
Published in Transactions on Machine Learning Research (02/2024)

Incorporating Prior Knowledge into Neural Networks
through an Implicit Composite Kernel

Ziyang Jiang ziyang.jiang@duke.edu
Department of Civil and Environmental Engineering
Duke University

Tongshu Zheng tongshuzheng92@gmail.com
Division of Natural and Applied Science
Duke Kunshan University

Yiling Liu yiling.liu@duke.edu
Program in Computational Biology and Bioinformatics
Duke University School of Medicine

David Carlson david.carlson@duke.edu
Department of Civil and Environmental Engineering
Department of Biostatistics and Bioinformatics
Department of Computer Science
Duke University

Reviewed on OpenReview: https: // openreview. net/ forum? id= HhjSalvWVe

Abstract

It is challenging to guide neural network (NN) learning with prior knowledge. In contrast,
many known properties, such as spatial smoothness or seasonality, are straightforward to
model by choosing an appropriate kernel in a Gaussian process (GP). Many deep learning
applications could be enhanced by modeling such known properties. For example, convolu-
tional neural networks (CNNs) are frequently used in remote sensing, which is subject to
strong seasonal effects. We propose to blend the strengths of NNs and the clear modeling
capabilities of GPs by using a composite kernel that combines a kernel implicitly defined
by a neural network with a second kernel function chosen to model known properties (e.g.,
seasonality). We implement this idea by combining a deep network and an efficient mapping
function based on either Nyström approximation or random Fourier features, which we
call Implicit Composite Kernel (ICK). We then adopt a sample-then-optimize approach to
approximate the full GP posterior distribution. We demonstrate that ICK has superior
performance and flexibility on both synthetic and real-world datasets including a remote
sensing dataset. The ICK framework can be used to include prior information into neural
networks in many applications.

1 Introduction

In complex regression tasks, input data often contains multiple sources of information. These sources can be
presented in both high-dimensional (e.g. images, audios, texts, etc.) and low-dimensional (e.g. timestamps,
spatial locations, etc.) forms. A common approach to learn from high-dimensional information is to use
neural networks (NNs) (Goodfellow et al., 2016; LeCun et al., 2015), as NNs are powerful enough to capture
the relationship between complex high-dimensional data and target variables of interest. In many areas, NNs
are standard practice, such as the dominance of Convolutional Neural Networks (CNNs) for image analysis
(Jiang et al., 2022; Zheng et al., 2021; 2020). In contrast, for low-dimensional information, we usually have

1

https://openreview.net/forum?id=HhjSalvWVe

Published in Transactions on Machine Learning Research (02/2024)

some prior knowledge on how the information relates to the predictions. As a concrete example, consider
a remote sensing problem where we predict ground measurements from satellite imagery with associated
timestamps. A priori, we expect the ground measurements to vary periodically with respect to time between
summer and winter due to seasonal effects. We would typically use a CNN to capture the complex relationship
between the imagery and the ground measurements. In this case, we want to guide the learning of the CNN
with our prior knowledge about the seasonality. This is challenging because knowledge represented in NNs
pertains mainly to correlation between network units instead of quantifiable statements (Marcus, 2018).

Conversely, Gaussian processes (GPs) have been used historically to incorporate relevant prior beliefs by
specifying the appropriate form of its kernel (or covariance) function (Bishop & Nasrabadi, 2006; Williams &
Rasmussen, 2006). One approach to modeling multiple sources of information is to assign a relevant kernel
function to each source of information respectively and combine them through addition or multiplication,
resulting in a composite kernel function (Duvenaud, 2014). This formulation means that specifying a kernel to
match prior beliefs on one source of information is straightforward. Such composite kernel learning techniques
are extensively used in many application areas such as multi-media data (McFee et al., 2011), neuroimaging
(Zhang et al., 2011), spatial data analysis, and environmental data analysis (Kim et al., 2005; Petelin et al.,
2013). In view of the clear modeling capabilities of GP, it is desirable to examine how a NN could be imbued
with the same modeling ease.

In recent years, researchers have come up with a variety of methods to incorporate prior knowledge into NNs.
These efforts can be broken into many categories, such as those that add prior information through loss terms
like physics-informed NNs (Lagaris et al., 1998; Moseley et al., 2020). Here, we focus on the major category
of those methods that build integrated models of NNs and GPs with various structures (Van der Wilk et al.,
2017; Wilson et al., 2016b; 2011). Related to our proposed methodology, Pearce et al. (2020) exploited the
fact that a Bayesian neural network (BNN) approximates a GP to construct additive and multiplicative
kernels, but they were limited to specific predefined kernels. Matsubara et al. (2020) then resolved this
limitation by constructing priors of BNN parameters based on the ridgelet transform and its dual, but they
did not explicitly show how their approach works for data with multiple sources of information. To our
knowledge, no existing approach allows a modeler to choose any appropriate kernel over multiple sources.

We address this limitation by presenting a simple yet novel Implicit Composite Kernel (ICK) framework,
which processes high-dimensional information using a kernel implicitly defined by a neural network and
low-dimensional information using a chosen kernel function. The low-dimensional kernels are mapped into the
neural network framework to create a straightforward and simple-to-learn implementation. Our key results
and contributions are:

• We analytically show our ICK framework, under reasonable assumptions, is approximately equivalent to
sampling from a Gaussian process regression (GPR) model with a composite kernel a priori.

• We adopt a sample-then-optimize procedure to ICK to approximate the full posterior distribution of a GP
with a composite kernel.

• We show that ICK yields better performance on prediction and forecasting tasks, even with limited data.

• We show that ICK can flexibly capture the patterns of the low-dimensional information without bespoke
pre-processing procedures or complex NN structures.

Based on these contributions, we believe ICK is useful in learning from complex hybrid data with prior
knowledge, especially in remote sensing and spatial statistics.

