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ABSTRACT

We study the contextual pricing problem, where in each round a seller observes
a context, sets a price, and receives a binary purchase signal. We adopt a semi-
parametric model in which the demand follows a linear parametric form composed
with an unknown link function from a β-Hölder class. Prior work established
regret rates of Õ(T 2/3) for β = 1 and Õ(T 3/5) for β = 2. Under a uni-modality
condition, we propose a unified algorithm that combines the stationary subroutine
of Wang & Chen (2025) with local polynomial regression, achieving the general
rate Õ(T

β+1
2β+1 ) for all β ≥ 1. This recovers and strengthens existing results, while

also addressing a gap in the prior analysis for β = 2. Our analysis develops tighter
semi-parametric confidence regions, removes derivative lower bound assumptions
from earlier work, and offers a sharper exploration–exploitation trade-off. These
insights not only extend theoretical guarantees to general β but also improve
practical performance by reducing the need for long forced-exploration phases.

1 INTRODUCTION

Dynamic pricing addresses a central problem in revenue management, where a seller repeatedly
interacts with users by offering personalized prices for the same product and collecting revenue
from the resulting sales (Cournot, 1927; Den Boer, 2015). Across these interactions, users exhibit
heterogeneous demand or private valuations, and the seller faces uncertainty in how demand responds
to the offered prices. This demand function effectively captures the market’s valuation of the product.
Consequently, the seller must learn the demand in real time while simultaneously aiming to maximize
revenue, which gives rise to the fundamental exploration–exploitation tradeoff in dynamic pricing
(Kleinberg & Leighton, 2003).

Recently, contextual dynamic pricing has gained significant traction in online retail, driven by
the widespread availability of user-specific and contextual information (Cohen et al., 2020; Wang
et al., 2021; Chen & Gallego, 2021; Luo et al., 2024; Wang & Chen, 2025). Modern platforms can
conveniently access rich side information—such as a user’s account profile, browsing and purchase
history, or relevant environmental factors—before deciding on a price. Incorporating such contextual
signals enables sellers to move beyond static or aggregate demand models and tailor prices to
individual users or market segments. To achieve this, firms need to find algorithms that learn how
demand depends jointly on both price and context and determine an optimal personalized price when
a context is revealed.

Among various formulations for capturing the contextual dependence, the formulation with linear
utility model and non-parametric noise is receiving increasing attention due to its flexibility compared
with fully parametric model (Javanmard & Nazerzadeh, 2019) and simplicity between fully non-
parametric models (Chen & Gallego, 2021). In this formulation, each user is associated with a
context vector ct ∈ Rd upon arrival and derives a private utility ut = c⊤t θ∗ + ξt, with θ∗ ∈ Rd being
an unknown parameter and ξt random noise. After offering a price pt, the seller receives revenue
feedback pt1{pt ≤ ut} from the user, which indicates whether a purchase is made (i.e., revenue is
generated) or not. If denoting the tail distribution function P(ξt ≥ z) by g(z), the expected demand
then reduces to D(p) = g(c⊤t θ∗− p), this corresponds to the semi-parametric formulation (Ichimura,
1993; Hristache et al., 2001; Dalalyan et al., 2008).
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Fan et al. (2024): Õ(T
2β+1
4β−1 )

Tullii et al. (2024): Θ̃(T 2/3)

Wang & Chen (2025): Θ̃(T 3/5)

Javanmard et al. (2019): Θ̃(
√
T )

Figure 1: Exponent in T vs. smoothness β.

Assumptions
(A) Strong uni-modality (B) Context density LB

(C) Σ ≻ 0 (D) g′(·) < 0

Result Condition
Tullii et al. (2024)(β = 1) None

Fan et al. (2024)∗(β ≥ 1) (B)(C)(D)

Wang & Chen (2025)(β = 2) (A)(C)†(D)

Our work(β ≥ 1) (A)(C)†

Table 1: Comparison of assumptions in
semi- and non-parametric demand models.
The strong uni-modality condition is given
in Assumption 3, and Σ = E[ctc⊤t ].
∗ Fan et al. (2024) does not require (A), but in-
stead assumes another shape condition on g(·).
† In both Wang & Chen (2025) and our work,
condition (C) is imposed only during the initial

exploration period of length Õ(T
β+1
2β+1 ).

As in the statistical estimation literature, the regularity of g(·) affects the difficulty of demand
identification and thus decision making. Previous works have extensively studied the semi-parametric
pricing problem under different levels of regularity of g. For instance, Tullii et al. (2024) and Wang
& Chen (2025) establish regret bound Õ(T 2

3 ) and Õ(T 3
5 ) respectively under first and second-order

smoothness assumptions. In contrast, characterizing the general β-smooth regime for β ∈ [1,+∞)
plays an important role in understanding how regularity influences demand estimation and how
the non-parametric regime interpolates to the parametric rates (Hu et al., 2020). To the best of our
knowledge, the only prior work that attempts to provide such a unified treatment is Fan et al. (2024),
which establishes an Õ(T

2β+1
4β−1 ) regret bound. However, this result does not recover the Õ(T 3

5 ) rate
under the conditions of Wang & Chen (2025) and even degenerates to linear regret when β = 1,
leaving room for further improvement.

OUR CONTRIBUTIONS

Motivated by this gap, we explore the semi-parametric pricing setting in this work and provide the
improved regret bounds, we summarize our contributions as the following:

Improved Regret Bound for β ≥ 1 Regime. Under strong uni-modality (Assumption 3) as in Wang
& Chen (2025); Chen & Gallego (2021), we establish a regret upper bound of Õ(T

β+1
2β+1 ) for all

β ≥ 1. For comparison, under uni-modality together with additional regularity, Fan et al. (2024)
obtain Õ(T

2β+1
4β−1 ); under these distinct assumptions, our bound achieves a smaller exponent in T . Our

result matches the optimal contextual guarantees for β = 1 Luo et al. (2024); Tullii et al. (2024) and
β = 2 Wang & Chen (2025), and it interpolates to the parametric rate Õ(

√
T ) as β →∞. Moreover,

it coincides with the tight non-contextual bound Θ̃(T
β+1
2β+1 ) for general β established in Wang et al.

(2021). Hence, under strong uni-modality, semi-parametric contextual pricing is provably no harder
than its non-contextual counterpart.

Unified Algorithm and Analysis. The proposed regret bound is achieved by developing a unified
joint estimation procedure and confidence bound analysis for the parametric and non-parametric parts
via local polynomial regression for β ≥ 1. In particular, when β = 1, the resulting confidence bound
applies directly to yield Õ(T 2/3) regret via the optimistic principle without strong uni-modality,
matching Tullii et al. (2024). When β ≥ 2, a finer control of the parametric estimation error is
required to exploit higher-order smoothness. We combine our procedure with elements of Wang &
Chen (2025) to obtain the general bound, extending their algorithmic design from the case β = 2.

Improved Confidence Bound Analysis. Our confidence bound analysis generalizes Tullii et al.
(2024); Wang & Chen (2025). In particular, when β ≥ 2, we encounter the same challenge
of leveraging higher-order smoothness as in Wang & Chen (2025). While we adopt the idea of
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constrained least squares from their work, extending it to general β requires substantially more
than a straightforward calculation. First, the analysis in Wang & Chen (2025) heavily relies on a
linear-time local exploration schedule. As we detail in Section 6, this works under uni-modality
when β = 2, but leads to a degenerate regret rate as β increases. Second, although Wang & Chen
(2025) pioneered the finite-sample analysis of constrained least squares, the complex dependency
beyond martingale structure in such a joint estimation procedure prevents the direct application
of standard concentration inequalities such as Azuma–Hoeffding. In their proof, this dependence
is overlooked and therefore cannot yield the claimed result, as we detailed in Appendix K. These
challenges motivate our improved analysis, which bypasses the dependence issue and significantly
shortens the exploration period. As an additional contribution, our analysis also removes the strictly
increasing CDF condition listed in Table 1, which has been assumed in prior smooth semi-parametric
settings Fan et al. (2024); Wang & Chen (2025), thereby broadening the applicability of the theory.

Notation. For n ∈ Z+, we let [n] := {1, . . . , n} and denote by ∥ · ∥ the ℓ2 norm. For a positive
definite matrix A ∈ Rn×n and u ∈ Rn, write ∥u∥A :=

√
u⊤Au. For a matrix A, ∥A∥F is the

Frobenius norm; λmin(A) and λmax(A) are its extremal eigenvalues; and A ⪰ B means A− B is
positive semidefinite. For a ∈ R, ⌊a⌋ is the greatest integer < a. We use a ≲ b or a = O(b) to mean
there exists C > 0 such that |a| ≤ C|b|; a ≳ b or a = Ω(b) to mean there exists c > 0 such that
|a| ≥ c|b|; and a ≍ b or a = Θ(b) to mean there exist c1, C1 > 0 such that c1|b| ≤ |a| ≤ C1|b|, all
those constants may only depend on β. We also use Õ, Ω̃, Θ̃ to hide polylogarithmic factors.

2 PROBLEM FORMULATION

Dynamic Pricing with Linear Valuations. At each period t ∈ [T ], a new customer arrives with
observable feature vector ct ∈ Rd drawn i.i.d. from an unknown distribution PC and generates
underlying valuation as ut = c⊤t θ∗ + ξt for some θ∗ ∈ Rd and ξt i.i.d. drawn from a distribution
PΞ with CDF FΞ. After observing ct, the seller posts a price pt ∈ [0, pmax] and observes the binary
purchase feedback yt = 1{ut ≥ pt} and the corresponding revenue ptyt. If we denote the tail
function g(r) := 1− FΞ(r), the conditional revenue is then given by

R(ct, pt) := ptE[yt | ct, pt] = ptP(ξt ≥ pt − c⊤t θ∗ | ct, pt) = ptg(pt − c⊤t θ∗).

The goal of the seller, without knowing θ∗ and PΞ, is to determine an adaptive policy π for posting
prices pt to maximize the cumulative revenue E[

∑T
t=1 R(ct, pt)]. The performance of the policy is

evaluated by the cumulative revenue gap relative to the optimal policy:

Regret(T ) := E
[ T∑

t=1

max
p

R(ct, p)−R(ct, pt)
]
. (1)

For compactness we will use an augmented vector form: define xt := (c⊤t , pt)
⊤ ∈ Rd+1 and

θ0 := (−θ⊤∗ , 1)⊤ ∈ Rd+1, so that x⊤
t θ0 = pt − c⊤t θ∗ and E[yt | ct, pt] = g(x⊤

t θ0).

Smoothness Condition and Assumptions. For the parametric part of the model, we make the
following boundedness assumption:

Assumption 1. There exist constants Cc, Cθ > 0 such that ∥ct∥ ≤ Cc almost surely and ∥θ∗∥ ≤ Cθ.
Let V := CcCθ + pmax. Furthermore, the noise distribution PΞ is supported on [−V, V ].

Under Assumption 1, the value-price gap x⊤
t θ0 = c⊤t θ∗ − pt lies in [−V, V ] for all t, so g is only

evaluated on a compact interval.

For the non-parametric part, we make the following assumption on g(·), which is equivalent to
making an assumption on FΞ due to the relation g(·) = 1− FΞ(·).
Assumption 2 (β-Hölder smoothness of g). There exist constants Lg > 0 and β > 0 such that
g : [−V, V ] 7→ [0, 1] is ⌊β⌋ times continuously differentiable and, for all u, u′ ∈ [−V, V ],∣∣∣∣g(u′)−

⌊β⌋∑
k=0

(u′ − u)k

k!
g(k)(u)

∣∣∣∣ ≤ Lg|u′ − u|β .

3
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This is a standard notation for describing smoothness in nonparametric estimation (Györfi et al., 2002;
Tsybakov, 2008). It unifies previous assumptions in the sense that β = 1 corresponds to the Lipschitz
setting studied in Tullii et al. (2024); Luo et al. (2024), and β = 2 corresponds to the “2nd-order
smooth” setting studied in Wang & Chen (2025); Luo et al. (2022). In this work, we provide a unified
treatment for all β ≥ 1.

For the revenue function, we make the following assumption.
Assumption 3 (Strong uni-modality). For any |u| ≤ CcCθ, under the shorthand notation r(u, p) :=
pg(p− u), the maximizer p⋆(u) := argmaxpr(u, p) is unique and lies in the strict interior (0, pmax).
Moreover, there exist constants 0 < σr ≤ Lr <∞ such that for all |u| ≤ CcCθ and all p ∈ [0, pmax],

σr

2
|p− p⋆(u)|2 ≤ r

(
u, p⋆(u)

)
− r(u, p) ≤ Lr

2
|p− p⋆(u)|2.

Assumption 3 says that, given any valuation u fixed, the revenue function r(u, ·) is locally strongly
convex around its maximizer. Such conditions has appeared in various pricing models (Broder &
Rusmevichientong, 2012; Wang et al., 2014; Chen & Gallego, 2021; Wang & Chen, 2025).

It is worth to note that while broadly-accepted, the strong uni-modality is tend to be believed as a
relative strong assumption in non-contextual pricing setting, in sense that a Õ(

√
T ) regret can be

achieved even under the Lipschitz condition (β = 1) of FΞ (Kleinberg & Leighton, 2003; Wang
et al., 2021). In sharp contrast, for the contextual setting, the Ω(T 3/5) regret lower bound under the
β = 2 and Assumption 3 developed in Wang & Chen (2025) shows a clear separation between the
contextual and non-contextual cases, indicating that even under Assumption 3, the pricing problem is
not overly simplified in our setting.

Organization. In the remaining contexts, we divide our presentation into four parts. In Section 3,
we recall an initialization guarantee and discuss the potential trade-off incurred for general β. In
Section 4, we describe a joint estimation procedure for semi-parametric estimation and its statistical
guarantee. Finally, we combine these two procedures with a policy improvement oracle introduced in
Section 5 to present the complete algorithm and its regret guarantee in Section 6.

3 INITIAL EXPLORATION PHASE

In the initial exploration, phase, our goal is to obtain a pilot estimator θ̄ ∈ Rd such that ∥θ̄−θ∗∥2 ≤ η
for certain error level η.

As discussed in Wang & Chen (2025), such a pilot estimator may be obtained through initial access
to offline data. However, suitable offline data is not always available. In this section, we recall an
initial exploration guarantee under the diverse context distribution assumption from Fan et al. (2024):
Assumption 4. There exists some positive constant cmin so that E[(c⊤t , 1)⊤(c⊤t , 1)] ⪰ cmin

d I.

Under Assumption 4, Fan et al. (2024) showed that by posting uniform exploration prices pt ∼
Unif[0, V ] for Õ(η−2) rounds, one can obtain the desired estimator through a suitable parametric
estimation procedure. The procedure is summarized in Algorithm 1, and we present the main result
below; its proof is provided in Appendix B for completeness.
Lemma 5. Suppose Assumption 1 and 4 hold. Fix δ ∈ (0, 1). Algorithm 1 with O

(
η−2d3 log(1/δ)

)
running time can output a parametric estimator θ̄ with ∥θ̄ − θ∗∥ ≤ η with probability at least 1− δ.

