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ABSTRACT

Given a sample of size N , it is often useful to select a subsample of smaller size
n < N to be used for statistical estimation or learning. Such a data selection
step is useful to reduce the requirements of data labeling and the computational
complexity of learning. We assume to be given N unlabeled samples {xi}i≤N ,
and to be given access to a ‘surrogate model’ that can predict labels yi better than
random guessing. Our goal is to select a subset of the samples, to be denoted
by {xi}i∈G, of size |G| = n < N . We then acquire labels for this set and we
use them to train a model via regularized empirical risk minimization. By using
a mixture of numerical experiments on real and synthetic data, and mathematical
derivations under low- and high- dimensional asymptotics, we show that: (i) Data
selection can be very effective, in particular beating training on the full sample
in some cases; (ii) Certain popular choices in data selection methods (e.g. un-
biased reweighted subsampling, or influence function-based subsampling) can be
substantially suboptimal.

1 INTRODUCTION

Labeling is a notoriously laborious task in machine learning. A possible approach towards reducing
this burden is to select a small subset of training samples that are most valuable for training.

Data selection-based learning consists of two steps – (i) Data Selection: given feature vectors X :=
(xi)i≤N , select a subset G ⊆ [N ] of size n (or close to n); (ii) Training: having acquired labels
for the selected subset {yi}i∈G, train a model f( · ;θ) : Rp → R (with parameters θ) on the labeled
data {(xi, yi)}i∈G. Throughout this paper we will focus on methods with the following structure.
In the first step, set G is generated by selecting each datapoint i independently with probability
πi = π(xi). Namely

P(i ∈ G|y,X) = πi, independently for i ≤ N. (1.1)

The second step (training) is carried out by (weighted) empirical risk minimization (ERM) over the
selected set G. Namely, given loss function ℓ : R× R → R and regularizer Ω : Rp → R, we solve

θ̂ = argmin
θ
R̂N (θ) , R̂N (θ) :=

1

N

∑
i∈G

wi ℓ(yi, f(xi;θ)) + λΩ(θ) . (1.2)

The weights wi can depend on the feature vectors, and are designed as to reduce the error. A popular
choice is wi = cst/πi because the resulting R̂N (θ) is an unbiased version of the full empirical risk.

Throughout this paper, we will assume data (xi, yi) to be i.i.d. samples from a common distribution
P ∈ P(Rd × R) and will evaluate a data selection procedure via the test error:

Rtest(θ) = E ℓtest

(
ynew; f(xnew;θ)

)
, (1.3)

where expectation is taken with respect to the test sample (xnew, ynew) ∼ P. We will denote the
(training) population risk by R(θ) = E ℓ

(
y; f(x;θ)

)
.

Data selection has been extensively studied in a variety of settings, including experimental design,
active learning, learning algorithms and data optimization. While some heuristics (e.g., focus on
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Figure 1: Misclassification error in an image classification problem after data selection (logistic
regression on SwAV embeddings). Left: N = 34345 samples, p = 2048 dimensions. We use
surrogate models trained on a small separated fraction of the data (‘strong’: Nsu = 14720, ‘weak’:
Nsu = 1472). Right plots: subsampling schemes optimized over ridge regularization λ; exponent
α in the data selection scheme (larger α select ’harder’ samples); biased vs unbiased selection; and
strength of the surrogate. Constant strategy: biased selection with λ = 0.01, α = 0.5, and weak
surrogate. Top: N = 3434; bottom N = 34345. See Section 7.

samples that are most difficult to predict) have resurfaced from different viewpoints, their imple-
mentation and effectiveness depends on the problem formulation. Unlike the most common active
learning scenario, we crucially assume to be given a fixed data sample {xi}i≤N (without labels) and
carry out a single data selection step, often referred as ‘Pool-based active learning’ (Settles, 2012).

Before summarizing our contributions, it is useful to mention some of the existing approaches.

Bayesian methods. Within a Bayesian setting, to select the subsample G is to minimize the con-
ditional entropy of θ given the data Lindley (1956); Seung et al. (1992). This is a first example of
“uncertainty sampling.” We refer to Houlsby et al. (2011); Gal et al. (2017) for recent pointers, with
a focus on online active learning. See Cui et al. (2021) for a recent exception.

Heuristic approaches. Several groups developed measures of the impact of each sample on the
model: Lewis & Gale (1994) use probabilities predicted by a single current model; Vodrahalli et al.
(2018) use the norm of ∇θℓ(yi, f(xi,θ)); Jiang et al. (2019) use the loss itself ℓ(yi, f(xi,θ)).

Leverage scores have been used for a long time in statistics as a measure of importance of a data
point i ∈ {1, . . . , N} in linear regression (Chatterjee & Hadi, 1986). Recall that the leverage of
sample xi is defined as Hii := xT

i (X
TX)−1xi. Their study was reinvigorated by a numerical

linear algebra perspective (Drineas & Mahoney, 2006; Drineas et al., 2011). Statistical analyses of
leverage score-based data selection was developed in Ma et al. (2014); Raskutti & Mahoney (2016);
Ma et al. (2022). These works all assume wi = 1/πi for unbiasedness.

Influence functions. Let θ∗ = argminθ∈RpR(θ) denote the population minimizer. For M-
estimators (1.2) (under regularity conditions) approximate linearity holds as n → ∞ for p
fixed (van der Vaart, 2000)

θ̂ − θ∗ =
1

n

∑
i∈G

wiψ(xi, yi) + oP (1/
√
n) ,

where ψ : Rp × R → R is the so-called influence function. This approximation can be used to
select the probabilities πi and weights wi. Several authors have developed this approach in the
context of generalized linear models, while assuming unbiasedness wi = 1/πi, resulting in the
choice πi ∝ ∥ψ(xi, yi)∥2 (Ting & Brochu, 2018; Wang et al., 2018; Ai et al., 2021). Wang et al.
(2020) shows potential for improvement by using biased schemes. These works assume a specific
asymptotics in which 1 ≪ n ≪ N . In many applications, we would like the generalization error
achieved from the n-subsample to be comparable to the one with full sample and hence focus on the
case n = γN , γ = Θ(1).
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Margin-based selection. In a recent paper Sorscher et al. (2022) show that, in the case of the binary
perceptron, under a noiseless teacher-student distribution, selecting samples far from the margin
is beneficial in a high-dimensional or data-poor regime. This is in stark contrast with influence-
function and related approaches that upsample data points whose labels are more difficult to predict.
While our results confirm these findings, measuring uncertainty in terms of distance from the margin
is somewhat specific to binary classification under certain distributional assumptions1.

2 DEFINITIONS

Since our objective is to alleviate the need to label data, we will focus on data selection schemes
that do not use the labels (yi)i≤N . On the other hand, we will assume to have access to a surrogate
model Psu(dy|x) which is a probability kernel from Rd to R. We will consider two settings –
(i) Ideal surrogate: In this case Psu(dy|x) = P(dy|x) is the actual conditional distribution of the
labels. Of course this is the very object we want to learn. Since learning scheme is constrained, the
problem is nevertheless non-trivial and informative. (ii) Imperfect surrogates: In this case Psu(dy|x)
is predictive of the actual value of the labels, but does not coincide with the Bayes predictor.

The selection probabilities πi and weights wi can depend on xi and Psu( · |xi) (the conditional
distribution of yi given xi under the surrogate). We will omit the dependence of the surrogate
predictions unless needed, and write πi = π(xi), wi = w(xi).

It is convenient to encode a general data selection process into random variables Si(xi) ≥ 0 which
depend on xi,Psu( · |xi), and also on additional randomness independent across different samples2.
We recover the original formulation by setting Si(xi) = w(xi)1i∈G, P(i ∈ G|X,y) = π(xi). We
can thus rewrite the empirical risk (1.2) as:

R̂N (θ) =
1

N

N∑
i=1

Si(xi) L(θ; yi,xi) + λΩ(θ) , L(θ; y,x) := ℓ(y, f(x;θ)) . (2.1)

We will enforce that the target sample size n is achieved in expectation, namely

n =

N∑
i=1

Eπ(xi) , π(xi) := P
(
Si(xi) > 0

∣∣X,y
)
. (2.2)

Definition 2.1. A data selection scheme is unbiased if E{S(x)|X,y} = 1. We denote the set of
unbiased data selection schemes by U .

Throughout, we consider n,N → ∞, with converging ratio n/N → γ ∈ (0, 1) . We refer to γ as
to the ‘subsampling fraction.’ We are interested in γ bounded away from 0 because we want to keep
the accuracy close to the full sample accuracy. Standard notations are summarized in Appendix A.

3 SUMMARY OF RESULTS

Our theory is based on two types of asymptotics, that capture complementary regimes. In Section
4 we will study the low-dimensional asymptotics, whereby p is fixed as n,N → ∞. This analysis
applies to fairly general data distributions and models f( · ;θ). In Section 5, we will instead assume
p → ∞ as n,N → ∞, with N/p → δ0 ∈ (0,∞). In this case we study convex M-estimators, for
models that are linear in the features xi. Namely, L(θ; yi,xi) = L∗(⟨θ,xi⟩; yi), with L∗ convex
in its first argument, and xi standard Gaussian. We next summarize some of the insights from our
work and illustrate them in Figure 1 (experiments with real data, described in Section 7).

Unbiased subsampling can be suboptimal. As mentioned in the introduction, the majority of
theoretical studies assumes unbiased subsampling: wi ∝ 1/πi. We show both theoretically and em-
pirically that this can lead to potentially unbounded loss in accuracy with respect to biased schemes.

1Sorscher et al. (2022) proposes also schemes that are empirically effective more generally, but the connec-
tion with their mathematical analysis is indirect.

2Formally, Si(xi) = s(Ui,xi), where s is a deterministic function and (Ui)i≤N ∼i.i.d. Unif([0, 1]).
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Low-dimensional asymptotics provide a compelling explanation: estimation error is inversely pro-
portional to the curvature of the expected risk. Unbiased methods do not change the curvature, while
biased methods can increase the curvature. In fact, we will prove that unbiased methods are subop-
timal under a broad set of conditions. This result is illustrated in Figure 1. In particular, in Figure
1 we compare a biased and an unbiased scheme (with selection probabilities which approximate the
influence-function scheme).

Optimal selection depends on the subsampling fraction. Popular data selection methods are in-
dependent of subsampling fraction in the sense that the selection probabilities πi can be computed
without knowing the target sampling fraction n/N , except from the overall normalization that en-
forces the constraint (2.2). In contrast, we will see that optimal schemes depend in a non-trivial way
on n/N . This is very natural: the utility of sample (xi, yi) depends on the other selected samples.

Better surrogate models do not always lead to better selection. How to proceed in absence
of the labels yi? A natural idea would be to start from selection probabilities that use the labels,
π0(yi,xi), and then take a conditional expectation with respect to yi, under the surrogate model:
π(xi) = Esu{π0(yi,xi)|xi}. We show that this is not always optimal, and in particular better
surrogate models do not always lead to better selection (if used in a plugin fashion as described).

Uncertainty-based subsampling is effective. The simplest rule of thumb emerging from our work
confirms earlier research: subsampling schemes based on how uncertain surrogate predictions are,
often perform well. On the other hand, influence-based subsampling is not generally optimal. First:
in low-dimension, stronger bias towards hard examples is beneficial, cf. Section 4.2. Second: in
certain high-dimensional cases, this bias must be reversed, and ‘easier’ examples should be selected,
see Section 5 (in agreement with Sorscher et al. (2022)). Third, adding nuance to the previous point,
selecting the ‘hardest’ or ‘easiest’ even in high dimension, is not always optimal, see e.g. Section 6.

Data subsampling can beat full-sample training. Our objective is to select a fraction γ ∈ (0, 1)
of the data such that, training on the selected subset yields test error close to training on the whole
dataset. To our surprise, see Figure 1, we discover that good data selection can actually reduce the
test error below the one obtained from the full sample for γ as small as 0.4. A naive explanation
would be that information is being passed from the surrogate model to the trained model via data
selection. While this is of course true, the effect is more subtle. Indeed, we achieve a reduction
in test error even when the surrogate model is trained on significantly less than (1 − γ)N random
samples (so that overall, we are using significantly less than N labels). Recent empirical studies
(Nakkiran et al., 2021; Guo et al., 2022; Yang et al., 2022; Sorscher et al., 2022; Gadre et al., 2024)
have observed similar phenomenon for deep models with real data but we show that this is true even
for simpler settings.

4 LOW-DIMENSIONAL ASYMPTOTICS

In this section we study the classical asymptotics in which p is fixed as n,N → ∞. The asymptotics
of θ̂ depends on the expectation of the empirical risk (2.1):

RS(θ) := E
{
S(x)L(θ; y,x)

}
. (4.1)

(In this notation, the argument S indicates the dependence on the function that defines the sub-
sampling procedure.) The conditional gradient covariance, and conditional Hessian will play an
important role, and are defined below (recall that θ∗ = argminθR(θ)):

G(x) := E
{
∇θL(θ∗; y,x)∇θL(θ∗; y,x)

T|x
}
, H(x) := E

{
∇2

θL(θ∗; y,x)|x
}
. (4.2)

We consider weighted quadratic error ∥θ̂− θ∗∥2Q := ⟨θ̂− θ∗,Q(θ̂− θ∗)⟩, where Q ∈ Rp×p. This
covers both the standard ℓ2 estimation error (by setting Q = I) and, under smoothness conditions,
the test error Rtest(θ̂) (setting Q = ∇2Rtest(θ∗)). We define the asymptotic error coefficient ρ via

E∥θ̂ − θ∗∥2Q = ρ(S;Q)/N + oP (N
−1) . (4.3)

In other words, ρ(S;Q) := limN→∞NE{∥θ̂ − θ∗∥2Q}. A general formula for ρ(S;Q) follows
from standard arguments (see Appendix B). In the next two sections, we discuss optimal choices of
the subsampling procedure under this asymptotics.
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4.1 UNBIASED DATA SELECTION

We begin by considering unbiased schemes, cf. Definition 2.1. This case is covered by earlier work
Ting & Brochu (2018); Wang et al. (2018); Ai et al. (2021), but provides useful context.

The key simplification is that, in the unbiased case, the matrix HS (see Appendix B) does not
depend on S, namely HS = H , where

H = ∇2R(θ∗) , R(θ) := EL(θ; y,x) . (4.4)

We thus recover the standard subsampling scheme based on influence functions. (See Appendix C.)

Proposition 4.1. Under the assumptions of Proposition B.1, further assume Q ⪰ 0, H ≻ 0. Then
ρ(S;Q) is minimized among unbiased data selection schemes by a scheme of the form: Sunb(x) =
πunb(x)

−1 with probability πunb(x) and Sunb(x) = 0 otherwise, where:

πunb(x) = min
(
1; c(γ)Z(x)1/2

)
,

Z(x) := Tr
(
G(x)H−1QH−1

)
= E

{∥∥∇θL(θ; y,x)
∥∥2
H−1QH−1

∣∣x} .
Here the constant c(γ) is defined so that Eπunb(x) = γ.