2 Related Work

Equivalence between NNs and GPs The equivalence between GPs and randomly initialized single-layer
NNs with infinite width was first shown by Neal (1996). With the development of modern deep learning,
researchers further extended this relationship to deep networks (Lee et al., 2017; Matthews et al., 2018) and
convolutional neural networks (CNNs) (Garriga-Alonso et al., 2018; Novak et al., 2018). This relationship is
crucial for showing the resemblance between GPR and our ICK framework, which is discussed in Section 4.1.

2

Published in Transactions on Machine Learning Research (02/2024)

NNs with prior knowledge As mentioned before, one approach to equip NNs with prior knowledge is to
modify the loss function. For example, Lagaris et al. (1998) solved differential equations (DEs) using NNs
by setting the loss to be a function whose derivative satisfies the DE conditions. Another approach is to
build integrated models of NNs and kernel-based models. For example, Wilson et al. (2011) implemented a
regression network with GP priors over latent variables and made inference by approximating the posterior
using Variational Bayes or sampling from the posterior using Gibbs sampling scheme. Garnelo et al. (2018)
introduced a class of neural latent variable models called Neural Processes (NPs) which are capable of learning
efficiently from the data and adapting rapidly to new observations. In addition to these, various studies
have explored the integration of Neural Networks (NNs) and kernel methods (Hinton & Salakhutdinov, 2007;
Wilson et al., 2016a; Adlam et al., 2020). Our ICK framework fuses prior knowledge into NNs by modulating
the learnt features using another set of features outputted from a kernel-based mapping, which can also be
viewed as an integrated model of NNs and kernel machines.

GP with composite kernels Composite kernel GPs are widely used in both machine learning (Duvenaud,
2014; Williams & Rasmussen, 2006) and geostatistical modeling (Datta et al., 2016; Gelfand & Schliep, 2016).
GPR in geostatistical modeling is also known as kriging (Journel & Huijbregts, 1976; Krige, 1951), which
serves as a surrogate model to replace expensive function evaluations. The inputs for a composite GP are
usually low-dimensional (e.g. spatial distance) as GPs do not scale well with the number of samples for
high-dimensional inputs (Bouhlel & Martins, 2019; Bouhlel et al., 2016). To overcome this issue, Pearce et al.
(2020) and Matsubara et al. (2020) developed BNN analogues for composite GPs. Similar to these studies,
our ICK framework can also be viewed as a simulation for composite GPs.

GP for large datasets Since training and inference of exact GP scales O(N3), either parallel computing
Wang et al. (2019); Adlam et al. (2023) or kernel approximation are needed to scale GP to large datasets.
Nyström low-rank matrix approximation (Drineas et al., 2005; Williams & Seeger, 2000) and Random Fourier
Features (Rahimi & Recht, 2007; 2008) are two commonly used approximation methods. Building upon
these concepts, several popular frameworks, such as sparse GPs (Snelson & Ghahramani, 2005; Titsias, 2009;
Hensman et al., 2013), have been developed to facilitate GP inference on large datasets. In our research, we
draw inspiration from these approximation methods and utilize them as transformation functions to project
the kernel matrix into latent space representations, as discussed in Section 4.2.

3 Background

3.1 Problem Setup

To formalize the problem, we have a training data set which contains N data points X = [xi]Ni=1 =
[x1, x2, ..., xN]T and the corresponding labels of these data points are y = [yi]Ni=1 = [y1, y2, ..., yN]T where
yi ∈ R. Each data point xi = {x(1)

i , x
(2)
i , ..., x

(M)
i } is composed of information from M different sources

where the mth source of information of the ith data point is denoted as x
(m)
i ∈ RDm . Our goal is to learn a

function ŷi = f(xi) : RD1 × RD2 × ...× RDM → R which takes in a data point xi and outputs a predicted
value ŷi.

3.2 Composite GPs

A Gaussian process (GP) describes a distribution over functions (Williams & Rasmussen, 2006). A key
property of GP is that it is completely defined by a mean function µ(x) and a kernel function K(x, x′) where
x and x′ represent different samples from the training dataset. The mean function µ(x) is often assumed to
be zero for simplicity. In that case, the outcome function is

f(x) ∼ GP (0, K(x, x′)) . (1)

Any finite subset of random variables has a multivariate Gaussian distribution with mean 0 and kernel matrix
K whose entries can be calculated as Kij = K(xi, xj) where 1 ≤ i, j ≤ N . In many situations, the full
kernel function is built by a composite kernel by combining simple kernels through addition Kcomp(x, x′) =

3

Published in Transactions on Machine Learning Research (02/2024)

Figure 1: Given data containing 2
sources of information x(1) and x(2),
we can process the data using either
(Left) a composite Gaussian process
regression (GPR) model or (Right)
our ICK framework where x(1) is pro-
cessed with a neural network fNN(·)
and x(2) is processed with g(·) where
g(·) consists of a kernel function K2
and some transformation which maps
the kernel matrix K2 into the latent
space.

K1(x, x′) + K2(x, x′) or multiplication Kcomp(x, x′) = K1(x, x′)K2(x, x′) (Duvenaud, 2014). A useful
property that ICK exploits is that K1 and K2 can take different subparts of x as their inputs. For example,
Kcomp(x, x′) = K1(x(1), x(1)′) + K2(x(2), x(2)′) or Kcomp(x, x′) = K1(x(1), x(1)′)K2(x(2), x(2)′).

