta_0) \Lambda_j^{-1}(\theta_0) U_j(x_t, \theta_0) - g(x^\top \theta_0) \right\} \\
&= \left\{ U_j(x, \theta_0)^\top \sum_{t \in \mathcal{T}_j} \varepsilon_t \Lambda_j^{-1}(\theta_0) U_j(x_t, \theta_0) \right\} \\
&\quad + \left\{ U_j(x, \theta_0)^\top \sum_{t \in \mathcal{T}_j} \Lambda_j^{-1}(\theta_0) U_j(x_t, \theta_0) U_j(x_t, \theta)^\top D_j - g(x^\top \theta_0) \right\} \\
&\quad + U_j(x, \theta_0)^\top \sum_{t \in \mathcal{T}_j} \xi_t \Lambda_j^{-1}(\theta_0) U_j(x_t, \theta_0) \\
&= \color{red}{U_j(x, \theta_0)^\top \sum_{t \in \mathcal{T}_j} \varepsilon_t \Lambda_j^{-1}(\theta_0) U_j(x_t, \theta_0)} + \color{blue}{U_j(x, \theta_0)^\top \sum_{t \in \mathcal{T}_j} \xi_t \Lambda_j^{-1}(\theta_0) U_j(x_t, \theta_0)} \\
&\quad + \underbrace{\left\{ U_j(x, \theta_0)^\top D_j - g(x^\top \theta_0) \right\}}_{= \mathcal{O}(h^\beta)}.
\end{aligned}$$

This completes the estimation for \mathcal{I}_2 .

Combining two expansions and canceling **red colored terms** and **blue colored terms**, we have

$$\begin{aligned}\widehat{g}_j(x \mid \theta) - g(x^\top \theta_0) &= \mathbf{v}_j(x, \theta)^\top \boldsymbol{\delta}_j(\theta) + U_j(x, \theta)^\top \sum_{t \in \mathcal{T}_j} \varepsilon_t \Lambda_j^{-1}(\theta) U_j(x_t, \theta) \\ &\quad + U_j(x, \theta)^\top \sum_{t \in \mathcal{T}_j} \xi_t \Lambda_j^{-1}(\theta) U_j(x_t, \theta) + \mathcal{O}((h^\beta + \eta^2)(1 + \sqrt{n_j} \|U_j(x, \theta)\|_{\Lambda_j^{-1}(\theta)})).\end{aligned}$$

Finally, by Cauchy Schwartz's inequality, we have the third term can be further bounded by

$$\left| U_j(x, \theta)^\top \sum_{t \in \mathcal{T}_j} \xi_t \Lambda_j^{-1}(\theta) U_j(x_t, \theta) \right| \lesssim \sqrt{h^{2\beta} n_j} \|U_j(x, \theta)\|_{\Lambda_j^{-1}(\theta)},$$

This concludes that proof. \square

E PROOF OF PROPOSITION 8

The proof of Proposition 8 relies on the following two lemmas, whose proofs are deferred to Appendix H. Recall that $h = n^{-\frac{1}{2\beta+1}}$.

Lemma 16. *For any θ with $\|\theta - \bar{\theta}_0\| \leq \eta$, it holds that*

$$\begin{aligned}\widehat{g}_j(x \mid \theta) - g(x^\top \theta_0) &= \mathbf{v}_j(x, \theta)^\top \boldsymbol{\delta}_j(\theta) + U_j(x, \theta)^\top \sum_{t \in \mathcal{T}_j} \varepsilon_t \Lambda_j^{-1}(\theta) U_j(x_t, \theta) \\ &\quad + \mathcal{O}(h^\beta (1 + \sqrt{n_j} \|U_j(x, \theta)\|_{\Lambda_j^{-1}(\theta)}))\end{aligned}$$

uniformly for all x with $x^\top \bar{\theta}_0 \in I_j$ and $j \in [M]$.

Lemma 17. *For any θ with $\|\theta - \bar{\theta}_0\| \leq \eta$, it holds with probability at least $1 - \mathcal{O}(n_j \delta)$ that*

$$\begin{aligned}\mathcal{L}_j(\theta) &= \sum_{t \in \mathcal{T}_j} (y_t - \widehat{g}_j(x_t \mid \theta))^2 = \sum_{t \in \mathcal{T}_j} \varepsilon_t^2 + \Theta\left(\boldsymbol{\delta}_j(\theta)^\top \Sigma_j(\theta) \boldsymbol{\delta}_j(\theta)\right) \\ &\quad + \mathcal{O}\left(\sqrt{\log(1/\delta)} \cdot \left(\sqrt{\boldsymbol{\delta}_j(\theta)^\top \Sigma_j(\theta) \boldsymbol{\delta}_j(\theta)} + n_j h^{2\beta}\right) + \log(1/\delta) + n_j h^{2\beta}\right).\end{aligned}$$

We now prove Proposition 8.

Proof of Proposition 8. In the proof below, we consider x such that $x^\top \bar{\theta}_0 \in I_j$. Recall that $\widehat{\theta}_j = \arg \min_{\|\theta - \bar{\theta}_0\| \leq \eta} \mathcal{L}_j(\theta)$ and we write $\widehat{\theta} \equiv \widehat{\theta}_j$ for simplicity.

It follows from Lemma 17 and a standard ε -net argument over θ —leading to an multiplicative d factor before $\log(1/\delta)$ —that

$$\begin{aligned}\mathcal{L}_j(\widehat{\theta}) &= \sum_{t \in \mathcal{T}_j} \varepsilon_t^2 + \Theta\left(\boldsymbol{\delta}_j(\widehat{\theta})^\top \Sigma_j(\widehat{\theta}) \boldsymbol{\delta}_j(\widehat{\theta})\right) \\ &\quad + \mathcal{O}\left(\sqrt{d \log(1/\delta)} \cdot \left(\sqrt{\boldsymbol{\delta}_j(\widehat{\theta})^\top \Sigma_j(\widehat{\theta}) \boldsymbol{\delta}_j(\widehat{\theta})} + n_j h^{2\beta}\right) + d \log(1/\delta) + n_j h^{2\beta}\right)\end{aligned}$$

holds with probability at least $1 - \mathcal{O}(\delta \log n)$. As $\mathcal{L}_j(\widehat{\theta}) \leq \mathcal{L}_j(\theta_0)$, we can derive that

$$\begin{aligned}\boldsymbol{\delta}_j(\widehat{\theta})^\top \Sigma_j(\widehat{\theta}) \boldsymbol{\delta}_j(\widehat{\theta}) + n_j h^{2\beta} \\ \lesssim \sqrt{d \log(1/\delta)} \cdot \sqrt{\boldsymbol{\delta}_j(\widehat{\theta})^\top \Sigma_j(\widehat{\theta}) \boldsymbol{\delta}_j(\widehat{\theta}) + n_j h^{2\beta}} + d \log(1/\delta) + n_j h^{2\beta}.\end{aligned}$$

Using the facts that $a^2 \lesssim ba + c \implies a \lesssim b + \sqrt{c}$, $\forall a, b, c \geq 0$ and $\zeta \|\boldsymbol{\delta}_j(\widehat{\theta})\|^2 = \mathcal{O}(1)$, we obtain

$$\begin{aligned}\sqrt{\boldsymbol{\delta}_j(\widehat{\theta})^\top \Sigma_j(\widehat{\theta}) \boldsymbol{\delta}_j(\widehat{\theta}) + n_j h^{2\beta}} &\lesssim \sqrt{d \log(1/\delta)} + \left(d \log(1/\delta) + n_j h^{2\beta}\right)^{1/2} \\ &\implies \sqrt{\boldsymbol{\delta}_j(\widehat{\theta})^\top (\Sigma_j(\widehat{\theta}) + \zeta I) \boldsymbol{\delta}_j(\widehat{\theta})} \lesssim \sqrt{d \log(1/\delta)} + \sqrt{n_j} h^\beta.\end{aligned}\tag{8}$$

1026 On the other hand, by Lemma 16, we have
 1027

$$\begin{aligned}
 1028 \quad & \left| (\hat{g}_j(x | \hat{\theta}) - g(x^\top \theta_0)) \right| \leq \underbrace{\left| \mathbf{v}_j(x, \hat{\theta})^\top \boldsymbol{\delta}_j(\hat{\theta}) \right|}_{\mathcal{Y}_1} + \underbrace{\left| U_j(x, \hat{\theta})^\top \sum_{t \in \mathcal{T}_j} \varepsilon_t \Lambda_j^{-1}(\hat{\theta}) U_j(x_t, \hat{\theta}) \right|}_{\mathcal{Y}_2} \\
 1029 \\
 1030 \\
 1031 \\
 1032 \quad & + \mathcal{O}\left(h^\beta (1 + \sqrt{n_j} \|U_j(x, \hat{\theta})\|_{\Lambda_j^{-1}(\hat{\theta})}) \right).
 \end{aligned}$$

1034 *Term \mathcal{Y}_1 :* Using Cauchy-Schwarz together with (8) yields that
 1035

$$1036 \quad \mathcal{Y}_1 \lesssim \left(\sqrt{d \log(1/\delta)} + \sqrt{n_j} h^\beta \right) \cdot \sqrt{\mathbf{v}_j(x, \hat{\theta})^\top (\Sigma_j(\hat{\theta}) + \zeta I)^{-1} \mathbf{v}_j(x, \hat{\theta})}.$$

1038

1039 *Term \mathcal{Y}_2 :* Applying Hoeffding's inequality with an ε -net argument, we have with probability at least
 1040 $1 - \mathcal{O}(\delta)$ that

$$1041 \quad \mathcal{Y}_2 \lesssim \sqrt{d \log(1/\delta) U_j(x, \hat{\theta})^\top \Lambda_j^{-1}(\hat{\theta}) U_j(x, \hat{\theta})}.$$

1043 Combining the estimates for \mathcal{Y}_1 and \mathcal{Y}_2 concludes the proof. \square
 1044

1045 F PROOF OF THEOREM 9

1047 For any $j \in [M]$, let $\mathcal{T}_j^{\text{ra}}$ be the index set that collects the samples that are sampled i.i.d. from a
 1048 stationary distribution Q_j and $\mathcal{T}_j^{\text{ro}} := \mathcal{T}_j \setminus \mathcal{T}_j^{\text{ra}}$. Let $n_j^{\text{ra}} = |\mathcal{T}_j^{\text{ra}}|$ and $n_j^{\text{ro}} = |\mathcal{T}_j^{\text{ro}}|$. Then we have
 1049 $\mathcal{T}_j = \mathcal{T}_j^{\text{ra}} \cup \mathcal{T}_j^{\text{ro}}$ and $n_j = n_j^{\text{ra}} + n_j^{\text{ro}}$. The *population* level quantities are defined as
 1050

$$\begin{aligned}
 1051 \quad & V_j(\theta) := \mathbb{E}_{z \sim Q_j} [U_j(z, \theta) \mathbf{X}_j(z, \theta)] + \frac{1}{n_j^{\text{ra}}} \sum_{t \in \mathcal{T}_j^{\text{ro}}} U_j(x_t, \theta) U_j(x_t, \theta)^\top, \\
 1052 \\
 1053 \\
 1054 \quad & \bar{\Lambda}_j(\theta) := \mathbb{E}_{z \sim Q_j} [U_j(z, \theta) U_j(z, \theta)^\top] + \frac{1}{n_j^{\text{ra}}} \sum_{t \in \mathcal{T}_j^{\text{ro}}} U_j(x_t, \theta) U_j(x_t, \theta)^\top \\
 1055 \\
 1056 \\
 1057 \quad & \bar{\mathbf{v}}_j(x, \theta) := \mathbf{X}_j(x, \theta) - U_j^\top(x, \theta) \bar{\Lambda}_j^{-1}(\theta) V_j(\theta), \quad \bar{\Sigma}_j(\theta) := \sum_{t \in \mathcal{T}_j} \bar{\mathbf{v}}_j(x_t, \theta) \bar{\mathbf{v}}_j(x_t, \theta)^\top.
 \end{aligned}$$

1059 **Lemma 18.** *Assume the same conditions as in Theorem 9. It holds with probability at least $1 - \mathcal{O}(\delta)$
 1060 that uniformly for all x such that $x^\top \bar{\theta}_0 \in I_j$ and θ such that $\|\theta - \bar{\theta}_0\| \leq \eta$,*
 1061