In particular, every price posted in the exploration phase incurs a constant sub-optimality gap, so the
total regret from exploration scales as Õ(η−2). To match the desired Õ(T

β+1
2β+1 ) regret bound under

the β-Hölder condition, we require η−2 ≍ T
β+1
2β+1 , thus the pilot estimator accuracy must be restricted

to O(T− β+1
4β+2 ). When β = 1, as discussed later in Section 4.1, with η ≍ T−1/3, even a linear

level perturbation bound O(Tη) is sufficient to achieve the optimal Õ(T 2/3) regret. As β increases,
the required regret rate decreases while the pilot error increases, calling for a sharper approach to
exploiting smoothness information—this is precisely the challenge we attempt to address in this
work. For convenience, we fix the level of η for a given β throughout the remaining discussion:
When discussing the setting with a specific β ≥ 1, we set the corresponding pilot estimation error

4
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Algorithm 1 Pilot estimation (adapted from Fan et al. (2024))

1: Input: Running time t;
2: for the next t time periods do
3: Offer price pt ∼ Unif[0, pmax] and let {D(t) ≡ {ct, pt, yt}t∈[t]} be the collected data;
4: Compute θ̄ ← argminθ∈Rd t−1

∑
t∈[t](pmaxyt − c⊤t θ)

2;
5: return θ̄

to η = T− β+1
4β+2 . As noted in the earlier discussion, this choice is the sharpest possible rate under

Lemma 5 without violating the desired O(T
β+1
2β+1 ) regret.

Finally, we note that Assumption 4 is used only to obtain the pilot estimator and is therefore needed
only during the initial exploration period of length Õ(T

β+1
2β+1 ). While careful readers may find the

phrase “needed only” unusual since our setting assumes i.i.d. contexts, here we allow the context
distribution to be two-phased: after the initial exploration period, the contexts may follow any
distribution that satisfies Assumption 1, not necessarily Assumption 4.

4 SEMI-PARAMETRIC ESTIMATION SUB-ROUTINE

4.1 PILOTED LOCAL POLYNOMIAL REGRESSION

Given a pilot estimate θ0 := (−θ̄⊤, 1)⊤ of θ0, we introduce a piloted local polynomial regression
subroutine, with an input dataset D collected through a sub-routine conducted during a sub-interval
of the total horizon [T ], as the following.

Algorithm 2 Piloted Local Polynomial Regression

1: Inputs: pilot estimator θ̄0 with ∥θ0 − θ0∥ ≤ η; smoothness β ≥ 1, dataset D := {ci, pi, yi}ni=1,
precision of partition h.

2: Initialization: partition [−V, V ] into M = ⌈1/h⌉ equal bins I1, . . . , IM . For j ∈ [M ], set

Tj :=
{
i ∈ [n] : xi = (c⊤i , pi)

⊤, x⊤
i θ̄0 ∈ Ij

}
and the polynomial degree ℓ = ⌊β⌋.

3: for j = 1, . . . ,M do
4: if Tj ̸= ∅ then
5: Pick arbitrary 1x̄j ∈ Ij with ∥x̄j∥ ≤ Cc + pmax.
6: For any θ with ∥θ − θ̄0∥ ≤ η and any x with x⊤θ̄0 ∈ Ij , define

∆j(x, θ) := (x− x̄j)
⊤θ, Uj(x, θ) :=

(
1,∆j(x, θ), . . . ,∆j(x, θ)

ℓ
)⊤

,

and the Gram matrix Λj(θ) :=
∑

i∈Tj
Uj(xi, θ)Uj(xi, θ)

⊤. Set the local estimator

ĝj(x | θ) :=

{
Uj(x, θ)

⊤Λj(θ)
−1

∑
i∈Tj

yiUj(xi, θ), if Λj(θ) is invertible,
0, else.

7: else
8: Set ĝj(· | θ) ≡ 0 for all θ.
9: Output {ĝj(· | θ)}j∈[M ],∥θ−θ̄0∥≤η.

In Algorithm 2. The input dataset D is first binned into different intervals Ij , j ∈ [M ] based on the
pilot estimator θ̄0, then a local non-parametric estimation is performed for every candidate parameter
θ over interval Ij to obtain ĝj(· | θ). Let nj := |Tj |. Now we present the following deterministic
estimation error guarantee of ĝj(· | θ) without any requirement on the input dataset D :

1the existence of such x̄j is straightforwardly ensured by Tj ̸= ∅.

5
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Proposition 6. Fix j ∈ [M ] and h ≥ T− 1
2β+1 . Under Assumptions 1 and 2, for any θ with

∥θ − θ̄0∥ ≤ η and any x with ∥x∥ ≤ Cc + pmax and x⊤θ̄0 ∈ Ij , if Λj(θ) invertible then

ĝj(x | θ)− g(x⊤θ0) =vj(x, θ)
⊤δj(θ) + Uj(x, θ)

⊤
∑
t∈Tj

(
yt − g(x⊤

t θ0)︸ ︷︷ ︸
:=εt

)
Λ−1
j (θ)Uj(xt, θ)

+O
(
hβ(1 +

√
nj ∥Uj(x, θ)∥Λ−1

j (θ))
)
,

where, with Xj(x, θ) :=
(
(x− x̄j)

⊤, . . . , ℓ((x− x̄j)
⊤θ)ℓ−1 · (x− x̄j)

⊤)⊤ ∈ Rℓ , we define

vj(x, θ) := Xj(x, θ)− Uj(x, θ)
⊤Λ−1

j (θ)
∑

i∈Tj

Uj(xi, θ)Xj(xi, θ) ∈ Rℓ,

δj(θ) :=
(
g′(x̄⊤

j θ0)(θ − θ0)
⊤, . . . ,

g(ℓ)(x̄⊤
j θ0)

ℓ! (θ − θ0)
⊤)⊤ ∈ Rℓ.

In Proposition 6, the estimation error is decomposed into three terms. The first term, which arises
from the mismatch between the pilot estimator θ̄0 and the underlying truth θ0, creates a central
difficulty in the analysis for general2 β > 1, as discussed in Remark 7. Due to the θ − θ0 term
appearing in δj , we can only obtain an O(η) upper bound on |vj(x, θ)

⊤δj(θ)| in general. On the
other hand, carrying such an O(η) bound yields an overall rate of O(Tη) = O(T

3β+1
4β+2 )—far above

the desired O(T
β+1
2β+1 ) result.

This suboptimalO(η)-order term in Proposition 6 is the main motivation for using a refined estimator
of θ0 beyond the initial pilot estimation, leading to the constrained least-squares estimator for refining
the parametric estimates in Section 4.2.

Remark 7 (An O(T
β+1
2β+1 ) regret via Proposition 6 without the first term). Since Proposition 6 is

quite general and requires no assumption on how D is collected, in Appendix J we show that, when
combining Algorithm 2 with an Upper-Confidence-Bound–based algorithm design, an Õ(T

β+1
2β+1 )

regret can be achieved if the right-hand side of Proposition 6 does not contain the vj(x, θ)
⊤δj(θ)

term. While the omission of this first term is in general impossible, this discussion mainly illustrates
how the problem can be simplified without it.

We also note that there are two special cases where such an omission can rigorously hold. First,
when β = 1, we have ℓ = 0, and this analysis recovers the Õ(T 2/3) rate in Tullii et al. (2024)3,
which is minimax optimal. Second, in the non-contextual setting studied in Wang et al. (2021),
where c ≡ 0 and x = (0, p) only depends on price, one can show that vj((0, p), θ)

⊤δj(θ) ≡ 0.

In this case, our discussion recovers the general O(T
β+1
2β+1 ) regret in Wang et al. (2021), which

is also minimax-optimal. We also note that throughout this discussion we do not need the strong
uni-modality condition in Assumption 3, and in the second setting we do not need the diversity
condition in Assumption 4 for exploration. This matches the minimal assumptions used in prior work.

Notation for Convenience: While Algorithm 2 is described with flexible precision h ≥ T− 1
2β+1 for

generality, throughout the main text we by default set h = n− 1
2β+1 when inputted |D| = n.

4.2 CONSTRAINED LEAST SQUARED REFINEMENT

Using the local fits ĝj(· | θ) from Algorithm 2, we refine the parametric estimate via a constrained
least–squares (LSE) subroutine, a standard device in semi-parametric estimation, cf. Härdle et al.
(1993); Wang & Chen (2025). For each j ∈ [M ] (with Tj defined in Section 4.1), define

θ̂j ∈ argmin
∥θ−θ̄0∥≤η

∑
i∈Tj

(yi − ĝj(xi | θ))2 . (2)

We have the following statistical guarantee for such constrained LSE under additional conditional
independence assumption on D:

2Note that when β = 1, the vj(x, θ)
⊤δj(θ) term does not appear since ℓ = 0.

3It is worth noting that the algorithm in Tullii et al. (2024) can work even in an adversarial context setting
with adaptive initial exploration, as we discussed in Appendix J.
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Proposition 8. Fix any δ ∈ (0, 1). Suppose Assumptions 1,2 hold and {yi}ni=1 are mutually
independent conditioned on {xi}ni=1. Then under the condition that Λj(θ) is invertible and ζ ≍
n

β+1
2β+1 = Ω(d7 log7/2(1/δ)

√
n), we have with probability at least 1 − O(nδ), uniformly for all x

with x⊤θ̄0 ∈ Ij and j ∈ [M ], the solution θ̂j to (2) satisfies∣∣ĝj(x | θ̂j)− g(x⊤θ0)
∣∣ ≲ Errj(x) + n− β

2β+1 , ∀j ∈ [M ] and ∀x such that x⊤θ̄0 ∈ Ij . (3)

Where Errj(x) :=
(√

d log(1/δ)+
√
njn

− β
2β+1

)
·
(
∥vj(x, θ̂j)∥(Σj(θ̂j)+ζI)−1 +∥Uj(x, θ̂j)∥Λ−1

j (θ̂j)

)
and Σj(θ) :=

∑
i∈Tj

vj(xi, θ)vj(xi, θ)
⊤.

Proposition 8 describes an error bound on the glued estimator

ĝ(x) :=
∑

j∈[M ]
1{x⊤θ̄0 ∈ Ij} ĝj(x | θ̂j),

which relies on a characterization for the parametric minimizer (2). A key difficulty is the dependence:
during the analysis of the constrained least squared estimator, the all samples in Tj are used compute θ̂j
and ĝj(· | ·), this together with the non-linearity introduced in the squared loss, creating a complicated
dependency structure. In β = 2, Wang & Chen (2025) attempts to mitigate this dependency using a
leave-one-out argument and derive a bound similar to Proposition 8. Unfortunately, as we detail in
Appendix K, their argument cannot handle this dependency and thus fails to yield the desired result.

Instead, with the unified local polynomial approach, a key observation in our analysis is that such
complicated joint-lease squared form can be reduced to the concentration analysis of a quadratic form
involving observation noises, which then can be tackled via the standard Hanson-Wright inequality.

To see why Proposition 8 refines Proposition 6 and yields improved regret, we argue in aggregate
rather than pointwise. The right-hand side of Proposition 8 has a self-normalized vector form, which
implies the following bound under suitable distributional assumptions on x and D:
Theorem 9. Fix j ∈ [M ]. Assume in additional to Proposition 8 that Tj allows a disjoint decomposi-
tion Tj = T ra

j ∪ T ro
j with:

i) Samples from T ra
j are i.i.d. from a stationary distribution Qj and |T ra

j | ≥ ⌈nj/2⌉,
ii) For any θ with ∥θ − θ0∥ ≤ η, λmin(HΛro

j (θ)H) ≳
√
nj with H = diag(1,M−1, . . . ,M−ℓ) ∈

R(ℓ+1)×(ℓ+1) and Λro
j (θ) :=

∑
t∈T ro

j
Uj(xt, θ)Uj(xt, θ)

⊤.
Then it holds with probability at least 1− δ that

Ex∼Qj [Errj(x)] ≲ d4 log2(1/δ)
(
n
− 1

2
j + n− β

2β+1
)
. (4)

Theorem 9 states that under the distribution collecting (a subset of) D, one attains a parametric rate in
nj and a β-dependent non-parametric rate in n that matches the usual minimax-optimal rate under β-
Hölder smoothness (Tsybakov, 2008). In particular, when n is linear in T , which is the scenario in our
subsequent regret analysis, the second term of (4) scales as η

2β
β+1 , improving the linear dependency η

rate as we discussed in Section 4.1.
Remark 10. In Theorem 9, we assume an Ω(

√
nj) eigenvalue lower bound condition on normalized

version of Λj(θ), mainly to carry out the perturbation analysis involving the inverse of the empirical
matrix. By contrast, Lemma EC.11 of Wang & Chen (2025) states a similar result for β = 2, but
under the stronger condition Λj(θ) ⪰ njI .4 As we note in the subsequent Remark 12, relaxing the

eigenvalue condition is key to extending the analysis to β ≥ 2 while maintaining the T
β+1
2β+1 regret.

5 HANDLING POLICY-INDUCED DISTRIBUTION SHIFT

Theorem 9 is stated under a stationarity assumption: the distribution of x used to evaluate the expected
gap matches the distribution of D used to fit the joint estimator. This is generally hard to use for
regret-minimizing policies, which update adaptively and thus induce nonstationary distributions. To
address this, we adopt the distribution-shift subroutine from the recent advance of Wang & Chen
(2025) to design an epoch-wise algorithm, where the distribution mismatch between epochs is well
controlled, so that Theorem 9 can be applied to the regret analysis.

4The key improvement comes from applying self-normalizing arguments based on the RHS of (3).
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aj bjIj = [aj , bj ]

0 1 2 3 4 5

ut = pt − c⊤t θ̄
sj = 4

p′
t − c⊤t θ̄ =

3aj+2bj
5

Texp =
{
1, 4, 9, ...

}
Lj = 2

utility under raw pt

utility under rounded p′
t

Figure 2: Forced exploration via price round-
ing. At the sj-th time that a raw price pt de-
termined utility is piloted to interval Ij . If sj
is the Lj-th element in Texp, the raw price will
be rounded so that the piloted utility lies at the
(Lj mod ⌊β⌋)-th equi-partition points of Ij . This
figure illustrates the case sj = 4, β = 6, which
corresponds to Lj = 2-nd element of Texp.

1 2 +∞
1
2

3
5

2
3

1

Smoothness parameter β

E
xp

on
en

ti
n
T

This work: Õ(T
β+1
2β+1 )

Wang & Chen (2025): Θ̃(T
2β−1
2β+1 )

Figure 3: Total Regret incurred by linear versus
sub-linear times of local exploration. The total cost
of the local exploration operation (lines 11–13 of Algo-
rithm 3) is plotted. At each bin j and epoch τ , the total
exploration time of Wang & Chen (2025) is Θ(nτ,j),

whereas ours is Θ(
√
nτ,j), resulting in Θ(T

2β−1
2β+1 ) re-

gret and Θ(T
β+1
2β+1 ) regret, respectively, as discussed in

Remark 12.

Similar to Section 3, since the design of the algorithm is fully credits to Wang & Chen (2025),
we present only the key properties needed for our application here and defer the full algorithm to
Appendix C for completeness.
Proposition 11 (Wang & Chen (2025)). Suppose Assumptions 1 and 3 hold. Consider a stochastic
policy Π containing all conditional uniform stochastic policies:

Π :=
{
π : C → ∆([0, pmax]) | π(c) ∼ Unif[π(c), π(c)] for some π(c) ≤ π(c),∀c ∈ C

}
.