3.3 Correspondence between GPs and NNs

Neal (1996) proved that a single-hidden layer network with infinite width is exactly equivalent to a GP
over data indices i = 1, 2, ..., N under the assumption that the weight and bias parameters of the hidden
layer are i.i.d. Gaussian with zero mean. This statement was then extended to deep NNs (Lee et al., 2017;
Matthews et al., 2018) and convolutional NNs (Garriga-Alonso et al., 2018; Novak et al., 2018). Specifically,
let z = fNN

(
x(1)) : RD1 → Rp be the latent representation extracted from x(1) where p is the dimension of

the extracted representation and fNN is a neural network with zero-mean i.i.d. parameters and continuous
activation function ϕ which satisfies the linear envelope property

|ϕ(u)|≤ c + m|u| ∀u ∈ R, (2)

if there exists c, m ≥ 0. This includes many standard nonlinearities. The kth entry of this representation will
converge in distribution to a NN-implied GP in the infinite width limit

fNN(x(1))k
d−→ GP(0, KNN(x(1), x(1)′

)). (3)

Here KNN in Equation 3 denotes the covariance function of the equivalent GP as the width of fNN goes
to infinity and can be computed numerically in a recursive manner (Lee et al., 2017). That is to say, the
kth component zk of the representation extracted by the network has zero mean Ep(θ(1))

[
z

(1)
ik

]
= 0 for all

i = 1, 2, ..., N where θ represents the network parameters. The covariance between z
(1)
ik and z

(1)
jk for different

data indices i, j = 1, 2, ..., N can be approximated as cov(z(1)
ik , z

(1)
jk) = Ep(θ(1))

[
z

(1)
ik z

(1)
jk

]
≈ KNN

(
x

(1)
i , x

(1)
j

)
where x

(1)
i and x

(1)
j are the corresponding inputs in case the network width is finite.

4 Implicit Composite Kernel

We show the structure of a composite GPR model and our ICK framework in Figure 1. To make the
illustration clear, we limit ourselves to data with information from 2 different sources x =

{
x(1), x(2)} where

x(1) is high-dimensional and x(2) is low-dimensional (i.e. D1 ≫ D2) with some known relationship with the
target y. We are inspired by composite GPR, which computes 2 different kernel matrices K1 and K2 and

4

Published in Transactions on Machine Learning Research (02/2024)

Figure 2: Given data containing
M sources of information x ={

x(1), x(2), ..., x(M)}, we can process
the data using our ICK framework
where high-dimensional information
(e.g. x(1) in the figure) is pro-
cessed using a neural network and low-
dimensional information (e.g. x(2) in
the figure) is processed using a ker-
nel function and some transformation
which maps the kernel matrix into the
latent space.

then combines them into a single composite kernel matrix Kcomp. However, as discussed before, it is more
suitable to use a NN to learn from the high dimensional information x(1). In our ICK framework, we process
x(1) with a NN fNN(·) : RD1 → Rp and x(2) with a mapping g(·) : RD2 → Rp, which consists of a kernel
function K2 followed by a kernel-to-latent-space transformation (described in Section 4.2), resulting in two
latent representations z(1), z(2) ∈ Rp. Then, we make a prediction ŷ by doing an inner product between these
two representations ŷ = fNN

(
x(1)) · g (x(2)). Finally, the parameters of both the NN and the kernel function

are learned via gradient-based optimization methods (Bottou et al., 2018).

Besides the formulation in Figure 1, ICK can also process data x =
{

x(1), x(2), ..., x(M)} with M > 2 sources
of information as shown in Figure 2. Here K1, ..., KM represent different types of kernels with trainable
parameters. The final prediction is calculated by a chained inner product of all extracted representations
ŷ =

∑p
k=1

∏M
m=1 z

(m)
k .

In the sections below, we first show the relationship between ICK and a composite GPR model with a
multiplicative kernel a priori in Section 4.1, which is used to motivate the model form. We then show
how we implement the kernel-to-latent-space transformation in Section 4.2. To enable a full GP posterior
approximation for ICK, we will provide insight into how we derive uncertainty estimates from ICK. This
can be achieved either through direct variance calculation (Section 4.3.1) or through the utilization of an
ensemble approach (Section 4.3.2).

4.1 Resemblance between Composite GPR and ICK

We will analytically prove the following theorem for data with information from 2 different sources x ={
x(1), x(2)} for clarity, and we note this theorem can be straightforwardly extended to M > 2.

Theorem 1. Let fNN : RD1 → Rp be a NN function with random weights and g : RD2 → Rp be a mapping
function, and define an inner product between the representations ŷ = fICK

(
x(1), x(2)) = fNN

(
x(1)) ·

g
(
x(2)) = z(1)T

z(2). Then fICK will converge in distribution to a GP in the infinite width limit a priori

fICK
d−→ GP(0, KNN

1 (x(1), x(1)′
)K2(x(2), x(2)′

)), (4)

if fNN is a neural network with zero-mean i.i.d. parameters and continuous activation function ϕ which satisfies
the linear envelope property in Equation 2 and g includes the following deterministic kernel-to-latent-space
transformation for all 1 ≤ i, j ≤ N

K2(x(2)
i , x

(2)
j) ≈ z

(2)
i

T
z

(2)
j = g(x(2)

i)T g(x(2)
j), (5)

where KNN
1 is a NN-implied kernel and K2 is any valid kernel of our choice.

5

Published in Transactions on Machine Learning Research (02/2024)

To prove Theorem 1, we first state following lemma.

Lemma 2. For latent representations z
(1)
i and z

(1)
j extracted from different data points xi and xj where

i ̸= j, the interactions between different entries of z
(1)
i and z

(1)
j can be reasonably ignored. In other words, let

θ(1) be the parameters of the neural network which takes in x(1) and outputs z(1), we have Ep(θ(1))[z
(1)
ik z

(1)
jl] = 0

for all k ̸= l.