- 1062 (i) $\|\mathbf{v}_j(x, \theta) - \bar{\mathbf{v}}_j(x, \theta)\|_2 \lesssim d^{7/2} \log^{3/2}(1/\delta) \cdot \left(n_j^{-1/4} \|U_j(x, \theta)\|_{\bar{\Lambda}_j^{-1}(\theta)} + n_j^{1/4} \|U_j(x, \theta)\|_{\Lambda_j^{-1}(\theta)} \right).$
- 1063 (ii) *Moreover, if $\zeta \asymp \eta^{-2} = \Omega(d^7 \log^{7/2}(1/\delta) \sqrt{n_j})$, we have*

$$\begin{aligned}
 1065 \quad & \mathbf{v}_j(x, \theta)^\top (\Sigma_j(\theta) + \zeta I)^{-1} \mathbf{v}_j(x, \theta) \lesssim \bar{\mathbf{v}}_j(x, \theta)^\top (\bar{\Sigma}_j(\theta) + \zeta I)^{-1} \bar{\mathbf{v}}_j(x, \theta) \\
 1066 \\
 1067 \\
 1068 \quad & + d^7 \log^3(1/\delta) \cdot (n_j^{-1/2} \zeta^{-1} \|U_j(x, \theta)\|_{\bar{\Lambda}_j^{-1}(\theta)}^2 + n_j^{1/2} \zeta^{-1} \|U_j(x, \theta)\|_{\Lambda_j^{-1}(\theta)}^2).
 \end{aligned}$$

1069 The proof of Lemma 18 is deferred to Appendix I.1. Now we prove Theorem 9.
 1070

1071 *Proof of Theorem 9.* Recall that $h = n^{-\frac{1}{2\beta+1}}$ and
 1072

$$1073 \quad \text{Err}_j(x) := \left(\sqrt{d \log(1/\delta)} + \sqrt{n_j} h^\beta \right) \cdot \left(\|\mathbf{v}_j(x, \hat{\theta}_j)\|_{(\Sigma_j(\hat{\theta}_j) + \zeta I)^{-1}} + \|U_j(x, \hat{\theta}_j)\|_{\Lambda_j^{-1}(\hat{\theta}_j)} \right)$$

1075 With Lemma 18 and the fact $\zeta \gtrsim n_j^{1/2}$, we can now define the population-level confidence bound as
 1076

$$\begin{aligned}
 1077 \quad & \overline{\text{Err}}_j(x) := \left(\sqrt{d \log(1/\delta)} + \sqrt{n_j} h^\beta \right) \cdot \left(\|\bar{\mathbf{v}}_j(x, \hat{\theta}_j)\|_{(\bar{\Sigma}_j(\hat{\theta}_j) + \zeta I)^{-1}} + \|U_j(x, \hat{\theta}_j)\|_{\Lambda_j^{-1}(\hat{\theta}_j)} \right) \\
 1078 \\
 1079 \quad & + d^{7/2} \log^{3/2}(1/\delta) \cdot \left(n_j^{-1} \|U_j(x, \hat{\theta}_j)\|_{\Lambda_j^{-1}(\hat{\theta}_j)}^2 + (1 + n_j h^{2\beta}) \cdot \|U_j(x, \hat{\theta}_j)\|_{\Lambda_j^{-1}(\hat{\theta}_j)}^2 \right)^{1/2},
 \end{aligned}$$

1080 It follows that for any $x \sim Q_j$, if $\zeta \asymp \eta^{-2} = \Omega(d^7 \log^{7/2}(1/\delta) \sqrt{n_j})$,

$$1082 \mathbb{E}_{x \sim Q_j} [\text{Err}_j(x)] \lesssim \mathbb{E}_{x \sim Q_j} [\overline{\text{Err}}_j(x)].$$

1084 Let

$$1085 \text{Err}_{j,1}(x) := \sqrt{\bar{\mathbf{v}}_j(x, \hat{\theta}_j)^\top \bar{\Sigma}_j^{-1}(\hat{\theta}_j) \bar{\mathbf{v}}_j(x, \hat{\theta}_j)},$$

$$1086 \text{Err}_{j,2}(x) := \sqrt{n_j^{-1} \|U_j(x, \hat{\theta}_j)\|_{\Lambda_j^{-1}(\hat{\theta}_j)}^2 + (1 + n_j h^{2\beta}) \cdot \|U_j(x, \hat{\theta}_j)\|_{\Lambda_j^{-1}(\hat{\theta}_j)}^2}.$$

1089 We then have

$$1091 \mathbb{E}_{x \sim Q_j} [\overline{\text{Err}}_j(x)] = (\sqrt{d \log(1/\delta)} + \sqrt{n_{\tau,j}} h^\beta) \mathbb{E}_{x \sim Q_j} [\text{Err}_{j,1}(x)]$$

$$1092 + d^{7/2} \log^{3/2}(1/\delta) \mathbb{E}_{x \sim Q_j} [\text{Err}_{j,2}(x)].$$

1094 **Bounding $\mathbb{E}_{x \sim Q_j} [\overline{\text{Err}}_{j,1}(x)]$.** As in proof of Lemma 18, we decompose $\bar{\Sigma}_j$ into

$$1096 \bar{\Sigma}_j(\hat{\theta}) = \sum_{t \in \mathcal{T}_j^{\text{ro}}} \bar{\mathbf{v}}_j(x_t, \hat{\theta}_j) \bar{\mathbf{v}}_j(x_t, \hat{\theta}_j)^\top + \underbrace{\sum_{t \in \mathcal{T}_j^{\text{ra}}} \bar{\mathbf{v}}_j(x_t, \hat{\theta}_j) \bar{\mathbf{v}}_j(x_t, \hat{\theta}_j)^\top + \zeta I}_{:= \bar{\Sigma}_j^{\text{ra}}(\hat{\theta}_j)} \succeq \bar{\Sigma}_j^{\text{ra}}(\hat{\theta}_j).$$

1100 Then by Jensen's inequality,

$$1102 \mathbb{E}_{x \sim Q_j} [\overline{\text{Err}}_{j,1}(x)] \leq \sqrt{\mathbb{E}_{x \sim Q_j} [\bar{\mathbf{v}}_j(x, \hat{\theta}_j)^\top \bar{\Sigma}_j^{-1}(\hat{\theta}_j) \bar{\mathbf{v}}_j(x, \hat{\theta}_j)]}$$

$$1103 \leq \sqrt{\mathbb{E}_{x \sim Q_j} [\bar{\mathbf{v}}_j(x, \hat{\theta}_j)^\top (\bar{\Sigma}_j^{\text{ra}})^{-1}(\hat{\theta}_j) \bar{\mathbf{v}}_j(x, \hat{\theta}_j)]}$$

$$1104 = \left(\underbrace{\langle (\bar{\Sigma}_j^{\text{ra}})^{-1}(\hat{\theta}_j), \mathbb{E}_{x \sim Q_j} [\bar{\mathbf{v}}_j(x, \hat{\theta}_j) \bar{\mathbf{v}}_j(x, \hat{\theta}_j)^\top] - \frac{1}{n_j^{\text{ra}}} (\bar{\Sigma}_j^{\text{ra}}(\hat{\theta}_j) - \zeta I) \rangle}_{=_{(i)} \mathcal{O}(\sqrt{d \log(1/\delta) / n_j})} + \underbrace{\frac{1}{n_j^{\text{ra}}} \langle (\bar{\Sigma}_j^{\text{ra}})^{-1}(\hat{\theta}_j), (\bar{\Sigma}_j^{\text{ra}}(\hat{\theta}_j) - \zeta I) \rangle}_{= \mathcal{O}(1/n_j^{\text{ra}})} \right)^{1/2}$$

$$1105 \lesssim_{(ii)} \left(\zeta^{-1} \sqrt{d \log(1/\delta) / n_j} + 1/n_j \right)^{1/2} \lesssim \sqrt{d \log(1/\delta) / n_j}.$$

1110 with probability at least $1 - \delta$. Where (i) is by matrix Hoeffding's inequality and a simple union
1111 bound, (ii) is by $\bar{\Sigma}_j^{\text{ra}}(\hat{\theta}) \succeq \zeta I \succeq \eta^{-2} I$ and $n_j^{\text{ra}} \asymp n_j$. Therefore, we have with probability at least
1112 $1 - \delta$,

$$1116 (\sqrt{d \log(1/\delta)} + \sqrt{n_{\tau,j}} h^\beta) \mathbb{E}_{x \sim Q_j} [\overline{\text{Err}}_{j,1}(x)] \lesssim d \log^{3/2}(1/\delta) \cdot n_j^{-1/2} + h^\beta \sqrt{d \log(1/\delta)}.$$

1118 **Bounding $\mathbb{E}_{x \sim Q_j} [\overline{\text{Err}}_{j,2}(x)]$.** By Jensen's inequality, for every j with $n_j > 0$,

$$1120 \mathbb{E}_{x \sim Q_j} [\overline{\text{Err}}_{j,2}(x)]$$

$$1121 \lesssim (1 + \sqrt{n_j} h^\beta) \cdot \sqrt{n_j^{-1} \mathbb{E}_{x \sim Q_j} [\|U_j(x, \hat{\theta}_j)\|_{\Lambda_j^{-1}(\hat{\theta}_j)}^2] + \mathbb{E}_{x \sim Q_j} [\|U_j(x, \hat{\theta}_j)\|_{\Lambda_j^{-1}(\hat{\theta}_j)}^2]}$$

$$1122 = (1 + \sqrt{n_j} h^\beta) \cdot \left(\underbrace{n_j^{-1} \langle \bar{\Lambda}_j^{-1}(\hat{\theta}_j), \bar{\Lambda}_j(\hat{\theta}_j) \rangle}_{= \mathcal{O}(1)} + \underbrace{\langle \bar{\Lambda}_j(\hat{\theta}_j) - \frac{1}{n_j^{\text{ra}}} \Lambda_j^{\text{ra}}(\hat{\theta}_j), \Lambda_j^{-1}(\hat{\theta}_j) \rangle}_{=_{(i)} \mathcal{O}(\sqrt{d \log(1/\delta) / n_j})} + \underbrace{\frac{1}{n_j^{\text{ra}}} \langle \Lambda_j^{\text{ra}}(\hat{\theta}_j), \Lambda_j^{-1}(\hat{\theta}_j) \rangle}_{=_{(ii)} \mathcal{O}(1)} \right)^{1/2}$$

$$1123 \lesssim_{(iii)} \sqrt{d \log(1/\delta) / n_j} + h^\beta \sqrt{d \log(1/\delta)}$$

1130 with probability at least $1 - \delta$. Where (i) is by matrix's Hoeffding's inequality and a simple union
1131 bound, (ii) is by

$$1132 \langle \Lambda_j^{\text{ra}}(\hat{\theta}_j), \Lambda_j^{-1}(\hat{\theta}_j) \rangle = \sum_{t \in \mathcal{T}_j^{\text{ra}}} U_j(x_t, \hat{\theta}_j)^\top \Lambda_j^{-1}(\hat{\theta}) U_j(x_t, \hat{\theta}_j)$$

$$\begin{aligned} & \leq \sum_{t \in \mathcal{T}_j^{\text{ra}}} U_j(x_t, \hat{\theta}_j)^\top \Lambda_j^{\text{ra};-1}(\hat{\theta}_j) U_j(x_t, \hat{\theta}_j) = \mathcal{O}(1), \end{aligned}$$

1137 (iii) is by $c\sqrt{n_j}I_j \preceq \Lambda_j(\hat{\theta}_j)$.
1138

1139 Now we arrive at the same bound as in $\overline{\text{Err}}_{j,1}$:

$$1140 \quad d^{7/2} \log^{3/2}(1/\delta) \mathbb{E}_{x \sim Q_j} [\overline{\text{Err}}_{j,2}(x)] \lesssim d^4 \log^2(1/\delta) \cdot n_j^{-1/2} + d^4 \log^2(1/\delta) \cdot h^\beta,$$

1142 thus the same argument leads to the desired result.
1143

1144 Combining above bounds, we have the desired result. \square
1145

G PROOF OF THEOREM 13

1148 Let $n_{\tau,j} := |\mathcal{T}_{\tau,j}|$. According to the algorithm design, the regret splits into the contribution from
1149 uniform sampling and the rounding term:
1150

$$\begin{aligned} \text{Regret}_T(\pi) & \lesssim \sum_{\tau=0}^{\lceil \log_2 T \rceil} N_\tau \mathbb{E}_\pi \left[\mathbb{E}_{\mathbf{c} \sim P_C, p \sim \pi^{(\tau)}(\mathbf{c})} [r(\mathbf{c}^\top \theta_*, p^*(\mathbf{c}^\top \theta_*)) - r(\mathbf{c}^\top \theta_*, p)] \right] \\ & \quad + \sum_{\tau=0}^{\lceil \log_2 T \rceil} \mathbb{E} \left[\sum_{j=1}^{M_\tau} \mathbf{1}\{x^\top \bar{\theta}_0 \in I_j\} \sqrt{n_{\tau,j}} \right]. \end{aligned}$$