Then there exists an policy improvement oracle A (see Algorithm 4 in Appendix C for details), so that
with any input tuple π ∈ Π, ĝ(·) : C × [0, pmax]→ R,CB(·) : C × [0, pmax]→ R satisfying

(S1) p⋆(c⊤θ∗) ∈ Supp(π(c)) for all c ∈ C;
(S2) |ĝ(x)− g(x⊤θ0)| ≤ CB(c, p) for all x = (c⊤, p)⊤ with c ∈ C and p ∈ [0, pmax].

Its output π′ = A(π, ĝ,CB) ∈ Π satisfies:

(i) p⋆(c⊤θ∗) ∈ Supp(π′(c)) for all c ∈ C;
(ii) Ec∼PC,p∼π′(c)[R(c, p⋆(c⊤θ∗)) − R(c, p)] ≤ 1

4Ec∼PC,p∼π(c)[R(c, p⋆(c⊤θ∗)) − R(c, p)] +
18L3

r

σ2
r

Ec∼PC,p∼π(c)

[
CB(c, p)

]
.

Proposition 11 guarantees the existence of a policy improvement oracle A so that its output policy
improves upon the input policy in the sense that it discounts the regret of the input policy by a
factor of 1/4, and adding an expectation of the confidence bounds evaluated under the input policy’s
distribution. This makes it possible to apply Theorem 9 for our regret analysis.

6 THE LPSP ALGORITHM AND REGRET RESULTS

In this section, we put all components introduced from Section 3 to 5 into an epoch-wise design to
present our main algorithm in Algorithm 3. In Algorithm 3, after an initial phase for calculating
the pilot estimator θ̄0, the algorithm then enters an epoch-wise5 phase to balance exploration and
exploitation. At each epoch τ , the algorithm posts prices based on a fixed stochastic policy π(τ−1)

5Epoch-wise convention. Throughout epoch τ , we use the same constructions as in the subroutines but
computed from the epoch-τ dataset Dτ and partition {Ij}j∈[Mτ ]: for any quantity Qj(·) defined earlier, we
write Qτ,j(·) for its epoch-τ version (e.g., Λτ,j , θ̂τ,j ,CBτ,j , Tτ,j).
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Algorithm 3 Local Polynomial regression-based Semi-parametric Pricing(LPSP) Algorithm

1: Inputs: Smoothness parameter β, total time horizon T , hyer-parameter c0, N0, C1.
2: Initialization: π(0)(c)← Unif[0, pmax] for all c, pilot error level η = T− β+1

4β+2 and exploration
length tβ specified in Lemma 5. Epoch length schedule Nτ = 2τN0, τ ≥ 1.

3: // Initialization Phase as described in Section 3
4: Estimate the pilot estimator θ̄ and θ̄0 := (−θ̄⊤, 1)⊤ using tβ time-steps through Algorithm 1.
5: for τ = 1, 2, . . . until meets t > T do
6: // Decision Making & Data Collection

7: initialize Dτ := ∅, Texp := {k2 : k ≥ 1}, partition [−V, V ] into Mτ := ⌈N
1

2β+1
τ ⌉ equal bins

I1, . . . , IMτ
, set Lj = 1, sj = 0,∀j ∈ [Mτ ].

8: for s = 1, . . . , Nτ do
9: Meets the t-th customer with context ct and sample pt ∼ π(τ−1)(ct).

10: Compute ut := pt − c⊤t θ̄ and compute jt so that ut ∈ Ijt , sjt ← sjt + 1.
11: if sjt is the Lj-th element in Texp then
12: pt ← p′t with p′t − c⊤t θ̄ is the (Lj mod ⌊β⌋)-th ⌊β⌋-equi-partition point of Ij .
13: Lj ← Lj + 1

14: Present pt to the customer and receive feedback yt. Add (ct, pt, yt) to Dτ .
15: t← t+ 1
16: Compute Tτ,j := {t ∈ Dτ : x⊤

t θ̄0 ∈ Ij}
17: // Joint Estimation Phase as described in Section 4
18: Obtain joint estimators {ĝτ,j(· | θ̂τ,j)}j∈[Mτ ] using Dτ with Algorithm 2 and (2).
19: Compute the glued estimator ĝτ (x) :=

∑
j∈[Mτ ]

1{x⊤θ̄0 ∈ Ij}ĝτ,j(x | θ̂τ,j) and the glued
confidence bound

CBτ (x) :=
∑

j∈[Mτ ]

1{x⊤θ̄0 ∈ Ij} ·

{
C1

(
Errτ,j(x) +N

− β
2β+1

τ

)
if HΛτ,j(θ̂τ,j)H ⪰ c0

√
Nτ,jI,

1 otherwise.

with Errj defined as in right-hand-side of (3) and Nτ,j = |Tτ,j |.
20: // Policy Improvement via A described in Section 5
21: Update π(τ) ← A(π(τ−1), ĝτ ,CBτ )

determined by the previous epoch, with a portion of prices rounded for exploration. With such design,
Theorem 9 can be applied to analyze the regret incurred by unrounded prices based on Proposition 11,
and the key is to ensure the conditions in Theorem 9 holds, which relies on the localized exploration
procedure we introduced in line 11-13 (see also Figure 2), as detailed below:

Localized Exploration. The goal of the localized exploration procedure in lines 11–13 is to construct
the T ro

j part so that condition ii) in Theorem 9 is satisfied. This procedure plays a key role on keep
the design matrix of local polynomial regression well-conditioned even without diverse context
assumption in Assumption 4. To see how this works, we provide a high-level analysis for θ̄0 and leave
the full details to Appendix G. Note that the normalized matrix HΛro

τ,j(θ̄0)H admits a Vandermonde
decomposition HΛro

τ,j(θ̄0)H = Zτ,jZ
⊤
τ,j with

Zτ,j :=
[
(1,∆j(xt, θ̄0)/h, . . . , (∆j(xt, θ̄0)/h)

ℓ)⊤
]
t∈T ro

τ,j

∈ R(ℓ+1)×(Lj−1).

The lower bound on its singular values depends on the separation between ∆j(xt, θ̄0) for different
t (Gautschi, 1963). The equi-partition rounding procedure then creates constant-level separations,
which ensures that λmin(HΛro

τ,j(θ̄0)H) = σ2
min(Zτ,j) ≳ ⌊Lj/β⌋. Moreover, a basic calculation

based on the definition of Texp yields that Lj = Θ(
√
nτ,j), which leads to the eigenvalue lower

bound c0
√
nτ,j for HΛτ,j(θ̄0)H , provided that nτ,j exceeds a constant depending only on c0, β.

Remark 12 (Cost of Localized Exploration). From our exploration schedule, we have the total

exploration step at the τ -th epoch is given by O(
∑

j∈[Mτ ]

√
nτ,j) = O(

√
NτMτ ) = O(N

β+1
2β+1
τ ).

Since Algorithm 3 stops afterO(log T ) epochs, the total exploration steps amount to Õ(T
β+1
2β+1 ). This

leads to the Õ(T
β+1
2β+1 ) total costs. In contrast, as discussed in Remark 10, Wang & Chen (2025)
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requires a linear-in-T number of exploration steps to satisfy their eigenvalue lower bound conditions.
They use uni-modality to control the local exploration cost, which results in a per-epoch exploration

regret of O(NτM
−2
τ ) = O(N

2β−1
2β+1
τ ) leading to a total exploration cost of O(T

2β−1
2β+1 ). While this rate

matches their O(T 3/5) regret when β = 2, it deteriorates when β > 2. This shows that shortening
the local exploration length to

√
NτMτ is crucial for attaining the desired Õ(T

β+1
2β+1 ) regret for

general β, we illustrate the comparison of total exploration costs in Figure 3.

Implementation Details of Algorithm 3. Careful readers may notice that in the description of
Algorithm 3 and its sub-routines, we implicitly require storing parameterized functions such as
ĝ(· | θ) and πτ (⌋) for θ and ⌋ in a d-dimensional space. This would necessitate a discretization-based
design and lead to computational inefficiency. In Appendix L.1, we provide a detailed discussion of
how to implement the algorithm without incurring heavy storage costs. Now, we claim the regret
guarantee of Algorithm 3 as the following:
Theorem 13. Suppose Assumptions 1-4 hold for some β ≥ 1, Algorithm 3 with hyper-parameters
c0, N0, C1 larger than some constant depending on β satisfies

Regret(T ) ≲ d4 log5/2(T )T
β+1
2β+1 + Poly(dβ , log T ).

On the dependency on d. Our regret bound stated in Theorem 13 has d4 dependency in the leading
order term and Poly(dβ) dependency in the second order term.

The source of the d4 term in the leading order is the in-distribution prediction error result in Theorem 9,
which is the consequence on using self-normalized argument for bounding the E[∥vj(x, θ̂j)∥Σ−1

j
]

and the union bound taken over x and θ. On the other hand, the additive Poly(dβ , log T ) term is a
technical by-product of the covariance regularization used in our analysis. Specifically, to invoke
Proposition 8, we require the matrix regularization level to satisfy ζ ≳ d7 log7/2(T )

√
T , so that

the regularized empirical covariance dominates its population analogue, as required in Lemma 18.
Since our algorithm ties ζ to the pilot accuracy via ζ ≍ η−2 ≍ T

β+1
2β+1 , the above condition may fail

for T
1

4β+2 ≲ d7, resulting in a finite burn-in phase of T whose contribution is summarized by the
Poly(dβ , log T ) term.

We would note that, despite the heavy d-dependency is included due to artificial reasons as explained
above, during the running of our algorithm only a O(

√
d)-level confidence radius and a (d3/cmin)-

level initialization period used, this may leads to much better empirical performance regarding d, as
provided in our simple simulation in Appendix L.2. We believe that more careful analysis can either
improve the leading-order d4-dependency or remove this burn-in without worsening the polynomial
dependence on d in the leading term, and we leave this refinement as an interesting future direction.

Finally, we would note that there are several future directions opened by our result, including:

Removing the Strong Uni-modality Assumption 3. While strong uni-modality does not drastically
simplify the contextual pricing problem (as discussed below Assumption 3), we believe that the
final step in this line of work will eventually match our regret upper bound without relying on this
condition—much like what was ultimately achieved in the non-contextual setting by Wang et al.
(2021). In our analysis and algorithm design, the only part requiring Assumption 3 is the stationary
subroutine we called from Wang & Chen (2025). From a technical view, we believe we have already
moved a bit forward from Wang & Chen (2025) in the forced-exploration by removing the need for
strong uni-modality in theirs argument via sharper analysis. We hope this provides a foundation on
which future work can further relax or eliminate this assumption entirely.

Achieving Adaptivity on the Smoothness Parameter β. Another promising direction building on
our work is to study adaptivity to the smoothness parameter β. Following the progression seen in
non-parametric bandits and pricing, where adaptive methods (Gur et al., 2022; Ye & Jiang, 2024)
build on earlier non-adaptive algorithms (Hu et al., 2020; Wang et al., 2021), we believe similar
adaptivity can be achieved in our setting under additional self-similarity assumptions. More precisely,
one potential reference is Gong & Zhang (2025), which also investigates adaptivity in contextual
pricing. While their model differs from ours, we expect that some of their conceptual insights could
be adapted. However, making these ideas fully rigorous would require substantial technical work and
worth an independent study.
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DETAILS OF LLM USAGE

In writing this paper, the LLM was applied to polish our sentences and correct potential typos. In the
experimental section (Appendix L.2), we also used an LLM to help organize the code structure and
implement the benchmark algorithms.
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A OTHER RELATED WORKS

Dynamic Pricing. There are extensive studies in dynamic pricing (Kleinberg & Leighton, 2003;
Den Boer, 2015; Wang et al., 2014; Filippi et al., 2010; Broder & Rusmevichientong, 2012; Qiang
& Bayati, 2016; Cohen et al., 2020). In the contextual setting with a linear demand model, Õ(

√
T )

regret can be obtained when the noise distribution is either fully known (Filippi et al., 2010; Ban &
Keskin, 2021; Qiang & Bayati, 2016; Broder & Rusmevichientong, 2012) or assumed to belong to a
parametric family (Javanmard & Nazerzadeh, 2019). The semi-parametric setting considered in our
work and in Fan et al. (2024); Tullii et al. (2024); Bracale et al. (2025); Wang & Chen (2025); Luo
et al. (2022; 2024); Xu & Wang (2022) generalizes this framework by allowing the noise distribution
to be fully unknown. Among these works, apart from those listed in Table 1, Bracale et al. (2025);
Luo et al. (2022) consider the β = 1 case and achieve Õ(T 3/4) regret, while Luo et al. (2024)
achieves Õ(T 2/3) regret but additionally assumes an online estimation oracle. Finally, there also
exist works that consider pricing with fully non-parametric demand (Chen & Gallego, 2021; Tullii
et al., 2024; Javanmard et al., 2020) or other additional structures (Bu et al., 2020; Allouah et al.,
2023; Keskin & Zeevi, 2014; Miao & Chao, 2021), which are beyond our scope.

Semi-Parametric Regression and Single-Index Models. Our setting is closely connected to semi-
parametric single–index models, where an unknown low-dimensional index is coupled with a non-
parametric link (Powell et al., 1989; Härdle et al., 1993; Ichimura, 1993). Classical work establishes

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

root-n estimation of the index under regularity and recovers the link via one-dimensional smoothing
(Klein & Spady, 1993; Ichimura, 1993; Carroll et al., 1997). Foundational kernel procedures—
Nadaraya–Watson and local polynomial regression—underpin these analyses, with well-understood
uniform convergence and optimal-rate properties (Nadaraya, 1964; Watson, 1964; Stone, 1982). The
literature also covers binary responses and generalized or partially linear single-index structures
(Klein & Spady, 1993; Carroll et al., 1997), setting with discrete or irregular covariates (Horowitz &
Härdle, 1996), and single–index coefficient models under strong mixing (Xia & Li, 1999). Compre-
hensive expositions and survey treatments can be found in (Györfi et al., 2002; Ruppert et al., 2003;
Tsybakov, 2008; Horowitz, 2009). Despite this extensive theory, many results assume smooth design
densities and emphasize asymptotics, assumptions that need not hold in contextual pricing where
prices are policy–driven and the induced design can be irregular; hence the classical guarantees are
informative but not directly applicable without further adaptation.

B PILOT ESTIMATION

In this section we introduce a simple pilot estimation stage under a mild diversity assumption on
covariates λmin(E[c1c⊤1 ]) ≥ c0/d. We estimate θ∗ by least squares. This procedure appeared in Fan
et al. (2024); we include it here for completeness.
Theorem 14. Let θ̄ be the output of Algorithm 1. Suppose that λmin(Ec1c⊤1 ) ≥ c0/d for some
c0 > 0. Then there exists some constant C0 > 0 such that for t ≥ C0d, the following holds with
probability at least 1− C0δ − 2e−t/C0d

2

:

∥θ̄ − θ∗∥ ≤ C0

√
d3 log(1/δ)

t
.

Remark 15. For any target error level η, we may choose t = Θ̃(d3/η2) to guarantee that ∥θ̄0−θ0∥ ≤
η, which results in a regret of order Õ(d3/η2).

