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Abstract

We develop a neural model for dynamics in stabi-
lized dense emulsions, trained on data from first-
principles simulations of biphase flows. By using
a hybrid approach where a graph neural network
predicts corrections to a hand-crafted baseline
model, we achieve accurate and stable predictions.
This method addresses the instability issues found
in naive GNN implementations, paving the way
for a deeper understanding of emulsion physics
and more efficient numerical simulations.

1. Introduction
The study of emergent phenomena from low-level descrip-
tions of physical systems has always been a key focus of
scientific research (Anderson, 1972). Examples include
self-organization in ecosystems (Levin, 2005), turbulence
in fluid dynamics (Frisch, 1995) and the development of
consciousness from neural activity in the brain (Crick &
Koch, 1990). The interest in emergent behaviors is twofold:
reaching a deeper understanding of the physical systems,
and the development of cost-effective reduced methods for
their numerical simulation. Recently, there has been a sig-
nificant rise in the use of data-driven approaches alongside
traditional methods to study emergent behaviors, employing
machine learning, statistical models, and large-scale data
analysis to find patterns and predict dynamics in complex
systems (Duraisamy et al., 2018; Van Veen et al., 1997).

To this end, in this work we aim to study the emergent be-
havior of droplets in emulsions, modelling their effective
dynamics. Emulsions are mixtures of two immiscible fluids
where one fluid is dispersed in the form of droplets within
the other (see Fig. 1). Emulsions are employed in a wide
range of applications, including pharmaceuticals, food pro-
cessing, cosmetics, and materials science, due to their ability

1Eindhoven University of Technology, 5600 MB Eind-
hoven, The Netherlands 2University of Amsterdam, 1012 WP
Amsterdam, The Netherlands. Correspondence to: Giulio Ortali
<g.ortali@tue.nl>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

to combine the properties of the two immiscible fluids in a
stable mixture (Friberg et al., 2003; Barkat et al., 2011). The
numerical simulation of emulsions poses significant chal-
lenges due to the complex interfaces, multiscale interactions,
and the effects of surface tension.

Traditional approaches to the numerical simulation of emul-
sions rely on fully modeling the biphase flow, requiring
expensive simulation settings (Wörner, 2012; Kumar et al.,
2020a). On the other hand, developing simplified, effective
models for droplets in emulsions, which aim to represent
droplets dynamics without fully simulating the biphase flow,
is challenging due to the difficulty in accurately capturing
the nuanced behaviors in densely packed systems, involv-
ing non-Newtonian behavior with both elastic and plastic
effects (Kumar et al., 2023; 2020b).

This paper explores the potential of graph neural networks
(GNNs) (Scarselli et al., 2009; Bruna et al., 2014) and specif-
ically message-passing variants of such networks (Gilmer
et al., 2017; Battaglia et al., 2018) for modeling the effective
dynamics of droplets in emulsions. GNNs have previously
been used to learn neural surrogates for dynamics of New-
tonian fluids, as well as of granular and Non-Newtonian
systems (Sanchez-Gonzalez et al., 2020), and more gener-
ally in the simulation of many-body systems and molecular
dynamics (Satorras et al., 2021; Park et al., 2021).Our work
addresses the unique challenges posed by densely packed
droplets and their complex interactions. We tackle stabil-
ity issues through a hybrid design and multi-step training
strategies, detailed in the following sections of this paper.