1157 The first sum is the uniform sampling regret. The second sum is the rounding regret.
1158

1159 **Bounding the rounding regret.** By Cauchy-Schwarz inequality,

$$\sum_{\tau=0}^{\lceil \log_2 T \rceil} \mathbb{E} \left[\sum_{j=1}^{M_\tau} \mathbf{1}\{x^\top \bar{\theta}_0 \in I_j\} \sqrt{n_{\tau,j}} \right] \leq \sum_{\tau=0}^{\lceil \log_2 T \rceil} \sqrt{N_\tau} \leq N_0 \frac{\sqrt{2T} - 1}{\sqrt{2} - 1} \lesssim \sqrt{T}.$$

1164 **Bounding the sampling regret.** For any $\tau \geq 0$, recall that
1165

$$\begin{aligned} \text{Err}_{\tau,j}(x) & := \left(\sqrt{d \log(1/\delta)} + \sqrt{n_{\tau,j}} N_\tau^{-\frac{\beta}{2\beta+1}} \right) \\ & \quad \times \left(\|\mathbf{v}_{\tau,j}(x, \hat{\theta}_{\tau,j})\|_{(\Sigma_{\tau,j}(\hat{\theta}_{\tau,j}) + \zeta I)^{-1}} + \|U_j(x, \hat{\theta}_{\tau,j})\|_{\Lambda_{\tau,j}^{-1}(\hat{\theta}_{\tau,j})} \right). \end{aligned}$$

1169 For any $\tau \geq 0$, we define the event
1170

$$\begin{aligned} \Omega_1^\tau & := \left\{ |\hat{g}^\tau(x) - g(x^\top \theta_0)| \leq \sum_{j \in [M_\tau]} \mathbf{1}\{x^\top \bar{\theta}_0 \in I_j\} \text{Err}_j(x) + N_\tau^{-\frac{\beta}{2\beta+1}}, \right. \\ & \quad \left. p^*(\mathbf{c}^\top \theta_*) \in \text{Supp}(\pi^{(\tau)}(\mathbf{c})), \forall \mathbf{c} \in \mathcal{C}, p \in [0, p_{\max}], \text{ and } x = (\mathbf{c}^\top, p)^\top \right\}. \end{aligned}$$

1176 It follows from Proposition 8 that $\mathbb{P}(\bigcap_{\tau=0}^{\lceil \log_2 T \rceil} \Omega_1^\tau) \geq 1 - \delta T \log_2 T$.

1177 On the other hand, by the definition of the rounding samples, for any unit vector $\mathbf{u} \in \mathbb{R}^{\lfloor \beta \rfloor + 1}$,
1178

$$\begin{aligned} n_{\tau,j} \mathbf{u}^\top H \bar{\Lambda}_{\tau,j}(\hat{\theta}_{\tau,j}) H \mathbf{u} & \geq \sum_{k \in [\lfloor \sqrt{n_{\tau,j}}/(\lfloor \beta \rfloor + 1) \rfloor]} \mathbf{u}^\top \tilde{Z}_k^\top \tilde{Z}_k \mathbf{u} \\ & \gtrsim \left\lfloor \frac{\sqrt{n_{\tau,j}}}{\lfloor \beta \rfloor + 1} \right\rfloor \cdot \min_{k \in [\lfloor \sqrt{n_{\tau,j}}/(\lfloor \beta \rfloor + 1) \rfloor]} \sigma_{\min}^2(\tilde{Z}_k) \gtrsim \sqrt{n_{\tau,j}}, \end{aligned} \tag{9}$$

1184 where \tilde{Z}_k is a $(\lfloor \beta \rfloor + 1)$ dimensional Vandermonde matrix with $\Theta(1)$ separation and in the penultimate
1185 step we have used (Gautschi, 1963, Theorem 1) to derive that $\sigma_{\min}^2(\tilde{Z}_k) \gtrsim 1$. Similarly, we have
1186

$$\mathbf{u}^\top H \Lambda_{\tau,j}(\hat{\theta}_{\tau,j}) H \mathbf{u} \gtrsim \sqrt{n_{\tau,j}}. \tag{10}$$

1188 So when $\zeta \asymp \eta^{-2} = \Omega(d^7 \log^{7/2}(1/\delta)\sqrt{T})$, Theorem 9 is applicable and with $P_{\tau,j}$ being the
 1189 distribution of $x = (\mathbf{c}^\top, p)^\top$ such that $\mathbf{c} \sim P_C, p \sim \pi^{(\tau)}(\mathbf{c})$ at τ -th epoch condition on x such that
 1190 $x^\top \bar{\theta}_0 \in I_j$, we have $\mathbb{P}(\bigcap_{\tau=0}^{\lceil \log_2 T \rceil} \Omega_2^\tau) \geq 1 - \delta T \log_2 T$, where for $\tau \geq 0$,
 1191

$$1192 \Omega_2^\tau := \left\{ \mathbb{E}_{x \sim P_{\tau,j}} [\text{Err}_{\tau,j}(x)] \lesssim d^4 \log^2(1/\delta)(n_{\tau,j}^{-1/2} + N_\tau^{-\frac{\beta}{2\beta+1}}), \forall j \in [M_\tau] \right\}.$$

1194 Let P_τ be the distribution of $x = (\mathbf{c}^\top, p)^\top$ such that $\mathbf{c} \sim P_C, p \sim \pi^{(\tau)}(\mathbf{c})$ at τ -th epoch. The
 1195 Chernoff's bound yields that $\mathbb{P}(\bigcap_{\tau=0}^{\lceil \log_2 T \rceil} \Omega_3^\tau) \geq 1 - \delta T \log_2 T$, where for $\tau \geq 0$,
 1196

$$1197 \Omega_3^\tau := \left\{ n_{\tau,j} + 1 \gtrsim \max \left\{ \mathbb{E}[n_{\tau,j}] - \sqrt{\mathbb{E}[n_{\tau,j}] \log(1/\delta)}, 0 \right\} + 1, \forall j \in [M_\tau] \right\}.$$

1199 Therefore, on the event $\bigcap_{\tau=0}^{\lceil \log_2 T \rceil} (\Omega_2^\tau \cap \Omega_3^\tau)$, we can derive that
 1200

$$\begin{aligned} 1202 \mathbb{E}_{x \sim P_\tau} \left[\sum_{j \in [M_\tau]} \mathbf{1}\{x^\top \bar{\theta}_0 \in I_j\} \cdot \text{Err}_{\tau,j}(x) \right] &= \sum_{j \in [M_\tau]} P_\tau(x^\top \bar{\theta}_0 \in I_j) \mathbb{E}_{x \sim P_{\tau,j}} [\text{Err}_{\tau,j}(x)] \\ 1204 &\lesssim d^4 \log^2(1/\delta) \sum_{j \in [M_\tau]} P_\tau(x^\top \bar{\theta}_0 \in I_j)(n_{\tau,j}^{-1/2} + N_\tau^{-\frac{\beta}{2\beta+1}}) \\ 1205 &\lesssim d^4 \log^2(1/\delta) \cdot \left(\sqrt{\sum_{j \in [M_\tau]} \frac{P_\tau(x^\top \bar{\theta}_0 \in I_j)}{n_{\tau,j} + 1}} + N_\tau^{-\frac{\beta}{2\beta+1}} \right) \\ 1207 &= d^4 \log^2(1/\delta) \cdot \left(\sqrt{\frac{1}{N_\tau} \sum_{j \in [M_\tau]} \frac{\mathbb{E}[n_{\tau,j}]}{n_{\tau,j} + 1}} + N_\tau^{-\frac{\beta}{2\beta+1}} \right) \\ 1209 &\stackrel{(i)}{\lesssim} d^4 \log^{5/2}(1/\delta) \cdot \left(\sqrt{\frac{M_\tau}{N_\tau}} + N_\tau^{-\frac{\beta}{2\beta+1}} \right), \end{aligned} \tag{11}$$

1214 where in (i), we have used the elementary inequality
 1215

$$\frac{a}{\max \{a - \sqrt{ac}, 0\} + 1} \lesssim c + 1, \quad \forall a, c > 0.$$

1220 Write $\Omega := \bigcap_{\tau=0}^{\lceil \log_2 T \rceil} (\Omega_1^\tau \cap \Omega_2^\tau \cap \Omega_3^\tau)$. By Proposition 11, for $\tau \geq 1$,
 1221

$$\begin{aligned} 1222 \mathbb{E}_\pi \left[\mathbb{E}_{\mathbf{c} \sim P_C, p \sim \pi^{(\tau)}(\mathbf{c})} [r(\mathbf{c}^\top \theta_*, p^*(\mathbf{c}^\top \theta_*)) - r(\mathbf{c}^\top \theta_*, p)] \right] \\ 1223 &= \mathbb{E}_\pi \left[\mathbb{E}_{\mathbf{c} \sim P_C, p \sim \pi^{(\tau)}(\mathbf{c})} [r(\mathbf{c}^\top \theta_*, p^*(\mathbf{c}^\top \theta_*)) - r(\mathbf{c}^\top \theta_*, p)] \cdot \mathbf{1}\{\Omega\} \right] \\ 1224 &\quad + \mathbb{E}_\pi \left[\mathbb{E}_{\mathbf{c} \sim P_C, p \sim \pi^{(\tau)}(\mathbf{c})} [r(\mathbf{c}^\top \theta_*, p^*(\mathbf{c}^\top \theta_*)) - r(\mathbf{c}^\top \theta_*, p)] \cdot \mathbf{1}\{\Omega^c\} \right] \\ 1225 &\leq \frac{1}{4} \mathbb{E}_\pi \left[\mathbb{E}_{\mathbf{c} \sim P_C, p \sim \pi^{(\tau-1)}(\mathbf{c})} [r(\mathbf{c}^\top \theta_*, p^*(\mathbf{c}^\top \theta_*)) - r(\mathbf{c}^\top \theta_*, p)] \cdot \mathbf{1}\{\Omega\} \right] \\ 1226 &\quad + \mathbb{E}_\pi \left[\mathbb{E}_{x \sim P_\tau} \left[\sum_{j \in [M_\tau]} \mathbf{1}\{x^\top \bar{\theta}_0 \in I_j\} \cdot \text{Err}_{\tau,j}(x) \right] \cdot \mathbf{1}\{\Omega\} \right] + p_{\max} \mathbb{P}(\Omega^c) \\ 1227 &\leq \frac{1}{4} \mathbb{E}_\pi \left[\mathbb{E}_{\mathbf{c} \sim P_C, p \sim \pi^{(\tau-1)}(\mathbf{c})} [r(\mathbf{c}^\top \theta_*, p^*(\mathbf{c}^\top \theta_*)) - r(\mathbf{c}^\top \theta_*, p)] \right] \\ 1228 &\quad + \mathcal{O} \left(d^4 \log^{5/2}(1/\delta) \cdot \left(\sqrt{\frac{M_\tau}{N_\tau}} + N_\tau^{-\frac{\beta}{2\beta+1}} \right) + \delta T \log_2 T \right). \end{aligned}$$

1232 By choosing δ sufficiently small, i.e., $\delta = T^{-10}$, we arrive at
 1233

$$\begin{aligned} 1234 \mathbb{E}_\pi \left[\mathbb{E}_{\mathbf{c} \sim P_C, p \sim \pi^{(\tau)}(\mathbf{c})} [r(\mathbf{c}^\top \theta_*, p^*(\mathbf{c}^\top \theta_*)) - r(\mathbf{c}^\top \theta_*, p)] \right] \\ 1235 &\leq \frac{1}{4} \mathbb{E}_\pi \left[\mathbb{E}_{\mathbf{c} \sim P_C, p \sim \pi^{(\tau-1)}(\mathbf{c})} [r(\mathbf{c}^\top \theta_*, p^*(\mathbf{c}^\top \theta_*)) - r(\mathbf{c}^\top \theta_*, p)] \right] + \mathcal{O} \left(d^4 \log^{5/2}(T) \cdot N_\tau^{-\frac{\beta}{2\beta+1}} \right). \end{aligned}$$

1242 Iterating the above bound, we have
 1243

$$\begin{aligned} 1244 \quad & \sum_{\tau=0}^{\lceil \log_2 T \rceil} N_\tau \mathbb{E}_\pi \left[\mathbb{E}_{\mathbf{c} \sim P_C, p \sim \pi^{(\tau)}(\mathbf{c})} [r(\mathbf{c}^\top \theta_*, p^*(\mathbf{c}^\top \theta_*)) - r(\mathbf{c}^\top \theta_*, p)] \right] \\ 1245 \quad & \lesssim N_0 + d^4 \log^{5/2}(T) \cdot T^{\frac{\beta+1}{2\beta+1}} \lesssim d^4 \log^{5/2}(T) \cdot T^{\frac{\beta+1}{2\beta+1}}. \end{aligned}$$

1246 Combining the rounding regret and the sampling regret, we have if $\eta^{-2} = T^{\frac{\beta+1}{2\beta+1}} =$
 1247 $\Omega(d^7 \log^{7/2}(T) \sqrt{T}) \implies T^{\frac{1}{4\beta+2}} = \Omega(d^7 \log^{7/2}(T))$,
 1248 $\text{Regret}(T) \lesssim d^4 \log^{5/2}(T) \cdot T^{\frac{\beta+1}{2\beta+1}}.$
 1249