Finally the the optimal coefficient ρunb(Q) := infS∈U ρ(S;Q) = ρ(Sunb;Q) is given by

ρunb(Q) = inf
Eπ(x)=γ

E
{
Z(x)/π(x)

}
= Emax

(
Z(x)1/2/c(γ);Z(x)

)
. (4.5)

Denote by Srand random subsampling, i.e. Srand(x) = 1/γ with probability γ, and Srand(x) = 0 else
(Srand is unbiased). We next establish some basic properties of ρunb(Q; γ), cf. Appendix D.

Proposition 4.2. Write ρunb(Q; γ) for the optimal unbiased coefficient when the subsampling frac-
tion equals γ. Then: (1) ρunb(Q) ≤ ρrand(Q) with the inequality being strict unless Z(x) is almost
surely constant or γ = 1; (2) γ 7→ ρunb(Q; γ) is monotone non-increasing (for Q ⪰ 0).

Proof of this proposition is provided in Appendix D. While monotonicity may appear intuitively
obvious, we will see in the Section 4.3 that it does not hold for biased subsampling.

Remark 4.1 (Connection with influence functions). Under the assumptions of Proposition 4.1 the
influence function is ψ(x, y) = −H−1∇θL(θ∗; y,x) and therefore we can rewrite (omitting the
capping at 1) π(xi) ∝ E

{∥∥ψ(xi, yi)∥∥2Q∣∣xi}1/2. We recovered influence function-based subsam-
pling Ting & Brochu (2018); Wang et al. (2018); Ai et al. (2021). Interestingly, the optimal way to
deal with unknown yi is to take conditional expectation of the square of the sampling probability:
we compute E{∥ψ(xi, yi)

∥∥2
Q
|xi}1/2 instead of E{∥ψ(xi, yi)∥Q|xi}. See also Appendix C.

Example 4.2 (Generalized linear models). We assume xi to be a centered vector and

P(dyi|xi) = exp
{
yi⟨θ∗,xi⟩ − ϕ(⟨θ∗,xi⟩)

}
ν0(dyi) . (4.6)

Here ν0 is the reference measure, e.g. ν0 = δ+1 + δ−1 for logistic regression. We fit a model of
the same type and train via the loss L(θ; y,x) = −y⟨θ,x⟩ + ϕ(⟨θ,x⟩). Hence ∇θL(θ; y,x) =
−(y − ϕ′(⟨θ,x⟩))xT and ∇2R(θ∗) = E{ϕ′′(⟨θ,x⟩)xxT} := H . A simple calculation yields:

Z(x) = ϕ′′(⟨θ∗,x⟩) · ⟨x,H−1QH−1x⟩ . (4.7)

In what follows, we will consider also a generalization of this model whereby (here, for each z,
P( · |z) is a probability distribution over R):

P(yi ∈ A|xi) = P(A|⟨θ0,xi⟩) . (4.8)

Example 4.3 (Linear regression). Setting ν0(dy) = exp(−y2i /2)/
√
2π, ϕ(t) = t2/2 above, we

obtain linear regression: L(θ; y,x) = Ltest(θ; y,x) = (y − ⟨θ,x⟩)2/2. Equation (4.7) yields
Z(x) ∝ ⟨x,Σ−1QΣ−1x⟩, and, for prediction error (Q = Σ), Z(x) ∝ ⟨x,Σ−1x⟩: we recover a
population version of the leverage score.
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4.2 BIASED DATA SELECTION

We now consider biased subsampling schemes S. It is straightforward to see that the weights can
always be chosen to be deterministic (see Appendix E). In other words, S(x) = w(x) with proba-
bility π(x), and S(x) = 0 otherwise, for two deterministic functions w, π. We can identify these
data selection scheme with the pair (π,w), hence we will also write ρ(π,w;Q) for ρ(S;Q).

Among these, we focus on ‘non-reweighting schemes’ that are defined by the additional condition
w = 1 and denote them by N . Non-reweighting schemes are practically convenient since they
do not require to modify the training procedure. Optimal non-reweighting schemes have a simple
structure, as stated below. (See Appendix F.)
Proposition 4.3. Under the assumptions of Proposition B.1, further assume Q ⪰ 0, H ≻ 0,
E{∇θL(θ∗; y,x)|x} = 0, and x 7→ G(x), H(x) to be continuous. Define Gπ := EπG(x),
Hπ := EπH(x), where Eπf(x) := E

{
f(x)π(x)

}
/E
{
π(x)

}
. Finally define the function

Z(x;π) := −Tr
{
G(x)H−1

π QH−1
π

}
+ 2Tr

{
H(x)H−1

π QH−1
π GπH

−1
π

}
. (4.9)

Then there exists πnr achieving the minimum of the asymptotic error over non-reweighting schemes
ρ(πnr, 1;Q) = infS∈N ρ(S;Q). Further, if Hπnr ≻ 0 strictly, then πnr takes the form

πnr(x) =


1 if Z(x;πnr) > λ ,

0 if Z(x;πnr) < λ ,

b(x) ∈ [0, 1] if Z(x;πnr) = λ .

(4.10)

where λ and b(x) are chosen so that Eπnr(x) = γ. The resulting optimal asymptotic error is
ρnr(Q) = γ−1Tr(GπnrH

−1
πnrQH−1

πnr) = γ−1 infπ:Eπ=γ Tr(GπH
−1
π QH−1

π ).

In many cases of interest, the set {x : Z(x;π∗) = λ} has zero measure (e.g. if x has a den-
sity). Roughly speaking, the above implies that, under the non-reweighing scheme (and in the low-
dimensional asymptotics) we should select the n examples with largest score (‘hardest’ examples).

Another important difference compared to the unbiased case is that the score is now computed with
respect to the selected data, namely H is replaced by Hπ . As anticipated in Section 3, the selected
set depends on γ in a nontrivial way.

We compare ρnr and ρunb, proving that unbiased sampling can be arbitrarily worse than non-
reweighting. (See Appendix G.)
Theorem 1. Consider least-squares under the model yi = ⟨θ∗,xi⟩ + εi, with E(ε2i |xi) = τ2. For
any M , there is a distribution of xi and a γ ∈ (0, 1) such that ρunb(Σ; γ)/ρnr(Σ; γ) > M .

4.3 DATA SELECTION CAN BEAT FULL-SAMPLE ESTIMATION

One striking phenomenon illustrated in Figure 1 is that ERM with respect to a selected subset of
n < N samples out of N total produces a better model than ERM on the full dataset. This is the
case even when the surrogate model is trained on nsu samples, with nsu +n is significantly below N .

Is the non-monotonic behavior compatible with theoretical expectations? The answer depends on the
data selection scheme (see Appendix H for details and an illustration): (i) Unbiased data selection
is always monotone, cf. Section 4.1; (ii) The optimal data selection scheme with reweighting is also
monotone by a simple reduction argument. However, for n = N , this scheme does not reduce to
unweighted ERM, but to optimally weighted ERM. (iii) Finally, non-monotonicity is possible in a
neighborhood of γ = 1 for non-reweighting schemes, as established below (see Appendix I).
Theorem 2. Assume xi ∼ N(0, Id), and yi distributed according to Eq. (4.8). Let Q = H :=
∇2R(θ∗). Then both for linear and logistic regression there exists P(A|t) such that γ 7→ ρnr(Q; γ)
is monotone increasing in a non-empty interval (γ0, 1).

4.4 IS UNBIASED SUBSAMPLING EVER OPTIMAL?

We will next prove that, in a natural setting, unbiased subsampling is always suboptimal below a
certain subsampling ratio. (The last condition is likely to be a proof artifact, cf. Appendix J.) We
show in Appendix J that the conditions below hold generically for generalized linear models.
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Theorem 3. Consider the setting of Proposition B.1, and consider the prediction error under test
loss equal to training loss (i.e. Q = H := ∇2R(θ∗)). Further assume: A1. For G(x) and H(x)
defined as in Eqs (4.2), we have G(x) = H(x). (This is for instance the case in maximum likeli-
hood); A2. G(x) is almost surely non-zero has an almost sure upper bound; A3. The distribution
of G(x)/Tr(G(x)H−1)1/2 is not not supported on any strict affine subspace of the set of d × d
symmetric matrices. A4. E{∇θL(θ∗; y,x)|x} = 0.

Then there exists γ0 > 0 such that, for any γ ∈ (0, γ0) there is a biased subsampling scheme
asymptotically outperforming the best unbiased scheme.

4.5 IMPERFECT SURROGATES

In a more realistic setting, the surrogate model Psu(dy|x) does not coincide with the actual condi-
tional distribution of yi given xi. We model this situation using a minimax point of view. Namely,
we assume that the actual conditional distribution is in a neighborhood of the surrogate model, and
study the worst case error in this neighborhood. The minimax theorem then implies that we should
use data selection schemes that are optimal for the worst data distribution in this neighborhood. We
will not pursue the construction of minimax optimal data selection schemes in this paper. However,
we point out that the broad conclusion is consistent with some of our empirical findings in Section 7.
Namely, in certain cases using a less accurate surrogate model yields better data selection. Theorems
and examples are presented in Appendix K.

5 HIGH-DIMENSIONAL ASYMPTOTICS: GENERALIZED LINEAR MODELS

We next study a high dimensional setting whereby the number of samples N and the dimension p
diverge simultaneously. More precisely, we assume n,N, p → ∞ with n/N → γ, N/p → δ0 for
some γ, δ0 ∈ (0,∞). We will restrict ourselves to the case of (potentially misspecified) generalized
linear models already introduced in Example 4.2. As we will see in this section and the next,
the high-dimensional setting allow us to unveil a few interesting phenomena, namely: (i) Biasing
data selection towards hard samples (those that are uncertain under the surrogate model) can be
suboptimal; (ii) Even when biasing towards hard samples is effective, selecting the top hardest
one can lead to poor behavior at small γ; (iii) A one parameter family of selection probabilities
introduced in the next section is broadly effective.

5.1 SETTING

Since our focus is on the surrogate model, we consider a data distribution in which the covariates
carry little or no information about the value of a sample. We assume xi ∼ N(0, Ip), and (potentially
misspecified) responses yi that depend on a one-dimensional projection of the data, as per Eq. (4.8).
This includes the general misspecified binary response model: yi ∈ {+1,−1} and P(yi = +1|xi) =
f(⟨θ0,xi⟩) = 1− P(yi = −1|xi).
We specialize the ERM procedure of Eq. (2.1) to

R̂N (θ) :=
1

N

N∑
i=1

Si(⟨θ̂
su
,xi⟩)L(⟨θ,xi⟩, yi) +

λ

2
∥θ∥22 . (5.1)

where L : R × R → R is a loss function (we abuse notations here). This is a special case of
Eq. (2.1) in two ways: first, the loss depends on θ, xi only through ⟨θ,xi⟩ and, second, we focus
on a ridge regularizer. Our characterization will require L to be convex in its first argument. As
before, it is understood that Si(⟨θ̂

su
,xi⟩) depends on some additional i.i.d. randomness. Denoting by

θ̂λ := argminθR̂N (θ), we will consider a test error of the formRtest(θ̂λ) = ELtest(⟨θ̂λ,xnew⟩, ynew) .

Because of the rotational invariance the behavior of the empirical risk minimization (5.1) depends
on the surrogate model only through two parameters3 (P⊥

0 is the projector orthogonal to θ0):

β0 := lim
N,p→∞

⟨θ̂
su
,θ0⟩

∥θ0∥
, βs := lim

N,p→∞

∥∥P⊥
0 θ̂

su∥∥
2
. (5.2)

3The population risk minimizer θ∗ does not coincide necessarily with θ0. We have θ∗ = c∗θ0/∥θ0∥.
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5.2 ASYMPTOTICS OF THE ESTIMATION ERROR

The high-dimensional asymptotics of the test error is determined by a saddle point of the following
Lagrangian (here and below α := (α0, αs, α⊥), β := (β0, βs, 0), α0,s := (α0, αs, 0)):

L (α, µ, ω) :=
λ

2
∥α∥2 − µα2

⊥
2δ0

+ E
{
min
u∈R

[
S(⟨β,G⟩)L(⟨α0,sG⟩+ u, Y ) +

1

2
µ(α⊥G⊥ − u)2

]}
,

G = (G0, Gs, G⊥) ∼ N(0, I3), Y ∼ P( · | ∥θ0∥2G0) . (5.3)

(Expectation with respect to the randomness in S is implicit in the symbol E.)
Theorem 4. Assume u 7→ L(u, y) is convex, continuous, with at most quadratic growth, and λ > 0.
Further denote by α∗, µ∗ the solution of the following minimax problem (α∗ is uniquely defined by
this condition)

min
α

max
µ≥0

L (α, µ) . (5.4)

Then the following hold in the limit N, p→ ∞, with N/p→ δ0: If (u, z) 7→
∫
Ltest(u; y)P(dy|z) is

a continuous function with at most quadratic growth, we have

p-lim
N,p→∞

Rtest(θ̂λ) = ELtest

(
α∗
0G0 +

√
(α∗
s)

2 + (α∗
⊥)

2G;Y
)
, (5.5)

where expectation is taken with respect to the joint distribution of Eq. (5.3). Further, the asymptotic
subsampling fraction is given by n/N → γ = P(S(β0G0 + βsGs) > 0).

The proof of Theorem 4 is deferred to Appendix L, which also contains corollaries for special cases
(see also Appendix M).

6 NUMERICAL RESULTS: SYNTHETIC DATA

In this section we present numerical simulations within the synthetic data model introduced in Sec-
tion 5.1, for binary labels yi ∈ {+1,−1}. Summarizing, we generate isotropic feature vectors
xi ∼ N(0, Ip), and labels with P(yi = +1|xi) = f(⟨θ0,xi⟩). We then perform data selection, with
selection probability

π(xi) = min
(
c(γ) p(⟨θ̂

su
,xi⟩)α(1− p(⟨θ̂

su
,xi⟩))α; 1

)
, (6.1)

where p(⟨θ̂
su
,xi⟩) = (1 + e−2⟨θ̂su

,xi⟩)−1 is the probability of yi = +1 under the surrogate model.
We fix the constant c(γ) so that

∑
i≤N π(xi) = n.

Hence, α > 0 upsamples data points with higher uncertainty under the surrogate model (‘difficult’
data), while α < 0 upsamples data points with lower uncertainty (‘easy’ data). We then fit ridge
regularized logistic regression to the selected data (cf. Eq. (5.1)) and evaluate misclassification error
on a hold-out test set. For large-dimension d, influence-function based subsampling essentially
corresponds to the case α = 1/2 of Eq. (6.1) (see Appendix N for proof).

Figure 2 compare the results of simulations (circles) and theoretical predictions (continuous lines)
for different δ0, λ. We consider two misspecified models defined by (here η = 0.95 = 1 − η̄,
ζ = 0.7 = 1− ζ̄): f :

f1(z) := η1z≥0 + η̄1z<0 , f2(z) := ζ̄1z<−0.5 + η̄1(−0.5≤z<0) + η1(0≤z<0.5) + ζ1z≥0.5 .

Here we use an ideal surrogate: θ̂
su

= θ0. In Appendix N we report similar plots both for well-
specified and misspecified models, exploring the effect of signal strength and of imperfect surrogates
(cf. Figure 5, 6, 7) 4.