Proof of Theorem 14. Let H ≡ pmax and for any θ ∈ Rd

L(θ) ≡ 1

t

∑
t∈[t]

(Hyt − c⊤t θ)
2.

We may compute the gradient and Hessian of L(θ) as follows:

∇θL(θ) =
2

t

∑
t∈[t]

(c⊤t θ −Hyt) · ct ∈ Rd,

∇2
θL(θ) =

2

t

∑
t∈[t]

ctc
⊤
t ∈ Rd×d.

A second order expansion yields that for some θ̃ lying between θ̄ and θ∗,

0 ≥ L(θ̄)− L(θ∗) = ⟨∇θL(θ∗), θ̄ − θ∗⟩+
1

2
⟨θ̄ − θ∗,∇2

θL(θ̃)(θ̄ − θ∗)⟩

= ⟨∇θL(θ∗), θ̄ − θ∗⟩+
1

t
⟨θ̄ − θ∗,

∑
t∈[t]

ctc
⊤
t (θ̄ − θ∗)⟩.

This implies that

λmin

(
1

t

∑
t∈[t]

ctc
⊤
t

)
· ∥θ̄ − θ∗∥2 ≤

1

t
⟨θ̄ − θ∗,

∑
t∈[t]

ctc
⊤
t (θ̄ − θ∗)⟩ ≤ ⟨∇θL(θ∗), θ∗ − θ̄⟩

≤
√
d∥∇θL(θ∗)∥∞ · ∥θ̄ − θ∗∥.

Lower bounding λmin

(
1
t

∑
t∈[t] ctc

⊤
t

)
. By the matrix concentration in (Vershynin, 2010, remark

5.40), there exists some constant c1 > 0 such that for t ≥ c−1
1 d, we have with probability at least

1− 2e−c1t/d
2

,

λmin

(
1

t

∑
t∈[t]

ctc
⊤
t

)
≥ λmin

(
Ec1c⊤1

)
−

∥∥∥∥1t ∑
t∈[t]

ctc
⊤
t − Ec1c⊤1

∥∥∥∥ ≥ c1
d
.
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Algorithm 4 A subroutine for handling distribution shift (adapted from Wang & Chen (2025))

1: Inputs: {(π(c), π(c))}c∈C , ∆(·, ·), ĝ(·, ·), K = 12Lr/σr, κ =
√

Lr/σr

▷ Input parameters: prior policy that offers price p ∼ Unif([π(c), π(c)]), error quantification
∆(·, ·), estimated model ĝ : C × [0, pmax]→ [0, 1].

2: for every c ∈ C do
3: Partition J = [π(c), π(c)] into K intervals of equal lengths, denoted as J1, . . . , JK ; write
|Jk| for length and Jk = [p(k), p(k)].

4: for k = 1, 2, . . . ,K do
▷ Estimated average reward r̂(Jk) and its uncertainty quantification ∆(Jk)

5: r̂(Jk)← |Jk|−1
∫
Jk

pĝ(c, p)dp; ∆(Jk)← |Jk|−1
∫
Jk

∆(c, p)dp.

▷ Find the optimal price for context c together with its uncertainty ∆̂

6: k̂ ← argmaxk∈[K] r̂(Jk); ∆̂← κ
√
|Jk̂|2 +maxk∈[K] ∆(Jk)2.

▷ Update the pricing range for context c, by stretching out ∆̂ from the price interval Jk̂
7: [π′(c), π′(c)]← [p(k̂)− ∆̂, p(k̂) + ∆̂] ∩ [0, pmax].
8: return {π′(c), π′(c)}c∈C ▷ renewed policy is p ∼ Unif([π′(c), π′(c)])

Upper bounding ∥∇θL(θ0)∥∞. Note that for any t ∈ [t] and i ∈ [d], we have
∣∣(c⊤t θ0 −Hyt) ·

ct,i
∣∣ ≤ 1 and

E(c⊤t θ∗ −Hyt) · ct,i
= E

[
c⊤t θ∗ · ct,i −HE[yt | ct] · ct,i

]
= E

[
c⊤t θ∗ · ct,i −HE[1{pt ≤ c⊤t θ∗ + ξt} | ct] · ct,i

]
= E

[
c⊤t θ∗ · ct,i − E[c⊤t θ∗ + ξt | ct] · ct,i

]
= 0.

Therefore, by applying Hoeffding’s inequality and a union bound argument, there exists some constant
C1 > 0 such that for t ≥ C1d, we have with probability at least 1− C1δ that

∥∇θL(θ∗)∥∞ ≤ C1

√
log(1/δ)

t
.

Combining the above estimates, we have for t ≥ (c−1
1 ∨ C1)d,

∥θ̄ − θ∗∥ ≤
C1

c1

√
d3 log(1/δ)

t

holds with probability at least 1− C1δ − 2e−c1t/d
2

. The claim follows by adjusting constants.

C DISTRIBUTION SHIFT SUBROUTINE

For completeness, we include Algorithm 4 (adapted from Wang & Chen (2025)). Given a prior range
[π(c), π(c)], an estimator ĝ, and an envelop ∆, the subroutine returns a renewed range [π′(c), π′(c)]
for uniform pricing.

D PROOF OF PROPOSITION 6

Recall that for any x with x⊤θ̄0 ∈ Ij ,

ĝj(x | θ) := Uj(x, θ)
⊤Λ−1

j (θ)
∑
i∈Tj

yiUj(xi, θ). (5)

and Xj(x, θ) :=
(
(x− x̄j)

⊤, . . . , ⌊β⌋((x− x̄j)
⊤θ)⌊β⌋−1 · (x− x̄j)

⊤)⊤. Recall also that vj(x, θ) :=

Xj(x, θ)−Uj(x, θ)
⊤Λ−1

j (θ)
∑

i∈Tj
Uj(xi, θ)·Xj(xi, θ) and Σj(θ) :=

∑
i∈Tj

vj(xi, θ)vj(xi, θ)
⊤.

For any θ with ∥θ − θ0∥ ≤ η, we set

δj(θ) :=
(
g′(x̄⊤

j θ0)(θ − θ0)
⊤, . . . ,

g(ℓ)(x̄⊤
j θ0)

ℓ! (θ − θ0)
⊤
)⊤

.
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Let h = n− 1
2β+1 .

We first decompose the error as follows: for any x such that x⊤θ̄0 ∈ Ij ,

ĝj(x | θ)− g(x⊤θ0) = ĝj(x | θ)− ĝj(x | θ0)︸ ︷︷ ︸
:= I1

+ ĝj(x | θ0)− g(x⊤θ0)︸ ︷︷ ︸
:= I2

. (6)

Estimating I1. We begin by expressing the response as yt = g(x⊤
t θ0) + εt, where E[εt | xt] = 0.

Then based on the closed form (5), we can further decompose I1 as follows:

I1 =
{
Uj(x, θ)

⊤
∑
t∈Tj

g(x⊤
t θ0)Λ

−1
j (θ)Uj(xt, θ)− Uj(x, θ0)

⊤
∑
t∈Tj

g(x⊤
t θ0)Λ

−1
j (θ0)Uj(xt, θ0)

}
︸ ︷︷ ︸

:= I11

+
{
Uj(x, θ)

⊤
∑
t∈Tj

εtΛ
−1
j (θ)Uj(xt, θ)− Uj(x, θ0)

⊤
∑
t∈Tj

εtΛ
−1
j (θ0)Uj(xt, θ0)

}
︸ ︷︷ ︸

:= I12

.

Consider the ⌊β⌋-order expansion of g(·) at x⊤θ for each t, we have by β-Hölder continuity and
η ≤ h,

g(x⊤
t θ) = D⊤

j Uj(xt, θ) + ξt

for some ξt = O(hβ). Then we have

I11 =Uj(x, θ)
⊤
∑
t∈Tj

Λ−1
j (θ)Uj(xt, θ)Uj(xt, θ0)

⊤Dj − Uj(x, θ0)
⊤
∑
t∈Tj

Λ−1
j (θ0)Uj(xt, θ0)Uj(xt, θ0)

⊤Dj

+ Uj(x, θ)
⊤
∑
t∈Tj

ξtΛ
−1
j (θ)Uj(xt, θ)− Uj(x, θ0)

⊤
∑
t∈Tj

ξtΛ
−1
j (θ0)Uj(xt, θ0)

(i)
=Uj(x, θ)

⊤
∑
t∈Tj

Λ−1
j (θ)Uj(xt, θ)Uj(xt, θ0)

⊤Dj − Uj(x, θ0)
⊤
∑
t∈Tj

Λ−1
j (θ)Uj(xt, θ)Uj(xt, θ)

⊤Dj

+ Uj(x, θ)
⊤
∑
t∈Tj

ξtΛ
−1
j (θ)Uj(xt, θ)− Uj(x, θ0)

⊤
∑
t∈Tj

ξtΛ
−1
j (θ0)Uj(xt, θ0)

=Uj(x, θ)
⊤
∑
t∈Tj

Λ−1
j (θ)Uj(xt, θ)(Uj(xt, θ0)− Uj(xt, θ))

⊤Dj

+ (Uj(x, θ)− Uj(x, θ0))
⊤
∑

t∈Tj

Λ−1
j (θ)Uj(xt, θ)Uj(xt, θ)

⊤︸ ︷︷ ︸
=I

Dj

+ Uj(x, θ)
⊤
∑
t∈Tj

ξtΛ
−1
j (θ)Uj(xt, θ)− Uj(x, θ0)

⊤
∑
t∈Tj

ξtΛ
−1
j (θ0)Uj(xt, θ0). (7)

Here, in (i) we have used the identity
∑

t∈Tj
Uj(xt, θ)Uj(xt, θ)

⊤ = Λj(θ) for all θ. Now noticing
that for any 1 ≤ s ≤ ⌊β⌋,

∆s
j(x, θ0)−∆s

j(x, θ) = ((x− x̄j)
⊤θ0)

s − ((x− x̄j)
⊤θ)s

= s((x− x̄j)
⊤θ)s−1 · (x− x̄j)

⊤(θ0 − θ) +O(η2),

we have(
Uj(x, θ)− Uj(x, θ0)

)⊤
Dj

=
(
∆j(x, θ)−∆j(x, θ0) . . . ∆

⌊β⌋
j (x, θ)−∆

⌊β⌋
j (x, θ0)

) g′(x̄⊤
j θ0)
...

1
⌊β⌋!g

(⌊β⌋)(x̄⊤
j θ0)


17
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=
(
(x− x̄j)

⊤ . . . ⌊β⌋((x− x̄j)
⊤θ)⌊β⌋−1 · (x− x̄j)

⊤)︸ ︷︷ ︸
=X⊤

j (x,θ)


g′(x̄⊤

j θ0)(θ − θ0)
...

g(⌊β⌋)(x̄⊤
j θ0)

⌊β⌋! (θ − θ0)


︸ ︷︷ ︸

=δj(θ)

+O(η2),

we can further writing I11 as

I11 = Xj(x, θ)
⊤δj(θ) +O(η2)− Uj(x, θ)

⊤Λ−1
j (θ)

∑
t∈Tj

Uj(xt, θ)
(
Xj(xt, θ)

⊤δj(θ) +O(η2)
)

=

(
Xj(x, θ)− Uj(x, θ)

⊤Λ−1
j (θ)

∑
t∈Tj

Uj(xt, θ) ·Xj(xt, θ)︸ ︷︷ ︸
vj(x,θ)

)⊤

δj(θ)

+O
(
η2(1 +

√
nj∥Uj(x, θ)∥Λ−1

j (θ))
)
,

where we have used the Cauchy-Schwartz’s inequality:∣∣∣∣ ∑
t∈Tj

O(η2Uj(x, θ)
⊤Λ−1

j (θ)Uj(xt, θ)
)∣∣∣∣

≲ η2
(
njUj(x, θ)

⊤Λ−1
j (θ)

∑
t∈Tj

Uj(xt, θ)Uj(xt, θ)
⊤

︸ ︷︷ ︸
=Λj(θ)

Λ−1
j (θ)Uj(x, θ)

)1/2

.

This completes the estimation for I1.

Estimating I2. For I2, we have

I2 = Uj(x, θ0)
⊤
∑
t∈Tj

ytΛ
−1
j (θ0)Uj(xt, θ0)− g(x⊤θ0)

=
{
Uj(x, θ0)

⊤
∑
t∈Tj

(yt − g(x⊤
t θ0))Λ

−1
j (θ0)Uj(xt, θ0)

}
+
{
Uj(x, θ0)

⊤
∑
t∈Tj

g(x⊤
t θ0)Λ

−1
j (θ0)Uj(xt, θ0)− g(x⊤θ0)

}
=

{
Uj(x, θ0)

⊤
∑
t∈Tj

εtΛ
−1
j (θ0)Uj(xt, θ0)

}
+
{
Uj(x, θ0)

⊤
∑
t∈Tj

g(x⊤
t θ0)Λ

−1
j (θ0)Uj(xt, θ0)− g(x⊤θ0)

}
=

{
Uj(x, θ0)

⊤
∑
t∈Tj

εtΛ
−1
j (θ0)Uj(xt, θ0)

}
+
{
Uj(x, θ0)

⊤
∑
t∈Tj

Λ−1
j (θ0)Uj(xt, θ0)Uj(xt, θ)

⊤Dj − g(x⊤θ0)
}

+ Uj(x, θ0)
⊤
∑
t∈Tj

ξtΛ
−1
j (θ0)Uj(xt, θ0)

= Uj(x, θ0)
⊤
∑
t∈Tj

εtΛ
−1
j (θ0)Uj(xt, θ0) + Uj(x, θ0)

⊤
∑
t∈Tj

ξtΛ
−1
j (θ0)Uj(xt, θ0)

+
{
Uj(x, θ0)

⊤Dj − g(x⊤θ0)
}

︸ ︷︷ ︸
=O(hβ)

.

This completes the estimation for I2.
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Combining two expansions and canceling red colored terms and blue colored terms, we have

ĝj(x | θ)− g(x⊤θ0) = vj(x, θ)
⊤δj(θ) + Uj(x, θ)

⊤
∑
t∈Tj

εtΛ
−1
j (θ)Uj(xt, θ)

+ Uj(x, θ)
⊤
∑
t∈Tj

ξtΛ
−1
j (θ)Uj(xt, θ) +O

(
(hβ + η2)(1 +

√
nj∥Uj(x, θ)∥Λ−1

j (θ))
)
.

Finally, by Cauchy Schwartz’s inequality, we have the third term can be further bounded by∣∣Uj(x, θ)
⊤
∑
t∈Tj

ξtΛ
−1
j (θ)Uj(xt, θ)

∣∣ ≲ √
h2βnj∥Uj(x, θ)∥Λ−1

j (θ),

This concludes that proof.

E PROOF OF PROPOSITION 8

The proof of Proposition 8 relies on the following two lemmas, whose proofs are deferred to Appendix
H. Recall that h = n− 1

2β+1 .
Lemma 16. For any θ with ∥θ − θ̄0∥ ≤ η, it holds that

ĝj(x | θ)− g(x⊤θ0) = vj(x, θ)
⊤δj(θ) + Uj(x, θ)

⊤
∑
t∈Tj

εtΛ
−1
j (θ)Uj(xt, θ)

+O
(
hβ(1 +

√
nj∥Uj(x, θ)∥Λ−1

j (θ))
)

uniformly for all x with x⊤θ̄0 ∈ Ij and j ∈ [M ].