1250 Adding the burn-in time term completes the proof. \square
 1251

1255 H PROOFS OF LEMMAS IN APPENDIX E

1256 H.1 PRELIMINARY NOTATIONS

1257 For each $j \in [M]$, we denote $D_j = (D_{j0}, \dots, D_{j\lfloor \beta \rfloor})^\top \in \mathbb{R}^{\lfloor \beta \rfloor + 1}$ with $D_{js} = \frac{g^{(s)}(\bar{x}_j^\top \theta_0)}{s!}$ for
 1258 $s \in \{0, 1, \dots, \lfloor \beta \rfloor\}$, under which the local polynomial expansion of g at $\bar{x}_j^\top \theta$ up to $\lfloor \beta \rfloor$ order can be
 1259 written as $D_j^\top U_j(x, \theta)$.
 1260

1261 H.2 PROOF OF LEMMA 16

1262 The claim follows from Proposition 6. With $\eta = \mathcal{O}(n^{-\frac{\beta+1}{4\beta+2}})$ we have $\eta^2 = \mathcal{O}(h^{(\beta+1)}) = \mathcal{O}(h^\beta)$.
 1263 \square

1264 H.3 PROOF OF LEMMA 17

1265 Noticing that

$$\begin{aligned} 1266 \quad \mathcal{L}_j(\theta) &= \sum_{t \in \mathcal{T}_j} (y_t - \hat{g}_j(x_t \mid \theta))^2 = \sum_{t \in \mathcal{T}_j} (g(x_t^\top \theta_0) - \hat{g}_j(x_t \mid \theta) + \varepsilon_t)^2 \\ 1267 \quad &= \underbrace{\sum_{t \in \mathcal{T}_j} \varepsilon_t^2}_{\text{independent of } \theta} + \underbrace{2 \sum_{t \in \mathcal{T}_j} \varepsilon_t [\hat{g}_j(x_t \mid \theta) - g(x_t^\top \theta_0)]}_{:= \mathcal{E}_1(\theta)} + \underbrace{\sum_{t \in \mathcal{T}_j} [g(x_t^\top \theta_0) - \hat{g}_j(x_t \mid \theta)]^2}_{:= \mathcal{E}_2(\theta)}. \end{aligned}$$

1268 **Lemma 19** (Bounds on \mathcal{E}_1). *With probability at least $1 - \mathcal{O}(\delta)$, we have*

$$1269 \quad \mathcal{E}_1(\theta) = \mathcal{O} \left(\sqrt{\log(1/\delta)} \cdot \left(\sqrt{\delta_j(\theta)^\top \Sigma_j(\theta) \delta_j(\theta)} + n_j h^{2\beta} \right) + 1 \right),$$

1270 **Lemma 20** (Bounds on \mathcal{E}_2). *With probability at least $1 - \mathcal{O}(n_j \delta)$, we have*

$$1271 \quad \mathcal{E}_2(\theta) = \Theta \left(\delta_j(\theta)^\top \Sigma_j(\theta) \delta_j(\theta) \right) + \mathcal{O} \left(\log(1/\delta) + n_j h^{2\beta} \right).$$

1272 The proofs for the above lemmas are deferred to Section H.3.1. Combining the bounds for $\mathcal{E}_1(\theta), \mathcal{E}_2(\theta)$,
 1273 we get the desired result. \square

1274 H.3.1 PROOFS OF LEMMAS 19 AND 20

1275 *Proof of Lemma 19.* By Lemma 16,

$$1276 \quad \mathcal{E}_1(\theta) = \underbrace{2 \sum_{t \in \mathcal{T}_j} \varepsilon_t \mathbf{v}_j(x_t, \theta)^\top \delta_j(\theta)}_{:= \mathcal{E}_{11}(\theta)} + \sum_{t \in \mathcal{T}_j} \varepsilon_t \cdot \mathcal{O}(h^\beta) + \sum_{t \in \mathcal{T}_j} \varepsilon_t \cdot \sqrt{n_j} \|U_j(x_t, \theta)\|_{\Lambda_j^{-1}(\theta)} \cdot \mathcal{O}(h^\beta)$$

$$+ 2 \underbrace{\sum_{t \in \mathcal{T}_j} \varepsilon_t U_j(x_t, \theta)^\top \sum_{t' \in \mathcal{T}_j} \varepsilon_{t'} \Lambda_j^{-1}(\theta) U_j(x_{t'}, \theta)}_{:= \mathcal{E}_{12}(\theta)}.$$

Term $\mathcal{E}_{11}(\theta)$: Noticing that condition on $\{x_t\}_{t=1}^n, \{\varepsilon\}_{t=1}^n$ are mutually independent and zero-mean random variables. By Hoeffding's inequality, with probability at least $1 - \mathcal{O}(\delta)$,

$$\mathcal{E}_{11}(\theta) \lesssim \sqrt{\log(1/\delta)} \cdot \left(\sqrt{\delta_j(\theta)^\top \Sigma_j(\theta) \delta_j(\theta)} + \sqrt{n_j} h^\beta + \left(\sum_{t \in \mathcal{T}_j} n_j U_j(x_t, \theta)^\top \Lambda_j^{-1}(\theta) U_j(x_t, \theta) \right)^{1/2} h^\beta \right).$$

Using the fact that

$$\sum_{t \in \mathcal{T}_j} U_j(x_t, \theta)^\top \Lambda_j^{-1}(\theta) U_j(x_t, \theta) = \text{tr} \left(\Lambda_j^{-1}(\theta) \sum_{t \in \mathcal{T}_j} U_j(x_t, \theta) U_j(x_t, \theta)^\top \right) = \lfloor \beta \rfloor + 1, \quad (12)$$

we arrive at

$$\mathcal{E}_{11}(\theta) \lesssim \sqrt{\log(1/\delta)} \cdot \left(\sqrt{\delta_j(\theta)^\top \Sigma_j(\theta) \delta_j(\theta)} + \sqrt{n_j} h^\beta \right).$$

Term $\mathcal{E}_{12}(\theta)$: For $j \in [M]$, let

$$\varepsilon_j := (\varepsilon_t)_{t \in \mathcal{T}_j}^\top \in \mathbb{R}^{n_j}, \mathbf{C}_j := (U_j(x_t, \theta)^\top \Lambda_j^{-1}(\theta) U_j(x_{t'}, \theta))_{t, t' \in \mathcal{T}_j} \in \mathbb{R}^{n_j \times n_j}.$$

Then $\mathcal{E}_{12}(\theta)$ can be rewritten as

$$\mathcal{E}_{12}(\theta) = \varepsilon_j^\top \mathbf{C}_j \varepsilon_j$$

Applying the standard Hanson-Wright inequality leads to

$$\mathbb{P}(|\mathcal{E}_{12}(\theta) - \mathbb{E}\mathcal{E}_{12}(\theta)| > u) \leq 2 \exp \left(-c \min \left\{ \frac{u}{\|\mathbf{C}_j\|_2}, \frac{u^2}{\|\mathbf{C}_j\|_F^2} \right\} \right)$$

for some absolute constant $c > 0$. On the other hand, using the facts that

$$\begin{aligned} \max_{j \in [M]} \|\mathbf{C}_j\|_2 &\leq \max_{j \in [M]} \|\mathbf{C}_j\|_F = \max_{j \in [M]} \sqrt{\sum_{t, t' \in \mathcal{T}_j} [U_j(x_t, \theta)^\top \Lambda_j^{-1}(\theta) U_j(x_{t'}, \theta)]^2} \\ &= \left(\sum_{t \in \mathcal{T}_j} U_j(x_t, \theta)^\top \Lambda_j^{-1}(\theta) \underbrace{\sum_{t' \in \mathcal{T}_j} U_j(x_{t'}, \theta) U_j(x_{t'}, \theta)^\top \Lambda_j^{-1}(\theta) U_j(x_t, \theta)}_{= \Lambda_j(\theta)} \right)^{1/2} \\ &= \left(\sum_{t \in \mathcal{T}_j} U_j(x_t, \theta)^\top \Lambda_j^{-1}(\theta) U_j(x_t, \theta) \right)^{1/2} \stackrel{(12)}{=} \sqrt{\lfloor \beta \rfloor + 1} \end{aligned}$$

and $\|\mathbf{C}_j\|_F^2 = \mathcal{O}(1)$, we may then select $u \gtrsim \sqrt{\log(1/\delta)} + \log(1/\delta)$ to obtain that with probability at least $1 - \mathcal{O}(\delta)$,

$$|\mathcal{E}_{12}(\theta) - \mathbb{E}\mathcal{E}_{12}(\theta)| \lesssim \sqrt{\log(1/\delta)}.$$

Finally, as

$$\mathbb{E}\mathcal{E}_{12}(\theta) = \sum_{t \in \mathcal{T}_j} \mathbb{E}[\varepsilon_t^2] U_j(x_t, \theta)^\top \Lambda_j^{-1}(\theta) U_j(x_t, \theta) \leq \max_{t \in \mathcal{T}_j} \mathbb{E}[\varepsilon_t^2] \cdot \langle \Lambda_j^{-1}, \Lambda_j \rangle = \mathcal{O}(1),$$

we have with probability at least $1 - \mathcal{O}(\delta)$

$$\mathcal{E}_{12}(\theta) \lesssim \sqrt{\log(1/\delta)}$$

This completes the proof of Lemma 19. \square

1350 *Proof of Lemma 20.* It follows from Lemma 16 and the elementary inequality $\frac{1}{2}a^2 - 4b^2 \leq (a+b)^2 \leq 2a^2 + 2b^2$ that
1351
1352

$$1353 \quad \mathcal{E}_2(\theta) = \Theta\left(\boldsymbol{\delta}_j(\theta)^\top \Sigma_j(\theta) \boldsymbol{\delta}_j(\theta)\right) + \mathcal{O}\left(\underbrace{\sum_{t \in \mathcal{T}_j} \left[U_j(x_t, \theta)^\top \sum_{t' \in \mathcal{T}_j} \varepsilon_{t'} \Lambda_j^{-1}(\theta) U_j(x_{t'}, \theta)\right]^2}_{:= \mathcal{E}_{21}(\theta)}\right) \\ 1354 \\ 1355 \\ 1356 \\ 1357 \quad + \underbrace{\mathcal{O}\left(\sum_{t \in \mathcal{T}_j} h^{2\beta} + \sum_{t \in \mathcal{T}_j} n_j h^{2\beta} U_j(x_t, \theta)^\top \Lambda_j^{-1}(\theta) U_j(x_t, \theta)\right)}_{:= \mathcal{E}_{22}(\theta)}.$$

1360
1361 *Term $\mathcal{E}_{21}(\theta)$:* By Hoeffding's inequality, we have with probability at least $1 - \mathcal{O}(n\delta)$,
1362
1363

$$1364 \quad \mathcal{E}_{21}(\theta) \lesssim \log(1/\delta) \sum_{t \in \mathcal{T}_j} U_j(x_t, \theta)^\top \Lambda_j^{-1}(\theta) U_j(x_t, \theta) \stackrel{(12)}{\lesssim} \log(1/\delta).$$

1365
1366 *Term $\mathcal{E}_{22}(\theta)$:* It can be directly bounded that
1367
1368

$$1369 \quad \mathcal{E}_{22}(\theta) \lesssim n_j h^{2\beta} + n_j h^{2\beta} \sum_{t \in \mathcal{T}_j} U_j(x_t, \theta)^\top \Lambda_j^{-1}(\theta) U_j(x_t, \theta) \stackrel{(12)}{\lesssim} n_j h^{2\beta}.$$

1370 This completes the proof of Lemma 20. \square
1371

I PROOF OF LEMMA IN APPENDIX F

I.1 PROOF OF LEMMA 18

1376 (i) Recall that $H = \text{diag}(1, h, \dots, h^\ell) \in \mathbb{R}^{(\ell+1) \times (\ell+1)}$ and $h = n^{-\frac{1}{2\beta+1}}$. Note that
1377

$$1378 \quad \bar{\mathbf{v}}_j(x, \theta) - \mathbf{v}_j(x, \theta) \\ 1379 \quad = (HU_j(x, \theta))^\top \underbrace{\left[(H\Lambda_j(\theta)H)^{-1} - (n_j^{\text{ra}} H \bar{\Lambda}_j(\theta) H)^{-1}\right]}_{:= \mathcal{R}_1} \sum_{t \in \mathcal{T}_j} HU_j(x_t, \theta) \mathbf{X}_j(x_t, \theta) \\ 1380 \\ 1381 \\ 1382 \\ 1383 \quad + (HU_j(x, \theta))^\top \underbrace{\left[H \bar{\Lambda}_j(\theta) H\right]^{-1} \left[\frac{1}{n_j^{\text{ra}}} \sum_{t \in \mathcal{T}_j} HU_j(x_t, \theta) \mathbf{X}_j(x_t, \theta) - HV_j(\theta)\right]}_{:= \mathcal{R}_2}$$