A detailed proof of Lemma 2 is provided in Appendix A. With Lemma 2, let Θ =
{

θ(1), θ(2)} represent the
parameters of ICK, we can calculate the covariance between ŷi and ŷj for different data indices i ̸= j:

cov(ŷi, ŷj)
= Ep(Θ)[ŷiŷj]− Ep(Θ)[ŷi]Ep(Θ)[ŷj] (6)

= Ep(Θ)

[(∑p
k=1 z

(1)
ik z

(2)
ik

)(∑p
k=1 z

(1)
jk z

(2)
jk

)]
(7)

= Ep(Θ)

[∑p
k=1

∑p
l=1 z

(1)
ik z

(1)
jl z

(2)
ik z

(2)
jl

]
(8)

= Ep(Θ)

[∑p
k=1 z

(1)
ik z

(1)
jk z

(2)
ik z

(2)
jk

]
(9)

=
∑p

k=1 Ep(θ(1))
[
z

(1)
ik z

(1)
jk

]
Ep(θ(2))

[
z

(2)
ik z

(2)
jk

]
(10)

≈ KNN
1

(
x

(1)
i , x

(1)
j

)∑p
k=1 Ep(θ(2))

[
z

(2)
ik z

(2)
jk

]
. (11)

Here, from Equation 6 to Equation 7, we use the statement Ep(θ(1))[z
(1)
ik] = 0 in Section 3.3 and θ(1) ⊥⊥ θ(2),

which leads to Ep(Θ)[ŷi] = Ep(Θ)[ŷj] = 0. From Equation 8 to Equation 9, we get rid of all the cross terms using
Lemma 2 and θ(1) ⊥⊥ θ(2). Specifically, we have Ep(Θ)[z

(1)
ik z

(1)
jl z

(2)
ik z

(2)
jl] = Ep(θ(1))[z

(1)
ik z

(1)
jl]Ep(θ(2))[z

(2)
ik z

(2)
jl] = 0

for all k ̸= l. From Equation 9 to Equation 10, we again make use of θ(1) ⊥⊥ θ(2). From Equation 10 to
Equation 11, we use the statement Ep(θ(1))[z

(1)
ik z

(1)
jk] ≈ KNN(x(1)

i , x
(1)
j) from Section 3.3. If the kernel-to-

latent-space transformation in g(·) is deterministic, we can remove the expectation sign from the summation
term in Equation 11 and the covariance can be further expressed as

cov(ŷi, ŷj) ≈ KNN
1 (x(1)

i , x
(1)
j)(z(2)

i

T
z

(2)
j)

= KNN
1 (x(1)

i , x
(1)
j)K2(x(2)

i , x
(2)
j),

(12)

which means that ŷ approximately follows a GP with a multiplicative composite kernel Kcomp(xi, xj) =
KNN

1

(
x

(1)
i , x

(1)
j

)
K2

(
x

(2)
i , x

(2)
j

)
a priori. This serves as a consise proof of Theorem 1. We also give a more

detailed proof in Appendix B.

4.2 Kernel-to-latent-space Transformation

We now show how we can construct an appropriate mapping g(·) that approximately satisfies the assumed
form of equation 5 and is used in the derivation of ICK from equation 11 to equation 12. Here we adopt two
methods, Nyström approximation and Random Fourier Features (RFF), to map the kernel matrix into the
latent space. Below, we elaborate the formulations for both methods, and give the methods and results for
the Nyström method. The results of RFF will be presented in Appendix C. We name our framework with
Nyström method and random Fourier Features ICKy and ICKr, respectively.

According to Yang et al. (2012), the Nyström method will yield much better performance than RFF if there
exists a large gap in the eigen-spectrum of the kernel matrix. This phenomenon is mainly caused by how these
two methods construct their basis functions. In particular, the basis functions used by RFF are sampled from
a Gaussian distribution that is independent from the training examples, while the basis functions used by the
Nyström method are sampled from the training samples so they are data-dependent. In our synthetic data
experiments, we train our ICK framework using a batch size of 50. The eigenvalues of the kernel matrices
computed from the first 4 batches of the synthetic data set are displayed in Figure 3. It can be observed that

6

Published in Transactions on Machine Learning Research (02/2024)

the first few eigenvalues of the kernel matrix are much larger than the remaining eigenvalues. Namely, we
observe a large gap in the eigen-spectrum of the kernel matrix, and Nyström method does generalize much
better than RFF in our experiments.

4.2.1 Nyström Approximation

Figure 3: Eigenvalues of the kernel matrix computed
from the first 4 batches of training data where N is
the total number of data points.

The main idea of Nyström approximation (Williams
& Seeger, 2000) is to approximate the kernel matrix
K ∈ RN×N with a much smaller low-rank matrix
Kq ∈ Rq×q where q ≪ N so both the computa-
tional and space complexity of kernel learning can
be significantly reduced, yielding

K ≈ K̂ = KnqK−1
q KT

nq. (13)

The entries of Kq and Knq can be calculated as
(Kq)ij = K(x̂i, x̂j), i, j ∈ {1, 2, ..., q} and (Knq)ij =
K(xi, x̂j), i ∈ {1, 2, ..., N}, j ∈ {1, 2, ..., q}, respec-
tively. x represents the original data points and x̂
represents pre-defined inducing points (or pseudo-
inputs (Snelson & Ghahramani, 2005)). In our
study, these inducing points are chosen by defin-
ing an evenly spaced vector over the range of original
data points. By performing Cholesky decomposition
K−1

q = UT U , where U ∈ Rq×q, K̂ is expressed as

K̂ = KnqK−1
q KT

nq

= KnqUT UKT
nq = (UKT

nq)T (UKT
nq).

(14)

Therefore, if we set q = p, then we can use zi ≜ U(KT
np):,i as a kernel-to-latent-space transformation because

each element in K approximately satisfies equation 5 as stated in Theorem 1: K (xi, xj) = Kij ≈ K̂ij = zT
i zj .

Conveniently, modern deep learning frameworks can propagate gradients through the Cholesky operation,
making it straightforward to update the kernel parameters with gradient methods. Note that as we increase
the number of inducing points p, the approximation error between K and K̂ decreases. However, it is not
recommended to set p very large as updating the Cholesky decomposition requires O(p3) . The empirical
impact of p on computational time and performance is shown in Appendix D. In our experiments, only mild
values of p are necessary and the impact on computational is relatively small. The full training procedure of
ICKy with M = 2 is presented in Algorithm 1.