The agreement between theoretical predictions and simulation results is excellent in all the experi-
ments. Theory correctly predicts that, for a suitable choice of α, the non-reweighted data selection
scheme of Eq. (6.1) achieves nearly identical test error as full data, while using as few as 40% of the

4The code to reproduce theory and simulations with synthetic data can be found at the github repo.
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Figure 2: Misclassification error for logistic regression after non-reweighted subsampling, cf.
Eq. (6.1), under misspecified model P

(
y = 1

∣∣z) := f(z), where z = ⟨θ0,x⟩. Circles are results of
numerical simulations, and continuous lines are theoretical predictions. Colors represent different
values of the exponent α in Eq. (6.1). Left plot: N = 34345, p = 932; Right plot: N = 6870,
p = 3000. Each panel corresponds to a different choice of f , λ. (See main text.)

samples. The optimal choice of α is highly dependent on the setting, with α < 0 broadly outper-
forming α > 0 when the number of samples per dimension is smaller (Figure 6). Also, we observe
qualitatively different behaviors for misspecified model. Notably: (i) Learning after data selection
often outperforms learning on the full sample; (ii) Upsampling ‘hard’ datapoints (i.e. using α > 0)
is most often the optimal strategy with respect to the well-specified case. (iii) Upsampling ‘easy’
datapoints can be beneficial in the small γ regime; (iv) For small λ and certain choices of δ0, α we
observe interesting non-monotonicities of error: smaller sample sizes lead to lower misclassification
error. This is related to suboptimality of that value of α and scheme (6.1) (see Section 4.3).

7 NUMERICAL RESULTS: REAL DATA

For our real-data experiments we used an Autonomous Vehicle (AV) dataset and a binary classifica-
tion task. As for synthetic data, we use ridge regularized logistic regression and study data selection
under the one-parameter scheme of Eq. (6.1). This model was trained and tested on unsupervised
features extracted from image data. Appendix O provides the details of the dataset and experiments,
and further empirical results supporting the claims.

Figure 1 (left) shows test error for optimal λ and α = 0.5 fixed, for unbiased and non-reweighted
(biased) subsampling, using ‘weak’ and ‘strong’ surrogate models. Note that: (i) Restricting to ‘un-
biased’ data selection is unnecessary and sometimes harmful; (ii) The efficacy of weakly supervised
data-selection methods is not highly sensitive to the quality of the surrogate (see also Figure 9 in
Appendix O).

Figure 1 (right) shows test error for the optimal parameters {λ, α, surr, bias}, selected by minimizing
the misclassification rate on the validation set. The reported results are computed on the test set. We
compare this optimal choice by a ‘constant strategy’ that uses λ = 0.01, α = 0.5, non-reweighted
subsampling and weak surrogate models. This constant strategy performs almost optimally when N
is large, and still provides consistent improvements over random subsampling when N is smaller.
This strategy reflects influence-function based subsampling, although without reweighting and using
a weak surrogate model. This figure highlights that: (i) Selection criteria based on the ‘uncertainty’
associated to the label of a data point are effective, however influence function can be suboptimal;
(ii) Learning after data selection can outperform learning on the full sample.
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A STANDARD NOTATIONS

The unit sphere in d dimensions is denoted by Sd−1. Given two symmetric matrices A,B ∈ Rd×d,
we write A ⪰ B if A−B is positive semidefinite, and A ≻ B if A−B is strictly positive definite.
We denote by p-limn→∞Xn the limit in probability of a sequence of random variables (Xn)n≥1.
We use OP ( · ), oP ( · ) and so on for the standard Oh-notation in probability. For instance, given a
sequence of random variables XN , and deterministic quantities bN , we have

XN = oP (bN ) ⇔ p-lim
N→∞

|XN |
bN

= 0 . (A.1)

B LOW-DIMENSIONAL GENERAL ASYMPTOTICS: IDEAL SURROGATE

Recall, the asymptotics of θ̂ depends on the population risk associated to sampling scheme S (that
is the expectation of the empirical risk (2.1)):

RS(θ) := E
{
S(x)L(θ; y,x)

}
. (B.1)

(In this notation, the argument S indicates the dependence on the function that defines the sub-
sampling procedure.) The conditional gradient covariance, and conditional Hessian will play an
important role, and are defined below:

G(x) := E
{
∇θL(θ∗; y,x)∇θL(θ∗; y,x)

T|x
}
, H(x) := E

{
∇2

θL(θ∗; y,x)|x
}
. (B.2)

Our result characterizes the error under weighted quadratic losses ∥θ̂−θ∗∥2Q := ⟨θ̂−θ∗,Q(θ̂−θ∗)⟩,
for Q ∈ Rp×p. This covers both the standard ℓ2 estimation error (by setting Q = I) and, under
smoothness conditions, the test error Rtest(θ̂).

We define the asymptotic error coefficient via

ρ(S;Q) := p-lim
N→∞

N∥θ̂ − θ∗∥2Q , (B.3)

whenever the limit exists. The next result is an application of textbook asymptotic statistics, as
detailed below.

Proposition B.1. Assume the following:

A1. RS(θ) is uniquely minimized at θ = θ∗.

A2. θ 7→ L(θ; y,x) is non-negative, lower semicontinuous. Further, for every u ∈ Sp−1,
define L∞(u; y,x) ∈ [0,∞]

L∞(u; y,x) = lim inf
θ→+∞

θ/∥θ∥→u

L(θ; y,x) , (B.4)

and assume infu∈Sp−1 E{S(x)L∞(u; y,x)} > RS(θ∗).

A3. θ 7→ L(θ; y,x) is differentiable at θ∗ for P-almost every (y,x). Further, for B a neigh-
borhood of θ∗,

E sup
θ1 ̸=θ2∈B

{
S(x)2

|L(θ1; y,x)− L(θ2; y,x)|2

∥θ1 − θ2∥22

}
<∞

A4. θ 7→ RS(θ) is twice differentiable at θ∗, with ∇2RS(θ∗) = E{S(x)H(x)} ≻ 0.

Then, for any Q ∈ Rp×p symmetric, the limit of Eq. (B.3) exists and is given by

ρ(S;Q) =
E{S(x)2}
E{S(x)}2

Tr
(
GSH

−1
S QH−1

S

)
, (B.5)
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where

GS :=
E
{
S(x)2 G(x)

}
E{S(x)2}

, HS :=
E
{
S(x)H(x)

}
E{S(x)}

. (B.6)

In particular, if θ 7→ Rtest(θ) is twice continuously differentiable at θ∗, with ∇Rtest(θ∗) = 0, then

Rtest(θ̂) = Rtest(θ∗) +
1

N
· ρ(S;Qtest) + oP (1/N) , (B.7)

Qtest :=
1

2
∇2Rtest(θ∗) . (B.8)

Remark B.1. Key for Proposition B.1 to hold is condition A1, which requires the minimizer of
the subsampled population risk RS to coincide with the minimizer of the original risk R. This
amounts to say that the data selection scheme is not so biased as to make empirical risk minimization
inconsistent. If it does not hold, then the resulting error ∥θ̂− θ∗∥2Q will be, in general, of order one.

Proof of Proposition B.1 Write Si(xi) = s(xi, Ui) where (Ui)i≤N ∼iid Unif([0, 1]) are the
independent random seed used to compute Si (we omit the dependence on the surrogate model).
For ∥ξ∥ < 1, define θ(ξ) = c(∥ξ∥) ξ, where c(r) = 1/(1 − r2), and, with an abuse of notation,
RS(ξ) = RS(θ(ξ)). Finally

LS(ξ;Zi) :=

{
s(xi, Ui)L(θ(ξ); yi,xi) if ∥ξ∥ < 1,
s(xi, Ui)L∞(ξ; yi,xi) if ∥ξ∥ = 1,

(B.9)

Zi :=
(
Ui, yi,xi

)
, (B.10)

so that RS(ξ) = ELS(ξ;Z) and R̂N (ξ) = N−1
∑N
i=1 LS(ξ;Zi) are defined for ξ ∈ Bp(1) (the

unit ball in Rp). If ξ̂ := argminξ∈Bp(1) R̂N (ξ), and ξ∗ := argminξ∈Bp(1)RS(ξ) (the latter is
unique by Assumption A1), by van der Vaart (2000, Theorem 5.13), we have ξ̂ → ξ∗ almost surely.
By Assumption A2, we further have ∥ξ∥ < 1 strictly. Therefore, almost surely, θ̂ → θ∗ = θ(ξ∗).

Using van der Vaart (2000, Theorem 5.14) (whose assumptions follow from A3, A4), we get

θ̂ − θ∗ =
1

N
H−1

S

N∑
i=1

∇θLS(θ∗;Zi) + oP (N
−1/2) , (B.11)

whence

ρ(S;Q) = ETr
(
∇θLS(θ∗;Z1)∇θLS(θ∗;Z1)

TH−1
S QH−1

S

)
. (B.12)

The claim follows simply by substituting the expression for ∇θLS(θ∗;Z1).

C PROOF OF PROPOSITION 4.1

As mentioned in the main text, this result (in slightly different form) appears already in the literature
(Ting & Brochu, 2018; Wang et al., 2018; Ai et al., 2021). We nevertheless present a proof for the
reader’s convenience.

First of all notice that, for S unbiased we have E{S(x)|x} = 1 and therefore HS = H . Eq. (B.5)
yields

ρ(S;Q) = E{S(x)2Z(x)} , Z(x) = Tr
(
G(x)H−1QH−1

)
,

We can always write S(x) = S+(x) I(x), where S+(x) > 0 almost surely and, conditionally on x,
S+(x) is independent of I(x) ∈ {0, 1} with P(I(x) = 1|x) = π(x). The unbiasedness constraint
translates into E(S+(x)|x) = 1/π(x). Hence

ρ(S;Q) = E{S+(x)
2π(x)Z(x)}

≥ E{E{S+(x)|x}2π(x)Z(x)}

= E
{Z(x)
π(x)

}
,

14
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where the lower bound holds with equality if and only if S+(x) = 1/π(x) almost surely.

The optimal π is determined by the convex optimization problem

minimize E
{Z(x)
π(x)

}
, (C.1)

subj. to E{π(x)} = γ , (C.2)
π(x) ∈ [0, 1] ∀x . (C.3)

By duality, there exists a constant λ = λ(γ), such that the optimum of the above problem is the
solution of

minimize E
{Z(x)
π(x)

− λπ(x)
}
, (C.4)

subj. to π(x) ∈ [0, 1] ∀x . (C.5)

This yields the claimed optimum πunb.
Remark C.1. Besides computing expectations with respect to the conditional distribution of y given
x, evaluating the score Z requires to be able to approximate H = E{H(x)}. However, this can
be consistently estimated e.g. using the empirical mean Ĥ := N−1

∑N
i=1 H(xi). We will neglect

errors involved in such approximations.

D PROOF OF PROPOSITION 4.2

For claim (1), it is easy to compute ρrand(Q) = γ−1E(Z). Therefore, the gain derived from optimal
subsampling can be written as

ρunb(Q)

ρrand(Q)
=

E(Z/πunb)E(πunb)

E((Z/πunb) · πunb)
≤ 1 . (D.1)

The inequality above is due to the fact that πunb and Z/πunb are both non-decreasing functions of
Z. It is strict unless the following happens with probability one, for i.i.d. copies Z1, Z2 of Z:
min(1; cZ

1/2
1 ) = min(1; cZ

1/2
2 ) or max(Z1;Z

1/2
1 /c) = max(Z2;Z

1/2
2 /c) However, this happens

only if either Z is almost surely a constant or if cZ ≤ 1 almost surely. The latter implies γ = 1.

To prove claim (2), note that the mapping π 7→ E{Z(x)/π(x)} appearing in Eq. (4.5) is monotone
with respect to the partial ordering of pointwise domination. Therefore, we can replace the constraint
Eπ(x) = γ by Eπ(x) ≤ γ, whence monotonicity trivially follows.

E BIASED DATA SELECTION: DEFINITIONS

Among data selection schemes, a special role is played by those schemes in which the only ran-
domness is the choice of whether or not to select a certain sample i. We refer to these schemes as
‘simple.’
Definition E.1 (Simple data selection schemes). A scheme is simple if there exist function w, π such
that

S(x) =

{
w(x) with probability π(x),
0 otherwise ,

(E.1)

We denote the set of simple sampling schemes by S ⊆ A , where A is the set of all data selection
schemes.

As a reminder, we can identify any simple data selection scheme with the pair (π,w), hence we will
occasionally abuse notation and write ρ(π,w;Q) for ρ(S;Q).
Lemma E.2. For Q ⪰ 0, we have: infS∈A ρ(S;Q) = infS∈S ρ(S;Q) .

inf
S∈A

ρ(S;Q) = inf
S∈S

ρ(S;Q) . (E.2)

We can therefore restrict ourselves to simple schemes without loss.
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Proof of Lemma E.2 As in the previous section, we can always S(x) = S+(x) I(x), where
S+(x) > 0 almost surely and, conditionally on x, S+(x) is independent of I(x) ∈ {0, 1}. Further

P(I(x) = 1|x) = π(x) , (E.3)
E(S+(x)|x) = w(x) . (E.4)

Simple schemes correspond to the case in which S+(x) = w(x) is non-random

Recall the formula (B.5) for the asymptotic error coefficient ρ(S;Q), which we rewrite here as

ρ(S;Q) = Tr
(
E
{
S2
+(x)π(x)G(x)

}
H̃

−1

w,πQH̃
−1

w,π

)
, (E.5)

H̃w,π := E{w(x)π(x)H(x)} . (E.6)

By Jensen inequality (using the fact that G(x), H̃w,π,Q ⪰ 0), we get

ρ(S;Q) ≥ Tr
(
E
{
w(x)2π(x)G(x)

}
H̃

−1

w,πQH̃
−1

w,π

)
, (E.7)

and simply note that the right hand side is achieved by the simple scheme.

F PROOF OF PROPOSITION 4.3

Recall the general formula (B.5) for the asymptotic error coefficient ρ(S;Q). For a non-reweighting
scheme with selection probability π, with an abuse of notation we write ρ(S;Q) as ρ(π;Q) (we also
used ρ(π, 1;Q) in the main text). Explicitly

ρ(π;Q) = Tr
(
E
{
π(x)G(x)

}
E
{
π(x)H(x)

}−1
QE
{
π(x)H(x)

}−1
)
. (F.1)

Notice that this is defined for E
{
π(x)H(x)

}
≻ 0. We extent it to E

{
π(x)H(x)

}
⪰ 0 by letting

ρ(π;Q) = lim
λ→0+

Tr
(
E
{
π(x)G(x)

}(
λI + E

{
π(x)H(x)

})−1
Q
(
λI + E

{
π(x)H(x)

})−1
)
.

(F.2)

We want to minimize this function over π subject to the convex constraints Eπ(x) = γ, π(x) ∈ [0, 1]
for all x.