1387 *Term \mathcal{R}_2 :* For any unit vector w , let $Y_t := (HU_j(x, \theta))^\top (H \bar{\Lambda}_j(\theta) H)^{-1} HU_j(x_t, \theta) \mathbf{X}_j(x_t, \theta) w$.
1388 Then we have
1389

$$1390 \quad \mathcal{R}_2 w = \frac{1}{n_j^{\text{ra}}} \sum_{t \in \mathcal{T}_j^{\text{ra}}} (Y_t - \mathbb{E}_{x_t \sim Q_j} [Y_t]).$$

1393 As $\lambda_{\min}(n_j^{\text{ra}} H \bar{\Lambda}_j(\theta) H) \wedge \lambda_{\min}(H \Lambda_j(\theta) H) \gtrsim \sqrt{n_j}$, we have $|Y_t| \lesssim n_j^{1/4} \|U_j(x, \theta)\|_{\bar{\Lambda}_j^{-1}(\theta)}$. Using
1394 further
1395

$$1396 \quad \mathbb{E}_{x_t \sim Q_j} [Y_t^2] = \mathbb{E}_{x_t \sim Q_j} [(\mathbf{X}_j(x_t, \theta) w)^2 U_j(x, \theta)^\top \bar{\Lambda}_j^{-1}(\theta) U_j(x_t, \theta) U_j(x_t, \theta)^\top \bar{\Lambda}_j^{-1}(\theta) U_j(x_t, \theta)] \\ 1397 \quad \lesssim U_j(x, \theta)^\top \bar{\Lambda}_j^{-1}(\theta) \left(\mathbb{E}_{z \sim Q_j} [U_j(z, \theta) U_j(z, \theta)^\top] + \frac{1}{n_j^{\text{ra}}} \sum_{t \in \mathcal{T}_j^{\text{ra}}} U_j(x_t, \theta) U_j(x_t, \theta)^\top \right) \bar{\Lambda}_j^{-1}(\theta) U_j(x, \theta) \\ 1398 \\ 1399 \\ 1400 \quad = U_j(x, \theta)^\top \bar{\Lambda}_j^{-1}(\theta) U_j(x, \theta)$$

1401 together with matrix Bernstein's inequality, we can obtain that with probability at least $1 - \mathcal{O}(\delta)$,
1402

$$1403 \quad \mathcal{R}_2 w \lesssim \frac{\log(1/\delta)}{\sqrt{n_j}} \|U_j(x, \theta)\|_{\bar{\Lambda}_j^{-1}(\theta)}.$$

Now taking union bound over w in the unit ball, we can get with probability at least $1 - \mathcal{O}(\delta)$,

$$\|\mathcal{R}_2\| \lesssim \frac{d \log(1/\delta)}{\sqrt{n_j}} \|U_j(x, \theta)\|_{\bar{\Lambda}_j^{-1}(\theta)}.$$

Term \mathcal{R}_1 : We first decompose the term as follows:

$$\begin{aligned} \mathcal{R}_1 &= (HU_j(x, \theta))^\top \underbrace{\left[(H\Lambda_j(\theta)H)^{-1} - (n_j^{\text{ra}} H\bar{\Lambda}_j(\theta)H)^{-1} \right]}_{\mathcal{R}_{11}} \sum_{t \in \mathcal{T}_j^{\text{ra}}} HU_j(x_t, \theta) \mathbf{X}_j(x_t, \theta) \\ &\quad + (HU_j(x, \theta))^\top \underbrace{\left[(H\Lambda_j(\theta)H)^{-1} - (n_j^{\text{ra}} H\bar{\Lambda}_j(\theta)H)^{-1} \right]}_{\mathcal{R}_{12}} \sum_{t \in \mathcal{T}_j^{\text{ro}}} HU_j(x_t, \theta) \mathbf{X}_j(x_t, \theta) \end{aligned}$$

For \mathcal{R}_{12} , for any unit vector w , by Bernstein's inequality, we have with probability at least $1 - \mathcal{O}(\delta)$,

$$\begin{aligned} \mathcal{R}_{12}w &= \frac{1}{n_j^{\text{ra}}} U_j(x, \theta)^\top \bar{\Lambda}_j^{-1}(\theta) \left[n_j^{\text{ra}} \bar{\Lambda}_j(\theta) - \Lambda_j(\theta) \right] \Lambda_j^{-1}(\theta) \sum_{t \in \mathcal{T}_j^{\text{ro}}} U_j(x_t, \theta) \mathbf{X}_j(x_t, \theta) w \\ &\lesssim \frac{\log(1/\delta)}{n_j^{1/4}} \|U_j(x, \theta)\|_{\bar{\Lambda}_j^{-1}(\theta)}, \end{aligned}$$

where we have also used the condition that $\lambda_{\min}(n_j^{\text{ra}} H\bar{\Lambda}_j(\theta)H) \wedge \lambda_{\min}(H\Lambda_j(\theta)H) \gtrsim \sqrt{n_j}$.

For \mathcal{R}_{11} , we have for any unit vector w , with $\bar{V}_j(\theta) := \mathbb{E}_{z \sim Q_j} U_j(z, \theta) \mathbf{X}_j(z, \theta)$,

$$\begin{aligned} \mathcal{R}_{11}w &= (HU_j(x, \theta))^\top \underbrace{\left[(H\Lambda_j(\theta)H)^{-1} - (n_j^{\text{ra}} H\bar{\Lambda}_j(\theta)H)^{-1} \right]}_{=: \mathcal{R}_{111}} \sum_{t \in \mathcal{T}_j^{\text{ra}}} (HU_j(x_t, \theta) \mathbf{X}_j(x_t, \theta) - H\bar{V}_j(\theta)) w \\ &\quad + (HU_j(x, \theta))^\top \underbrace{\left[(H\Lambda_j(\theta)H)^{-1} - (n_j^{\text{ra}} H\bar{\Lambda}_j(\theta)H)^{-1} \right]}_{=: \mathcal{R}_{112}} \sum_{t \in \mathcal{T}_j^{\text{ra}}} H\bar{V}_j(\theta) w. \end{aligned}$$

As $\lambda_{\min}(n_j^{\text{ra}} H\bar{\Lambda}_j(\theta)H) \wedge \lambda_{\min}(H\Lambda_j(\theta)H) \gtrsim \sqrt{n_j}$,

$$|\mathcal{R}_{111}| \leq n_j^{-1/2} \cdot \|U_j(x, \theta)\|_{\Lambda_j^{-1}(\theta)} \cdot \|n_j^{\text{ra}} H\bar{\Lambda}_j(\theta)H - H\Lambda_j(\theta)H\| \cdot \left\| \sum_{t \in \mathcal{T}_j^{\text{ra}}} Y'_j(x_t, \theta) - \mathbb{E}_{x_t \sim Q_j} Y'_j(x_t, \theta) \right\|,$$

where $Y'_j(x_t, \theta) := (n_j^{\text{ra}} H\bar{\Lambda}_j(\theta)H)^{-1/2} \sum_{t \in \mathcal{T}_j^{\text{ra}}} HU_j(x_t, \theta) \mathbf{X}_j(x_t, \theta) w$. Using

$$\begin{aligned} \mathbb{E}_{x_t \sim Q_j} \|Y'_j(x_t, \theta)\|^2 &= \mathbb{E}_{x_t \sim Q_j} [w^\top \mathbf{X}(x_t, \theta)^\top (HU_j(x_t, \theta))^\top (n_j^{\text{ra}} H\bar{\Lambda}_j(\theta)H)^{-1} (HU_j(x_t, \theta)) \mathbf{X}(x_t, \theta) w] \\ &\lesssim \mathbb{E}_{x_t \sim Q_j} [(HU_j(x_t, \theta))^\top (n_j^{\text{ra}} H\bar{\Lambda}_j(\theta)H)^{-1} (HU_j(x_t, \theta))] \\ &\lesssim \frac{1}{n_j} \mathbb{E}_{z \sim Q_j} [\|U_j(z, \theta)\|_{\bar{\Lambda}_j^{-1}(\theta)}^2] \lesssim \frac{1}{n_j} \end{aligned}$$

and $\|Y'_j(x_t, \theta)\| \lesssim \sigma_{\min}^{-1/2}(n_j^{\text{ra}} H\bar{\Lambda}_j(\theta)H) \lesssim n_j^{-1/4}$ together with the Bernstein's inequality, we have with probability at least $1 - \mathcal{O}(\delta)$,

$$\left\| \sum_{t \in \mathcal{T}_j^{\text{ra}}} Y'_j(x_t, \theta) - \mathbb{E}_{x_t} Y'_j(x_t, \theta) \right\| = \mathcal{O}\left(\sqrt{\log(1/\delta)} + n_j^{-1/4} \log(1/\delta)\right).$$

Moreover, by the matrix Bernstein's inequality, we have with probability at least $1 - \mathcal{O}(\delta)$ that

$$\|n_j^{\text{ra}} H\bar{\Lambda}_j(\theta)H - H\Lambda_j(\theta)H\|_2 \lesssim \sqrt{n_j \log(1/\delta)}.$$

Combining the estimates in the above displays, we have with probability at least $1 - \mathcal{O}(\delta)$ that

$$|\mathcal{R}_{111}| \lesssim \log(1/\delta) \|U_j(x, \theta)\|_{\Lambda_j^{-1}(\theta)}.$$

Next, we consider the bound for \mathcal{R}_{112} . Note that

$$\begin{aligned} \mathcal{R}_{112} &= (HU_j(x, \theta))^\top (H\Lambda_j(\theta)H)^{-1} \left[n_j^{\text{ra}} H\bar{\Lambda}_j(\theta)H - H\Lambda_j(\theta)H \right] (H\bar{\Lambda}_j(\theta)H)^{-1} H\bar{V}_j(\theta)w \\ &= -(HU_j(x, \theta))^\top (H\Lambda_j(\theta)H)^{-1} \left[\sum_{t \in \mathcal{T}_j^{\text{ra}}} (1 - \mathbb{E}_{x_t \sim Q_j}) [HU_j(x_t, \theta) (HU_j(x_t, \theta))^\top] \right] (H\bar{\Lambda}_j(\theta)H)^{-1} H\bar{V}_j(\theta)w. \end{aligned}$$

Let $Z_t := \mathbb{E}_{z \sim Q_j} [\mathbf{X}_j(z, \theta)w \cdot HU_j(x_t, \theta) (HU_j(x_t, \theta))^\top (H\bar{\Lambda}_j(\theta)H)^{-1} HU_j(z, \theta)]$, the above term can be rewritten as

$$\begin{aligned} \mathcal{R}_{112} &= -(HU_j(x, \theta))^\top (H\Lambda_j(\theta)H)^{-1} \sum_{t \in \mathcal{T}_j^{\text{ra}}} (Z_t - \mathbb{E}_{x_t \sim Q_j} Z_t) \\ &= -(HU_j(x, \theta))^\top (n_j^{\text{ra}} H\bar{\Lambda}_j(\theta)H)^{-1} \sum_{t \in \mathcal{T}_j^{\text{ra}}} (Z_t - \mathbb{E}_{x_t \sim Q_j} Z_t) \\ &\quad \underbrace{\qquad\qquad\qquad}_{:= \mathcal{R}_{1121}} \\ &\quad + (HU_j(x, \theta))^\top ((n_j^{\text{ra}} H\bar{\Lambda}_j(\theta)H)^{-1} - (H\Lambda_j(\theta)H)^{-1}) \sum_{t \in \mathcal{T}_j^{\text{ra}}} (Z_t - \mathbb{E}_{x_t \sim Q_j} Z_t) \\ &\quad \underbrace{\qquad\qquad\qquad}_{:= \mathcal{R}_{1122}} \end{aligned}$$