We begin by introducing a hand-crafted effective model,
which we refer to as the elasto-viscous (EV) model, inspired
by basic physical insights into the behavior of droplets
within emulsions. We compare this model to a GNN, which
is trained end-to-end to predict droplets displacements. We
show that the GNN yields accurate one-step predictions but
highly unstable long-time dynamics. To address this, we
develop a hybrid approach, termed EV+GNN, that com-
bines both methods. Our results demonstrate that this hy-
brid approach provides both accurate and stable predictions,
leveraging the strengths of both models (Fig. 1)
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Figure 1. (a) Lattice Boltzmann simulations of a 2D Couette biphase flow. The colormap represents fluid density, highlighting the biphase
nature of the fluid. The left and right boundaries represent periodic boundary conditions, while the top and bottom walls are walls moving
in opposite direction with non-slip boundary condition, generating a shear in the flow vx(y), shown as a black line. The small box in the
top-left corner represents the portion of domain considered in Fig. 2. (b) Training data. Results of Lattice Boltzmann simulations are
pre-processed with standard computer vision tools to obtain sizes and positions of droplets, which we approximate as spherical. During
training, only a fraction of the droplets, dubbed “active”, are evolved according to the learned model, while the “passive” droplets evolve
according to their positions in the simulations. (c) Mean absolute error between the predicted trajectories x̃i(t) and the ground truth
trajectory xi(t) in time for three different effective models: an end-to-end Graph Neural Network predicting droplet displacement (GNN),
a hand-crafted physical model (EV) and a hybrid method combining the two (EV+GNN). Figure 3 reports a zoom in of the error on the
first 150 timesteps. We observe that a naive application of a GNN is unstable and results in fast divergence, whereas using the GNN to
predict a correction relative to the EV baseline leads to greater stability and improved accuracy.

1.1. Related Work

Neural Models for Particle-based Dynamics. There is
a long line of work on neural methods for particle-based
or Lagrangian dynamics in fluids and related systems (Li
et al., 2019; Sanchez-Gonzalez et al., 2020; Ummenhofer
et al., 2020; Prantl et al., 2022). Many such approaches gen-
erate training data using established particle-based methods
for fluids, such as smoothed-particle hydrodynamics (SPH;
Gingold & Monaghan (1977)) and dissipative particle dy-
namics (DPD; Hoogerbrugge & Koelman (1992)), or more
generally from particle-based descriptions of solids, such as
position-based dynamics (PBD; Müller et al. (2007)) and the
material point method (MPM; Sulsky et al. (1995)). Note
here that SPH and DPD in particular also inspire the design
of our non-neural elasto-viscous model in Section 3.2.

This work is most directly related to the work by Sanchez-
Gonzalez et al. (2020) on graph network-based simulators
(GNS), which develops GNN-based surrogates for simula-
tion of Newtonian fluids, non-Newtonian fluids, and gran-
ular systems. This work differs somewhat from the work
we consider here in that it trains a GNN to approximate
dynamics of existing particle-based methods, with an eye
to obtaining a differentiable surrogate that can be used to,
e.g., solve inverse problems. Here we are interested in a
setting where no existing particle-based simulation is avail-

able. Moreover, the application to dense emulsions that we
consider here involves specific challenges that arise from
the crowded environment in such systems.

Other Neural Methods for Fluid Mechanics. More
broadly, there is an extensive body of work on machine
learning and deep learning for fluid mechanics (Ladický
et al., 2015; Yang et al., 2016; Chu & Thuerey, 2017; Tomp-
son et al., 2017; Wiewel et al., 2019; Wang et al., 2020a;
Pfaff et al., 2021). Many of these studies aim to accelerate or
substitute numerical simulations by taking an Eulerian point
of view. A more recent development in this space are equiv-
ariant networks, which incorporate layers that respect trans-
lational and rotational symmetries by construction (Wang
et al., 2020b; 2022; Lino et al., 2022; Ruhe et al., 2024;
Zhdanov et al., 2024). The GNN in this paper does not
incorporate rotational symmetry, which is broken in the 2D
Couette geometry that we consider, but messages are invari-
ant to translations and Galilean transformations, since they
are computed using relative positions and displacements.
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2. Preliminaries
2.1. Emulsion Dynamics in Sheared Systems

We consider flows of dense stabilized emulsions in a 2-
dimensional Couette geometry (Fig. 1a). This geometry
assumes non-slip boundary conditions on two moving walls
at the top and bottom of a cell, and period boundary on the
left and right walls. We simulate this system using a variant
of Lattice Boltzmann method (Krueger et al., 2016), a class
of grid-based methods that simulate populations of parti-
cles with discretized positions and velocities. The specific
variant that we employ has been designed to simulate the
biphasic flows in emulsions (Kumar et al., 2020a).