4.2.2 Random Fourier Features

Random Fourier Features (RFF) is another popular approximation method used for kernel learning (Rahimi
& Recht, 2007). Unlike the Nyström method which approximates the entire kernel matrix, RFF directly
approximates the kernel function K using some randomized feature mapping ϕ : RDm → R2dm such that
K
(

x
(m)
i , x

(m)
j

)
≈ ϕ

(
x

(m)
i

)T

ϕ
(

x
(m)
j

)
. To obtain the feature mapping ϕ, based on Bochner’s theorem, we

first compute the Fourier transform p(ω) of kernel K

p(ω) = 1
(2π)Dm

∫ +∞

−∞
e−jωT δK(δ)dδ, (15)

where δ = x
(m)
i − x

(m)
j . Then we draw dm i.i.d. samples ω1, ω2, ..., ωdm

from p(ω) and construct the feature
mapping ϕ as follows

(16)ϕ
(

x(m)
)
≡ d

−1/2
m

[
cos
(
ωT

1 x(m)) , ..., cos
(
ωT

dm
x(m)) , sin

(
ωT

1 x(m)) , ..., sin
(
ωT

dm
x(m))] .

7

Published in Transactions on Machine Learning Research (02/2024)

Algorithm 1 Implicit Composite Kernel-Nyström (ICKy)

Input: data X =
{

x
(1)
i , x

(2)
i

}N

i=1
, targets y = [yi]Ni=1, fNN, θ(1), K(2), θ(2), learning rate β

Sample a total of NB minibatches {XB , yB}NB

B=1
for B from 1 to NB do

for x
(1)
i , x

(2)
i in XB , i = 1, ..., nB do

z
(1)
i = fNN

(
x

(1)
i

)
Define inducing points x̂

(2)
1 , ..., x̂

(2)
p

Compute Kp: (Kp)jk = K(2)
(

x̂
(2)
j , x̂

(2)
k

)
Do Cholesky decomposition (Kp)−1 = UT U

Compute Knp: (Knp)jk = K(2)
(

x
(2)
j , x̂

(2)
k

)
z

(2)
i = U

(
KT

np

)
:,i

ŷi = z
(1)
i

T
z

(2)
i

end for
ŷB = concat (ŷ1, ..., ŷnB

)
Compute loss L = L (yB , ŷB)
θ(1) ← θ(1) − β∇θ(1)L
θ(2) ← θ(2) − β∇θ(2)L

end for
Return: Predictions ŷ and updated parameters θ(1), θ(2)

Since ϕ
(
x(m)) ∈ R2dm , we need to set dm = p/2 when using RFF as a kernel-to-latent-space transformation.

In addition, since RFF involves sampling from a distribution, the kernel parameters are thus not directly
differentiable and we need to apply a reparameterization trick (Maddison et al., 2016) to learn those parameters.
The full training procedure of ICKr with M = 2 is presented in Algorithm 2.

4.3 Uncertainty Estimation

Figure 4: Predictive distribution from ICKy ensemble
and its GP posterior counterpart on a 1D regression
task.

Since the motivation of ICK discussed in Section
4.1 is closely related to GPs, we present two dis-
tinct approaches for estimating uncertainty in the
subsequent sections: ensembling method and direct
calculation of posterior variance.

4.3.1 Ensembling

One approach for estimating the uncertainty is to
adopt a sample-then-optimize approach (Matthews
et al., 2017) and construct a deep ensemble posterior
approximation for ICK. There are several ways to en-
able GP posterior interpretation for a deep ensemble
trained with SGD. Specifically, let the final layer of
each baselearner NN be C-dimensional and denote
the deep ensemble as F = {fne}

Ne
ne=1, where fne is a

baselearner NN and Ne is the total number of base-
learners in the ensemble. After training, each fne

can be viewed as i.i.d. samples from a multi-output
GP posterior with kernel function KF in the infinite
width limit and the ensemble F thus represents Ne

independent draws from the GP posterior, where KF

8

Published in Transactions on Machine Learning Research (02/2024)

Algorithm 2 Implicit Composite Kernel-RFF (ICKr)

Input: data X =
{

x
(1)
i , x

(2)
i

}N

i=1
, targets y = [yi]Ni=1, fNN, θ(1), K2, θ(2), learning rate β

Sample a total of NB minibatches {XB , yB}NB

B=1
for B from 1 to NB do

for x
(1)
i , x

(2)
i in XB , i = 1, ..., nB do

z
(1)
i = fNN

(
x

(1)
i

)
Compute the Fourier transform p(ω) of kernel K2:
p(ω) = 1

(2π)Dm

∫ +∞
−∞ e−jωT δK(δ)dδ

where δ = x
(2)
i − x

(2)
j

Draw p/2 i.i.d. samples ω1, ω2, ..., ωp/2 from p(ω).
Construct feature mapping
z

(2)
i =

√
p/2
[

cos (ωT
1 x(2)), ..., cos (ωT

p/2x(2)),

sin (ωT
1 x(2)), ..., sin (ωT

p/2x(2))
]

ŷi = z
(1)
i

T
z

(2)
i

end for
ŷB = concat (ŷ1, ..., ŷnB

)
Compute loss L = L (yB , ŷB)
θ(1) ← θ(1) − β∇θ(1)L
θ(2) ← θ(2) − β∇θ(2)L

end for
Return: Predictions ŷ and updated parameters θ(1), θ(2)

Algorithm 3 ICKy Ensemble

Input: data X =
{

x
(1)
i , x

(2)
i

}N

i=1
, targets y = [yi]Ni=1, ensemble FICKy = {f1, ..., fNe} where each function

in F consists of fNN, K2 with parameters θ(1), θ(2), respectively
for s = 1, ..., Ne do

Apply proper initialization strategy to fs

Perform Algorithm 1 on function fs

end for
Return: predictive mean µ̂ = 1

Ne

∑Ne

s=1 fs(X), predictive variance σ̂2 = 1
Ne

∑Ne

s=1 (fs(X)− µ̂)2, and
updated parameters θ(1), θ(2) for all functions f in FICKy

can be either the Neural Network Gaussian Process (NNGP) kernel (Lee et al., 2017) if we make only the
last layer trainable or the Neural Tangent Kernel (NTK) (He et al., 2020; Jacot et al., 2018) if we add a
randomized and untrainable function to each baselearner.