Lemma 17. For any θ with ∥θ − θ̄0∥ ≤ η, it holds with probability at least 1−O(njδ) that

Lj(θ) =
∑
t∈Tj

(
yt − ĝj(xt | θ)

)2
=

∑
t∈Tj

ε2t +Θ
(
δj(θ)

⊤Σj(θ)δj(θ)
)

+O
(√

log(1/δ) ·
(√

δj(θ)⊤Σj(θ)δj(θ) + njh2β
)
+ log(1/δ) + njh

2β
)
.

We now prove Proposition 8.

Proof of Proposition 8. In the proof below, we consider x such that x⊤θ0 ∈ Ij . Recall that θ̂j =

argmin∥θ−θ̄0∥≤η Lj(θ) and we write θ̂ ≡ θ̂j for simplicity.

It follows from Lemma 17 and a standard ε-net argument over θ—leading to an multiplicative d
factor before log(1/δ)—that

Lj(θ̂) =
∑
t∈Tj

ε2t +Θ
(
δj(θ̂)

⊤Σj(θ̂)δj(θ̂)
)

+O
(√

d log(1/δ) ·
(√

δj(θ̂)⊤Σj(θ̂)δj(θ̂) + njh2β
)
+ d log(1/δ) + njh

2β
)

holds with probability at least 1−O(δ log n). As Lj(θ̂) ≤ Lj(θ0), we can derive that

δj(θ̂)
⊤Σj(θ̂)δj(θ̂) + njh

2β

≲
√
d log(1/δ) ·

√
δj(θ̂)⊤Σj(θ̂)δj(θ̂) + njh2β + d log(1/δ) + njh

2β .

Using the facts that a2 ≲ ba+ c =⇒ a ≲ b+
√
c,∀a, b, c ≥ 0 and ζ∥δj(θ̂)∥2 = O(1), we obtain√

δj(θ̂)⊤Σj(θ̂)δj(θ̂) + njh2β ≲
√
d log(1/δ) +

(
d log(1/δ) + njh

2β
)1/2

=⇒
√
δj(θ̂)⊤(Σj(θ̂) + ζI)δj(θ̂) ≲

√
d log(1/δ) +

√
njh

β . (8)
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On the other hand, by Lemma 16, we have∣∣∣∣(ĝj(x | θ̂)− g(x⊤θ0))

∣∣∣∣ ≤ ∣∣∣∣vj(x, θ̂)
⊤δj(θ̂)

∣∣∣∣︸ ︷︷ ︸
Y1

+

∣∣∣∣Uj(x, θ̂)
⊤
∑
t∈Tj

εtΛ
−1
j (θ̂)Uj(xt, θ̂)

∣∣∣∣︸ ︷︷ ︸
Y2

+O
(
hβ(1 +

√
nj∥Uj(x, θ̂)∥Λ−1

j (θ̂))
)
.

Term Y1: Using Cauchy-Schwarz together with (8) yields that

Y1 ≲

(√
d log(1/δ) +

√
njh

β

)
·
√

vj(x, θ̂)⊤(Σj(θ̂) + ζI)−1vj(x, θ̂).

Term Y2: Applying Hoeffding’s inequality with an ε-net argument, we have with probability at least
1−O(δ) that

Y2 ≲
√
d log(1/δ)Uj(x, θ̂)⊤Λ

−1
j (θ̂)Uj(x, θ̂).

Combining the estimates for Y1 and Y2 concludes the proof.

F PROOF OF THEOREM 9

For any j ∈ [M ], let T ra
j be the index set that collects the samples that are sampled i.i.d. from a

stationary distribution Qj and T ro
j := Tj \ T ra

j . Let nra
j = |T ra

j | and nro
j = |T ro

j |. Then we have
Tj = T ra

j ∪ T ro
j and nj = nra

j + nro
j . The population level quantities are defined as

Vj(θ) := Ez∼Qj [Uj(z, θ)Xj(z, θ)] +
1

nra
j

∑
t∈T ro

j

Uj(xt, θ)Uj(xt, θ)
⊤,

Λ̄j(θ) := Ez∼Qj

[
Uj(z, θ)Uj(z, θ)

⊤]+ 1

nra
j

∑
t∈T ro

j

Uj(xt, θ)Uj(xt, θ)
⊤

v̄j(x, θ) := Xj(x, θ)− U⊤
j (x, θ)Λ̄−1

j (θ)Vj(θ), Σ̄j(θ) :=
∑
t∈Tj

v̄j(xt, θ)v̄j(xt, θ)
⊤.

Lemma 18. Assume the same conditions as in Theorem 9. It holds with probability at least 1−O(δ)
that uniformly for all x such that x⊤θ̄0 ∈ Ij and θ such that ∥θ − θ0∥ ≤ η,

(i) ∥vj(x, θ)− v̄j(x, θ)∥2 ≲ d7/2 log3/2(1/δ) ·
(
n
−1/4
j ∥Uj(x, θ)∥Λ̄−1

j (θ) + n
1/4
j ∥Uj(x, θ)∥Λ−1

j (θ)

)
.

(ii) Moreover, if ζ ≍ η−2 = Ω(d7 log7/2(1/δ)
√
nj), we have

vj(x, θ)
⊤(Σj(θ) + ζI)−1vj(x, θ) ≲ v̄j(x, θ)

⊤(Σ̄j(θ) + ζI)−1v̄j(x, θ)

+ d7 log3(1/δ) · (n−1/2
j ζ−1∥Uj(x, θ)∥2Λ̄−1

j (θ)
+ n

1/2
j ζ−1∥Uj(x, θ)∥2Λ−1

j (θ)
).

The proof of Lemma 18 is deferred to Appendix I.1. Now we prove Theorem 9.

Proof of Theorem 9. Recall that h = n− 1
2β+1 and

Errj(x) :=
(√

d log(1/δ) +
√
njh

β
)
·
(
∥vj(x, θ̂j)∥(Σj(θ̂j)+ζI)−1 + ∥Uj(x, θ̂j)∥Λ−1

j (θ̂j)

)
With Lemma 18 and the fact ζ ≳ n

1/2
j , we can now define the population-level confidence bound as

Errj(x) :=
(√

d log(1/δ) +
√
njh

β
)
·
(
∥v̄j(x, θ̂j)∥(Σ̄j(θ̂j)+ζI)−1 + ∥Uj(x, θ̂j)∥Λ−1

j (θ̂j)

)
+ d7/2 log3/2(1/δ) ·

(
n−1
j ∥Uj(x, θ̂j)∥2Λ̄−1

j (θ̂j)
+ (1 + njh

2β) · ∥Uj(x, θ̂j)∥2Λ−1
j (θ̂j)

)1/2
,
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It follows that for any x ∼ Qj , if ζ ≍ η−2 = Ω(d7 log7/2(1/δ)
√
nj),

Ex∼Qj
[Errj(x)] ≲ Ex∼Qj

[Errj(x)].

Let

Errj,1(x) :=
√

v̄j(x, θ̂j)⊤Σ̄
−1
j (θ̂j)v̄j(x, θ̂j),

Errj,2(x) :=

√
n−1
j ∥Uj(x, θ̂j)∥2

Λ̄−1
j (θ̂j)

+ (1 + njh2β) · ∥Uj(x, θ̂j)∥2
Λ−1

j (θ̂j)
.

We then have

Ex∼Qj [Errj(x)] =
(√

d log(1/δ) +
√
nτ,jh

β
)
Ex∼Qj [Errj,1(x)]

+ d7/2 log3/2(1/δ)Ex∼Qj [Errj,2(x)].

Bounding Ex∼Qj
[Errj,1(x)]. As in proof of Lemma 18, we decompose Σ̄j into

Σ̄j(θ̂) =
∑
t∈T ro

j

v̄j(xt, θ̂j)v̄j(xt, θ̂j)
⊤ +

∑
t∈T ra

j

v̄j(xt, θ̂j)v̄j(xt, θ̂j)
⊤ + ζI︸ ︷︷ ︸

:=Σ̄ra
j (θ̂j)

⪰ Σ̄ra
j (θ̂j).

Then by Jensen’s inequality,

Ex∼Qj
[Errj,1(x)] ≤

√
Ex∼Qj

[v̄j(x, θ̂j)⊤Σ̄
−1
j (θ̂j)v̄j(x, θ̂j)]

≤
√
Ex∼Qj

[v̄j(x, θ̂j)⊤(Σ̄ra
j )

−1(θ̂j)v̄j(x, θ̂j)]

=

(〈
(Σ̄ra

j )
−1(θ̂j),Ex∼Qj

[v̄j(x, θ̂j)v̄j(x, θ̂j)
⊤]− 1

nra
j

(Σ̄ra
j (θ̂j)− ζI)︸ ︷︷ ︸

=(i)O(
√

d log(1/δ)/nj)

〉
+

1

nra
j

〈
(Σ̄ra

j )
−1(θ̂j), (Σ̄

ra
j (θ̂j)− ζI)

〉
︸ ︷︷ ︸

=O(1/nra
j )

)1/2

≲(ii)

(
ζ−1

√
d log(1/δ)/nj + 1/nj

)1/2

≲
√
d log(1/δ)/nj .

with probability at least 1 − δ. Where (i) is by matrix Hoeffding’s inequality and a simple union
bound, (ii) is by Σ̄ra

j (θ̂) ⪰ ζI ⪰ η−2I and nra
j ≍ nj . Therefore, we have with probability at least

1− δ,(√
d log(1/δ) +

√
nτ,jh

β
)
Ex∼Qj

[Errj,1(x)] ≲ d log3/2(1/δ) · n−1/2
j + hβ

√
d log(1/δ).

Bounding Ex∼Qj
[Errj,2(x)]. By Jensen’s inequality, for every j with nj > 0,

Ex∼Qj [Errj,2(x)]

≲ (1 +
√
njh

β) ·
√

n−1
j Ex∼Qj

[∥Uj(x, θ̂j)∥2
Λ̄−1

j (θ̂j)
] + Ex∼Qj

[∥Uj(x, θ̂j)∥2
Λ−1

j (θ̂j)
]

= (1 +
√
njh

β) ·
(
n−1
j

〈
Λ̄−1
j (θ̂j), Λ̄j(θ̂j)

〉︸ ︷︷ ︸
=O(1)

+
〈
Λ̄j(θ̂j)−

1

nra
j

Λra
j (θ̂j)︸ ︷︷ ︸

=(i)O(
√

d log(1/δ)/nj)

,Λ−1
j (θ̂j)

〉
+

1

nra
j

⟨Λra
j (θ̂j),Λ

−1
j (θ̂j)⟩︸ ︷︷ ︸

=(ii)O(1)

)1/2

≲(iii)

√
d log(1/δ)/nj + hβ

√
d log(1/δ)

with probability at least 1− δ. Where (i) is by matrix’s Hoeffding’s inequality and a simple union
bound, (ii) is by

⟨Λra
j (θ̂j),Λ

−1
j (θ̂j)⟩ =

∑
t∈T ra

j

Uj(xt, θ̂j)
⊤Λ−1

j (θ̂)Uj(xt, θ̂j)
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≤
∑
t∈T ra

j

Uj(xt, θ̂j)
⊤Λra;−1

j (θ̂j)Uj(xt, θ̂j) = O(1),

(iii) is by c
√
njIj ⪯ Λj(θ̂j).

Now we arrive at the same bound as in Errj,1:

d7/2 log3/2(1/δ)Ex∼Qj [Errj,2(x)] ≲ d4 log2(1/δ) · n−1/2
j + d4 log2(1/δ) · hβ ,

thus the same argument leads to the desired result.

Combining above bounds, we have the desired result.

G PROOF OF THEOREM 13

Let nτ,j := |Tτ,j |. According to the algorithm design, the regret splits into the contribution from
uniform sampling and the rounding term:

RegretT (π) ≲
⌈log2 T⌉∑

τ=0

NτEπ

[
Ec∼PC,p∼π(τ)(c)[r(c

⊤θ∗, p
⋆(c⊤θ∗))− r(c⊤θ∗, p)]

]

+

⌈log2 T⌉∑
τ=0

E
[ Mτ∑

j=1

1{x⊤θ0 ∈ Ij}
√
nτ,j

]
.

The first sum is the uniform sampling regret. The second sum is the rounding regret.

Bounding the rounding regret. By Cauchy-Schwarz inequality,

⌈log2 T⌉∑
τ=0

E
[ Mτ∑

j=1

1{x⊤θ0 ∈ Ij}
√
nτ,j

]
≤

⌈log2 T⌉∑
τ=0

√
Nτ ≤ N0

√
2T − 1√
2− 1

≲
√
T .

Bounding the sampling regret. For any τ ≥ 0, recall that

Errτ,j(x) :=
(√

d log(1/δ) +
√
nτ,jN

− β
2β+1

τ

)
×
(
∥vτ,j(x, θ̂τ,j)∥(Στ,j(θ̂τ,j)+ζI)−1 + ∥Uj(x, θ̂τ,j)∥Λ−1

τ,j(θ̂τ,j)

)
.

For any τ ≥ 0, we define the event

Ωτ
1 :=

{
|ĝτ (x)− g(x⊤θ0)| ≤

∑
j∈[Mτ ]

1{x⊤θ0 ∈ Ij}Errj(x) +N
− β

2β+1
τ ,

p⋆(c⊤θ∗) ∈ Supp(π(τ)(c)), ∀c ∈ C, p ∈ [0, pmax], and x = (c⊤, p)⊤
}
.

It follows from Proposition 8 that P
(⋂⌈log2 T⌉

τ=0 Ωτ
1

)
≥ 1− δT log2 T .

On the other hand, by the definition of the rounding samples, for any unit vector u ∈ R⌊β⌋+1,

nτ,ju
⊤HΛ̄τ,j(θ̂τ,j)Hu ≥

∑
k∈[⌊√nτ,j/(⌊β⌋+1)⌋]

u⊤Z̃⊤
k Z̃ku

≳

⌊ √
nτ,j

⌊β⌋+ 1

⌋
· min
k∈[⌊√nτ,j/(⌊β⌋+1)⌋]

σ2
min(Z̃k) ≳

√
nτ,j , (9)

where Z̃k is a (⌊β⌋+1) dimensional Vandermonde matrix with Θ(1) separation and in the penultimate
step we have used (Gautschi, 1963, Theorem 1) to derive that σ2

min(Z̃k) ≳ 1. Similarly, we have

u⊤HΛτ,j(θ̂τ,j)Hu ≳
√
nτ,j . (10)
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So when ζ ≍ η−2 = Ω(d7 log7/2(1/δ)
√
T ), Theorem 9 is applicable and with Pτ,j being the

distribution of x = (c⊤, p)⊤ such that c ∼ PC , p ∼ π(τ)(c) at τ -th epoch condition on x such that
x⊤θ0 ∈ Ij , we have P

(⋂⌈log2 T⌉
τ=0 Ωτ

2

)
≥ 1− δT log2 T, where for τ ≥ 0,

Ωτ
2 :=

{
Ex∼Pτ,j [Errτ,j(x)] ≲ d4 log2(1/δ)(n

−1/2
τ,j +N

− β
2β+1

τ ), ∀j ∈ [Mτ ]
}
.