For \mathcal{R}_{1121} , note that

$$|\tilde{Z}_t| := |(HU_j(x, \theta))^\top (n_j^{\text{ra}} H\bar{\Lambda}_j(\theta)H)^{-1} Z_t| \lesssim \frac{1}{\sqrt{n_j}} \|U_j(x, \theta)\|_{\bar{\Lambda}_j(\theta)}$$

and

$$\begin{aligned} \mathbb{E}[\tilde{Z}_t^2] &= \mathbb{E}_{x_t} [(\mathbb{E}_z [\mathbf{X}_j(z, \theta)w \cdot U_j(x, \theta)^\top (n_j^{\text{ra}} \bar{\Lambda}_j(\theta))^{-1} U_j(x_t, \theta) U_j(x_t, \theta)^\top \bar{\Lambda}_j^{-1}(\theta) U_j(z, \theta) | z^\top \bar{\theta} \in I_j])^2] \\ &\lesssim_{\text{(i)}} \mathbb{E}_{x_t} [(U_j(x, \theta)^\top (n_j^{\text{ra}} \bar{\Lambda}_j(\theta))^{-1} U_j(x_t, \theta) U_j(x_t, \theta)^\top \bar{\Lambda}_j^{-1}(\theta) U_j(x_t, \theta) U_j(x_t, \theta)^\top (n_j^{\text{ra}} \bar{\Lambda}_j(\theta))^{-1} U_j(x, \theta))] \\ &\leq n_j^{-2} \|U_j(x, \theta)\|_{\bar{\Lambda}_j^{-1}(\theta)}^2 \cdot \mathbb{E}_{x_t} [(U_j(x_t, \theta)^\top \bar{\Lambda}_j^{-1}(\theta) U_j(x_t, \theta))^2] \\ &\lesssim_{\text{(ii)}} n_j^{-2} \|U_j(x, \theta)\|_{\bar{\Lambda}_j^{-1}(\theta)}^2 \cdot \mathbb{E}_{x_t} [\|U_j(x_t, \theta)\|_{\bar{\Lambda}_j^{-1}(\theta)}^4] \lesssim_{\text{(iii)}} n_j^{-3/2} \|U_j(x, \theta)\|_{\bar{\Lambda}_j^{-1}(\theta)}^2, \end{aligned} \tag{13}$$

where (i) is by Jensen's inequality and $|\mathbf{X}_j(z, \theta)w| = \mathcal{O}(1)$; (ii) is by $\mathbb{E}_z [\|U_j(z, \theta)\|_{\bar{\Lambda}_j^{-1}(\theta)}^2] = \mathcal{O}(1)$, (iii) is by

$$\mathbb{E}_{x_t} [\|U_j(x_t, \theta)\|_{\bar{\Lambda}_j^{-1}(\theta)}^4] \lesssim \max_{z: z^\top \bar{\theta} \in I_j} \|U_j(z, \theta)\|_{\bar{\Lambda}_j^{-1}(\theta)}^2 \stackrel{\lambda_{\min}(H\bar{\Lambda}_j(\theta)H) \gtrsim n_j^{-1/2}}{\lesssim} \sqrt{n_j}.$$

Then we may use Bernstein's inequality to obtain that with probability at least $1 - \mathcal{O}(\delta)$,

$$\mathcal{R}_{1121} \lesssim \sqrt{\log(1/\delta)} n_j^{-1/4} \|U_j(x, \theta)\|_{\bar{\Lambda}_j^{-1}(\theta)} + \log(1/\delta) n_j^{-1/2} \|U_j(x, \theta)\|_{\bar{\Lambda}_j^{-1}(\theta)}.$$

For \mathcal{R}_{1122} , note that

$$\begin{aligned} |\mathcal{R}_{1122}| &\leq \|U_j(x, \theta)\|_{\bar{\Lambda}_j^{-1}(\theta)} \cdot \underbrace{\|(H\Lambda_j(\theta)H)^{-1/2} (H\Lambda_j(\theta)H - n_j^{\text{ra}} H\bar{\Lambda}_j(\theta)H) (n_j^{\text{ra}} H\bar{\Lambda}_j(\theta)H)^{-1/2}\|}_{\text{with probability at least } 1 - \mathcal{O}(\delta), \quad \leq \sqrt{\log(1/\delta)}} \\ &\quad \times \left\| (n_j^{\text{ra}} H\bar{\Lambda}_j(\theta)H)^{-1/2} \sum_{t \in \mathcal{T}_j^{\text{ra}}} (Z_t - \mathbb{E}_{x_t} Z_t) \right\|. \end{aligned}$$

It can be easily bound that $|(n_j^{\text{ra}} H\bar{\Lambda}_j(\theta)H)^{-1/2} Z_t| \lesssim 1$ and by the same reason as in (i) of (13),

$$\mathbb{E}[\|(n_j^{\text{ra}} \bar{\Lambda}_j(\theta))^{-1/2} Z_t\|_2^2]$$

$$\begin{aligned}
& \lesssim \frac{1}{n_j} \mathbb{E}[U_j^\top(z, \theta) \bar{\Lambda}_j^{-1}(\theta) U_j(x_t, \theta) U_j(x_t, \theta)^\top \bar{\Lambda}_j^{-1}(\theta) U_j(x_t, \theta) U_j(x_t, \theta)^\top \bar{\Lambda}_j^{-1}(\theta) U_j(z, \theta)] \\
& = \frac{1}{n_j} \mathbb{E}[\text{tr}\left(U_j(x_t, \theta) U_j(x_t, \theta)^\top \bar{\Lambda}_j^{-1}(\theta) U_j(x_t, \theta) U_j(x_t, \theta)^\top \bar{\Lambda}_j^{-1}(\theta)\right)] \\
& \lesssim \frac{1}{n_j} \mathbb{E}[\|U_j(x_t, \theta)\|_{\bar{\Lambda}_j^{-1}(\theta)}^4] \lesssim n_j^{-1/2}.
\end{aligned}$$

Then we may use Bernstein's inequality to obtain that with probability at least $1 - \mathcal{O}(\delta)$,

$$\mathcal{R}_{1122} \lesssim (n_j^{1/4} \log(1/\delta) + \log^{3/2}(1/\delta)) \cdot \|U_j(x, \theta)\|_{\bar{\Lambda}_j^{-1}(\theta)}.$$

Combining all of the above estimates, for any unit vector w , we have with probability at least $1 - \mathcal{O}(\delta)$,

$$|\mathcal{R}_1 w| \lesssim \log^{3/2}(1/\delta) \cdot (n_j^{-1/4} \|U_j(x, \theta)\|_{\bar{\Lambda}_j^{-1}(\theta)} + n_j^{1/4} \|U_j(x, \theta)\|_{\Lambda_j^{-1}(\theta)}).$$

Standard ε -net argument then leads to, with probability at least $1 - \mathcal{O}(\delta)$,

$$\|\mathcal{R}_1\|_2 \lesssim d^{3/2} \log^{3/2}(1/\delta) \cdot (n_j^{-1/4} \|U_j(x, \theta)\|_{\bar{\Lambda}_j^{-1}(\theta)} + n_j^{1/4} \|U_j(x, \theta)\|_{\Lambda_j^{-1}(\theta)}).$$

Therefore, with probability at least $1 - \mathcal{O}(\delta)$,

$$\|\bar{v}_j(x, \theta) - v_j(x, \theta)\|_2 \lesssim d^{3/2} \log^{3/2}(1/\delta) \cdot (n_j^{-1/4} \|U_j(x, \theta)\|_{\bar{\Lambda}_j^{-1}(\theta)} + n_j^{1/4} \|U_j(x, \theta)\|_{\Lambda_j^{-1}(\theta)}).$$

The claim in (i) follows by further taking union bounds on x and θ .

(ii). With the bound in (i), we have with probability at least $1 - \mathcal{O}(\delta)$,

$$\begin{aligned}
& v_j(x, \theta)^\top (\Sigma_j(\theta) + \zeta I)^{-1} v_j(x, \theta) = \|v_j(x, \theta) - \bar{v}_j(x, \theta)\|_{(\Sigma_j(\theta) + \zeta I)^{-1}}^2 \\
& + \bar{v}_j(x, \theta)^\top (\Sigma_j(\theta) + \zeta I)^{-1} \bar{v}_j(x, \theta) + (v_j(x, \theta) - \bar{v}_j(x, \theta))^\top (\Sigma_j(\theta) + \zeta I)^{-1} \bar{v}_j(x, \theta) \\
& \stackrel{(i)}{\lesssim} \|v_j(x, \theta) - \bar{v}_j(x, \theta)\|_{(\Sigma_j(\theta) + \zeta I)^{-1}}^2 + \bar{v}_j(x, \theta)^\top (\Sigma_j(\theta) + \zeta I)^{-1} \bar{v}_j(x, \theta) \\
& \lesssim d^7 \log^3(1/\delta) \cdot (n_j^{-1/2} \zeta^{-1} \|U_j(x, \theta)\|_{\bar{\Lambda}_j^{-1}(\theta)}^2 + n_j^{1/2} \zeta^{-1} \|U_j(x, \theta)\|_{\Lambda_j^{-1}(\theta)}^2) \\
& + \bar{v}_j(x, \theta)^\top (\Sigma_j(\theta) + \zeta I)^{-1} \bar{v}_j(x, \theta)
\end{aligned}$$

where in (i) we have used $ab \lesssim a^2 + b^2$. It remains to replace $\Sigma_j(\theta) + \zeta I$ by $\bar{\Sigma}_j(\theta) + \zeta I$. Note by the bound in (i), it holds with probability at least $1 - \mathcal{O}(\delta)$ that

$$\begin{aligned}
& \left\| \sum_{t \in \mathcal{T}_j} (v_j(x_t, \theta) - \bar{v}_j(x_t, \theta)) (v_j(x_t, \theta) - \bar{v}_j(x_t, \theta))^\top \right\|_2 \\
& \lesssim d^7 \log^3(1/\delta) \cdot \sum_{t \in \mathcal{T}_j} (n_j^{-1/2} \|U_j(x_t, \theta)\|_{\bar{\Lambda}_j^{-1}(\theta)}^2 + n_j^{1/2} \|U_j(x_t, \theta)\|_{\Lambda_j^{-1}(\theta)}^2) \\
& \lesssim d^7 \log^3(1/\delta) \cdot \left(\sum_{t \in \mathcal{T}_j} n_j^{-1/2} \|U_j(x_t, \theta)\|_{\bar{\Lambda}_j^{-1}(\theta)}^2 + n_j^{1/2} \right) \\
& = d^7 \log^3(1/\delta) \cdot \left(n_j^{-1/2} \sum_{t \in \mathcal{T}_j} (1 - \mathbb{E}_{x_t}) \|U_j(x_t, \theta)\|_{\bar{\Lambda}_j^{-1}(\theta)}^2 + n_j^{-1/2} \sum_{t \in \mathcal{T}_j} \mathbb{E}_{x_t} [\|U_j(x_t, \theta)\|_{\bar{\Lambda}_j^{-1}(\theta)}^2] + n_j^{1/2} \right) \\
& \lesssim d^7 \log^3(1/\delta) \cdot \left(n_j^{-1/2} \sum_{t \in \mathcal{T}_j} (1 - \mathbb{E}_{x_t}) \|U_j(x_t, \theta)\|_{\bar{\Lambda}_j^{-1}(\theta)}^2 + n_j^{1/2} \right).
\end{aligned}$$

As $\max_{z: z^\top \theta \in I_j} \|U_j(z, \theta)\|_{\bar{\Lambda}_j^{-1}(\theta)}^2 \lesssim \sqrt{n_j}$ and $\mathbb{E}_{x_t} [\|U_j(x_t, \theta)\|_{\bar{\Lambda}_j^{-1}(\theta)}^2] \lesssim 1$, we may apply Hoeffding's inequality to obtain that with probability at least $1 - \mathcal{O}(\delta)$,

$$\left\| \sum_{t \in \mathcal{T}_j} (v_j(x_t, \theta) - \bar{v}_j(x_t, \theta)) (v_j(x_t, \theta) - \bar{v}_j(x_t, \theta))^\top \right\| \lesssim d^7 \log^{7/2}(1/\delta) \cdot n_j^{1/2}.$$

1566 Then using the fact that $bb^\top \preceq 2aa^\top + 2(a-b)(a-b)^\top$ holds for any vectors a, b , we have
 1567

$$\begin{aligned} 1568 \bar{\Sigma}_j(\theta) + \zeta I &= \sum_{t \in \mathcal{T}_j} \bar{\mathbf{v}}_j(x_t, \theta) \bar{\mathbf{v}}_j(x_t, \theta)^\top + \zeta I \\ 1569 &\preceq 2 \sum_{t \in \mathcal{T}_j} \mathbf{v}_j(x_t, \theta) \mathbf{v}_j(x_t, \theta)^\top + 2 \sum_{t \in \mathcal{T}_j} (\mathbf{v}_j(x_t, \theta) - \bar{\mathbf{v}}_j(x_t, \theta)) (\mathbf{v}_j(x_t, \theta) - \bar{\mathbf{v}}_j(x_t, \theta))^\top + \zeta I \\ 1570 &\preceq 2 \sum_{t \in \mathcal{T}_j} \mathbf{v}_j(x_t, \theta) \mathbf{v}_j(x_t, \theta)^\top + \zeta I + \mathcal{O}\left(d^7 \log^{7/2}(1/\delta) \cdot \sqrt{n_j}\right) I. \\ 1571 &\quad \vdots \\ 1572 &\quad \vdots \\ 1573 &\quad \vdots \\ 1574 &\quad \vdots \\ 1575 &\quad \vdots \end{aligned}$$

1576 By the choice of ζ , we arrive at

$$1577 \bar{\Sigma}_j(\theta) + \zeta I \preceq 2(\Sigma_j(\theta) + \zeta I). \\ 1578$$

1579 This concludes the proof. \square

1581 J PROOF OF REMARK 7

1583 In this section, we provide a detailed algorithm design and regret guarantee with the first term of
 1584 right-hand-side in Proposition 6 is omitted. Throughout the analysis, we only use $\hat{g}_t(\cdot | \bar{\theta}_0)$, thus we
 1585 simplify the notation via
 1586

$$1587 U_j(x) := U_j(x, \bar{\theta}_0), \quad \Lambda_j := \Lambda_j(\bar{\theta}_0). \\ 1588$$

1589 Moreover for the quantities (e.g. Λ_j, \mathcal{T}_j) defined in Algorithm 2 when it is called at t -th step, we use
 1590 the notation $\Lambda_{t,j}, \mathcal{T}_{t,j}$ to denote them..