At the level of LBM simulations, droplet formation is an
emergent phenomenon. As such, the simulation results,
which are essentially images, do not provide a description
at the level of droplets. Our goal in this work is to learn an
effective model for the dynamics of droplet interactions. To
train this model, we generate a dataset by pre-processing
LBM simulation results to detect and track droplets (Fig. 2,
see Sec. 4.1 for details).

In the following, we will assume that data of the form of
N droplet trajectories {x1, . . . ,xN} each comprising t =
1, . . . , T time points, where we use xi(t) ∈ R2 to refer to
the position a droplet at a particular time point. For each
droplet trajectory, we additionally define:

• The “velocity”, i.e. the displacement relative to the
preceding time point,

vi(t) = xi(t)− xi(t− 1).

• The radius ri ∈ R, which does not vary in time.

• A set of neighbors, which is defined as the indices
of particles for that are separated by no more than a
tolerance ϵN = 20:

Ni(t) = {j : ∥xj(t)− xi(t)∥ ≤ ri + rj + ϵN }

• The overlap relative to other droplets j,

oij = ri + rj − ||xj − xi||. (1)

• An indicator variable bi ∈ {0, 1} that is equal to 1
when a droplet resides within distance ϵwall = 20 of
the top or bottom wall at any point in the trajectory.
In both training and testing, border droplets are never
evolved according to the effective models, and always
follow the ground truth dynamics. This is done to
simplify the setting since border droplets, in contact
with walls, experience different physical phenomena
with respect to bulk droplets.
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Figure 2. Representation of different quantities computed from
simulation data, used to define the effective motion of droplet i,
considering the interactions with neighbour droplets j ∈ Ni(t).

2.2. Graph Neural Networks

Message passing graph Neural Networks are a class of neu-
ral networks designed to process and analyze data structured
as graphs (Gilmer et al., 2017). GNNs operate through an
iterative process of message passing, where node represen-
tations are updated based on their neighbors’ features.

Consider a graph G = (V,E) with {i ∈ V } a set of nodes
and {eij} a set of edges. Let hk

i represent the feature vector
of node i at layer k. One iteration of message passing can
be represented as:

mk
ij = Φ1(h

k
i , h

k
j , eij ; θ1), (msg. evaluation)

mk
i = AGG(mk

ij : j ∈ Ni), (msg. aggregation)

hk
i = Φ2(h

k
i ,m

k
i ; θ2), (node update)

with Φ1 and Φ2 two Neural Networks with weights θ1 and
θ2, AGG an aggregation function (for example, mean), and
Ni the set of neighbor nodes of i.

Unlike traditional neural networks that operate on fixed-
sized input data like images or sequences, GNNs can directly
handle the variable-sized and complex relationships inher-
ent in graph data. This flexibility makes GNNs particularly
powerful for tasks involving physical systems, social net-
works and molecular structure where interactions between
entities are naturally represented as graphs.

3. Methods
3.1. Learning Problem

We formulate the learning problem as follows: define a
model M, operating locally on each droplet i, taking as
input quantities for the droplet i and its neighbor droplets
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j ∈ Ni(t) at time t and returning an approximation to the
velocity (displacement) at time t+ 1, in formulas:

vi(t+ 1) ≈ M(ri(t),vi(t),

{(xj − xi)(t), (vj − vi)(t),

rj(t), ∀j ∈ Ni(t)}). (2)

In order to use the model M, we then consider an initial
condition {xi(0), ri(0), i = 1 . . . N} and we apply it to the
droplets in the domain, evolving the system in time.

The formulation we consider is Markovian (the prediction
at timestep t+ 1 only depends on the quantities at the previ-
ous timestep t) and local, implying that for each timestep
interactions between droplets only happen between neigh-
bors. Additionally, the neighbors droplets’ features are only
provided to the model through relative quantities, and the
position of droplet i is not given to the model, in order to
avoid the model learning information regarding its location
in the domain, possibly hindering generalization.