Let Pτ be the distribution of x = (c⊤, p)⊤ such that c ∼ PC , p ∼ π(τ)(c) at τ -th epoch. The
Chernoff’s bound yields that P

(⋂⌈log2 T⌉
τ=0 Ωτ

3

)
≥ 1− δT log2 T , where for τ ≥ 0,

Ωτ
3 :=

{
nτ,j + 1 ≳ max

{
E[nτ,j ]−

√
E[nτ,j ] log(1/δ), 0

}
+ 1, ∀j ∈ [Mτ ]

}
.

Therefore, on the event
⋂⌈log2 T⌉

τ=0 (Ωτ
2 ∩ Ωτ

3), we can derive that

Ex∼Pτ

[ ∑
j∈[Mτ ]

1{x⊤θ0 ∈ Ij} · Errτ,j(x)
]
=

∑
j∈[Mτ ]

Pτ (x
⊤θ0 ∈ Ij)Ex∼Pτ,j [Errτ,j(x)]

≲ d4 log2(1/δ)
∑

j∈[Mτ ]

Pτ (x
⊤θ0 ∈ Ij)(n

−1/2
τ,j +N

− β
2β+1

τ )

≲ d4 log2(1/δ) ·
(√√√√ ∑

j∈[Mτ ]

Pτ (x⊤θ0 ∈ Ij)

nτ,j + 1
+N

− β
2β+1

τ

)

= d4 log2(1/δ) ·
(√√√√ 1

Nτ

∑
j∈[Mτ ]

E[nτ,j ]

nτ,j + 1
+N

− β
2β+1

τ

)
(i)

≲ d4 log5/2(1/δ) ·
(√

Mτ

Nτ
+N

− β
2β+1

τ

)
, (11)

where in (i), we have used the elementary inequality
a

max
{
a−
√
ac, 0

}
+ 1

≲ c+ 1, ∀a, c > 0.

Write Ω :=
⋂⌈log2 T⌉

τ=0 (Ωτ
1 ∩ Ωτ

2 ∩ Ωτ
3). By Proposition 11, for τ ≥ 1,

Eπ

[
Ec∼PC,p∼π(τ)(c)[r(c

⊤θ∗, p
⋆(c⊤θ∗))− r(c⊤θ∗, p)]

]
= Eπ

[
Ec∼PC,p∼π(τ)(c)[r(c

⊤θ∗, p
⋆(c⊤θ∗))− r(c⊤θ∗, p)] · 1{Ω}

]
+ Eπ

[
Ec∼PC,p∼π(τ)(c)[r(c

⊤θ∗, p
⋆(c⊤θ∗))− r(c⊤θ∗, p)] · 1{Ωc}

]
≤ 1

4
Eπ

[
Ec∼PC,p∼π(τ−1)(c)[r(c

⊤θ∗, p
⋆(c⊤θ∗))− r(c⊤θ∗, p)] · 1{Ω}

]
+ Eπ

[
Ex∼Pτ

[ ∑
j∈[Mτ ]

1{x⊤θ0 ∈ Ij} · Errτ,j(x)
]
· 1{Ω}

]
+ pmaxP(Ωc)

≤ 1

4
Eπ

[
Ec∼PC,p∼π(τ−1)(c)[r(c

⊤θ∗, p
⋆(c⊤θ∗))− r(c⊤θ∗, p)]

]
+O

(
d4 log5/2(1/δ) ·

(√
Mτ

Nτ
+N

− β
2β+1

τ

)
+ δT log2 T

)
.

By choosing δ sufficiently small, i.e., δ = T−10, we arrive at

Eπ

[
Ec∼PC,p∼π(τ)(c)[r(c

⊤θ∗, p
⋆(c⊤θ∗))− r(c⊤θ∗, p)]

]
≤ 1

4
Eπ

[
Ec∼PC,p∼π(τ−1)(c)[r(c

⊤θ∗, p
⋆(c⊤θ∗))− r(c⊤θ∗, p)]

]
+O

(
d4 log5/2(T ) ·N− β

2β+1
τ

)
.
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Iterating the above bound, we have

⌈log2 T⌉∑
τ=0

NτEπ

[
Ec∼PC,p∼π(τ)(c)[r(c

⊤θ∗, p
⋆(c⊤θ∗))− r(c⊤θ∗, p)]

]
≲ N0 + d4 log5/2(T ) · T

β+1
2β+1 ≲ d4 log5/2(T ) · T

β+1
2β+1 .

Combining the rounding regret and the sampling regret, we have if η−2 = T
β+1
2β+1 =

Ω(d7 log7/2(T )
√
T ) =⇒ T

1
4β+2 = Ω(d7 log7/2(T )),

Regret(T ) ≲ d4 log5/2(T ) · T
β+1
2β+1 .

Adding the burn-in time term completes the proof.

H PROOFS OF LEMMAS IN APPENDIX E

H.1 PRELIMINARY NOTATIONS

For each j ∈ [M ], we denote Dj = (Dj0, . . . , Dj⌊β⌋)
⊤ ∈ R⌊β⌋+1 with Djs =

g(s)(x̄⊤
j θ0)

s! for
s ∈ {0, 1, . . . , ⌊β⌋}, under which the local polynomial expansion of g at x̄⊤

j θ up to ⌊β⌋ order can be
written as D⊤

j Uj(x, θ).

H.2 PROOF OF LEMMA 16

The claim follows from Proposition 6. With η = O(n− β+1
4β+2 ) we have η2 = O(h(β+1)) = O(hβ).

H.3 PROOF OF LEMMA 17

Noticing that

Lj(θ) =
∑
t∈Tj

(yt − ĝj(xt | θ))2 =
∑
t∈Tj

(g(x⊤
t θ0)− ĝj(xt | θ) + εt)

2

=
∑
t∈Tj

ε2t︸ ︷︷ ︸
independent of θ

+2
∑
t∈Tj

εt
[
ĝj(xt | θ)− g(x⊤

t θ0)
]

︸ ︷︷ ︸
:= E1(θ)

+
∑
t∈Tj

[
g(x⊤

t θ0)− ĝj(xt | θ)
]2

︸ ︷︷ ︸
:= E2(θ)

.

Lemma 19 (Bounds on E1). With probability at least 1−O(δ), we have

E1(θ) = O
(√

log(1/δ) ·
(√

δj(θ)⊤Σj(θ)δj(θ) + njh2β + 1
))

,

Lemma 20 (Bounds on E2). With probability at least 1−O(njδ), we have

E2(θ) = Θ
(
δj(θ)

⊤Σj(θ)δj(θ)
)
+O

(
log(1/δ) + njh

2β
)
.

The proofs for the above lemmas are defered to Section H.3.1. Combining the bounds for E1(θ), E2(θ),
we get the desired result.

H.3.1 PROOFS OF LEMMAS 19 AND 20

Proof of Lemma 19. By Lemma 16,

E1(θ) = 2
∑
t∈Tj

εtvj(xt, θ)
⊤δj(θ) +

∑
t∈Tj

εt · O(hβ) +
∑
t∈Tj

εt ·
√
nj∥Uj(xt, θ)∥Λ−1

j (θ) · O(h
β)

︸ ︷︷ ︸
:=E11(θ)
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+ 2
∑
t∈Tj

εtUj(xt, θ)
⊤

∑
t′∈Tj

εt′Λ
−1
j (θ)Uj(xt′ , θ)︸ ︷︷ ︸

:=E12(θ)

.

Term E11(θ): Noticing that condition on {xt}nt=1, {ε}nt=1 are mutually independent and zero-mean
random variables. By Hoeffding’s inequality, with probability at least 1−O(δ),

E11(θ) ≲
√

log(1/δ) ·
(√

δj(θ)⊤Σj(θ)δj(θ) +
√
njh

β +
( ∑

t∈Tj

njUj(xt, θ)
⊤Λ−1

j (θ)Uj(xt, θ)
)1/2

hβ

)
.

Using the fact that∑
t∈Tj

Uj(xt, θ)
⊤Λ−1

j (θ)Uj(xt, θ) = tr
(
Λ−1
j (θ)

∑
t∈Tj

Uj(xt, θ)Uj(xt, θ)
⊤
)
= ⌊β⌋+ 1, (12)

we arrive at

E11(θ) ≲
√
log(1/δ) ·

(√
δj(θ)⊤Σj(θ)δj(θ) +

√
njh

β

)
.

Term E12(θ): For j ∈ [M ], let

εj := (εt)
⊤
t∈Tj
∈ Rnj ,Cj :=

(
Uj(xt, θ)

⊤Λ−1
j (θ)Uj(xt′ , θ)

)
t,t′∈Tj

∈ Rnj×nj .

Then E12(θ) can be rewritten as

E12(θ) = ε⊤j Cjεj

Applying the standard Hanson-Wright inequality leads to

P
(∣∣E12(θ)− EE12(θ)

∣∣ > u
)
≤ 2 exp

(
− cmin

{
u

∥Cj∥2
,

u2

∥Cj∥2F

})
for some absolute constant c > 0. On the other hand, using the facts that

max
j∈[M ]

∥Cj∥2 ≤ max
j∈[M ]

∥Cj∥F = max
j∈[M ]

√ ∑
t,t′∈Tj

[
Uj(xt, θ)⊤Λ

−1
j (θ)Uj(xt′ , θ)

]2
=

( ∑
t∈Tj

Uj(xt, θ)
⊤Λ−1

j (θ)
∑
t′∈Tj

Uj(xt′ , θ)Uj(xt′ , θ)
⊤

︸ ︷︷ ︸
=Λj(θ)

Λ−1
j (θ)Uj(xt, θ)

)1/2

=

( ∑
t∈Tj

Uj(xt, θ)
⊤Λ−1

j (θ)Uj(xt, θ)

)1/2
(12)
=

√
⌊β⌋+ 1

and ∥Cj∥2F = O(1), we may then select u ≳
√

log(1/δ) + log(1/δ) to obtain that with probability
at least 1−O(δ), ∣∣E12(θ)− EE12(θ)

∣∣ ≲ √
log(1/δ).

Finally, as

EE12(θ) =
∑
t∈Tj

E[ε2t ]Uj(xt, θ)
⊤Λ−1

j (θ)Uj(xt, θ) ≤ max
t∈Tj

E[ε2t ] · ⟨Λ−1
j ,Λj⟩ = O(1),

we have with probability at least 1−O(δ)

E12(θ) ≲
√
log(1/δ)

This completes the proof of Lemma 19.
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Proof of Lemma 20. It follows from Lemma 16 and the elementary inequality 1
2a

2−4b2 ≤ (a+b)2 ≤
2a2 + 2b2 that

E2(θ) = Θ
(
δj(θ)

⊤Σj(θ)δj(θ)
)
+O

( ∑
t∈Tj

[
Uj(xt, θ)

⊤
∑
t′∈Tj

εt′Λ
−1
j (θ)Uj(xt′ , θ)

]2
︸ ︷︷ ︸

:=E21(θ)

)

+O
( ∑

t∈Tj

h2β +
∑
t∈Tj

njh
2βUj(xt, θ)

⊤Λ−1
j (θ)Uj(xt, θ)︸ ︷︷ ︸

:=E22(θ)

)
.

Term E21(θ): By Hoeffding’s inequality, we have with probability at least 1−O(nδ),

E21(θ) ≲ log(1/δ)
∑
t∈Tj

Uj(xt, θ)
⊤Λ−1

j (θ)Uj(xt, θ)
(12)

≲ log(1/δ).

Term E22(θ): It can be directly bounded that

E22(θ) ≲ njh
2β + njh

2β
∑
t∈Tj

Uj(xt, θ)
⊤Λ−1

j (θ)Uj(xt, θ)
(12)

≲ njh
2β .

This completes the proof of Lemma 20.

I PROOF OF LEMMA IN APPENDIX F

I.1 PROOF OF LEMMA 18

(i) Recall that H = diag(1, h, . . . , hℓ) ∈ R(ℓ+1)×(ℓ+1) and h = n− 1
2β+1 . Note that

v̄j(x, θ)− vj(x, θ)

= (HUj(x, θ))
⊤
[
(HΛj(θ)H)−1 − (nra

j HΛ̄j(θ)H)−1

] ∑
t∈Tj

HUj(xt, θ)Xj(xt, θ)︸ ︷︷ ︸
:=R1

+ (HUj(x, θ))
⊤(HΛ̄j(θ)H)−1

[
1

nra
j

∑
t∈Tj

HUj(xt, θ)Xj(xt, θ)−HVj(θ)

]
︸ ︷︷ ︸

:=R2

Term R2: For any unit vector w, let Yt := (HUj(x, θ))
⊤(HΛ̄j(θ)H)−1HUj(xt, θ)Xj(xt, θ)w.

Then we have

R2w =
1

nra
j

∑
t∈T ra

j

(
Yt − Ext∼Qj

[Yt]
)
.

As λmin(n
ra
j HΛ̄j(θ)H) ∧ λmin(HΛj(θ)H) ≳

√
nj , we have |Yt| ≲ n

1/4
j ∥Uj(x, θ)∥Λ̄−1

j (θ). Using
further

Ext∼Qj
[Y 2

t ] = Ext∼Qj
[(Xj(xt, θ)w)

2Uj(x, θ)
⊤Λ̄−1

j (θ)Uj(xt, θ)Uj(xt, θ)
⊤Λ̄−1

j (θ)Uj(xt, θ)]

≲ Uj(x, θ)
⊤Λ̄−1

j (θ)

(
Ez∼Qj

[Uj(z, θ)Uj(z, θ)
⊤] +

1

nra
j

∑
t∈T ro

j

Uj(xt, θ)Uj(xt, θ)
⊤
)
Λ̄−1
j (θ)Uj(x, θ)

= Uj(x, θ)
⊤Λ̄−1

j (θ)Uj(x, θ)

together with matrix Bernstein’s inequality, we can obtain that with probability at least 1−O(δ),

R2w ≲
log(1/δ)
√
nj
∥Uj(x, θ)∥Λ̄−1

j (θ).
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Now taking union bound over w in the unit ball, we can get with probability at least 1−O(δ),

∥R2∥ ≲
d log(1/δ)
√
nj

∥Uj(x, θ)∥Λ̄−1
j (θ).

TermR1: We first decompose the term as follows:

R1 = (HUj(x, θ))
⊤
[
(HΛj(θ)H)−1 − (nra

j HΛ̄j(θ)H)−1

] ∑
t∈T ra

j

HUj(xt, θ)Xj(xt, θ)

︸ ︷︷ ︸
R11

+ (HUj(x, θ))
⊤
[
(HΛj(θ)H)−1 − (nra

j HΛ̄j(θ)H)−1

] ∑
t∈T ro

j

HUj(xt, θ)Xj(xt, θ)

︸ ︷︷ ︸
R12

ForR12, for any unit vector w, by Bernstein’s inequality, we have with probability at least 1−O(δ),

R12w =
1

nra
j

Uj(x, θ)
⊤Λ̄−1

j (θ)

[
nra
j Λ̄j(θ)− Λj(θ)

]
Λ−1
j (θ)

∑
t∈T ro

j

Uj(xt, θ)Xj(xt, θ)w

≲
log(1/δ)

n
1/4
j

∥Uj(x, θ)∥Λ̄−1
j (θ),

where we have also used the condition that λmin(n
ra
j HΛ̄j(θ)H) ∧ λmin(HΛj(θ)H) ≳

√
nj .