1592 Algorithm 5 Piloted UCB Algorithm with Local Polynomial Regression

- 1593 1: **Inputs:** pilot estimator $\bar{\theta}_0$ with $\|\bar{\theta}_0 - \theta_0\| \leq \eta$; smoothness $\beta \geq 1$, hyper-parameter $\alpha > 0$.
- 1594 2: **Initialization:** fix the polynomial degree level $\ell = \lfloor \beta \rfloor$, $\mathcal{D} = \emptyset$, set $h = T^{-\frac{1}{2\beta+1}}$ partition
 1595 $[-V, V]$ into $M = \lceil 1/h \rceil$ intervals $\{I_j\}_{j \in M}$, $t = 1$.
- 1596 3: **for** $j = 1, \dots, M$ **do**
- 1597 4: **for** $L = 1, \dots, \lceil \sqrt{Th} \rceil$ **do**
- 1598 5: After observing c_t , selecting a price p_t so that $x_t^\top \bar{\theta}_0$ is the $(L \bmod \ell)$ -th ℓ -equi-partition
 1599 point of I_j . //Forced Exploration for every I_j .
- 1600 6: Add x_t and the feedback y_t to \mathcal{D} .
- 1601 7: $t \leftarrow t + 1$.
- 1602 8: **while** $t < T$ **do**
- 1603 9: Compute $\hat{g}_{t,j}(\cdot | \bar{\theta}_0)$ for $j \in [M]$ via Algorithm 2 with input \mathcal{D} and precision $h = T^{-\frac{1}{2\beta+1}}$

$$1604 \text{Glued Estimator: } \hat{g}_t(x) := \sum_{j \in [M]} \mathbf{1}\{x^\top \bar{\theta}_0 \in I_j\} \hat{g}_j(x | \bar{\theta}_0) \\ 1605$$

$$1606 \text{Glued Confidence Bound: } \text{CB}_t(x) := \sum_{j \in [M]} \mathbf{1}\{x^\top \bar{\theta}_0 \in I_j\} \text{CB}_{t,j}(x), \\ 1607$$

1608 with $\text{CB}_{t,j}$ defined as in (14).

- 1609 10: Computing $\hat{g}_t^{\text{UCB}}(x) := \hat{g}_t(x) + \alpha \text{CB}_t(x)$ pull the UCB price p so that for observed c_t , and
 1610 $z_t(p) := (c_t^\top, p)$,
- 1611
$$1612 p_t = \text{argmax}_{p \in [0, p_{\max}]} p \hat{g}_t^{\text{UCB}}(z_t(p)^\top \bar{\theta}_0).$$
- 1613 11: Observe the feedback y_t and add $(z_t(p_t), y_t)$ to \mathcal{D} .

1616 **Initial Exploration.** In the line 3-7, we first computing the rounded prices for every fine intervals
 1617 $\{I_j\}_{j \in [M]}$, as we discussed in Section 6 and rigorously proved in Appendix G, we have this ensures
 1618 that when computing $\Lambda_{t,j}$ over each $j \in [M]$ invertible and has the eigenvalue lower bound $\Omega(1/T)$

1620 for all subsequent t . The total regret incurred in this phase is bounded by the total exploration steps,
 1621 which is given by

$$1622 \mathcal{O}(\sqrt{Th}/h) = \mathcal{O}(\sqrt{T/h}) = \mathcal{O}(T^{\frac{\beta+1}{2\beta+1}}),$$

1624 thus it suffices to bound the regret incurred over line 8 to 13.

1625 **UCB Phase.** In the UCB phase, we first compute a confidence bound on \hat{g}_t based on Proposition 6:
 1626 when the first term is omitted, we have the output $\hat{g}_{t,j}(x | \bar{\theta}_0)$ satisfies

$$1628 \hat{g}_{t,j}(x | \bar{\theta}_0) - g(x^\top \theta_0) = U_j(x)^\top \underbrace{\sum_{s \in \mathcal{T}_{t,j}} \varepsilon_s \Lambda_{t,j}^{-1} U_j(x_s) + \mathcal{O}(T^{-\frac{\beta}{2\beta+1}} (1 + \sqrt{t_j} \|U_j(x)\|_{\Lambda_{t,j}^{-1}}))}_{:= \mathcal{A}_j}.$$

1631 for $\varepsilon_s := y_s - g(x_s^\top \theta_0)$ and $t_j = |\mathcal{T}_{t,j}|$. Now for \mathcal{A}_j , we have the following self-normalized
 1632 martingale concentration result:

1633 **Lemma 21** (Theorem 1 and 2 of Abbasi-Yadkori et al. (2011)). *For any $\delta > 0$, with probability at
 1634 least $1 - \delta$, it holds that*

$$1635 \left\| \sum_{s \in \mathcal{T}_{t,j}} \varepsilon_s \Lambda_{t,j}^{-1/2} U_j(x_s) \right\| \lesssim \sqrt{\log(T/\delta)}, \quad \forall t \in [T].$$

1638 Thus we have with probability at least $1 - \delta$,

$$1639 |\mathcal{A}_j| \lesssim \|U_j(x)\|_{\Lambda_{t,j}^{-1}} \sqrt{\log(TM/\delta)}, \quad \forall j \in [M].$$

1641 And by $M = T^{-\frac{1}{2\beta+1}}$, we can give the confidence bound as

$$1642 \text{CB}_t(x) := \sum_{j \in [M]} \mathbf{1}\{x^\top \bar{\theta}_0 \in I_j\} \left(\|U_j(x)\|_{\Lambda_{t,j}^{-1}} \sqrt{\log(T)} + T^{-\frac{\beta}{2\beta+1}} \right), \quad (14)$$

1645 it then holds that with probability at least $1 - \mathcal{O}(1/T)$,

$$1646 |\hat{g}_{t,j}(x) - g(x^\top \theta_0)| \leq \alpha \text{CB}_t(x)$$

1647 uniformly for all t at UCB phase and x for some large enough α depending only on β .

1648 As a result, we have with probability at least $1 - \mathcal{O}(1/T)$, for $x_t := (\mathbf{c}_t^\top, p_t)^\top$

$$1649 \begin{aligned} \sum_t R(\mathbf{c}_t, p^*(\mathbf{c}_t^\top \theta_*)) - R(\mathbf{c}_t, p_t) &\leq \sum_t \left(p_t \hat{g}_t^{\text{UCB}}(x_t) - p_t g(x_t^\top \theta_0) \right) \leq \alpha p_{\max} \sum_t \text{CB}_t(x_t) \\ 1650 &\leq \alpha p_{\max} \sum_t \sum_{j \in [M]} \mathbf{1}\{x^\top \bar{\theta}_0 \in I_j\} \left(\|U_j(x)\|_{\Lambda_{t,j}^{-1}} \sqrt{\log(T)} + T^{-\frac{\beta}{2\beta+1}} \right) \\ 1651 &\leq \alpha p_{\max} \sqrt{\log T} \left(T^{\frac{\beta+1}{2\beta+1}} + \sum_{j \in [M]} \sum_{t \in \mathcal{T}_{T,j}} \|U_j(x)\|_{\Lambda_{t,j}^{-1}} \right) \\ 1652 &\stackrel{(i)}{\leq} \alpha p_{\max} \sqrt{\log T} \left(T^{\frac{\beta+1}{2\beta+1}} + \log(T) \sum_{j \in [M]} \sqrt{T_j} \right) \stackrel{(ii)}{\leq} \alpha p_{\max} T^{\frac{\beta+1}{2\beta+1}} \log^{3/2} T. \end{aligned}$$

1660 Where in (i) we have used the elliptic potential lemma (see e.g. Lemma 11 of Abbasi-Yadkori et al.
 1661 (2011)) and in (ii) we have used

$$1662 \sum_j \sqrt{T_j} \leq \sqrt{TM} \leq T^{\frac{\beta+1}{2\beta+1}},$$

1665 as desired.

1666 **Remark 22** (Adversarial Context Setting and Adaptive Exploration.). *We note that throughout our
 1667 algorithm and analysis, the only component that requires a stochastic context assumption is the
 1668 initial construction of a pilot estimator with error $\mathcal{O}(\eta)$, which is needed to satisfy the conditions
 1669 of Proposition 6. On the other hand, in $\beta = 1$ setting, Tulli et al. (2024) propose an adaptive
 1670 exploration procedure for estimating $\bar{\theta}_0$ that works even under adversarial contexts. We believe
 1671 their approach could also be incorporated here. However, since this discussion is intended solely to
 1672 illustrate the difficulty created by the first term in Proposition 6—a term we deliberately omit in our
 1673 analysis—we keep our algorithmic design simple and aligned with the main paper’s structure for
 clarity.*

1674 **K A DISCUSSION ON WANG & CHEN (2025)**
16751676 In the analysis of constrained LSE estimators (EC.2.3.) of Wang & Chen (2025), specifically their
1677 analysis for \mathcal{A}_3 term in (EC. 70), a Hoeffding's inequality is applied to bounding the term
1678

1679
$$\sum_i \varepsilon_i D_i^{-i}(\theta)$$

1680

1681 for
1682

1683
$$D_i^{-i}(\theta) := \widehat{g}_j^{-i}(x_i|\widehat{\theta}) - g(x^\top \theta_0) + g'(\mu_j^\top \theta_0) \left\langle \left(I - \frac{\Lambda_j \theta \theta^\top}{\theta^\top \Lambda_j \theta} \right) (x - \mu_j), \theta - \theta_0 \right\rangle,$$

1684

1685 with $\mu_j := \mathbb{E}[x|x^\top \bar{\theta}_0 \in I_j]$, $\Lambda_j := \mathbb{E}[(x - \mu_j)(x - \mu_j)^\top | x^\top \bar{\theta}_0 \in I_j]$ and \widehat{g}_j^{-i} the leave-one-out
1686 estimator obtained via taking local polynomial regression over all smalls except for the i -th
1687 observation. In the paragraph between (EC.71) and (EC.72), **they claim that the $\{\varepsilon_i D_i^{-i}(\theta)\}_{i=1}^n$ are**
1688 **mutually independent. However, while the leave-one-out argument can ensure independence**
1689 **between ε_i and $D_i^{-i}(\theta)$, it cannot ensure independence between D_i^{-i} and D_k^{-k} for $i \neq k$, as**
1690 **they both depend on all other observations except the i -th and k -th.** This makes the mutual
1691 independence claim invalid for Wang & Chen (2025), and the Hoeffding inequality or its martingale-
1692 difference-sequence extensions does not apply. Instead, in our argument for analyzing the constrained
1693 LSE, we do not introduce the leave-one-out estimator, but directly use the analytical form of the
1694 local polynomial regression estimator and show that, under this form, the dependency can be directly
1695 handled by Hanson–Wright's inequality for the concentration of quadratic forms, as detailed in the
1696 proof of Lemma 19.
16971698 **L NUMERICAL EXPERIMENTS**
16991700 **L.1 IMPLEMENTATION DETAILS OF ALGORITHM**
17011702 In this section, we discuss several details in implementing Algorithm 3. Note that in the description
1703 of the algorithm, we frequently use quantities $\{\widehat{g}_j(\cdot|\theta)\}_{\theta \in \Theta}$ and $\{\pi(c)\}_{c \in \mathcal{C}}$ for continuous spaces
1704 Θ, \mathcal{C} . However, from a computational perspective, maintaining these quantities would require keeping
1705 parameterized functions simultaneously for all possible values of θ or c over a continuous range,
1706 which requires a discretization over Θ, \mathcal{C} , leads to computational inefficiency⁶. In the following, we
1707 provide details on how to efficiently bypass the operations that would seem to require maintaining
1708 these quantities.
17091710 **L.1.1 CONSTRAINED LEAST SQUARED SOLUTION IN EQUATION (2).**
17111712 Note that the only procedure in the algorithm that requires querying $\widehat{g}(\cdot|\theta)$ for continuously varying
1713 θ is when solving (2). An important observation is that, given the data $\{(x_i, y_i)\}$ collected within
1714 each epoch, we can compute $\widehat{g}(x_i|\theta)$ for any θ . This allows us to rewrite the objective function in (2)
1715 purely in terms of θ , which can be evaluated directly using the collected data. As a result, solving (2)
1716 becomes feasible using standard black-box continuous constrained-optimization methods.
17171718 We also note that, as a function of θ , the objective in (2) is generally non-convex even when $\beta = 2$
1719 (as in the setting of Wang & Chen (2025) and in earlier statistical literature such as Härdle et al.
1720 (1993); Ichimura (1993); Horowitz & Härdle (1996)). Following the approach of Wang & Chen
1721 (2025), we apply a general interior-point method for this continuous optimization problem during the
1722 experiment. While this method is only guaranteed to return a local minimum, it already demonstrates
1723 good empirical performance in our implementation.
17241725 **L.1.2 SAMPLING OF THE CONTEXT-WISE PRICING POLICY INTERVAL.**
17261727 Another subtle challenge in efficiently implementing Algorithm 3 is that the context-wise pricing
1728 policy interval must be queried at every round. Since this interval is defined separately for each
1729 context c over a continuous space of dimension d , even an approximate tabulation would require
17301731 ⁶Note that both Θ, \mathcal{C} are d -dimensional, and find its minimum ε -covering requires $\Theta(\varepsilon^{-d})$ storage

storage that scales exponentially in d . In this section, we describe a “lazy update” approach that stores only the historical datasets and computes the pricing interval solely for those contexts c_t that actually appear during online decision making. This procedure can be implemented efficiently by repeatedly calling the policy-improvement procedure (Algorithm 4) for $\mathcal{O}(\log T)$ iterations, thereby eliminating the exponential storage cost in $\exp(d)$.