During training, for each epoch and for each sample, we ran-
domly flag a fraction (half) of the non boundary droplets as
active and the remaining droplets are passive (see Fig. 1b for
an illustration). Starting from the initial condition t = 0, we
evolve the active droplets according to the models, yielding
predicted displacements ṽi(t), while the passive droplets
follow the simulated displacements vi(t). Simultaneously,
for each timestep we accumulate the loss, computed as MSE
on predicted velocity for the active droplets

L =
∑
t,i

∥∥ṽi(t)− vi(t)
∥∥2. (3)

Some considerations on the training strategy. The need for
the multi-step training strategy here described, as opposed
to a one-step strategy with a fixed dataset of input and output
couples, comes from the importance of properly learning
the interactions between two or more droplets. In fact, we
found that models trained with the one-step strategy, despite
reaching a higher one-step accuracy, were more unstable
when used as effective models, diverging in few timesteps.
The decision of only selecting a fraction of the droplets to be
evolved according to the models is done in order to reduce
the computational and memory requirements, and to help
with stabilizing the dynamics in the first epochs. Finally,
the droplet radius is assumed, both here and in testing, to
remain approximately constant during the evolution.

3.2. Elasto-Viscous model (EV)

In this section, we define a hand-crafted effective model
that we refer to as the elasto-viscous model or EV model.
This model will be used as a baseline with respect to the
data-driven models.

The action of the EV model is defined as:

v̄i = βvi(t) + (1− β)
1

|Ni(t)|
∑

j∈Ni(t)

vj(t) (4)

Fij = κ max
(
oij + ϵEV , 0

)α xj(t)− xi(t)

||xj(t)− xi(t)||
, (5)

vEV
i (t+ 1) = v̄i −

∑
j∈Ni(t)

Fij (6)

x̃i(t+ 1) = x̃i(t) + vEV
i (t+ 1) (7)

where β = 0.5, κ = 0.1, ϵEV = 5 and α = 0.5 are model’s
hyperparameters, here tuned by hand, oij is the overlap
between droplet i and j (Eq. 2.1), and Fij is the elastic
force acting from droplet j on droplet i.

As the name suggests, the EV model acts with two main
physical mechanisms: a viscous step (Eq. 4), where we
compute a linear combination between the velocity at the
previous timestep and the average velocity of the neigh-
bors; next an elastic step, consisting of computing, for each
neighbor, an elastic force Fij considering the overlap be-
tween the two droplets (Eq. 5). All the force contribution
are then summed, and the final velocity is updated (Eq. 6)
(conceptually assuming mass and timestep both equal to
1). Finally, the droplet position xi(t) is updated using the
obtained velocity vEV

i (t+ 1).

3.3. Graph Neural Network Model (GNN)

We begin by considering naive GNN-based implementen-
tion, in the form of a single-layer Graph Neural Net-
work returning the predicted displacement vi(t+ 1). The
GNN model is composed of two MLPs Φ1 (layer sizes
[8, 512, 128, 64], leaky-ReLU activation function) and Φ2

(layer sizes [67, 64, 2], leaky-ReLU activation function),
which perform a single round of message-passing updates:

mij = Φ1(vi, ri,xj − xi,vj − vi, rj ; θ1), (8)

vGNN
i (t+ 1) = Φ2(vi, ri,

∑
j∈Ni(t)

mij ; θ2), (9)

x̃i(t+ 1) = x̃i(t) + vGNN
i (t+ 1). (10)

The proposed architecture was designed through analogy
with the action of the EV model (Sec. 3.2), and is a com-
bination between a generic message passing Graph Neural
Network, as defined in (Gilmer et al., 2017) and the Equiv-
ariant GraphNN, introduced in (Satorras et al., 2021).

3.4. Hybrid Model (EV+GNN)

The second data-driven model used in this work is a combi-
nation between the EV model and the GNN model, which
we will label EV+GNN. The Graph Neural Network used
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in this model is identical to the one used for the GNN, de-
scribed in Sec. 3.3. However, the output of the GNN is now
used as a correction to the displacements predicted by the
EV model, in formulas:

mij = Φ1(vi, ri,xj − xi,vj − vi, rj ; θ1), (11)

ṽi = Φ2(vi, ri,
∑

j∈Ni(t)

mij ; θ2), (12)

vEV+GNN
i (t+ 1) = vEV

i (t+ 1) + ṽi, (13)

x̃i(t+ 1) = x̃i(t) + vEV+GNN
i (t+ 1). (14)

4. Results
4.1. Data Generation

The training and testing datasets are generated using a
multi-component Lattice Boltzmann Method (LBM) simu-
lation (Krueger et al., 2016). The numerical approximation
is performed on a computational grid of size [1024, 1024],
fully resolving the biphase flow. For more details on the
physical setting and discretization strategy, we refer to (Ku-
mar et al., 2020a).