This deep ensemble mechanism can be easily applied to ICKy. Specifically, the final prediction of ICKy
ŷ = fICKy

(
x(1), x(2)) can be viewed as a weighted sum of ŷ =

∑p
k=1 αkz

(1)
k where αk = z

(2)
k = g

(
x(2))

k
.

Hence, if we construct an ensemble of ICKy, FICKy = {f1, ..., fNe} (as shown in Algorithm 3), and fNN is
appropriately initialized for all baselearners fs ∈ FICKy, s = 1, ..., Ne, then all trained baselearners in FICKy

can be approximately viewed as i.i.d. posterior samples from a single-output GP with a multiplicative kernel
KF K2. KF will either be an NNGP or an NTK and K2 comes from our defined kernel. If the parameters of
fNN (i.e. θ(1)) are independently drawn from a zero-mean Gaussian and are fixed except the last layer (as
specified by Lee et al. (2019)) for all baselearners in the ensemble, this corresponds to an NNGP. A detailed
proof is in Appendix E.

9

Published in Transactions on Machine Learning Research (02/2024)

(a) (b)

Figure 5: Plots of predicted mean and uncertainties for a sinusoidal function with exponential damping with
noise f(x) = e−x sin(2πx) + ϵ using (a) an exact GP with RBF kernel and (b) ICKy with RBF kernel. Here
ICKy predicts the uncertainty by directly calculating the covariance matrix Σ in Equation 17.

To verify our argument, we train an ICKy ensemble FICKy containing 300 baselearners on the same 1D
regression task as provided by He et al. (2020) using SGD optimizer with a learning rate of 5 ∗ 10−4 and
the mean-squared error (MSE) loss until convergence. We then compare the predictive distribution to its
GP posterior counterpart based on the NNGP implementation in the neural_tangents (Novak et al., 2020)
package. The weights for each baselearner are initialized to be drawn from an i.i.d. Gaussian with zero mean
and variance equal to σw/

√
dN where dN is the width of the corresponding NN layer. The GP posterior has

zero mean and kernel function KNNGPK2, where KNNGP is the corresponding NNGP kernel of fNN and K2
is the chosen kernel function for the mapping g in the ICKy ensemble in Figure 4. Here, K2 is set to be an
exponential-sine-squared kernel with period T = 2π. The predictive distribution of ICKy ensemble is very
close to the analytic GP posterior, demonstrating the approximate equivalence between the two models.

4.3.2 Computing Variance

Another approach to estimate the uncertainty is to directly compute the covariance matrix of the posterior
distribution

Σ = Kx∗x∗ −Kx∗x

(
Kxx + σ2I

)
Kxx∗ , (17)

where Kx∗x∗ = K(X∗, X∗) is the kernel matrix evaluated on the test dataset, Kxx = K(X, X) is the kernel
matrix evaluated on the training dataset, Kx∗x = K(X∗, X) is the cross-covariance matrix evaluated on
both training and test datasets, and Kx∗x = KT

xx∗ . Here K refers to the composite kernel function implied
by ICK. Note that if we get rid of fNN(·) and only keep g(·), then K = K2 and the computation of Σ is
straightforward. We believe the true uncertainty can be reasonably approximated by ICKy, as indicated by
diag(Σ), while maintaining a reasonable computational complexity. To demonstrate this, we sample 100 data
points from a sinusoidal function with exponential decay f(x) = e−x sin(2πx) + ϵ where ϵ ∼ N (0, 0.5) and see
how an exact GP and ICKy with radial basis function (RBF) kernel can capture the mean and uncertainty of
this function by learning from these samples and directly calculating the covariance Σ according to Equation
17. In Figure 5, our results reveal that both GP and ICKy accurately capture the mean function. However,
ICKy exhibits a prediction of uncertainty closer to the ground truth when compared to GP.

10

Published in Transactions on Machine Learning Research (02/2024)

Figure 6: Prediction of y ∼ GP(0, K1K2), where x(1) is input to a linear kernel K1 and x(2) is input to a
spectral mixture kernel K2. We plot x(2) against the predicted y. We show results from a plain MLP (left),
MLP-RF (middle left), and ICKy framework (middle right), and we compare to the true values of y (right).

Figure 7: Prediction of y ∼ GP(0, K1 + K2), where x(1) is input to a linear kernel K1 and x(2) is input to a
spectral mixture kernel K2. We plot x(2) against the predicted y. We show results from a plain MLP (left),
MLP-RF (middle left), and ICKy framework (middle right), and we compare to the true values of y (right).

5 Experiments

We evaluate ICKy on 6 different data sets: 2 synthetic datasets and 4 real-world datasets 1. In all the
experiments, our ICKy framework only consists of 2 kernels (i.e. M = 2), one NN-implied kernel and one
chosen kernel function with trainable parameters. The implementation details of all the experiments in this
section are provided in Appendix F and the data accessibility and restrictions are provided in Appendix G.

5.1 Synthetic Data

5.1.1 Case when M = 2

To verify that ICKy can simulate sampling from a GP with multiplicative kernel, we create a synthetic data
set y ∼ GP(0, K1K2) containing 3000 data points where x(1) ∈ [0, 1] is the input for the linear kernel K1 and
x(2) ∈ [0, 2] is the input for a spectral mixture kernel (Wilson & Adams, 2013) K2 with 2 components.

We compare ICKy with two models: a multi-layer perceptron (MLP) applied to the concatenated features
and a novel multi-layer perceptron-random forest (MLP-RF) joint model employed by Zheng et al. (2021),
where MLP learns from x(1) and RF learns from x(2). We believe MLP-RF serves as a good benchmark
model as it is a joint model with similar architecture to our ICKy framework. To see how ICKy simulates
the spectral mixture kernel, we plot only x(2) against the predicted value of y as shown in Figure 6. As can
be seen from the figure, plain MLP only captures the linear trend. MLP-RF only captures the mean of the
spectral mixture components. In contrast, our ICKy framework captures both the mean and the variance of
the spectral mixture kernel. We also repeat this experiment by sampling from GP with an additive kernel
and we obtain similar observations as shown in Figure 7.