Roughly speaking, we treat the policy-improvement procedure used at epoch ℓ , denoted by \mathcal{A}_ℓ , as an operator and store only the data required to evaluate \mathcal{A}_ℓ in future rounds. When a context c arrives in epoch τ , we *compose* the previously saved operators:

$$[\underline{\pi}^{(\tau-1)}(c), \bar{\pi}^{(\tau-1)}(c)] \leftarrow (\mathcal{A}_{\tau-1} \circ \dots \circ \mathcal{A}_1)(c),$$

which exactly matches the interval that would have been obtained had we maintained and updated it epoch-by-epoch, yet without requiring any per-context storage.

Data Required for Evaluating \mathcal{A}_ℓ . At the end of each epoch ℓ , we store the dataset \mathcal{V}_ℓ that contains:

1. **The pilot estimator and per-bin constrained least-squares estimators:** $\bar{\theta}_0$ and $\{\hat{\theta}_{\ell,j}\}_{j \in [M_\ell]}$.
2. **Bin-wise local polynomial design matrices under $\hat{\theta}_{\ell,j}$:**

$$\left\{ (\Lambda_{\ell,j}(\hat{\theta}_{\ell,j}), \sum_{t \in \mathcal{T}_{\ell,j}} y_t U_j(x_t, \hat{\theta}_{\ell,j})) \right\}_{j \in [M_\ell]}.$$

This information is sufficient for computing each $\{\hat{g}_{\ell,j}(x|\hat{\theta}_{\ell,j})\}$ and the glued estimator $\hat{g}_\ell(x)$ and its confidence bound $\text{CB}_\ell(x)$ for any $x = (c, p)$.

Computing $\pi^{(\tau-1)}(c)$ for a given c . Suppose a context c is observed at epoch τ . We now describe how to compute $\pi^{(\tau-1)}(c)$ from the stored datasets $\cup_{\ell < \tau} \mathcal{V}_\ell$. For each step $\ell = 1, 2, \dots, \tau - 1$, given the input context c and the current policy interval $[\underline{\pi}^{(\ell-1)}(c), \bar{\pi}^{(\ell-1)}(c)]$,⁷ the algorithm evaluates the integrals appearing in $\hat{r}(J_k)$ and $\Delta(J_k)$ for each sub-interval J_k using numerical integration with discretization length $1/\varepsilon$ for $\varepsilon = 1/\sqrt{T}$.⁸ This requires $\mathcal{O}(\sqrt{T})$ queries to $\text{CB}_\ell(\cdot)$ and $\hat{g}_\ell(\cdot)$, both of which are computable from \mathcal{V}_ℓ .

L.2 EXPERIMENT SETUP

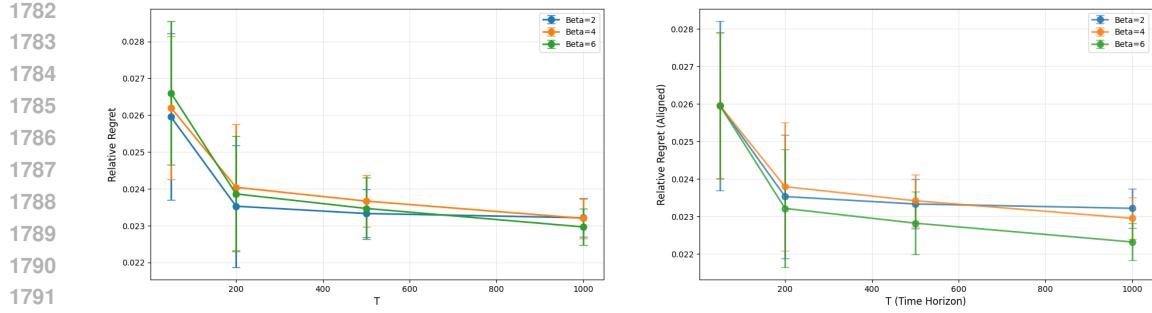
In this section, we present numerical simulations under several setups to illustrate the performance of our algorithm and to compare it with previous work Fan et al. (2024). In the following sections, we describe the setup and purpose of four different experiments, including:

1. Illustration of the effect of β on regret: given an underlying smooth environment, whether using a larger β parameter in the algorithm input leads to better regret.
2. Illustration of the effect of d on regret, especially whether the $\text{Poly}(d^\beta)$ term in the main theorem significantly influences the empirical results.
3. Comparison with the algorithms in Fan et al. (2024).

β -smooth Tail Function Generation. Before describing more details of setup in each setting, we first recall the noise sampling procedure proposed in Fan et al. (2024) for generating a β_0 -smooth g , which we will frequently call in each setup: Given any smoothness factor β_0 , we set the density function of ξ_t as

$$f_\beta(z) \propto (1/4 - z^2)^{\beta/2} \cdot \mathbf{1}\{|z| \leq 1/2\}. \quad (15)$$

It can be verified that $f_\beta(\cdot)$ is $(\beta - 1)$ -smooth function, thus its corresponding CDF(and g) is β -smooth.



(a) Relative regret(the regret normalized by T) under $\beta_0 = 6, d = 2$ environment with algorithm parameters $\beta \in \{2, 4, 6\}, T \in \{50, 200, 500, 1000\}$.

(b) Same results as in Figure 4a with the starting point of each curve aligned to illustrate the regret decay rate.

Figure 4: Illustration of β effect in regret.

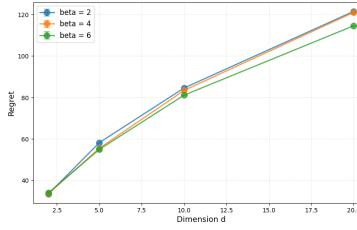


Figure 5: Regret under $\beta_0 = 6, T = 1000$ environment, with changing $d \in \{2, 5, 10, 20\}$ and algorithm parameters $\beta \in \{2, 4, 6\}$.

L.2.1 EFFECT OF β ON REGRET

In Figure 4, we test our algorithm under a $d = 2$ environment with underlying smoothness $\beta_0 = 6$, with the underlying parameter $\theta_0 = (0.25, 0.25)$, coordinate-wise i.i.d. context distribution with the density function

$$f_m(x) \propto (2/3 - x^2)^{m+1} \cdot \mathbf{1}\{|x| \leq \sqrt{2/3}\}. \quad (16)$$

We test the LPSP algorithm under this environment with input smoothness parameters $\beta = 2, 4, 6$ and time horizons $T \in \{50, 200, 500, 1000\}$, and we report the relative regrets (regret divided by T) in Figure 1(a). To further compare the regret rates while reducing the influence of absolute constants, we additionally align the starting y -axis values in Figure 1(b).

From Figure 4a, we observe that larger β values ($\beta = 4, 6$) do not necessarily lead to smaller regret compared with $\beta = 2$ when T is relatively small, likely due to the β -dependent constants hidden in the regret bound. However, as T increases, the performance of the larger- β algorithms begins to match or outperform the $\beta = 2$ setting. Figure 4b provides more direct evidence of better long-run regret: after aligning the starting regrets for each β , so that only the decay rate matters, we see that larger β generally leads to a sharper decay rate, consistent with our theoretical findings.

L.2.2 EFFECT OF d ON REGRET

In Figure 5, we report the regret of our algorithm for $\beta \in \{2, 4, 6\}$ with $T = 1000$ under different dimensions d . As in the previous setup, the demand noise is generated with smoothness $\beta_0 = 6$ using (15). The underlying parameter is chosen as $\theta = (1/\sqrt{d}, \dots, 1/\sqrt{d}) \in \mathbb{R}^d$, and the context distribution follows (16) without additional normalization. Hence Assumption 4 is satisfied with $c_{\min} = d$, which implies an exploration length of order $\mathcal{O}(\sqrt{dT}^{\frac{\beta+1}{2\beta+1}})$.

⁷By initialization, $[\underline{\pi}^{(0)}, \bar{\pi}^{(0)}] = [0, p_{\max}]$.

⁸This contributes at most $\mathcal{O}(1/\sqrt{T})$ error to the calculation, which is dominated by the $\text{CB}(\cdot)$ term.

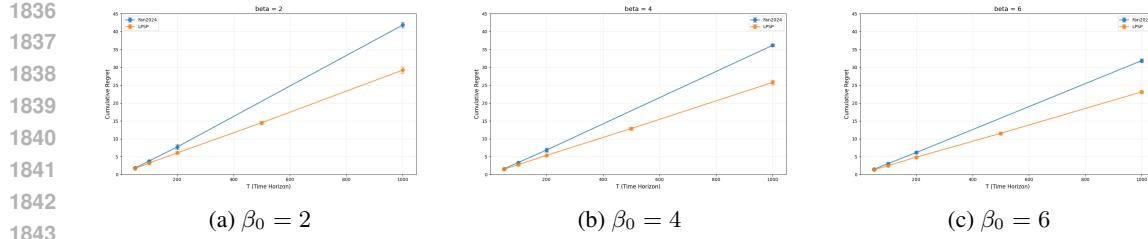


Figure 6: Comparison with the explore-then-commit algorithm in Fan et al. (2024) under different smoothness parameters.

The figure illustrates that although the regret increases at least linearly in d , the choice of β does not appear to affect the growth rate significantly. This suggests that the $\text{Poly}(d^\beta)$ factor appearing in our second-order regret bound may be an artifact of the analysis rather than a fundamental barrier. The empirical trend also indicates the possibility of further improving the d^4 dependence in the leading-order term.

L.2.3 COMPARISON TO FAN ET AL. (2024).

In Figure 6, we compare the cumulative regret for $T \in \{50, 200, 500, 1000\}$ of our algorithm with Fan et al. (2024) under different environments, with $d = 2$, θ_0 and context distribution described same as in Section L.2.1, and noise distribution under different β_0 are generated as in (15).

While our algorithm achieves consistently smaller regret than Fan et al. (2024) in both experimental settings, we emphasize that this comparison is not fully fair. The primary message we aim to convey is simply that both algorithms are able to exploit the underlying smoothness: as the true smoothness parameter β_0 increases, the regret curves decrease accordingly.

The key subtlety lies in the computational scale of the two methods. The algorithm of Fan et al. (2024) is simple to implement and computationally lightweight, which enables them to run experiments with very large time horizons (e.g., up to $T \approx 12,000$ in their paper). In contrast, our method involves several computationally intensive steps—such as the constrained least-squares refinement and repeated distribution-shift corrections—as discussed in Section L.1. These components significantly increase runtime, which limits our experiments to relatively small horizons (up to $T = 1000$). This difference in feasible scale may disadvantage Fan et al. (2024) in our plots: in their original setup, the initial exploration length is fixed at 500, whereas in our smaller- T regime we can only afford an initial phase of roughly 20–100 rounds. Consequently, their algorithm may not reach its typical performance regime under the smaller horizons we are able to simulate. We also emphasize that the primary focus of this work is theoretical: our goal is to push the boundary of regret guarantees for semi-parametric pricing by showing that improved rates are achievable—albeit through a relatively complicate algorithm that may not yet be practical. Developing simpler, more efficient, and easy-to-implement algorithms that attain the same theoretical regret remains an important direction for future work.