Starting from simulation data, we then perform some pre-
processing steps in order to extract quantities to be used to
define the effective dynamics of droplets.

We define an (arbitrary) effective sampling timestep ∆teff =
100×∆t, where ∆t is the simulation timestep. This sam-
pling time must be fine enough to capture the continuous
dynamics of the droplets, but coarse enough to provide a
computational speedup for the effective models.

As to space discretization, as already anticipated in Sec. 2.1,
we make the (strong) assumption of approximating droplets
with circles, described by a droplet center xi ∈ R2 and a
radius (or size) ri. This assumption is used to represent
each droplet with a small number of degrees of freedom,
and is approximately verified for small droplets, whereas
big droplets are typically more deformed.

4.2. Training Procedure

The training dataset is composed of Mtrain = 900 sam-
ples, where each sample consists of the full time evolu-
tion for all the droplets i in the domain, for T = 100
timesteps, specified as droplet position, velocity and ra-
dius: {xi(t),vi(t), ri(t), i = 1, . . . N, t = 0 . . . T}. We
train the models for 20 epochs, using an Adam optimizer
with initial learning rate λ = 10−3.

A roll-out terminates when the trajectories for active parti-
cles have been fully evolved up to T , or when one of the
predicted positions x̃i(t) diverges too far from the LBM
simulation trajectory xi(t), i.e. if the maximum absolute
displacement is larger than ϵtrain = 15.
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Figure 3. Mean absolute error between ground truth droplet posi-
tion xi(t) and predicted droplet position x̃i(t), for the three effec-
tive models EV, GNN and EV+GNN, for the first 150 timesteps.

4.3. Testing procedure

For testing, we consider a setting analogous to the one
used during training, with Mtest = 20 test roll-outs con-
sisting of the full time evolution for all the droplets i in the
domain, for T = 103 timesteps, {xi(t),vi(t), ri(t), i =
1, . . . N, t = 0 . . . T}. Starting from the initial condition
{xi(0),vi(0), ri(0)}, we evolve part or all the droplets in
the domain according to the effective models, obtaining the
predicted trajectories x̃i(t).

4.4. Conditional Simulation Results

We begin by considering a test-time procedure that is anal-
ogous to the one used during training (Fig. 1 panel (b)), in
which half of the particles are tagged as active and evolved
according to the effective models, and the remaining evolved
according to the ground truth dynamics. We refer to this set-
ting as conditional simulation, in reference to the analogous
case of conditional generation in generative AI.

In Fig.1, panel (c), we report the absolute error on droplet
trajectories over time for different effective models x̃i(t)
compared to the ground truth simulation data xi(t). A de-
tailed view of the first 150 timesteps is shown in Fig.3. We
observe that, in terms of one-step prediction error, both
data-driven models are more accurate than the EV model.
However, the GNN model demonstrates unstable dynam-
ics, with errors diverging after a few hundred timesteps.
In contrast, the EV and EV+GNN models maintain stable
dynamics. Furthermore, the EV+GNN model consistently
outperforms the baseline EV model in terms of accuracy,
maintaining lower error levels throughout all timesteps.
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Figure 4. Average shear velocity profile ⟨vx(y)⟩, for ground truth
data, EV and EV+GNN

4.5. Full Simulation Results

Next, we consider the setting where all the non-boundary
particles are considered active and evolved according to the
effective models. In this setting, we observed some instabil-
ities that where not present in the active-passive setup. To
address these instabilities, we implemented a modification
in the effective models where, at each timestep, the average
displacement in the x and y directions is subtracted from
each prediction, in formulas:

vi(t+ 1)EV+GNN − 1

N

N∑
j=1

vj(t+ 1)EV+GNN

This adjustment, combined with the multi-step training strat-
egy and the hybrid model, proved sufficient to stabilize the
effective models, although further study is needed for full
understanding.