1The code for all the experiments presented in this paper can be accessed at: https://github.com/jzy95310/ICK.

11

https://github.com/jzy95310/ICK

Published in Transactions on Machine Learning Research (02/2024)

(a) (b) (c)

Figure 8: Visualization of (a) True matrix (b) estimated matrix by our ICKy framework, and (c) absolute
difference between the true and estimated matrix for the spectral mixture kernel

50 30 10 10 30 50
ytrue

50

30

10

10

30

50

y p
re

d

Spearman r = 0.86
Pearson r = 0.76
RMSE = 8.76
MAE = 6.9

(a)

40 20 0 20 40
ytrue

40

20

0

20

40

y p
re

d

Spearman r = 0.94
Pearson r = 0.86
RMSE = 6.88
MAE = 4.86

(b)

60 40 20 0 20 40 60
ytrue

60

40

20

0

20

40

60

y p
re

d

Spearman r = 0.94
Pearson r = 0.93
RMSE = 4.84
MAE = 3.27

(c)

Figure 9: Scatter plots of the true values of y against the predicted values of y using our ICKy framework
with information from (a) one source ŷ = fNN

(
x(1)), (b) 2 sources ŷ = fICKy

(
x(1), x(2)), and (c) 3 sources

ŷ = fICKy
(
x(1), x(2), x(3)).

We also examine whether ICKy can retrieve the spectral mixture kernel in this task. After fitting the
parameters of the spectral mixture kernel in ICKy, we compute the kernel matrix KICKy using these learned
parameters and compare it with the true kernel matrix Ktrue by calculating the absolute difference between
them as displayed in Figure 8. As can be observed, KICKy and Ktrue are similar and their absolute difference
is relatively small, indicating that ICKy can approximately retrieve the spectral mixture kernel.

5.1.2 Case when M = 3

We then construct another synthetic data set with 3000 data points where each input x =
{

x(1), x(2), x(3)} con-
tains information from 3 difference sources. The output y is generated by y = x(3) tanh

(
2x(1) cos2 (πx(2)/50

))
+

ϵ where ϵ is a Gaussian noise term. We process x(1) with a small single-hidden-layer NN, x(2) with an expo-
nential sine squared kernel, and x(3) with a radial-basis function (RBF) kernel. Figure 9 shows the prediction
results as we progressively add more sources of information into our ICKy framework with corresponding
kernel functions. It can be observed that ICKy yields both smallest error and highest correlation with
information from all 3 different sources. Hence, ICKy works well with the M = 3 case and the regression
performance is improved as we add in more information related to the target.

12

Published in Transactions on Machine Learning Research (02/2024)

5.1.3 Cases when M > 3

Table 1: Prediction errors of ICKy on synthetic dataset
generated by GP with multiplicative kernel, i.e., y ∼
GP

(
0,
∏M

i=1 Ki

)
.

M = 1 M = 2 M = 3 M = 4 M = 5
RMSE 0.0334 0.0440 0.0466 0.2108 0.2560
MAE 0.0266 0.0347 0.0353 0.1565 0.1790

To assess the robustness of ICKy in handling
diverse information sources, we conduct “stress
tests” by evaluating its performance under vary-
ing numbers of information sources, i.e., when
M ∈ {1, 2, 3, 4, 5}. In this analysis, we generate
synthetic data following a methodology similar
to that outlined in Section 5.1. Specifically, we
model the data as y ∼ GP

(
0,
∏M

i=1 Ki

)
, where

K1, K2, K3, K4, and K5 are set to be the spectral
mixture kernel, linear kernel, RBF kernel, exponential sine-squared kernel, and Matérn kernel with ν = 5/2,
respectively. As presented in Table 1, when M > 3, the performance of ICKy starts to degrade. We posit
that this degradation is primarily attributed to vanishing gradient, a phenomenon we will discuss further in
the Discussion section.

5.2 Remote Sensing Data

We believe ICKy will be particularly useful for remote sensing applications. In this experiment, we evaluate
ICKy on a remote sensing datasets where each data point x = {x, t} contains 2 sources of information:
a three-band natural color (red-blue-green) satellite image x as the high-dimensional information and the
corresponding timestamp as the low-dimensional information. Our goal is to forecast the ground-level PM2.5
concentration ŷ = f(x, t) using both sources of information.

As PM2.5 varies with time on a yearly basis, we use an exponential-sine-squared kernel with a period of
T = 365 (days) to process the low-dimensional information t. The satellite images are processed with a
CNN. The results of ICKy are then compared with 2 benchmarks as shown in Table 2: a Convolutional
Neural Network-Random Forest (CNN-RF) joint model (Zheng et al., 2020; 2021) (similar to the MLP-RF
model in Section 5.1) and a carefully designed Seasonal CNN-RF model that maps t into two new features,
sin(2πt/365) and cos(2πt/365), to explicitly model seasonality.

Table 2: Correlation and error statistics of ICKy and other
joint deep models with both convolutional and attention-
based architectures on the PM2.5 forecasting task. “S.”
denotes seasonal variants.