We claim that a minimizer πnr always exists. To this end, we view ρ(π;Q) = F (ν) as a function
of the probability measure ν(dx) = π(x)P(dx)/γ. In other words F is a function of the space
of probability measures, whose Radon-Nikodym derivative with respect to P is upper bounded by
1/γ. This domain is uniformly tight. Further, if νn is a sequence in this space and νn ⇒ ν∞ (weak
convergence), it follows by the Portmanteau’s theorem that ν∞ has also Radon-Nikodym derivative
with respect to P that is upper bounded by 1/γ. Hence this domain is compact by Prokhorov’s
theorem. Finally ν 7→

∫
G(x) ν(dx) and ν 7→

∫
H(x) ν(dx) are continuous in the topology of

weak convergence (because G(x), H(x) are continuous by assumption), and therefore ν 7→ F (ν)
is lower semi-continuous. Hence, there exists a minimizer νnr(dx) = πnr(x)P(dx)/γ, with πnr(x) ∈
[0, 1].

Given any minimizer πnr, and any other feasible π, let πt := (1 − t)πnr + tπ. By assumption
Hπnr ≻ 0 strictly. Then

ρ(πt;Q) = ρ(πnr;Q) + t

∫ (
π(x)− πnr(x)

)
Z(x;πnr)P(dx) + o(t) . (F.3)

Therefore it must be true that, for any feasible π,

J(π;πnr) :=

∫ (
π(x)− πnr(x)

)
Z(x;πnr)P(dx) ≥ 0 . (F.4)

LetQε := {x ∈ Rd : πnr(x) ∈ (ε, 1−ε)}. The claim (4.10) is is implied by the following statement:
Z(x;πnr) is almost surely constant on Qε for each ε > 0. Assume by contradiction that there exists
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ε > 0 and z0 ∈ R such that P(x ∈ Qε : Z(x;πnr) ≥ z0) = p+ > 0, P(x ∈ Qε : Z(x;πnr) < z0) =
p− > 0. Let Q+ := {x ∈ Qε : Z(x;πnr) ≥ z0}, Q− := {x ∈ Qε : Z(x;πnr) < z0}. Define

π(x) =


πnr(x)− p−ε if x ∈ Q+,
πnr(x) + p+ε if x ∈ Q−,
πnr(x) otherwise.

It is easy to check that π is feasible and

J(π;πnr) = −p−ε
∫
Q+

Z(x;πnr)P(dx) + p+ε

∫
Q−

Z(x;πnr)P(dx)

= −p+p−ε
{
E
(
Z(x;πnr)

∣∣x ∈ Q+

)
− E

(
Z(x;πnr)

∣∣x ∈ Q−
)}

< 0 ,

thus yielding a contradiction with Eq. (F.4).

Finally, we note that the stated form of ρnr follows from Eq. (F.1).
Remark F.1. The condition E{∇θL(θ∗; y,x)|x} = 0 (almost surely) could be eliminated at the
cost of enforcing the constraint E{∇θL(θ∗; y,x)π(x)} = 0. This would result in a more compli-
cated expression for the data selection rule: we will not pursue this generalization.

G DIFFERENCES BETWEEN UNBIASED AND BIASED DATA SELECTION:
EXAMPLES

We provide concrete examples for optimal biased data selection schemes for two specific cases
contrasting with optimal biased data selection schemes under low-dimensional asymptotics.

G.1 LINEAR REGRESSION: PROOF OF THEOREM 1

Continuing from Example 4.3, note that the condition E{∇θL(θ∗; y,x)|x} = 0 holds. We now
have G(x) = τ2xxT, H(x) = xxT. Since rescaling G does not change the selection rule, we can
redefine G(x) = xxT, whence Hπ = Gπ = Σπ , where Σπ is the population covariance of the
subsampled feature vectors.

A simple calculation shows
Z(x;π) = ⟨x,Σ−1

π QΣ−1
π x⟩ , (G.1)

πnr(x) =

{
1 if ⟨x,Σ−1

πnrQΣ−1
πnrx⟩ > λ ,

0 if ⟨x,Σ−1
πnrQΣ−1

πnrx⟩ < λ .
(G.2)

In other words, this scheme selects all data that lay outside a certain ellipsoid. The shape of the
ellipsoid is determined self-consistently by the covariance Σπnr of points outside the ellipsoid.

Let emphasize two differences with respect to the standard leverage-score approach of Section 4.1

(i) As for general non-reweighing schemes, selection is essentially deterministic, πnr(x) ∈
{0, 1} (in particular, if the distribution of x has a density, then πnr(x) ∈ {0, 1} with proba-
bility one).

(ii) The original covariance Σ is replaced by the covariance of selected data Σπ . As anticipated
in Section 3, the selected set depends on γ in a nontrivial way.

Given that the leverage score of datapoint xi measures how different is xi from the other data, the
modified score of Eq. (G.1) can be interpreted as measuring how different is xi from selected data.
Example G.1 (One-dimensional covariates). In order to get a more concrete understanding of the
difference with respect to unbiased data selection, consider one-dimensional covariates xi ∼ PX
with PX of mean zero. We study prediction error, i.e. Q = Σ. Let XM be the supremum of the
support of P|X|, which we assume finite, and X a sample from PX . In this case Z(x) = τ2x2/Σ.
Provided γ ≤ E|X|/XM , we have c(γ) = γE(X2)1/2/(τE|X|) and the optimal asymptotic error
for unbiased subsampling is

ρunb(Σ) =
τ2

γ
· (E|X|)2

E(X2)
. (G.3)
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On the other hand, assuming PX has a density, the optimal non-reweighting rule takes the form
π∗(x) = 1(|x| ≥ r(γ)). The coefficient r = r(γ) is fixed by γ = P(|X| ≥ r). The optimal
asymptotic error for non-reweighting subsampling is

ρnr(Σ) = τ2 · E(X2)

E(X21|X|≥r)
. (G.4)

The ratio of biased to unbiased error then takes the form

ρnr(Σ)

ρunb(Σ)
=

E(X2)2P(|X| ≥ r)

(E|X|)2E(X21|X|≥r)
, γ ≤ E|X|

XM
. (G.5)

It is easy to come up with examples in which this ratio is smaller than one. For instance if PX =
Unif([−XM , XM ]), then

ρnr(Σ)

ρunb(Σ)
=

4γ

3(1− (1− γ)3)
, γ ≤ 1

2
. (G.6)

More generally, as γ → 0, we get

ρnr(Σ)

ρunb(Σ)
=

E(X2)2

(E|X|)2X2
M

+ o(1) , γ → 0, (G.7)

Notice that this ratio is always smaller than one (by Hölder’s inequality) and can be arbitrarily small.
For instance PX(dx) = CM,α|x|−α11≤|x|≤XM

, α > 3 then the above ratio is

ρnr(Σ)

ρunb(Σ)
=
(α− 2

α− 3
·
1−X−α+3

M

1−X−α+2
M

)2 1

X2
M

+ o(1) . (G.8)

To be concrete, for α = 4, XM = 10, unbiased is suboptimal by a factor larger than 30.

Example G.2 (Elliptical covariates). The one-dimensional example above is easily generalized to
higher dimensions. Consider xi = Σ1/2zi where zi are spherically symmetric, namely zi = riui
with (ri,ui) ∼ PR ⊗Unif(Sd−1(

√
d)). If we consider test error (and therefore Q = Σ), then it is a

symmetry argument shows that, for optimal π the modified leverage score (G.1) coincides with the
original one

Z(x;π∗) = ⟨x,Σ−1x⟩ = ∥z∥22 = r2 . (G.9)

We therefore recover the one-dimensional case with P|X| replaced by PR.

G.2 GENERALIZED LINEAR MODELS

Continuing from Example 4.2, we note that E{y|x} = ϕ′(⟨θ∗,x⟩). Therefore
E{∇θL(θ∗; y,x)|x} = 0. Further

G(x) = E{(y − ϕ′(⟨θ∗,x⟩))2|x} · xxT = ϕ′′(⟨θ∗,x⟩) · xxT = H(x) . (G.10)

whence we have the following generalization of the score (G.1):

Z(x;π) = ϕ′′(⟨θ∗,x⟩) · ⟨x,H−1
π QH−1

π x⟩ . (G.11)

Note that this is similar to the score derived in the unbiased case, cf. Eq. (4.7), with two important
differences that we already encountered for linear regression: (i) The selection process is essentially
deterministic: a datapoint is selected if Z(xi;π) > λ and not selected if Z(xi;π) < λ; (ii) The
score is computed with respect to the selected data, namely H is replaced by Hπ . The effect of
replacing H by Hπ is illustrated on a toy data distribution in Figure 3.

We observe that at high γ, the two selection procedures are very similar. In contrast, at low γ,
selection based on H is always biased towards selecting “hard samples” (in directions roughly
orthogonal to θ∗), whereas selection based on Hπ takes into account geometry of selected subset
and keeps samples in a more diverse set of directions.
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Figure 3: Data selection in a logistic model (here we optimize test error with respect to log-loss).
Covariates are bi-dimensional and uniformly distributed over the letter g. The red arrow corresponds
to the true parameter vector θ∗. Selected points are dark yellow (circles) and non selected ones are
light yellow (crosses). Top row: selecting data with largest value of the influence function. Bottom:
optimal non-reweighting selection scheme.

Test 
Error

n/N
1

Unbiased
Non-reweighted
Optimal

Figure 4: Cartoon of the monotonicity properties of various data-selection schemes.

We also note that, for GLMs, the optimal asymptotic error coefficient of Proposition 4.3 takes the
particularly simple form

ρnr(Q) =
1

γ
inf

π:Eπ=γ
Tr(H−1

π Q) . (G.12)

In the case of well-specified GLMs, biased data selection cannot improve over full sample estima-
tion. Indeed, ρnr(Q) = Tr(E{H(x)πnr(x)}−1Q), and E{H(x)πnr(x)} ⪯ E{H(x)}. On the other
hand, it is clear that ρnr(Q) ≤ ρrand(Q) (because ρrand(Q) corresponds to a special choice of π on the
right-hand side of Eq. (G.12)). Further, the inequality is strict (namely, ρnr(Q) < ρrand(Q)) except
(possibly) on a the degenerate case in which Z(x;π) is constant on a set of positive measure.

H MONOTONICITY PROPERTIES OF BIASED DATA SELECTION

Figure 4 provides a cartoon illustration of the following monotonicity properties:

• For unbiased (reweighted) data selection, we saw in Section 4.1 that the asymptotic test
error is always monotone in the size of the subsample n (at least within the low-dimensional
setting studied here). In particular, full sample data ERM cannot have worse test error than
ERM on selected data.

• Consider then the optimal data selection scheme with reweighting. We claim that this is
also monotone. Indeed given target sample sizes n1 < n2, one can simulate data selection
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at sample size n1 by first selecting n2 samples and then setting to 0 the weights of n2 − n1
samples.
However, for n = N , this scheme does not reduce to unweighted ERM, but to optimally
weighted ERM. As a consequence, this monotonicity property does not imply that original
unweighted ERM on the full sample has better test error than weighted ERM on a data-
selected subsample.

• The main result of the next section will be a proof that non-monotonicity is possible in a
neighborhood of γ = 1 for non-reweighting schemes.

I BEATING FULL-SAMPLE ESTIMATION USING DATA SELECTION:
LOW-DIMENSIONAL ASYMPTOTICS

We next state theorems and corresponding proofs showing that non-monotonicity is possible in a
neighborhood of γ = 1 for non-reweighting schemes under low-dimensional asymptotics.
Theorem 5. Under the setting of Proposition 4.3, further assume H ≻ 0, E{∥G(x)∥4op} < ∞,
E{∥H(x)∥4op} < ∞. Then, there exists a constant C such that, for any λ ∈ R such that
P(ZQ(x; 1) < λ) > 0, we have

ρnr(Q; γ) ≤ ρnr(Q; 1)− (1− γ)E
{
ZQ(x; 1)

∣∣ZQ(x; 1) < λ
}
+ C(1− γ)3/2 , (I.1)

ZQ(x; 1) := −Tr
{
G(x)H−1QH−1

}
+ 2Tr

{
H(x)H−1QH−1GH−1

}
. (I.2)

Further

(a) If ∂γρnr(Q; 1) = −ess inf ZQ(x; 1). (Note that this is potentially equal to +∞.)

(b) If P(ZQ(x; 1) < 0) > 0, then there exists γ0 = γ0(d) < 1 such that
γ ∈ (γ0(d), 1) ⇒ ρnr(Q; γ) < ρnr(Q; 1) . (I.3)

We next construct specific cases in which P(ZQ(x; 1) < 0) > 0 for the case of misspecified linear
model, namely (yi,xi) ∈ R× Rd with

P(yi ∈ A|xi) = P(A|⟨θ0,xi⟩) , (I.4)

where θ0 ∈ Rd is a fixed vector. We will show that both in the case of linear regression and logistic
regression, there are choices of the conditional distribution P, for which γ 7→ ρ(Q; γ) is strictly
increasing near γ = 1. In this cases, training on a selected subsample provably helps.
Theorem 6. Assume xi ∼ N(0, Id), and yi distributed according to Eq. (4.8). Let Q = H :=
∇2R(θ∗), (as before, θ∗ := argminθR(θ)). Then in each of the following cases, there exists
P(A|t) such that Eq. (I.3) holds:

(a) Least squares, i.e. L(θ; y,x) = (y − ⟨θ,x⟩)2/2, Ltest = L.

(b) Logistic regression, whereby yi ∈ {+1,−1}, L(θ; yi,xi) = −yi⟨θ,xi⟩ + ϕ(⟨θ,xi⟩),
ϕ(t) = log(et + e−t), Ltest = L.

The proofs of Theorem 5 and Theorem 6 are presented next.

I.1 PROOF OF THEOREM 5

Write G̃π = E{G(x)π(x)}, and similarly for H̃π . Defining π(x) := 1 − π(x), and using
E{π(x)} = 1− γ, we get

G̃π = G− E{G(x)π(x)} , ∥E{G(x)π(x)}∥op ≤ E{∥G(x)∥4op}1/4(1− γ)3/4 , (I.5)

and similarly for H̃π .

Using the form of ρnr in Proposition 4.3 and Taylor expansion (recall H ≻ 0 by assumption), we
get, for any π satisfying Eπ(x) = γ,

ρnr(Q; γ) ≤ ρnr(Q; 1) + E
{
ZQ(x; 1)π(x)

}
+O

(
∥E{G(x)π(x)}∥2op + ∥E{H(x)π(x)}∥2op

)
= ρnr(Q; 1) + E

{
ZQ(x; 1)π(x)

}
+O

(
(1− γ)3/2

)
,
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where ZQ(x; 1) is defined in the statement of the theorem.

For λ as in the statement, and all (1−γ) small enough, we can take π(x) = (1−γ)/P(ZQ(x; 1) <
λ) if ZQ(x; 1) < λ, and π(x) = 0 otherwise. This immediately implies Eq. (I.1) whence point (b)
follows.

In order to prove point (a), note that, by definition, for any λ > ess inf ZQ(x), we have P(ZQ(x) <
λ) > 0 and therefore Eq. (I.1) implies, for all 1− γ small enough

ρnr(Q; γ) ≤ ρnr(Q; 1) + λ(1− γ) + C(1− γ)3/2 . (I.6)
This implies ∂γρnr(Q; 1) ≥ −λ and therefore ∂γρnr(Q; 1) ≥ −ess inf ZQ(x).