Given the chaotic nature of the system—where any pertur-
bation in the dynamics leads to an exponential divergence
from the ground-truth trajectories—the subsequent results
are based on statistics computed from long-running simula-
tions. These simulations start from the initial condition and
evolve all the non-boundary droplets using the two stable
effective models, EV and EV+GNN.

We report in Fig. 4 the average x-velocity profile as a func-
tion of y, for the ground truth data and the two effective
models. This figure confirms that both the EV and the
EV+GNN are able to capture the average profile within
error-bars.

In Fig. 5, we report the Probability Distribution Function
(PDF) for the x and y component of the velocity field, for
ground truth data and the two effective models. Notably,
we can see that the EV+GNN model recovers a PDF of vy

more closely resembling the ground truth data. Here the

main difference is found in the tails of the PDF, correspond-
ing to events with higher velocity value, less represented
in the EV model. These events can be associated to plastic
events happening in the droplet configuration, in which the
topology of the droplet configuration drastically changes
in a very short time window (Kumar et al., 2023). In the
PDF of vx, instead, we can see some oscillations and asym-
metries in both the effective models behavior, to be further
investigated.
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Figure 5. PDF of the y and x-component of the droplet velocity v,
for ground truth data, EV and EV+GNN.

5. Discussion
In this work, we developed a neural model for simulating the
dynamics of droplets in stabilized dense emulsions, aiming
to capture their emergent behavior. We proposed a hybrid
approach that combines a Graph neural network with a hand-
crafted baseline model addressing the challenges associated
with modeling the complex interactions in densely packed
systems. The hybrid model, termed EV+GNN, demon-
strated significant improvements over standalone GNN and
EV models, particularly in maintaining long-term stability
and accuracy in predicting droplet displacements.
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5.1. Limitations

While the initial results from our work are encouraging,
there are substantial limitations to the results that we report.

Spherical Droplets. One limitation is our approximation
of droplets as spherical with constant size (Sec 3.1). We
have verified that the assumption of constant droplet size
holds to good approximation for the emulsion settings con-
sidered, which is consistent with the fact that both the fluids
composing the emulsion are incompressible. However, the
spherical approximation does not account for actual defor-
mations of the droplet shape, possibly limiting the informa-
tion available to the models. The GNN that we employ has
access to the relative distances to all neighbors and does not
assume rotational symmetry when computing messages, so
it is possible that the GNN is able to implicitly represent
time-varying droplet shapes. With that said, the implications
of the spherical approximation require further investigation.

Scalability and Generalization. A second limitation of
the current results is that we consider a single geometry
(2D Couette Flow) and system size. There are in princi-
ple no fundamental limitations in terms of computational
scalability; the number of neighbors per droplet is constant
(approximately 10 in our experiments), so computation will
scale approximately linearly with the number of droplets.
However the stability of roll-outs has not been evaluated in
larger systems sizes. We have also not considered more com-
plex systems, such as polydisperse emulsions, emulsions in
the presence of surfactants, or active emulsions. While the
fundamental design indicates potential adaptability to these
scenarios, additional research is necessary to validate and
optimize scalability in these more involved contexts.

Baselines. Finally, this work lacks a comparison to base-
line methods on a variety of datasets, as we are accustomed
to in ML research. Because the elasto-viscous model is
quite specific to the setting of emulsions that we consider in
this paper, it not clear whether evaluations of the proposed
model on different datasets would be informative.

5.2. Outlook

Very recent work by Toshev et al. (2024) develops Neural
SPH, which uses SPH-based relaxation methods to reduce
errors in learned neural solver (such as GNS), both at train-
ing and at inference time. It may be possible to identify
similar relaxations that will be applicable in the context of
droplet dynamics in emulsions.

More generally, future research will explore more advanced
GNN architectures and validate the model across various
types of emulsions and conditions. This work aims to con-
tribute to a deeper understanding of emulsion physics and

enhances the efficiency of numerical simulations, aligning
with the broader objective of developing scalable models
for emerging behavior in complex systems.
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