ForR11, we have for any unit vector w, with V̄j(θ) := Ez∼Qj
Uj(z, θ)Xj(z, θ),

R11w = (HUj(x, θ))
⊤
[
(HΛj(θ)H)−1 − (nra

j HΛ̄j(θ)H)−1

] ∑
t∈T ra

j

(HUj(xt, θ)Xj(xt, θ)−HV̄j(θ))w

︸ ︷︷ ︸
=:R111

+ (HUj(x, θ))
⊤
[
(HΛj(θ)H)−1 − (nra

j HΛ̄j(θ)H)−1

] ∑
t∈T ra

j

HV̄j(θ)w

︸ ︷︷ ︸
=:R112

.

As λmin(n
ra
j HΛ̄j(θ)H) ∧ λmin(HΛj(θ)H) ≳

√
nj ,

|R111| ≤ n
−1/2
j · ∥Uj(x, θ)∥Λ−1

j (θ) · ∥n
ra
j HΛ̄j(θ)H −HΛj(θ)H∥ · ∥

∑
t∈T ra

j

Y ′
j (xt, θ)− Ext∼QjY

′
j (xt, θ)∥,

where Y ′
j (xt, θ) := (nra

j HΛ̄j(θ)H)−1/2
∑

t∈T ra
j
HUj(xt, θ)Xj(xt, θ)w. Using

Ext∼Qj∥Y ′
j (xt, θ)∥2 = Ext∼Qj

[
w⊤X(xt, θ)

⊤(HUj(xt, θ))
⊤(nra

j HΛ̄j(θ)H)−1(HUj(xt, θ))X(xt, θ)w
]

≲ Ext∼Qj
[(HUj(xt, θ))

⊤(nra
j HΛ̄j(θ)H)−1(HUj(xt, θ))]

≲
1

nj
Ez∼Qj

[∥Uj(z, θ)∥2Λ̄−1
j (θ)

] ≲
1

nj

and ∥Y ′
j (xt, θ)∥ ≲ σ

−1/2
min (nra

j HΛ̄j(θ)H) ≲ n
−1/4
j together with the Bernstein’s inequality, we have

with probability at least 1−O(δ),

∥
∑
t∈T ra

j

Y ′
j (xt, θ)− Ext

Y ′
j (xt, θ)∥ = O

(√
log(1/δ) + n

−1/4
j log(1/δ)

)
.

Moreover, by the matrix Bernstein’s inequality, we have with probability at least 1−O(δ) that

∥nra
j HΛ̄j(θ)H −HΛj(θ)H∥2 ≲

√
nj log(1/δ).
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Combining the estimates in the above displays, we have with probability at least 1−O(δ) that

|R111| ≲ log(1/δ)∥Uj(x, θ)∥Λ−1
j (θ).

Next, we consider the bound forR112. Note that

R112 = (HUj(x, θ))
⊤(HΛj(θ)H)−1

[
nra
j HΛ̄j(θ)H −HΛj(θ)H

]
(HΛ̄j(θ)H)−1HV̄j(θ)w

= −(HUj(x, θ))
⊤(HΛj(θ)H)−1

[ ∑
t∈T ra

j

(
1− Ext∼Qj

)
[HUj(xt, θ)(HUj(xt, θ))

⊤]

]
(HΛ̄j(θ)H)−1HV̄j(θ)w.

Let Zt := Ez∼Qj
[Xj(z, θ)w ·HUj(xt, θ)(HUj(xt, θ))

⊤(HΛ̄j(θ)H)−1HUj(z, θ)], the above term
can be rewritten as

R112 = −(HUj(x, θ))
⊤(HΛj(θ)H)−1

∑
t∈T ra

j

(Zt − Ext∼Qj
Zt)

= −(HUj(x, θ))
⊤(nra

j HΛ̄j(θ)H)−1
∑
t∈T ra

j

(Zt − Ext∼QjZt)

︸ ︷︷ ︸
:=R1121

+ (HUj(x, θ))
⊤((nra

j HΛ̄j(θ)H)−1 − (HΛj(θ)H)−1)
∑
t∈T ra

j

(Zt − Ext∼QjZt)

︸ ︷︷ ︸
:=R1122

.

ForR1121, note that

|Z̃t| := |(HUj(x, θ))
⊤(nra

j HΛ̄j(θ)H)−1Zt| ≲
1
√
nj
∥Uj(x, θ)∥Λ̄j(θ)

and

E[Z̃2
t ] = Ext [(Ez[Xj(z, θ)w · Uj(x, θ)

⊤(nra
j Λ̄j(θ))

−1Uj(xt, θ)Uj(xt, θ)
⊤Λ̄−1

j (θ)Uj(z, θ)|z⊤θ̄ ∈ Ij ])
2]

≲(i) Ext
[(Uj(x, θ)

⊤(nra
j Λ̄j)

−1Uj(xt, θ)Uj(xt, θ)
⊤Λ̄−1

j (θ)Uj(xt, θ)Uj(xt, θ)
⊤(nra

j Λ̄j)
−1Uj(x, θ)]

≤ n−2
j ∥Uj(x, θ)∥2Λ̄−1

j (θ)
· Ext [(Uj(xt, θ)

⊤Λ̄−1
j (θ)Uj(xt, θ))

2]

≲(ii) n
−2
j ∥Uj(x, θ)∥2Λ̄−1

j (θ)
· Ext

[∥Uj(xt, θ)∥4Λ̄−1
j (θ)

] ≲(iii) n
−3/2
j ∥Uj(x, θ)∥2Λ̄−1

j (θ)
,

(13)
where (i) is by Jensen’s inequality and |Xj(z, θ)w| = O(1); (ii) is by Ez[∥Uj(z, θ)∥2Λ̄−1

j (θ)
] = O(1),

(iii) is by

Ext
[∥Uj(xt, θ)∥4Λ̄−1

j (θ)
] ≲ max

z:z⊤θ̄∈Ij
∥Uj(z, θ)∥2Λ̄−1

j (θ)

λmin(HΛj(θ)H)≳n
−1/2
j

≲
√
nj .

Then we may use Bernstein’s inequality to obtain that with probability at least 1−O(δ),

R1121 ≲
√
log(1/δ)n

−1/4
j ∥Uj(x, θ)∥Λ̄−1

j (θ) + log(1/δ)n
−1/2
j ∥Uj(x, θ)∥Λ̄−1

j (θ).

ForR1122, note that

|R1122| ≤ ∥Uj(x, θ)∥Λ−1
j (θ) · ∥(HΛj(θ)H)−1/2(HΛj(θ)H − nra

j HΛ̄j(θ)H)(nra
j HΛ̄j(θ)H)−1/2∥︸ ︷︷ ︸

with probability at least 1−O(δ), ≤
√

log(1/δ)

×
∥∥∥∥(nra

j HΛ̄j(θ)H)−1/2
∑
t∈T ra

j

(Zt − Ext
Zt)

∥∥∥∥.
It can be easily bound that |(nra

j HΛ̄j(θ)H)−1/2Zt| ≲ 1 and by the same reason as in (i) of (13),

E[∥(nra
j Λ̄j(θ))

−1/2Zt∥22]
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≲
1

nj
E[U⊤

j (z, θ)Λ̄−1
j (θ)Uj(xt, θ)Uj(xt, θ)

⊤Λ̄−1
j (θ)Uj(xt, θ)Uj(xt, θ)

⊤Λ̄−1
j (θ)Uj(z, θ)]

=
1

nj
E[tr

(
Uj(xt, θ)Uj(xt, θ)

⊤Λ̄−1
j (θ)Uj(xt, θ)Uj(xt, θ)

⊤Λ̄−1
j (θ)

)
]

≲
1

nj
E[∥Uj(xt, θ)∥4Λ̄−1

j (θ)
] ≲ n

−1/2
j .

Then we may use Bernstein’s inequality to obtain that with probability at least 1−O(δ),

R1122 ≲ (n
1/4
j log(1/δ) + log3/2(1/δ)) · ∥Uj(x, θ)∥Λ−1

j (θ).

Combining all of the above estimates, for any unit vector w, we have with probability at least
1−O(δ),

|R1w| ≲ log3/2(1/δ) · (n−1/4
j ∥Uj(x, θ)∥Λ̄−1

j (θ) + n
1/4
j ∥Uj(x, θ)∥Λ−1

j (θ)).

Standard ε-net argument then leads to, with probability at least 1−O(δ),

∥R1∥2 ≲ d3/2 log3/2(1/δ) · (n−1/4
j ∥Uj(x, θ)∥Λ̄−1

j (θ) + n
1/4
j ∥Uj(x, θ)∥Λ−1

j (θ)).

Therefore, with probability at least 1−O(δ),

∥v̄j(x, θ)− vj(x, θ)∥2 ≲ d3/2 log3/2(1/δ) · (n−1/4
j ∥Uj(x, θ)∥Λ̄−1

j (θ) + n
1/4
j ∥Uj(x, θ)∥Λ−1

j (θ)).

The claim in (i) follows by further taking union bounds on x and θ.

(ii). With the bound in (i), we have with probability at least 1−O(δ),

vj(x, θ)
⊤(Σj(θ) + ζI)−1vj(x, θ) = ∥vj(x, θ)− v̄j(x, θ)∥2(Σj(θ)+ζI)−1

+ v̄j(x, θ)
⊤(Σj(θ) + ζI)−1v̄j(x, θ) +

(
vj(x, θ)− v̄j(x, θ)

)⊤
(Σj(θ) + ζI)−1v̄j(x, θ)

(i)

≲ ∥vj(x, θ)− v̄j(x, θ)∥2(Σj(θ)+ζI)−1 + v̄j(x, θ)
⊤(Σj(θ) + ζI)−1v̄j(x, θ)

≲ d7 log3(1/δ) · (n−1/2
j ζ−1∥Uj(x, θ)∥2Λ̄−1

j (θ)
+ n

1/2
j ζ−1∥Uj(x, θ)∥2Λ−1

j (θ)
)

+ v̄j(x, θ)
⊤(Σj(θ) + ζI)−1v̄j(x, θ)

where in (i) we have used ab ≲ a2 + b2. It remains to replace Σj(θ) + ζI by Σ̄j(θ) + ζI . Note by
the bound in (i), it holds with probability at least 1−O(δ) that∥∥∥∥ ∑

t∈Tj

(vj(xt, θ)− v̄j(xt, θ))(vj(xt, θ)− v̄j(xt, θ))
⊤
∥∥∥∥
2

≲ d7 log3(1/δ) ·
∑
t∈Tj

(n
−1/2
j ∥Uj(xt, θ)∥2Λ̄−1

j (θ)
+ n

1/2
j ∥Uj(xt, θ)∥2Λ−1

j (θ)
)

≲ d7 log3(1/δ) ·
( ∑

t∈Tj

n
−1/2
j ∥Uj(xt, θ)∥2Λ̄−1

j (θ)
+ n

1/2
j

)

= d7 log3(1/δ) ·
(
n
−1/2
j

∑
t∈Tj

(1− Ext)∥Uj(xt, θ)∥2Λ̄−1
j (θ)

+ n
−1/2
j

∑
t∈Tj

Ext [∥Uj(xt, θ)∥2Λ̄−1
j (θ)

] + n
1/2
j

)

≲ d7 log3(1/δ) ·
(
n
−1/2
j

∑
t∈Tj

(1− Ext
)∥Uj(xt, θ)∥2Λ̄−1

j (θ)
+ n

1/2
j

)
.

As maxz:z⊤θ̄∈Ij∥Uj(z, θ)∥2Λ̄−1
j (θ)

≲
√
nj and Ext [∥Uj(xt, θ)∥2Λ̄−1

j (θ)
] ≲ 1, we may apply Hoeffd-

ing’s inequality to obtain that with probability at least 1−O(δ),∥∥∥∥ ∑
t∈Tj

(vj(xt, θ)− v̄j(xt, θ))(vj(xt, θ)− v̄j(xt, θ))
⊤
∥∥∥∥ ≲ d7 log7/2(1/δ) · n1/2

j .
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Then using the fact that bb⊤ ⪯ 2aa⊤ + 2(a− b)(a− b)⊤ holds for any vectors a, b, we have

Σ̄j(θ) + ζI =
∑
t∈Tj

v̄j(xt, θ)v̄j(xt, θ)
⊤ + ζI

⪯ 2
∑
t∈Tj

vj(xt, θ)vj(xt, θ)
⊤ + 2

∑
t∈Tj

(vj(xt, θ)− v̄j(xt, θ))(vj(xt, θ)− v̄j(xt, θ))
⊤ + ζI

⪯ 2
∑
t∈Tj

vj(xt, θ)vj(xt, θ)
⊤ + ζI +O

(
d7 log7/2(1/δ) · √nj

)
I.

By the choice of ζ, we arrive at

Σ̄j(θ) + ζI ⪯ 2(Σj(θ) + ζI).

This concludes the proof.

J PROOF OF REMARK 7

In this section, we provide a detailed algorithm design and regret guarantee with the first term of
right-hand-side in Proposition 6 is omitted. Throughout the analysis, we only use ĝt(· | θ̄0), thus we
simplify the notation via

Uj(x) := Uj(x, θ̄0), Λj := Λj(θ̄0).

Moreover for the quantities (e.g. Λj , Tj) defined in Algorithm 2 when it is called at t-th step, we use
the notation Λt,j , Tt,j to denote them..

Algorithm 5 Piloted UCB Algorithm with Local Polynomial Regression

1: Inputs: pilot estimator θ̄0 with ∥θ0 − θ0∥ ≤ η; smoothness β ≥ 1, hyper-parameter α > 0.
2: Initialization: fix the polynomial degree level ℓ = ⌊β⌋,D = ∅, set h = T− 1

2β+1 partition
[−V, V ] into M = ⌈1/h⌉ intervals {Ij}j∈M , t = 1.

3: for j = 1, . . . ,M do
4: for L = 1, . . . , ⌈

√
Th⌉ do

5: After observing ct, selecting a price pt so that x⊤
t θ̄0 is the (L mod ℓ)-th ℓ-equi-partition

point of Ij . //Forced Exploration for every Ij .
6: Add xt and the feedback yt to D.
7: t← t+ 1.
8: while t < T do
9: Compute ĝt,j(· | θ̄0) for j ∈ [M ] via Algorithm 2 with input D and precision h = T− 1

2β+1

Glued Estimator:ĝt(x) :=
∑

j∈[M ]

1{x⊤θ̄0 ∈ Ij}ĝj(x | θ̄0)

Glued Confidence Bound:CBt(x) :=
∑

j∈[M ]

1{x⊤θ̄0 ∈ Ij}CBt,j(x),

with CBt,j defined as in (14).
10: Computing ĝUCB

t (x) := ĝt(x) + αCBt(x) pull the UCB price p so that for observed ct, and
zt(p) := (c⊤t , p)

⊤,

pt = argmaxp∈[0,pmax]
pĝUCB

t (zt(p)
⊤θ̄0).

11: Observe the feedback yt and add (zt(pt), yt) to D.