Alternatively, assume ess inf ZQ(x) = λ∗ > −∞. Let πnr,γ achieve the infimum in Proposition
4.3 (Proposition 4.3 ensures that such πnr,γ exists). By the above argument (letting πnr,γ(x) =
1− πnr,γ(x))

ρnr(Q; γ) = ρnr(Q; 1) + E
{
ZQ(x; 1)πnr,γ(x)

}
+O

(
∥E{G(x)π(x)}∥2op + ∥E{H(x)π(x)}∥2op

)
≥ ρnr(Q; 1) + λ∗(1− γ) +O

(
(1− γ)3/2

)
.

This yields ∂γρnr(Q; 1) ≤ −λ∗.

I.2 PROOF OF THEOREM 6(A)

Both claims of the theorem follow if we can provide an example such thatZQ(x; 1) < 0 with strictly
positive probability, in the case Q = H . Specializing to that case, we have

ZH(x; 1) := −Tr
{
G(x)H−1

}
+ 2Tr

{
H(x)H−1GH−1

}
. (I.7)

In the following we will simplify notations and write Z(x) = ZH(x; 1).

We next consider the linear regression setting of point (a). Without loss of generality, we will
assume ∥θ0∥ = 1. By rotation invariance, the population risk minimizer has the form θ∗ = α∗θ0.
The coefficient α∗ is fixed by

0 = ∇RS(α∗θ0) = E
{
(y − α∗⟨θ0,x⟩)x

}
.

The only non-zero component of this equation is the one along θ0. Projecting along this direction,
we get (for G ∼ N(0, 1), Y ∼ P( · |G)):

E
{
(Y − α∗G)G

}
= 0 .

We next compute

G(x) = E
{
(y − ⟨θ∗,x⟩)2

∣∣x}xxT , H(x) = xxT . (I.8)
Note that we can rewrite the first equation as

G(x) = f(⟨θ0,x⟩)xxT , (I.9)

f(t) :=

∫
(y − α∗t)

2 P(dy|t) . (I.10)

Taking expectation with respect to x

G = aId + bθ0θ
T
0 , H = Id , (I.11)

a := E
{
(Y − α∗G)

2
}
, b := E

{
(Y − α∗G)

2(G2 − 1)
}
. (I.12)

Substituting in Eq. (I.7), we get
Z(x) = −f(⟨θ0,x⟩)∥x∥2 + 2a∥x∥2 + 2b⟨θ0,x⟩2

= ⟨θ0,x⟩2
[
− f(⟨θ0,x⟩) + 2E{f(G)G2}

]
(I.13)

+
∥∥P⊥

0 x
∥∥2
2

[
− f(⟨θ0,x⟩) + 2E{f(G)}

]
.

It is easy to construct examples in which ess inf Z(x) = −∞. For instance, take P( · |t) = δh(t),
h(t) = t+ c(t3 − 3t) for some c > 0 (no noise). Then we get α∗ = 1 and f(t) = c2(t3 − 2t)2. Let
t0 be such that f(t) > 2E{G2f(G)} for all t ≥ t0. Then the claim follows since

P
(
x : ⟨θ0,x⟩ ∈ [t0, t0 + 1],

∥∥P⊥
0 x
∥∥
2
> M

)
> 0 , (I.14)

for any M , and Eq. (I.13) yields Z(x) < 0 on the above event for all M large enough. In fact, we
also have Z(x) < −c for any c, by taking M sufficiently large.
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I.3 PROOF OF THEOREM 6(B)

We next consider a misspecified generalized linear model with yi ∈ {+1,−1} and

P(+1|z) = 1− P(−1|z) = f(z) . (I.15)

We set u(t) := 2f(t)− 1. It is simple to compute

∇R(θ) = −E
{
(u(⟨θ0,x⟩)− ϕ′(⟨θ,x⟩))x

}
.

In particular ∇R(θ) = −E
{
(u(G) − ϕ′(G))G

}
θ0, where expectation is with respect to G ∼

N(0, 1). We will impose the condition

E
{
Gu(G)

}
= E

{
Gϕ′(G))

}
.

so that the empirical risk minimizer is θ∗ = θ0.

Next we compute

G(x) = g(⟨θ∗,x⟩)xxT , H(x) = h(⟨θ∗,x⟩)xxT , (I.16)

where

g(t) := (u(t)− ϕ′(t))2 + 1− u(t)2 , h(t) := 1− ϕ′(t)2 . (I.17)

Performing the Gaussian integral, we get

G = aGId + bGθ∗θ
T
∗ , H = aHId + bHθ∗θ

T
∗ , (I.18)

where aG := Eg(G), bG := Eg′′(G), and similarly for H . We thus get

H−1 = c1Id + c′1θ∗θ
T
∗ , H−1GH−1 = c2Id + c′2θ∗θ

T
∗ , (I.19)

for some constants ci, c′i that are dimension-independent functions of aH , bH , aG, bG. Substituting
in the formula for Z(x) = ZH(x; 1), cf. Eq. (I.7), we get

Z(x) := −g(⟨θ∗,x⟩) ⟨x, (c1Id + c′1θ∗θ
T
∗ )x⟩+ 2h(⟨θ∗,x⟩) ⟨x, (c2Id + c′2θ∗θ

T
∗ )x⟩ . (I.20)

For large d, we have

⟨x, (cId + c′θ∗θ
T
∗ )x⟩ = c d+ oP (1) , (I.21)

and therefore
1

d
Z(x) = −c1g(⟨θ∗,x⟩) + c2h(⟨θ∗,x⟩) + oP (d) . (I.22)

Note that G = ⟨θ∗,x⟩ ∼ N(0, 1). In particular, its distribution is d-independent. It is therefore
sufficient to prove that −c1g(G)+ 2c2h(G) < 0 with strictly positive probability, since this implies
Z(x) with strictly positive probability for all d large enoug. It is simple to compute c1 = 1/aH ,
c2 = aG/a

2
H . Therefore it is sufficient to prove the following

Claim: We can choose f so that Eq. (I.16) is satisfied and −aHg(G)+2aGh(G) < 0 with
strictly positive probability.

To prove this claim, it is convenient to define the random variables W = ϕ′(G), M = u(G) and
note that the distribution of W is symmetric around 0, and has support (−1, 1).

We have g(G) = (M −W )2 + 1 −M2, h(G) = 1 −W 2. Therefore, the conditions of the claim
are equivalent to (the second condition is understood to hold with strictly positive probability)

E
{
(M −W )ψ(W )

}
= 0 , (I.23)

aH ·
[
(M −W )2 + 1−M2

]
> 2aG ·

[
1−W 2

]
, (I.24)

where ψ = (ϕ′)−1 (functional inverse), and

aG = E
{
(M −W )2 + 1−M2

}
, aH = E

{
1−W 2

}
. (I.25)
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We will further restrict ourselves to construct these random variables so that 2aG = aH , i.e.

E{1−W 2 − 4W (M −W )} = 0 . (I.26)

Next define φ : R → R by φ(x) = u(x)−ϕ′(x), whenceM−W = φ(G),W = ϕ′(G) = tanh(G).
Therefore, it is sufficient to construct φ : R → R such that, for some x0 ∈ R, ε > 0,

E{φ(G) tanh(G)} = b0 , (I.27)
E{φ(G)G} = 0 , (I.28)

φ(x)2 + 1− (tanh(x) + φ(x))2 > 1− tanh(x)2 for all x ∈ (x0 − ε, x0 + ε) , (I.29)
−1− tanh(x) < φ(x) < 1− tanh(x) for all x ∈ R . (I.30)

where b0 = E{1 − tanh(G)2}/4 is a constant b0 ∈ (0, 1/4). Note that Eq. (I.29) is sufficient
because the law of G is supported on the whole real line. Simplifying Eq. (I.29), and assuming φ is
continuous, we are led to

E{φ(G) tanh(G)} = b0 , (I.31)
E{φ(G)G} = 0 , (I.32)

xφ(x) < 0 for some x ∈ R , (I.33)
−1− tanh(x) < φ(x) < 1− tanh(x) for all x ∈ R . (I.34)

We complete the proof by the following result.
Lemma I.1. There exists φ : R → R continuous satisfying conditions (I.31) to (I.34) above.

Proof. We define F : L2(N(0, 1)) → R2 by F(φ) = (E{φ(G) tanh(G)},E{φ(G)G}), and

C :=
{
φ ∈ C(R) : ∀x ∈ R max(−1− tanh(x),−1) < φ(x) < min(1− tanh(x), 1)

}
. (I.35)

In particular, any φ ∈ C satisfies condition (I.34). We claim that there exists an open set B ⊆ R2,
such that (b0, 0) ∈ B and F(C) ⊇ B (i.e., for every x ∈ B, there exists φ ∈ C such that F(φ) = x).

In order to prove this claim, note that F is a continuous linear map and C is convex, whence F(C)
is convex. Hence, it is sufficient to exhibits points φ1, φ2, φ3 ∈ C (the closure is in L2(N(0, 1)) of
C), such that (b0, 0) is in the interior of the convex hull of {F(φi) : i ≤ 3}. We use the following
functions:

1. φ1(x) = 0: F(φ1) = (0, 0).

2. φ2(x) = sign(x)(1− tanh(|x|)):
F1(φ2) = E{tanh |G|(1− tanh |G|)} =: b1 > b0 , (I.36)
F2(φ2) = E{|G|(1− tanh |G|)} > 0 , (I.37)

(Numerically, b1 ≈ 0.16168, b0 ≈ 0.15143.)

3. φ3(x) = φ2(x) −M−1/2 q(x −M), where q(x) is a continuous non-negative function
supported on [−1, 1], with

∫
q(x) dx > 0. We have F1(φ3) = F1(φ2) − Θ(M−1/2) and

F2(φ3) = F2(φ2)−Θ(M1/2). Hence for a sufficiently largeM , F1(φ3) > b0, F2(φ3) < 0.

This proves the claim, and in particular we can satisfy conditions (I.31), (I.32), (I.34), since (b0, 0) ∈
B. In order to show that we can satisfy also condition (I.33), let q be defined as above and further
such that q(x) ≤ 1/2 for all x. Consider the sequence of functions indexed by k ∈ N:

φk(x) = φk(x)− q(x− k) . (I.38)

First note that, if φk ∈ C, then φk satisfies conditions (I.33), (I.34). Therefore, we are left to prove
that, for some k, there exists φk ∈ C that satisfies

F1(φk) = b0 + E{q(G− k) tanh(G)} =: b0 + δ1,k , (I.39)
F2(φk) = E{q(G− k)G} =: δ2,k . (I.40)

By dominated convergence, we have δk = (δ1,k, δ2,k) → 0 as k → ∞, and therefore (b0, 0)+ δk ∈
B for all k sufficiently large, whence the existence of φk for such k follows from the first part of the
proof.
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J PROOF OF THEOREM 3

Let πunb be the optimal unbiased sampling probability (see Proposition 4.1), with corresponding
weight wunb(x) = 1/πunb(x). Since G(x) = H(x) is almost surely bounded (Assumption A2), it
follows that Z(x) = Tr(G(x)H−1) is bounded as well. Therefore, there exists γ0 > 0 such that,
for all γ ∈ (0, γ0), πunb(x) = c(γ)Z(x)1/2.

For a bounded function φ, consider the alternative weight wε(x) = (1 + εφ(x))/πunb(x), which is
well defined for all ε small enough. Recall that we denote by ρ(π,w;Q) the asymptotic estimation
error coefficient for the simple scheme (π,w). To linear order in ε, we have

ρ(πunb, wε;H)− ρ(πunb, w0;H) = −2εE{W(x)φ(x)} + o(ε) . (J.1)

where

W(x) := Tr
(
Ex′

( G(x′)

πunb(x′)

)
H−1H(x)H−1

)
− Tr

( G(x)

πunb(x)
H−1

)
. (J.2)

Assume by contradiction ρ(π∗, wε;H) ≥ ρ(π∗, w−;H) for every φ, ε such that wε ≥ 0. By
Eq. (J.1), this implies W(x) = 0 for P-almost every x. Using assumption A1, and defining
M(x) := H−1/2G(x)H−1/2, we get

W(x) = Tr
(
Ex′

(M(x′)

πunb(x′)

)
M(x)

)
− 1

πunb(x)
Tr
(
M(x)

)
. (J.3)

we have πunb(x) = c(γ)Tr
(
M(x)

)1/2
and therefore W(x) = W0(x) · Tr

(
M(x)

)1/2
/c(γ), where

W0(x) = Tr
(
Ex′

( M(x′)

Tr
(
M(x′)

)1/2) · M(x)

Tr
(
M(x)

)1/2)− 1 (J.4)

= Tr
(
W ·W (x)

)
− 1 .

Here we defined W (x) := M(x)/Tr
(
M(x)

)1/2
, W := EW (x).

Since W(x) = 0 almost surely, and G(x) ̸= 0 almost surely (by assumption A2), we must have
Tr
(
W ·W (x)

)
= 1 almost surely, which contradicts the assumption of G(x)/Tr(G(x)H−1)−1/2

not lying on an affine subspace (Assumption A3).

Example J.1 (Generalized linear models). Consider again the GLM model of Example 4.2 (log-
likelihood loss). Recall that in this case

G(x) = H(x) = ϕ′′(⟨θ∗,x⟩)xxT . (J.5)

Hence condition A1 of Theorem 3 is satisfied, and A4 is also always satisfied. If P(dx) is supported
on ∥x∥2 ≤ M , and P(x = 0) = 0 then condition A2 is also satisfied. (Note that ϕ′′(t) > 0 for any
t > 0 unless ν0 = δc is a point mass, which is a degenerate case.) Finally, for condition A3 note that

G(x)

Tr(G(x)H−1)1/2
=

xxT

⟨x,Hx⟩
. (J.6)

Therefore, a sufficient condition for A3 is that the support of P(dx) contains an arbitrarily small
ball Bd(x0; ε) ⊆ Rd,

K LOW-DIMENSIONAL ASYMPTOTICS: IMPERFECT SURROGATES

In this section, we discuss the imperfect surrogates under low-dimensional asymptotics. The main
conclusion of this section is that plug-in schemes can be suboptimal and weaker surrogate models
can indeed lead to better data selection.

Throughout, we will use the notation Esu{F (y,x)|x} =
∫
F (y,x)Psu(dy|x), and similarly for

Psu( · |x).
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K.1 PLUGIN SCHEMES

The simplest approach to utilize an imperfect surrogate proceeds as follows: (i) Choose a data
selection scheme under the assumption of ideal surrogate; (ii) Replace the conditional expectations
E{F (y,x)|x} in that scheme by expectations with respect to the surrogate model Esu{F (y,x)|x};
(iii) Replace expectations over x by expectation over the data sample.

In particular, revisiting the schemes of Sections 4.1 and 4.2, we obtain the following:

Plugin unbiased data selection. We form

Gsu(x) := Esu

{
∇θL(θ̂

su
; y,x)∇θL(θ̂

su
; y,x)T|x

}
, (K.1)

H su(x) := Esu

{
∇2

θL(θ̂
su
; y,x)|x

}
, (K.2)

and subsample according to

π(x) = min
(
1; c(γ)Zsu(x)

1/2
)
, (K.3)

Zsu(x) := Tr
(
Gsu(x)H

−1
1,suQH−1

1,su

)
, (K.4)

H1,su := E{H su(x)} . (K.5)

We then reweight each selected sample proportionally to 1/π(x). Note that:

• The ‘true’ parameters vector θ∗ appearing in ∇θL( · ; y,x), ∇2
θL( · ; y,x) was replaced

by an estimate obtained from the surrogate model. In certain applications θ̂
su

can
be ‘read off’ the surrogate model itself. In general, we can define it via θ̂

su
:=

argmin
∑N
i=1 L(θ; y

su
i ,xi), where (ysu

i )i≤N are drawn independently according to yi ∼
Psu( · |xi).

• The matrix H1,su can be replaced its empirical version Ĥ1,su := N−1
∑N
i=1 H su(xi).

Plugin non-reweighting data selection. In this case we select samples such that Zsu(x;π) > λ, cf.
Eq. (4.10), where

Z(x;π) := −Tr
{
Gsu(x)H

−1
su,πQH−1

su,π

}
+ 2Tr

{
H su(x)H

−1
su,πQH−1

su,πGsu,πH
−1
su,π

}
, (K.6)

and H su,π := E{H su(x)π(x)}/E{π(x)} and similarly for Gsu,π . Again, expectations over x are
replaced by averages over the N samples.

Plugin approaches are natural and easy to define, and in fact we will use them in our simulations.
However, we will show that they can be suboptimal. Before doing that, we need to make more
explicit the notion of optimality that is relevant here.

K.2 MINIMAX FORMULATION

We want formalize the idea that we do not know the conditional distribution of y given x, but
we have some information about it coming from the surrogate model Psu. With this in mind, we
introduce a set of probability kernels

Kd ⊆ K 0
d :=

{
P : BR × Rd → [0, 1] probability kernel

}
. (K.7)

Informally, Kd is a neighborhood of the surrogate model Psu, and captures our uncertainty about the
actual conditional distribution: we know that Py|x ∈ Kd. For instance, we could consider, for some
r ∈ [0, 1),

Kd(Psu; r) :=
{
P : Ex∥P( · |x)− Psu( · |x)∥TV ≤ r

}
. (K.8)

We will assume Kd (and its variant KN,d introduced below) to be convex. Namely, for all λ ∈ [0, 1],

P0,P1 ∈ Kd ⇒ Pλ(dy|x) = (1− λ)P0(dy|x) + λP1(dy|x) ∈ Kd . (K.9)

We are interested in a data selection scheme that works well uniformly over the uncertainty encoded
in Kd.
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Given a probability kernel P(dy|x) (i.e. P : BR × Rd → [0, 1]), we write P(P) for the data
distribution (on Rd × R) induced by P. Namely EP(P)F (y,x) := Ex{

∫
F (y,x)P(dy|x)}.

Let Rtest(θ) = ELtest(θ; y,x) be the test error with respect to a certain target distribution P. Given
an estimator θ̂, we let θ̂S(y,X) denote its output when applied to data y,X in conjunction with
data selection scheme S. For clarity of notation, we define

R#(S;y,X) := Rtest(θ̂S(y,X)) . (K.10)

We define the minimax risk RMM(Kd) by (here we recall that A is the set of all data selection
methods)

R∗(S;Kd) := sup
P∈Kd

Ey,X∼P(P)R#(S;y,X) , (K.11)

RMM(Kd) := inf
S∈A

R∗(S;Kd) . (K.12)

We seek near optimal data selection schemes S, namely schemes such thatR∗(S;Kd) ≈ RMM(Kd).
We note that the expectation in Eq. (K.11) includes expectation over the randomness in S.

Remark K.1. The set Kd provides information about θ∗. This information can be exploited in
other ways than via data selection. For instance, we could restrict the empirical risk minimization
of Eq. (1.2) to a set that is “compatible” with Kd. However, we are only interested in procedures
that follow the general data selection framework defined in the previous sections and hence are not
necessarily optimal against this broader set.

K.3 DUALITY AND ITS CONSEQUENCES

We can apply Sion’s minimax theorem to a relaxation of RMM(Kd). Namely,

• We replace Kd by a set of probability kernels RN×d to RN :

KN,d ⊆ K 0
N,d :=

{
P : BRN × RN×d → [0, 1] probability kernel

}
. (K.13)

such that each marginal of P ∈ KN,s is in Kd. In other words, we allow for entries of y
to be conditionally dependent, given X . Generalizing the notations above, P(PN ) denotes
the induced distribution on y,X .

• We replace the space of data selection schemes A by a the set A of probability kernels Q
such that, for any A ⊆ [N ], and any X ∈ RN×d, Q(A|X) is the conditional probability
of selecting data in the set A given covariate vectors X . In other words, we consider more
general data-selection schemes in which the selected set is allowed to depend on all the
data points.

The following result is an application of the standard minimax theorem in statistical decision theory,
see e.g. Liese & Miescke (2008, Section 3.7).

Theorem 7. Assume that any PN ∈ Kd,N is supported on ∥y∥ ≤ M , and that (y,X) 7→
R(θ̂A(y,X)) is continuous for any A. Define

RMM(Kd) := inf
S∈A

R∗(S;Kd) := inf
S∈A

sup
PN∈Kd,N

Ey,X∼P(PN )R#(S;y,X) . (K.14)

Then we have

RMM(Kd) = sup
PN∈Kd,N

inf
S∈A

Ey,X∼P(PN )R#(S;y,X) . (K.15)

Further, assume PMM achieves the supremum over Kd above. Then any

SMM ∈ arg min
S∈A

Ey,X∼P(PMM)R#(S;y,X) (K.16)

achieves the minimax error.
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As is common in estimation theory, the minimax theorem can be difficult to apply since computing
the supremum over P ∈ Kd is in general very difficult. Nevertheless, the theorem implies the
following important insight. We should not perform data selection by plugging in the surrogate
conditional model for y given x for the actual one. Instead, we should optimize data selection
as if labels were distributed according to the ‘worst’ conditional model in a neighborhood of the
surrogate.

Below we work out a toy case to illustrate this insight. Instead of studying the minimax problem for
the finite-sample risk R, we will consider its asymptotics defined in Proposition B.1. We define the
asymptotic minimax coefficients ρ∗(S;Kd) and ρMM(Kd) in analogy with Eqs. (K.11) and (K.12).

Example K.2 (Discrete covariates). Consider x taking values in [k] = {1, . . . , k}, with probabilities
pℓ = P(x = ℓ), and y taking values in {0, 1}, with P(y = 1|x) = θ∗x, whereby θ∗ = (θ∗1 , . . . , θ

∗
k) is

a vector of unknown parameters. We estimate θ∗ using empirical risk minimization with respect to
log-loss

L(θ; y, x) = −y log θx − (1− y) log(1− θx) . (K.17)

We are interested in the quadratic estimation error ∥θ̂ − θ∗∥Q with Q = diag(q1, q2, . . . , qk). We
consider a non-reweighting subsampling scheme whereby a sample with covariate x is retained inde-
pendently with probability πx. Either applying Proposition B.1, or by a straightforward calculation,
we obtain:

E
{
∥θ̂

S
− θ∗∥2Q

}
=

1

N
ρ(π;θ∗,Q) + o(1/N) , (K.18)

ρ(π;θ∗,Q) =

k∑
x=1

θ∗x(1− θ∗x)

πxpx
qx . (K.19)

(Here we made explicit the dependence on θ∗.) For K ⊆ Rk a convex set, we then define5

ρ∗(π;K ,Q) := sup
θ∗∈K

ρ(π;θ∗,Q) , ρMM(K ,Q) := inf
π
ρ∗(π;K ,Q) . (K.20)

We will assume that K is closed (hence compact) and convex. We can apply the minimax theorem
to Eq. (K.20):

ρMM(K ,Q) := max
θ∗∈K

min
π
ρ(π;θ∗,Q) . (K.21)

Hence, the minimax optimal data selection strategy is obtained by selecting the optimum π for the
worst case θ, to be denoted by θMM. A simple calculation yields

πMM
x = min

(c(γ)
px

√
qxθMM

x (1− θMM
x ); 1

)
, (K.22)

θMM
s = arg max

θ∈K

k∑
x=1

max
( 1

c(γ)

√
qxθx(1− θx);

qx
px
θx(1− θx)

)
, (K.23)

where c(γ) is obtained by solving

k∑
x=1

min
(
c(γ)

√
qxθMM

x (1− θMM
x ); px

)
= γ . (K.24)

The above formulas have a clear interpretation (for simplicity we neglect the factor qx). Note that
θMM
x (1− θMM

x ) can be interpreted as measure of uncertainty in predicting ynew at a test point xnew = x
under the minimax model θMM. We select data so that the fraction of samples with xi = x is
proportional to the square root of this uncertainty. Assuming that the inner maximum in Eq. (K.23)
is achieved on the first argument, the minimax model itself is the one that maximize total uncertainty
within the set K .

5Notice that we are not taking the infimum over all randomized data selection schemes as in Theorem 7.
For simplicity, we are restricting the minimization to non-reweighting schemes. The substance of Theorem 7
does not change since this set is convex.
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For instance, if K = [θsu,1−ε, θsu,1+ε]×· · ·× [θsu,k−ε, θsu,k+ε] ⊆ [0, 1/2]k, then θMM
x = θsu,x+ε

for all x. We then obtain

πMM
x = min

(c(γ)
px

√
qx(θsu,x + ε)(1− θsu,x − ε); 1

)
(K.25)

In other words, we should not use the uncertainties computed within the surrogate model, but within
the most uncertain model in its neighborhood.

L HIGH-DIMENSIONAL ASYMPTOTICS: GENERAL VERSION OF THEOREM 4

In this section, we present the complete version of the Theorem 4 followed by the proof.
Theorem 8. Assume u 7→ L(u, y) is convex, continuous, with at most quadratic growth, and λ > 0.
Further denote by α∗, µ∗ the solution of the following minimax problem (α∗ is uniquely defined by
this condition)

min
α

max
µ≥0

L (α, µ) . (L.1)

Then the following hold in the limit N, p→ ∞, with N/p→ δ0: If (u, z) 7→
∫
Ltest(u; y)P(dy|z) is

a continuous function with at most quadratic growth, we have

p-lim
N,p→∞

Rtest(θ̂λ) = ELtest

(
α∗
0G0 +

√
(α∗
s)

2 + (α∗
⊥)

2G;Y
)
, (L.2)

where expectation is taken with respect to the joint distribution of Eq. (5.3).

(b) If θ0 ∈ argminRtest(θ), then the excess risk is given by

p-lim
N,p→∞

Rexc(θ̂λ) = ELtest

(
α∗
0G0 +

√
(α∗
s)

2 + (α∗
⊥)

2G;Y
)
− ELtest

(
c∗G0;Y

)
. (L.3)

(See Footnote 3 for a definition of c∗.)

(c) Letting P⊥
0 be the projector orthogonal to θ0 and P⊥ the projector orthogonal to span(θ0, θ̂

su
),

we have

p-lim
N,p→∞

⟨θ̂λ,θ0⟩
∥θ0∥

= α∗
0 , p-lim

N,p→∞

⟨θ̂λ,P⊥
0 θ̂

su
⟩

∥P⊥
0 θ̂

su
∥

= α∗
s , p-lim

N,p→∞
∥P⊥θ̂λ∥ = α∗

⊥ . (L.4)

(d) Further, the asymptotic subsampling fraction is given by
n

N
→ γ = P(S(β0G0 + βsGs) > 0) . (L.5)

We can further specialize the above formulas to the two classes of data selection schemes studied
before: unbiased and non-reweighting schemes.

Unbiased data selection. In this case Si(⟨θ̂
su
,xi⟩) = 1/π(⟨θ̂

su
,xi⟩) with probability π(⟨θ̂

su
,xi⟩)

and Si(⟨θ̂
su
,xi⟩) = 0 otherwise. The Lagrangian reduces to

L (α, µ) :=
λ

2
∥α∥2 − 1

2δ0
µα2

⊥ + E
{
min
u∈R

[
L(α0G0 + αsGs + u;Y ) +

1

2
µπ(⟨β, g⟩)

(
u− α⊥G⊥

)2]}
.

Non-reweighting data selection. In this case Si(⟨θ̂
su
,xi⟩) = 1 with probability π(⟨θ̂

su
,xi⟩) and

Si(⟨θ̂
su
,xi⟩) = 0 otherwise. The Lagrangian reduces to

L (α, µ) :=
λ

2
∥α∥2 − 1

2δ0
µα2

⊥ + E
{
π(⟨β, g⟩)min

u∈R

[
L(α0G0 + αsGs + u;Y ) +

1

2
µ
(
u− α⊥G⊥

)2]}
.

(L.6)

We further provide simple expressions in the case of misspecified linear regression, already studied
in Section 4.3, in Appendix M.
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Proof of Theorem 8 This proof is based on Gordon Gaussian comparison inequality, following
a well established technique, see Thrampoulidis et al. (2015; 2018); Miolane & Montanari (2021).
Our presentation will be succinct, emphasizing novelties with respect to earlier derivations of this
type.

Recall that we consider test error of the form

Rtest(θ̂λ) = ELtest(⟨θ̂λ,xnew⟩, ynew) , (L.7)

where θ̂λ := argminθR̂N (θ). We will also consider the excess error Rexc(θ̂λ) := Rtest(θ̂λ) −
infθ Rtest(θ).

Define

G0,i :=
⟨xi,θ0⟩
∥θ0∥2

, Gs,i :=
⟨xi,P⊥

0 θ̂
su
⟩

∥P⊥
0 θ̂

su
∥2

, gi := P⊥xi , (L.8)

where we recall that P⊥
0 is the projector orthogonal to θ0 and P⊥ is the projector orthogonal to

span(θ0, θ̂
su
). Further define

α0 :=
⟨θ,θ0⟩
∥θ0∥2

, αs :=
⟨θ,P⊥

0 θ̂
su
⟩

∥P⊥
0 θ̂

su
∥2

, α⊥ := P⊥
0,sθ , (L.9)

With a slight abuse of notation, we can then identify the empirical risk

R̂N (α0, αs,α⊥) =
1

N

N∑
i=1

s(β0G0,i + βsGs,i, Ui)L(α0G0,i + αsGs,i + ⟨α⊥, gi⟩, yi)+

λ

2

(
α2
0 + α2

s + ∥α⊥∥2
)
. (L.10)

We can identify α⊥ and gi with (p− 2)-dimensional vectors. For any closed set Ω ⊆ Rp, let

R̂N (Ω) := min
{
R̂N (α0, αs,α⊥) : (α0, αs,α⊥) ∈ Ω

}
. (L.11)

Further define

R̂GN (Ω) = min
(α0,αs,α⊥)∈Ω

min
v∈Rn

max
ξ∈RN

L̂
(0)
N (α0, αs,α⊥;v; ξ) (L.12)

= min
(α0,αs,α⊥)∈Ω

max
ξ∈RN

min
v∈Rn

L̂
(0)
N (α0, αs,α⊥;v; ξ) , (L.13)

where

L̂
(0)
N (α0, αs,α⊥;v; ξ) :=∥α⊥∥⟨g⊥, ξ⟩+ ∥ξ∥⟨h,α⊥⟩ − ⟨v, ξ⟩+ λ

2

(
α2
0 + α2

s + ∥α⊥∥2
)

(L.14)

+
1

N

N∑
i=1

s(β0G0,i + βsGs,i, Ui)L(α0G0,i + αsGs,i + vi, yi) ,

and the identity of the two lines (L.12), (L.13) holds by the minimax theorem. By an application
of Gordon’s inequality and using Gaussian concentration (Boucheron et al., 2013), we obtain the
following.
Lemma L.1. There exist subgaussian error terms, err1(N,Ω), err2(N,Ω) (with ∥err2(N,Ω)∥ψ2 ≤
CN−1/2, such that:

1. For any closed set Ω:

R̂N (Ω) ≥ R̂GN (Ω) + err1(N) .