Initial Exploration. In the line 3-7, we first computing the rounded prices for every fine intervals
{Ij}j∈[M ], as we discussed in Section 6 and rigorously proved in Appendix G, we have this ensures
that when computing Λt,j over each j ∈ [M ] invertible and has the eigenvalue lower bound Ω(1/T )
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for all subsequent t. The total regret incurred in this phase is bounded by the total exploration steps,
which is given by

O(
√
Th/h) = O(

√
T/h) = O(T

β+1
2β+1 ),

thus it suffices to bound the regret incurred over line 8 to 13.

UCB Phase. In the UCB phase, we first compute a confidence bound on ĝt based on Proposition 6:
when the first term is omitted, we have the output ĝt,j(x | θ̄0) satisfies

ĝt,j(x | θ̄0)− g(x⊤θ0) =Uj(x)
⊤

∑
s∈Tt,j

εsΛ
−1
t,jUj(xs)︸ ︷︷ ︸

:=Aj

+O
(
T

− β
2β+1 (1 +

√
tj ∥Uj(x)∥Λ−1

t,j
)
)
.

for εs := ys − g(x⊤
s θ0) and tj = |Tt,j |. Now for Aj , we have the following self-normalized

martingale concentration result:
Lemma 21 (Theorem 1 and 2 of Abbasi-Yadkori et al. (2011)). For any δ > 0, with probability at
least 1− δ, it holds that

∥
∑

s∈Tt,j

εsΛ
−1/2
t,j Uj(xs)∥ ≲

√
log(T/δ), ∀t ∈ [T ].

Thus we have with probability at least 1− δ,

|Aj | ≲ ∥Uj(x)∥Λ−1
t,j

√
log(TM/δ), ∀j ∈ [M ].

And by M = T− 1
2β+1 , we can give the confidence bound as

CBt(x) :=
∑

j∈[M ]

1{x⊤θ̄0 ∈ Ij}
(
∥Uj(x)∥Λ−1

t,j

√
log(T ) + T− β

2β+1

)
, (14)

it then holds that with probability at least 1−O(1/T ),
|ĝt,j(x)− g(x⊤θ0)| ≤ αCBt(x)

uniformly for all t at UCB phase and x for some large enough α depending only on β.

As a result, we have with probability at least 1−O(1/T ), for xt := (c⊤t , pt)
⊤∑

t

R(ct, p
⋆(c⊤t θ∗))−R(ct, pt) ≤

∑
t

(
ptĝ

UCB
t (xt)− ptg(x

⊤
t θ0)

)
≤ αpmax

∑
t

CBt(xt)

≤ αpmax

∑
t

∑
j∈[M ]

1{x⊤θ̄0 ∈ Ij}
(
∥Uj(x)∥Λ−1

t,j

√
log(T ) + T− β

2β+1

)

≤ αpmax

√
log T

(
T

β+1
2β+1 +

∑
j∈[M ]

∑
t∈TT,j

∥Uj(x)∥Λ−1
t,j

)

≤(i) αpmax

√
log T

(
T

β+1
2β+1 + log(T )

∑
j∈[M ]

√
Tj

)
≤(ii) αpmaxT

β+1
2β+1 log3/2 T.

Where in (i) we have used the elliptic potential lemma (see e.g. Lemma 11 of Abbasi-Yadkori et al.
(2011)) and in (ii) we have used ∑

j

√
Tj ≤

√
TM ≤ T

β+1
2β+1 ,

as desired.
Remark 22 (Adversarial Context Setting and Adaptive Exploration.). We note that throughout our
algorithm and analysis, the only component that requires a stochastic context assumption is the
initial construction of a pilot estimator with error O(η), which is needed to satisfy the conditions
of Proposition 6. On the other hand, in β = 1 setting, Tullii et al. (2024) propose an adaptive
exploration procedure for estimating θ̄0 that works even under adversarial contexts. We believe
their approach could also be incorporated here. However, since this discussion is intended solely to
illustrate the difficulty created by the first term in Proposition 6—a term we deliberately omit in our
analysis—we keep our algorithmic design simple and aligned with the main paper’s structure for
clarity.
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K A DISCUSSION ON WANG & CHEN (2025)

In the analysis of constrained LSE estimators (EC.2.3.) of Wang & Chen (2025), specifically their
analysis for A3 term in (EC. 70), a Hoeffding’s inequality is applied to bounding the term∑

i

εiD
−i
i (θ)

for

D−i
i (θ) := ĝ−i

j (xi|θ̂)− g(x⊤θ0) + g′(µ⊤
j θ0)

〈(
I − Λjθθ

⊤

θ⊤Λjθ

)
(x− µj), θ − θ0

〉
,

with µj := E[x|x⊤θ̄0 ∈ Ij ], Λj := E[(x − µj)(x − µj)
⊤|x⊤θ̄0 ∈ Ij ] and ĝ−i

j the leave-one-
out estimator obtained via taking local polynomial regression over all smalls except for the i-th
observation. In the paragraph between (EC.71) and (EC.72), they claim that the {εiD−i

i (θ)}ni=1 are
mutually independent. However, while the leave-one-out argument can ensure independence
between εi and D−i

i (θ), it cannot ensure independence between D−i
i and D−k

k for i ̸= k, as
they both depend on all other observations except the i-th and k-th. This makes the mutual
independence claim invalid for Wang & Chen (2025), and the Hoeffding inequality or its martingale-
difference-sequence extensions does not apply. Instead, in our argument for analyzing the constrained
LSE, we do not introduce the leave-one-out estimator, but directly use the analytical form of the
local polynomial regression estimator and show that, under this form, the dependency can be directly
handled by Hanson–Wright’s inequality for the concentration of quadratic forms, as detailed in the
proof of Lemma 19.

L NUMERICAL EXPERIMENTS

L.1 IMPLEMENTATION DETAILS OF ALGORITHM

In this section, we discuss several details in implementing Algorithm 3. Note that in the description
of the algorithm, we frequently use quantities {ĝj(·|θ)}θ∈Θ and {π(c)}c∈C for continuous spaces
Θ, C. However, from a computational perspective, maintaining these quantities would require keeping
parameterized functions simultaneously for all possible values of θ or c over a continuous range,
which requires a discretization over Θ, C, leads to computational inefficiency6. In the following, we
provide details on how to efficiently bypass the operations that would seem to require maintaining
these quantities.

L.1.1 CONSTRAINED LEAST SQUARED SOLUTION IN EQUATION (2).

Note that the only procedure in the algorithm that requires querying ĝ(·|θ) for continuously varying
θ is when solving (2). An important observation is that, given the data {(xi, yi)} collected within
each epoch, we can compute ĝ(xi|θ) for any θ. This allows us to rewrite the objective function in (2)
purely in terms of θ, which can be evaluated directly using the collected data. As a result, solving (2)
becomes feasible using standard black-box continuous constrained-optimization methods.

We also note that, as a function of θ, the objective in (2) is generally non-convex even when β = 2
(as in the setting of Wang & Chen (2025) and in earlier statistical literature such as Härdle et al.
(1993); Ichimura (1993); Horowitz & Härdle (1996)). Following the approach of Wang & Chen
(2025), we apply a general interior-point method for this continuous optimization problem during the
experiment. While this method is only guaranteed to return a local minimum, it already demonstrates
good empirical performance in our implementation.

L.1.2 SAMPLING OF THE CONTEXT-WISE PRICING POLICY INTERVAL.

Another subtle challenge in efficiently implementing Algorithm 3 is that the context-wise pricing
policy interval must be queried at every round. Since this interval is defined separately for each
context c over a continuous space of dimension d, even an approximate tabulation would require

6Note that both Θ, C are d-dimensional, and find its minimum ε-covering requires Θ(ε−d) storage

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

storage that scales exponentially in d. In this section, we describe a “lazy update” approach that
stores only the historical datasets and computes the pricing interval solely for those contexts ct that
actually appear during online decision making. This procedure can be implemented efficiently by
repeatedly calling the policy-improvement procedure (Algorithm 4) for O(log T ) iterations, thereby
eliminating the exponential storage cost in exp(d).

Roughly speaking, we treat the policy-improvement procedure used at epoch ℓ, denoted by Aℓ, as an
operator and store only the data required to evaluate Aℓ in future rounds. When a context c arrives in
epoch τ , we compose the previously saved operators:

[π(τ−1)(c), π̄(τ−1)(c)] ←
(
Aτ−1 ◦ · · · ◦ A1

)
(c),

which exactly matches the interval that would have been obtained had we maintained and updated it
epoch-by-epoch, yet without requiring any per-context storage.

Data Required for Evaluating Aℓ. At the end of each epoch ℓ, we store the dataset Vℓ that
contains:

1. The pilot estimator and per-bin constrained least-squares estimators: θ̄0 and {θ̂ℓ,j}j∈[Mℓ].

2. Bin-wise local polynomial design matrices under θ̂ℓ,j:{(
Λℓ,j(θ̂ℓ,j),

∑
t∈Tℓ,j

yt Uj(xt, θ̂ℓ,j)
)}

j∈[Mℓ]
.

This information is sufficient for computing each {ĝℓ,j(x|θ̂ℓ,j)} and the glued estimator ĝℓ(x) and its
confidence bound CBℓ(x) for any x = (c, p).

Computing π(τ−1)(c) for a given c. Suppose a context c is observed at epoch τ . We now describe
how to compute π(τ−1)(c) from the stored datasets ∪ℓ<τVℓ. For each step ℓ = 1, 2, . . . , τ − 1, given
the input context c and the current policy interval [π(ℓ−1)(c), π(ℓ−1)(c)],7 the algorithm evaluates
the integrals appearing in r̂(Jk) and ∆(Jk) for each sub-interval Jk using numerical integration with
discretization length 1/ε for ε = 1/

√
T .8 This requires O(

√
T ) queries to CBℓ(·) and ĝℓ(·), both of

which are computable from Vℓ.

L.2 EXPERIMENT SETUP

In this section, we present numerical simulations under several setups to illustrate the performance of
our algorithm and to compare it with previous work Fan et al. (2024). In the following sections, we
describe the setup and purpose of four different experiments, including:

1. Illustration of the effect of β on regret: given an underlying smooth environment, whether
using a larger β parameter in the algorithm input leads to better regret.

2. Illustration of the effect of d on regret, especially whether the Poly(dβ) term in the main
theorem significantly influences the empirical results.

3. Comparison with the algorithms in Fan et al. (2024).

β-smooth Tail Function Generation. Before describing more details of setup in each setting, we
first recall the noise sampling procedure proposed in Fan et al. (2024) for generating a β0-smooth
g, which we will frequently call in each setup: Given any smoothness factor β0, we set the density
function of ξt as

fβ(z) ∝ (1/4− z2)β/2 · 1{|z| ≤ 1/2}. (15)

It can be verified that fβ(·) is (β − 1)-smooth function, thus its corresponding CDF( and g) is
β-smooth.
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(a) Relative regret( the regret normalized by T ) under
β0 = 6, d = 2 environment with algorithm parame-
ters β ∈ {2, 4, 6}, T ∈ {50, 200, 500, 1000}.

(b) Same results as in Figure 4a with the starting point
of each curve aligned to illustrate the regret decay rate.

Figure 4: Illustration of β effect in regret.

Figure 5: Regret under β0 = 6, T = 1000 environment, with changing d ∈ {2, 5, 10, 20} and
algorithm parameters β ∈ {2, 4, 6}.

L.2.1 EFFECT OF β ON REGRET

In Figure 4, we test our algorithm under a d = 2 environment with underlying smoothness β0 = 6,
with the underlying parameter θ0 = (0.25, 0.25), coordinate-wise i.i.d. context distribution with the
density function

fm(x) ∝
(
2/3− x2

)m+1 · 1
{
|x| ≤

√
2/3

}
. (16)

We test the LPSP algorithm under this environment with input smoothness parameters β = 2, 4, 6
and time horizons T ∈ {50, 200, 500, 1000}, and we report the relative regrets (regret divided by T )
in Figure 1(a). To further compare the regret rates while reducing the influence of absolute constants,
we additionally align the starting y-axis values in Figure 1(b).

From Figure 4a, we observe that larger β values (β = 4, 6) do not necessarily lead to smaller regret
compared with β = 2 when T is relatively small, likely due to the β-dependent constants hidden
in the regret bound. However, as T increases, the performance of the larger-β algorithms begins to
match or outperform the β = 2 setting. Figure 4b provides more direct evidence of better long-run
regret: after aligning the starting regrets for each β, so that only the decay rate matters, we see that
larger β generally leads to a sharper decay rate, consistent with our theoretical findings.

L.2.2 EFFECT OF d ON REGRET

In Figure 5, we report the regret of our algorithm for β ∈ {2, 4, 6} with T = 1000 under different
dimensions d. As in the previous setup, the demand noise is generated with smoothness β0 = 6
using (15). The underlying parameter is chosen as θ = (1/

√
d, . . . , 1/

√
d) ∈ Rd, and the context

distribution follows (16) without additional normalization. Hence Assumption 4 is satisfied with
cmin = d, which implies an exploration length of order O

(√
dT

β+1
2β+1

)
.

7By initialization, [π(0), π(0)] = [0, pmax].
8This contributes at most O(1/

√
T ) error to the calculation, which is dominated by the CB(·) term.
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(a) β0 = 2 (b) β0 = 4 (c) β0 = 6

Figure 6: Comparison with the explore-then-commit algorithm in Fan et al. (2024) under different
smoothness parameters.

The figure illustrates that although the regret increases at least linearly in d, the choice of β does not
appear to affect the growth rate significantly. This suggests that the Poly(dβ) factor appearing in
our second-order regret bound may be an artifact of the analysis rather than a fundamental barrier.
The empirical trend also indicates the possibility of further improving the d4 dependence in the
leading-order term.

L.2.3 COMPARISON TO FAN ET AL. (2024).

In Figure 6, we compare the cumulative regret for T ∈ {50, 200, 500, 1000} of our algorithm with
Fan et al. (2024) under different environments, with d = 2, θ0 and context distribution described
same as in Section L.2.1, and noise distribution under different β0 are generated as in (15).

While our algorithm achieves consistently smaller regret than Fan et al. (2024) in both experimental
settings, we emphasize that this comparison is not fully fair. The primary message we aim to convey
is simply that both algorithms are able to exploit the underlying smoothness: as the true smoothness
parameter β0 increases, the regret curves decrease accordingly.

The key subtlety lies in the computational scale of the two methods. The algorithm of Fan et al. (2024)
is simple to implement and computationally lightweight, which enables them to run experiments
with very large time horizons (e.g., up to T ≈ 12,000 in their paper). In contrast, our method
involves several computationally intensive steps—such as the constrained least-squares refinement and
repeated distribution-shift corrections—as discussed in Section L.1. These components significantly
increase runtime, which limits our experiments to relatively small horizons (up to T = 1000). This
difference in feasible scale may disadvantage Fan et al. (2024) in our plots: in their original setup,
the initial exploration length is fixed at 500, whereas in our smaller-T regime we can only afford
an initial phase of roughly 20–100 rounds. Consequently, their algorithm may not reach its typical
performance regime under the smaller horizons we are able to simulate. We also emphasize that the
primary focus of this work is theoretical: our goal is to push the boundary of regret guarantees for
semi-parametric pricing by showing that improved rates are achievable—albeit through a relatively
complicate algorithm that may not yet be practical. Developing simpler, more efficient, and easy-to-
implement algorithms that attain the same theoretical regret remains an important direction for future
work.
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