2. For any closed convex set Ω:

R̂N (Ω) = R̂GN (Ω) + err2(N) .
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Proof. This follows from an application of Gordon’s inequality and using Gaussian concentration
(Thrampoulidis et al., 2015; 2018; Miolane & Montanari, 2021). In applying Gordon’s inequality,
we need to check that the minimizer α⊥ lie with high probability in a compact set BN . This is
immediate for λ > 0 by strong convexity of R̂N .

Note that, subject to the constraints ∥α⊥∥ = α⊥, ∥ξ∥ = µ/
√
N , the minimization over α⊥ and

maximization over ξ can be performed before the other optimizations. This yields the reduced
Lagrangian, with argument α := (α0, αs, α⊥):

L̂
(1)
N (α;µ,v) :=− ∥h∥√

N
α⊥µ+

µ√
N

∥∥α⊥g⊥ − v∥+ λ

2
∥α∥2 (L.15)

+
1

N

N∑
i=1

s(β0G0,i + βsGs,i, Ui)L(α0G0,i + αsGs,i + vi, yi) .

For A ∈ R2 × R≥0, let ΩA := {(α0, αs,α⊥) ∈ Rp : (α0, αs, ∥α⊥∥) ∈ A}, and write

R̂#,N (A) := R̂N (ΩA) = min
{
R̂N (α0, αs,α⊥) : (α0, αs, ∥α⊥∥) ∈ A

}
, (L.16)

R̂G#,N (A) := R̂GN (ΩA) . (L.17)

We then have

R̂G#,N (A) = min
(α0,αs,α⊥)∈A

max
µ∈R≥0

min
v∈Rn

L̂
(1)
N (α0, αs, α⊥;µ,v) , (L.18)

Finally, we can take the limit N, p→ ∞. In this limit, the minimization over v is replaced by mini-
mization over a random variable V . Namely, let (S,F ,P) be a probability space on which the ran-
dom variables (G0, Gs, G⊥, U, Y ) are defined with the same joint law of (G0,1, Gs,1, g⊥,1, U1, y1).
Namely (G0, Gs, G⊥, U) ∼ N(0, 1)⊗3 ⊗ Unif([0, 1]), and Y |G0, Gs, G⊥, U ∼ P(· |∥θ0∥G0). For
V another random variable in the same space, taking values in the extended real line R, and letting
α := (α0, αs, α⊥), define

L̂ (α;µ, V ) :=− 1√
δ0
α⊥µ+ E{(α⊥G⊥ − V )2}1/2µ (L.19)

+
λ

2
∥α∥2 + E

{
s(β0G0 + βsGs, U)L(α0G0 + αsGs + V, Y )

}
.

Theorem 9. With the definitions given above, and under the assumptions of Theorem 4, the follow-
ing hold:

1. For any compact set A ⊆ R2 × R≥0

lim
N,p→∞

R̂G#,N (A) = R̂G#(A) := min
α∈A

max
µ∈R≥0

min
V ∈mF

L̂ (α;µ, V ) . (L.20)

2. For any closed set A,

lim inf
N→∞

R̂#,N (A) ≥ R̂G#(A) . (L.21)

3. For any closed convex set A,

lim inf
N→∞

R̂#,N (A) = R̂G#(A) . (L.22)

4. Further, denoting by α∗ := (α∗
0, α

∗
s , α

∗
⊥) the minimizer of

R̂G#(α) := max
µ∈R≥0

min
V ∈mF

L̂ (α;µ, V )

Conclusions (a) to (d) of Theorem 4 hold.
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Proof. Note that we can rewrite R̂#,N (A) = min{R̂#,N (α) : α ∈ A}, where

R̂#,N (α) =


min

λ

2
∥α∥2 + 1

N

N∑
i=1

s(β0G0,i + βsGs,i, Ui)L(α0G0,i + αsGs,i + vi, yi)

subj. to
∥∥α⊥g⊥ − v∥ ≤ ∥h∥α⊥ .

(L.23)

Further, this can be written as as a function of the joint empirical distribution of {(G0,i, Gs,i, g⊥,i,
U1, yi, vi)}. Namely, defining

p̂N :=
1

N

N∑
i=1

δ(G0,i,Gs,i,g⊥,i,U1,yi,vi) , (L.24)

we have (with Ep̂N denoting expectation with respect to p̂N )

R̂#,N (α) =


min

λ

2
∥α∥2 + Ep̂N

{
s(β0G0 + βsGs, U)L(α0G0 + αsGs + V, yi)

}
subj. to Ep̂N

{
[α⊥G⊥ − V ]2

}
≤ ∥h∥2

N
α2
⊥ .

(L.25)

Let R̂#(α) be the same quantity, in which minimization over v is replaced by minimization over
random variables (G0, Gs, G⊥, U, Y, V ) with (G0, Gs, G⊥, U, Y ) having the prescribed N = ∞
distribution, and ∥h∥2/N is replaced by 1/δ0. In fact, se define a slight generalization

R̂#(α; ε) =

min
λ

2
∥α∥2 + E

{
s(β0G0 + βsGs, U)L(α0G0 + αsGs + V, yi)

}
subj. to E

{
[α⊥G⊥ − V ]2

}
≤ (1− ε)α2

⊥ .
(L.26)

Let p̂∗N be the joint distribution of that achieves the above minimum at finite N . By tightness,
p̂∗N ⇒ p̂∗ along subsequences, and further the limit satisfies E{[α⊥G⊥−V ]2} ≤ α2

⊥/δ0 by Fatou’s.
Therefore

lim inf
N→∞

R̂#,N (α) ≥ R̂#(α; 0) , (L.27)

almost surely. On the other hand, if (G0, Gs, G⊥, U, Y, V ) achieves the minimum to define
R̂#(α; ε), ε > 0, let (G0,i, Gs,i, G⊥,i, Ui, yi, vi), i ≤ N be i.i.d.’s vectors from this distribution.
Of course this v is almost surely feasible for problem R̂#,N (α) for all N large enough. Therefore

lim sup
N→∞

R̂#,N (α) ≤ R̂#(α; ε) , (L.28)

Finally, we claim that limε→0+ R̂#(α; ε) = R̂#(α; 0), thus yielding

lim
N→∞

R̂#,N (α) ≤ R̂#(α; 0) =: R̂#(α) , (L.29)

To prove the claim notice that, if V satisfies E
{
[α⊥G⊥−V ]2

}
≤ α2

⊥, then Vδ = (1−δ)V +α⊥δG⊥
satisfies E

{
[α⊥G⊥ − Vδ]

2
}
≤ (1− ε)α2

⊥, with ε = 2δ− δ2. Further, the objective is continuous as
δ → 0 by continuity of L, whence the claim follows.

Next we claim that α 7→ R̂#,N (α) is Lipschitz continuous for a ∈ A, where A is a compact set, on
the high probability event

G :=
{ N∑
i=1

(G2
0,i +G2

s,i +G2
⊥,i) ≤ 10N,

N

2
≤ ∥h∥2 ≤ 2N

}
. (L.30)

To prove this claim, note that on this event, define si = s(β0G0,i + βsGs,i, Ui), ai(α) = α0G0,i +

αsGs,i, Li(u) = Li(u; yi), r = ∥h∥/
√
N . such that ∥s∥, ∥a∥ ≤ C

√
N , 1/2 ≤ r ≤ 2, it is
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sufficient to prove that α 7→ F (α) is Lipschitz on A where

F (α) := min
{
H(α,v) : v ∈ S(α)

}
, (L.31)

H(α,v) :=
1

N

N∑
i=1

si Li(ai(α) + vi) , S(α) := {v : ∥v − α⊥g⊥∥ ≤ α⊥
√
N} . (L.32)

On the event G above, |H(α1,v1)−H(α2,v2)| ≤ C∥α1 −α2∥+ C∥v1 − v2∥/
√
N and

dist(S(α1), S(α2)) ≤ C
√
N∥α1 −α2∥6. The claim follows from these bounds.

Since R̂#,N (α) → R̂#(α) for each α ∈ A, α 7→ R̂#,N (α) is almost surely Lipschitz continuous
with Lipshitz constant C independent of N , for all N large enough, we have supα∈A |R̂#,N (α)−
R̂#(α)| → 0, and therefore, for any compact set A,

lim
N→∞

R̂#,N (A) = R̂#(A) . (L.33)

For λ > 0, both R̂#,N and R̂#,N are uniformly strongly convex and therefore the last claim extend
to any closed set A. (Because eventually almost surely argmin R̂#,N (α) ∈ B for some compact
B.)

Finally, by introducing a Lagrange multiplier for the constraint

R̂#(α) = min
V ∈mF

max
µ∈R≥0

L̂ (α;µ, V )

= max
µ∈R≥0

min
V ∈mF

L̂ (α;µ, V ) .

This concludes the proof of point 1 (Eq. (L.20)).

Points 2 and 3 follow from the previous one by applying Lemma L.1.

Finally, the proof of point 4 is also straightforward. Indeed by taking A = {α ∈ R2 × R≥0 :
∥α − α∗∥ ≥ ε} and A = R2 × R≥0 and applying points 2 and 3 , for arbitrary ε > 0, implies
Eq. (L.4), thus establishing claim (c) of Theorem 4.

Claims (a), (b), to (d) of Theorem 4 follow from the previous one by noting that θ̂λ is uniformly
random, conditional to ⟨θ0, θ̂λ⟩, ⟨θ̂

su
, θ̂λ⟩, ∥P⊥θ̂λ∥.

The proof of Theorem 4 is completed by showing the following.
Lemma L.2. Under the assumptions of Theorem 4, we have the following equivalent characteriza-
tions of R̂#(α) (where we use the shorthand S(b) = s(b, U) for U ∼ Unif([0, 1])):

R̂G#(α) = max
µ∈R≥0

min
V ∈mF

L̂ (α;µ, V ) , (L.34)

R̂#(α) =

min
λ

2
∥α∥2 + E

{
S(β0G0 + βsGs)L(α0G0 + αsGs + V, yi)

}
subj. to E

{
[α⊥G⊥ − V ]2

}
≤ α2

⊥ ,
(L.35)

R̂G#(α) = max
µ≥0

L (α, µ) . (L.36)

Proof. The equivalence of Eq. (L.34) and (L.35) was already established in the proof of Theorem 9.
As for Eq. (L.36), the equivalence with (L.35) follows by introducing a Lagrange multipliier for the
inequality E

{
[α⊥G⊥ − V ]2

}
≤ α2

⊥, whence R̂G#(α) = maxµ≥0 L (α, µ)

L (α, µ) =
λ

2
∥α∥2 − 1

2δ0
µα2

⊥

+ min
V ∈mF

{
1

2
µ · E

{
(α⊥G⊥ − V )2

}
+ E

{
S(⟨β,G⟩)L(α0G0 + αsGs + V, Y )

}}
=
λ

2
∥α∥2 − 1

2δ0
µα2

⊥ + E
{
min
u∈R

[
S(⟨β,G⟩)L(α0G0 + αsGs + u, Y ) +

1

2
µ(α⊥G⊥ − u)2

]}
,

6For S1, S2 ⊆ RN , we let dist(S1, S2) := supx1∈S1
supx2∈S2

∥x1 − x2∥.
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which yields the desired claim.

M HIGH-DIMENSIONAL ASYMPTOTICS: THE CASE OF MISSPECIFIED LINEAR
REGRESSION

We revisit the case of misspecified linear regression, already studied in Section 4.3. We assume
a non-reweighting data-selection scheme, whose asymptotic behavior is characterized by the La-
grangian (L.6).

In the case of square loss, the inner minimization over u is easily solved and we can then perform the
maximization over µ in Theorem 4 analytically. This calculation yields the following Lagrangian

Lls(α) :=
1

2

(√
E
{
π(⟨β, g⟩)

[
Y − ⟨α, g⟩

]2}− α⊥√
δ0

)2

+

+
λ

2
∥α∥22 . (M.1)

We then have the following consequence of Theorem 4.

Corollary M.1. Assume the misspecified generalized linear model of Section 5.1, and further con-
sider the case of square loss L(θ; y,x) = (y − ⟨θ,x⟩)2/2. Let α∗ = (α∗

0, α
∗
s , α

∗
⊥) be the unique

minimizer of the Lagrangian L0. Then claims (a) to (d) of Theorem 4 hold.

The next statement gives a particularly simple expression in the case of perfect surrogate, and ridge-
less limit λ→ 0. For n > p this is standard least squares, while for n ≤ p, this is minimum ℓ2 norm
interpolation. Its proof is deferred to Appendix M.1.

Proposition M.2. Assume the misspecified generalized linear model of Section 5.1, and further
consider the case of square loss L(θ; y,x) = (y − ⟨θ,x⟩)2/2, and further consider the case of a
perfect surrogate which, without loss of generality, we assume normalized: θ̂

su
= θ0/∥θ0∥. Define

the quantities

Aπ :=
1

γ
E[G2π(G)] , Bπ :=

1

γ
E[GY π(G)] , Cπ :=

1

γ
E[Y 2π(G)] , (M.2)

where expectation is with respect to G ∼ N(0, 1) and Y ∼ P( · |G). In particular, we let A1, B1,
C1 be the quantities defined above with π(t) = 1 identically.

Then the asymptotic excess risk of ridgeless regression is as follows

(here δ := δ0γ = limn,p→∞ (n/p)):

1. For δ > 1:

lim
λ→0

p-lim
N,p→∞

Rexc(θ̂λ) =

(
B1

A1
− Bπ
Aπ

)2

+
1

δ − 1
·
(
Cπ − B2

π

Aπ

)
. (M.3)

2. For δ < 1:

lim
λ→0

p-lim
N,p→∞

Rexc(θ̂λ) =

(
B1

A1
− Bπδ

1− δ +Aπδ

)2

+
B2
π

Aπ
· δ(1− δ)

(1− δ +Aπδ)2
(M.4)

+
δ

1− δ
·
(
Cπ − B2

π

Aπ

)
.

Remark M.1 (Random data selection). In the case of no data selection, π(x) = γ, we have Aπ =
A1 = 1, Bπ = B1, Cπ = C1, and we recover the result of ordinary ridgeless regression (Advani
et al., 2020; Hastie et al., 2022)

δ > 1 : lim
λ→0

p-lim
N,p→∞

Rexc(θ̂λ) =
1

δ − 1
·
(
C1 −

B2
1

A1

)
, (M.5)

δ < 1 : lim
λ→0

p-lim
N,p→∞

Rexc(θ̂λ) = B2
1(1− δ) +

δ

δ − 1
·
(
C1 −

B2
1

A1

)
. (M.6)
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M.1 PROOF OF PROPOSITION M.2

Since we are assuming a perfect surrogate, αs = 0, by applying Theorem 4, we get

p-lim
N,p→∞

R(θ̂λ) = E
{
(Y − α∗

0G0 − α∗
⊥G⊥)

2
}

= C1 − 2B1α
∗
0 +A1(α

∗
0)

2 + (α∗
⊥)

2 , (M.7)

whence the excess error is

p-lim
N,p→∞

min
θ
Rexc(θ̂λ) =

(
B1

A1
− α∗

0

)2

+ (α∗
⊥)

2 . (M.8)

Simplifying the Lagrangian (M.1) in the case of perfect surrogate, we get (recalling that δ = δ0γ)

1

γ
Lls(α0, α⊥) =

1

2

(√
Cπ − 2Bπα0 +Aπα2

0 + α2
⊥ − α⊥√

δ

)2

+

+
λ

2γ
∥α∥22

=:
1

2
G(α)2 +

λ

2γ
∥α∥22 .

In the limit λ→ 0, α∗ = (α∗
0, α

∗
⊥) is given by

α∗ = argmin
{
∥α∥2 : α ∈ argmina∈R×R≥0

G(a)2
}
. (M.9)

Depending on the value of δ, the solution of this problem is achieved in different domains of the
plane:

• For δ > 1, argmina∈R×R≥0
G(a)2 is uniquely achieved when G(α) > 0, and hence

satisfies ∇G(α) = 0, G(α) > 0. Simple calculus yields

α∗
0 =

Bπ
Aπ

, (M.10)

α∗
⊥ =

√
1

δ − 1

(
Cπ − B2

π

Aπ

)
. (M.11)

• For δ < 1, argmina∈R×R≥0
G(a)2 is S0 := {α : G(α) = 0}, and it is easy to see that (for

r0 := Cπ −B2
π/Aπ):

S0 =
{
(α0, α⊥)R× R≥0 : Q(α) :=

(1
δ
− 1
)
α2
⊥ −Aπ

(
α0 −

Bπ
Aπ

)2
− r0 ≥ 0

}
.

(M.12)

Hence we α∗ solves (for a Lagrange multiplier ξ)

∇Q(α) = ξα , Q(α) = 0 , (M.13)

which are easily solved.

The proof is completed by substituting this solution in Eq. (M.8).

N SYNTHETIC DATA NUMERICAL EXPERIMENTS

It is instructive to compare the scheme described in Eq. (6.1) with influence function-based data
selection, cf. Example 4.2. Within the present data model, the population Hessian takes the form
H = a+I + b+θ0θ

T
0 /∥θ0∥2 where a+ = E{ϕ′′(∥θ0∥G)}, b+ = E{ϕ′′(∥θ0∥G)(G2 − 1)}. The

score of Example 4.2 (cf. Eq. (4.7)) reads (an overall factor da− is immaterial and introduced for
convenience)

Z(xi) = ϕ′′(⟨θ0,xi⟩)
{∥xi∥2

d
+ b−

⟨θ0,xi⟩2

da−∥θ0∥2
}
, (N.1)
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Figure 5: Misclassification error for logistic regression after non-reweighted subsampling under the
scheme of Eq. (6.1). Here N = 34345, p = 932. Circles are results of numerical simulations, and
continuous lines are theoretical predictions. Each panel corresponds to a different choice of ∥θ0∥,
λ.
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Figure 6: Same as Figure 5, with N = 6870 and p = 3000.
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Figure 7: Misclassification error for logistic regression after non-reweighted subsampling with data
generated according to the same misspecified model as in Figure 2. Circles: simulations. Continuous
lines: theory. Here N = 34345, p = 932. Unlike in Figure 2, we use an imperfect surrogate θ̂

su
that

is fit on Nsu samples from the same distribution. Top row: Nsu = 4p. Bottom row: Nsu = 8p. The
values of λ indicated in the plot titles are used when learning on the selected subsample.

where a− = 1/a+, b− = (a++ b+)
−1−1/a+. For large dimension d, ∥xi∥2/d = 1+OP (1/

√
d),

and ⟨θ0,xi⟩ = OP (1). We therefore get

Z(xi) = ϕ′′(⟨θ0,xi⟩) ·
(
1 +OP (1/

√
d)
)
. (N.2)

Therefore influence-function based subsampling essentially corresponds to the case α = 1/2 of
Eq. (6.1).

Figures 5 and 6 report results of simulations (circles) and theoretical predictions (continuous lines),
respectively in a lower-dimensional setting (N = 34345, p = 932) and in a higher-dimensional
setting (N = 6870, p = 3000). Simulation results are medians over 10 realizations. Theoreti-
cal predictions are computed by evaluating the saddle point formula of Theorem 4. Finally, while
all previous figures use a perfect surrogate, Figure 7 explores the impact of an imperfect surrogate.
Namely, we estimate θ̂

su
by usingNsu independent samples from the same distribution as the training

samples. We train θ̂
su

using ridge-regularized logistic regression, with an oracle choice of the reg-
ularization parameter λ. This setting gives an intuitive understanding of the ‘cost’ of the surrogate
model. We chooseNsu = 4p (top row) orNsu = 8p (bottom row), corresponding toNsu/N ≈ 10.9%
or Nsu/N ≈ 21.7%, respectively.

The agreement between theoretical predictions and simulation results is again excellent. Also, we
observe behaviors that are qualitatively new with respect to the previous setting that assumes well-
specified data and a perfect surrogate. Most notably:

1. Learning after data selection often outperforms learning on the full sample.

2. Upsampling ‘hard’ datapoints (i.e. using α > 0) is often the optimal strategy. This appears
to be more common than in the well-specified case.

3. As shown in Figure 7, the performance of data selection-based learning degrades gracefully
with the quality of the surrogate.

4. In particular, we observe once more the striking phenomenon of Figure 1, cf. bottom row,
rightmost plot of Figure 7. At subsampling fraction n/N = 60%, learning on selected
data outperforms learning on the full data, even if the surrogate model only used additional
Nsu/N ≈ 21.7% samples. As shown in next section, this effect is even stronger with real
data.
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O REAL DATA NUMERICAL EXPERIMENTS

O.1 DATASET

We use a subset of images obtained from the KITTI-360 train set (Liao et al., 2022). The KITTI-
360 train set comprises 1408× 376 dimensional 8-bit stereo images, with 2D semantic and instance
labels. These images are sourced from 9 distinct continuous driving trajectories. We only consider
the left stereo image for our dataset. To adapt this dataset for a binary classification task, we initially
center-crop the images to dimensions of 224 × 224 pixels. Subsequently, we assign binary labels,
by setting yi = +1 if the count of pixels containing the semantic label in a certain class surpasses a
predefined threshold. We choose ‘car’ as the label and the pixel cutoff threshold is set at 50, resulting
in a chance accuracy of approximately 0.69.

We then extract SwAV embeddings of the images to serve as feature vectors (Caron et al., 2021). We
use torch.hub.load(‘facebookresearch/swav:main’, ‘resnet50’) as the base
model and we use the 2048 dimensional outputs from the penultimate layer (head) as the SwAV
features. Following common practice, we normalize the images before computing feature vectors,
using mean and standard deviations of the images calculated on ImageNet. This results in a dataset
with a total ofN = 61, 280 images with p = 2048 dimensional features with binary labels indicating
the presence or absence of a car.

O.2 EXPERIMENT SETUP

We randomly partition this dataset into four disjoint sets: Ntrain = 34, 345 images to perform sub-
sampling and train models, Nsurr = 14, 720 images to train surrogate models, Nval = 3665 images
for validation and Ntest = 8550 images for reporting the final experiment results. Prior to model
training, we center and normalize each of the features using mean and standard deviation calculated
from Ntrain and Nsurr.

We proceeded by training a ridge-regularized logistic regression model without intercept. The train-
ing utilized the L-BFGS optimization algorithm with a cap of 10,000 iterations implemented using
the scikit-learn library (Pedregosa et al., 2011). Surrogate models are trained on a fraction k of
the surrogate set (Nsurr) where k ∈ {10%, 50%, 100%} using 5-fold cross validation to choose the
regularization parameter λ. Note that, the sample sizes used for these surrogate models correspond
to {4.2%, 21.4%, 42.8%} of Ntrain (but we use a disjoint set of data).

We use the data selection procedure introduced in the previous section, cf. Eqs. (6.1), (6.1). We
show empirical results for α ∈ {−2,−1,−0.5, 0, 0.5, 1, 2}, where α = 0 corresponds to random
subsampling and positive (negative) values of α correspond to upsampling hard (easy) examples
respectively. To ensure numerical stability for negative values of α modify the definition of π in
Eqs. (6.1), by limiting7 ⟨θ̂

su
,xi⟩ to be in [−10, 10].

We also perform experiments in which we select the n samples with the largest (or smallest) values
of p(⟨θ̂

su
,xi⟩)(1 − p(⟨θ̂

su
,xi⟩)). This corresponds to the limit cases α → ∞ and α → −∞

respectively. We will refer to these limit cases as ‘Hard topK’ and ‘Easy topK’, respectively.

O.3 ADDITIONAL RESULTS

All experiments are repeated across five random subsamplings when the data selection scheme is
probabilistic and across three different surrogate models when the surrogate model is trained an a
strict subset of the Nsurr samples reserved for this.

We vary four different parameters in our experiments:

• The ridge regularization parameter λ. This is either fixed or selected optimally by tak-
ing λ∗ = argminλ∈ΛRval(θ̂λ), where Rval is the risk on the validation set and Λ :=
{0.001, 0.01, 0.03,
0.06, 0.1, 1, 10}.

7Formally, we replace ⟨θ̂
su
,xi⟩ by T (⟨θ̂

su
,xi⟩), where T (x) = min(max(x,−10), 10).
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Figure 8: Test error on image classification task, for a model trained after data subsampling. Effect
of changing α in the subsampling probabilities, cf. Eq. (6.1). Here we use both unbiased (left) and
non-reweighting (right) subsampling schemes with nsurr/Ntrain = 4.2%.
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Figure 9: Test error on image classification task. Here λ = 0.001, α = 0.5, and non-reweighting
subsampling. Left plot: N = 3434, p = 2048; right plot: N = 34345, p = 2048. Various curves
correspond to different surrogate models.

• The exponent α that parameterizes the subsampling probabilities.

• The ‘strength’ of the surrogate model, surr, namely, the sample size nsurr ∈ [0, Nsurr] used
to learn θ̂

su
. We will report the ratio nsurr/Ntrain, as this provides a direct measurement of

how much information is required to train the surrogate model. In particular, we will qual-
itatively refer to surrogate models in results and figures as ‘weak’, ‘medium’ and ‘strong’
for the cases where: nsurr/Ntrain = 4.2%, nsurr/Ntrain = 21.4% and nsurr/Ntrain = 42.8%
respectively.

• A binary parameter bias indicating whether we are using unbiased or non-reweighted sub-
sampling (referred to as biased sampling in Fig. 1).

Figure 8 reports the misclassification rate on the test set as a function of the subsampling fraction γ
for various values of the exponent α. We consider both unbiased and non-reweighting subsampling
and use ‘weak’ surrogate models. In this case, we select λ optimally, as described above. We observe
that subsampling with α > 0 outperforms training on the full sample down to subsampling ratios
γ ≳ 0.4. This is most significant with non-reweighing subsampling, as anticipated by the asymptotic
theory of Section 4.1. Further, above this value of γ, the test error is fairly insensitive to the choice
of α > 0. The situation changes dramatically at smaller subsampling fractions. In particular, for
non-reweighting subsampling and for γ < 0.3, soft subsampling α = 0.5 outperforms substantially
α = 2 and α = ∞. Negative α (upsampling easy examples) always underperforms with respect to
random in this case.

Figure 9 investigates the effect of the strength of the surrogate model. In both subplots, we fix
λ = 0.001, α = 0.5, and subsampling with no-reweighting. The two subplots correspond to dif-
ferent regimes of the number of samples-to-parameters ratio. The left subplot uses 10% of the total
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available training set (i.e. N = 0.1×Ntrain = 3434) as 100% train data, while the right subplot uses
the entire training set (i.e. N = Ntrain = 34, 345). Each subplot shows subselection performance for
three different surrogate models – ‘weak’, ‘medium’ and ‘strong’ described above.

We observe that at larger sample size N (right subplot), the test error of the model learnt after
subsampling is insensitive to the accuracy of the surrogate model. We recover the results of Figure
8 irrespective of the strength of the surrogate. This is encouraging because it indicates that weak
supervision is sufficient for effective data selection. Even more surprising is the behavior at smaller
sample size (left plot). In this case the weak surrogate outperforms medium and strong surrogates.
A similar phenomenon was derived in a minimax setting in Section 4.5.

P SOME USEFUL FORMULAS FOR BINARY CLASSIFICATION

In line with the model introduced in the main text, we consider yi ∈ {+1,−1} and

P(yi = +1|xi) = f(⟨θ0,xi⟩ . (P.1)

(In other words, P(+1|z) = 1− P(−1|z) = f(z). We use logistic loss

L(y; z) = −yz + log(e−z + ez) . (P.2)

Formulas below are obtained by specializing the results of Section 5.

Unbiased subsampling. The Lagrangian takes the form

L (α, µ) :=
λ

2
∥α∥2 − 1

2δ0
µα2

⊥ (P.3)

+ E
{
f(∥θ0∥G0)min

u∈R

[
L(α0G0 + αsGs + u; +1) +

1

2
µπ(⟨β, g⟩)

(
u− α⊥G⊥

)2]
+ (1− f(∥θ0∥G0))min

u∈R

[
L(α0G0 + αsGs + u;−1) +

1

2
µπ(⟨β, g⟩)

(
u− α⊥G⊥

)2]}
.

Non-reweighted data selection. In this case Lagrangian reduces to

L (α, µ) :=
λ

2
∥α∥2 − 1

2δ0
µα2

⊥ (P.4)

+ E
{
f(∥θ0∥G0)π(⟨β, g⟩)min

u∈R

[
L(α0G0 + αsGs + u; +1) +

1

2
µ
(
u− α⊥G⊥

)2]
+ (1− f(∥θ0∥G0))π(⟨β, g⟩)min

u∈R

[
L(α0G0 + αsGs + u;−1) +

1

2
µ
(
u− α⊥G⊥

)2]}
.

Misclassification error. For Ltest(y; z) = 1(yz < 0):

R(λ;θ) =
1

2
− 1

2
E
{(

2f(∥θ0∥2G)− 1
)(
2Φ(q G)− 1

)}
, q :=

α0√
α2
s + α2

⊥
. (P.5)
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