RSpear RMSE MAE MSLL
CNN-RF 0.00 194.63 185.83 -
ViT-RF 0.07 190.82 181.63 -

S. CNN-RF 0.62 53.36 39.38 96.77
S. ViT-RF 0.66 56.45 41.73 14.69

S. Deep-ViT-RF 0.65 56.36 42.46 17.63
S. MAE-ViT-RF 0.67 53.87 40.78 31.09

CNN-ICKy 0.62 53.46 39.76 10.92
ViT-ICKy 0.68 56.56 41.41 12208

DeepViT-ICKy 0.66 52.41 35.93 38220

We note that the inner product operation in ICK
is similar in mathematical structure to attention-
based mechanisms (Vaswani et al., 2017), which
are popular in many deep learning frameworks.
Therefore, we introduce 2 variants of ICKy and
compare them with another 4 benchmarks where
the CNN is replaced by an attention-based mecha-
nism based off a Vision Transformer (ViT) (Doso-
vitskiy et al., 2020) and DeepViT (Zhou et al.,
2021) architectures. These models include ViT-
RF, Seasonal ViT-RF, Seasonal DeepViT-RF,
and Seasonal MAE-ViT-RF, where ViT is pre-
trained by a Masked Autoencoder (He et al.,
2022). “Seasonal” here denotes that we use the
transformed periodic representation defined pre-
viously. We note that we are unaware of Vision
Transformers being used in this manner, and we
want to evaluate whether it is the model structure or the prior information that is improving the results.
Hence, these attention-based models, while not a primary contribution, are novel and represent a good-faith
effort to define models with similar forms. As displayed in Table 2, both standard CNN-RF and ViT-RF
models yields very large errors on predicting PM2.5 values. After including seasonality, CNN-RF performs
significantly better and shares similar predictive performance with CNN-ICKy. After replacing CNN with
ViT, we observe slight improvement in both RF-joint models (especially when pre-trained by MAE) and ICKy
variants. Among the models we present here, ViT-ICKy and DeepViT-ICKy achieve the highest correlation

13

Published in Transactions on Machine Learning Research (02/2024)

Table 3: Prediction error of actual worker produc-
tivity on the test data set with ICKy and other
benchmark models.

MSE ↓ (∗10−3) MAE ↓ (∗10−2)
MLP 20.16 ± 1.26 9.93 ± 0.36

Cyclic MLP 20.97 ± 1.98 10.16 ± 0.77
Cyclic MLP-RF 19.05 ± 1.36 9.70 ± 0.48

DKL 21.40 ± 2.85 11.14 ± 0.94
ICKy, T = 2 3.43 ± 1.42 4.85 ± 1.00
ICKy, T = 7 0.44 ± 0.13 1.43 ± 0.15
ICKy, T = 30 0.31 ± 0.09 1.17 ± 0.14

Table 4: Root-mean-square-error (RMSE) and nega-
tive log-likelihood (NLL) of ICKy with Matern-3/2
kernel and periodic kernel and two GP benchmarks
on power consumption data.

RMSE NLL
Exact GP 0.055 ± 0.000 -0.152 ± 0.001

SVGP 0.084 ± 0.005 -1.010 ± 0.039
ICKy, Matérn-3/2 0.036 ± 0.000 -1.424 ± 0.000

ICKy, periodic 0.033 ± 0.000 -1.737 ± 0.000

and the smallest prediction error, respectively. To evaluate the uncertainty calibration capability of ICKy, we
construct ICKy ensembles by following Algorithm 2 and compare them with ensemble formulations of
RF-joint model benchmarks. We use a criterion called Mean Standardized Log Loss (MSLL) as defined in
Williams & Rasmussen (2006) to evaluate the uncertainty calibration. From Table 2, it can be observed that
CNN-ICKy ensemble achieves the smallest MSLL. In addition, we realize ViT-based ICKy variants yield
very large MSLL as they make predictions which are far from the true PM2.5 labels with high confidence (i.e.
small variance). We provide details and possible explanations in Appendix H.

5.3 Other Regression Datasets

To see if our ICKy framework generalizes to other domains, we acquired two additional regression datasets
from the UCI machine learning repository, one for predicting worker productivity (with 1197 samples and 15
features) and the other for predicting power consumption (with 2075259 samples and 9 features). For the
worker productivity dataset, we employ ICKy with an exponential-sine-squared kernel with different periods
and compare them with benchmarks including MLPs (Al Imran et al., 2019) and Deep Kernel Learning
(DKL) (Wilson et al., 2016b) as shown in Table 3. For the power consumption dataset, we use ICKy with
both an exponential-sine-squared kernel and a Matérn 3/2 kernel and compare them with scalable exact GP
(Wang et al., 2019) and stochastic variational GP (Hensman et al., 2013) as shown in Table 4. From the
results, we observe that ICKy outperforms all the benchmarks in both experiments (especially on the worker
productivity data with a margin of almost one order of magnitude).

5.4 Adapting ICK for Classification

While regression tasks are the primary motivation for this paper, there are many ways to adapt GPR for
classification tasks. For example, a binary classification model can be created by using a sigmoid (Williams
& Barber, 1998) or probit link (Choudhuri et al., 2007) on the output of the GP. Succinctly, given a function
f(x) ∼ GP (0, K(x, x′)), the binary outcome probability is be given as p(y = 1|f(x)) = σ(f(x)). Likewise, a
multiple classification model can be constructed by using a multi-output GP (or multiple GPs) and putting
the outputs through a softmax function (Williams & Barber, 1998) or multinomial probit link (Girolami &
Rogers, 2006). This strategy can be summarized by calculating C different functions fc(x) ∼ GP (0, K(x, x′))
for c = 1, ..., C, where C is the number of classes, and then calculating the class probabilities through a link
function, p(y|x) = softmax([f1(x), f2(x), ..., fC(x)]).

This same logic can be used to construct a multiple classification model from ICKy. Succinctly, let rc =
fNN,c(x(1)) ⊙ z

(2)
c , where fNN,c denotes a neural network specific to the cth class and z

(2)
c represents the

Nyström approximation specific to the kernel for the cth class. We note that often in a multi-output
case the kernel parameters are shared, and so z

(2)
c would be an identical vector for each class. Then, the

output probabilities for a data sample as p(y|x) = softmax([r1, . . . , rC]). This framework is learned with a
cross-entropy loss.

To provide proof-of-concept of this multiple classification strategy, we implemented this model on a version of
Rotating MNIST. In this task, a dataset was created by rotating each image in the dataset by a uniform

14

Published in Transactions on Machine Learning Research (02/2024)

random value ϕ ∈ [0, 2π), thus creating a dataset with 60,000 images each with an associated rotation
covariate ϕ. We implemented the above multiple classification model with a periodic kernel over the rotation
angle. This strategy yielded an accuracy of 92.3% on the validation data. This is lower than methods such
as spatial transformers (Jaderberg et al., 2015) that report accuracy greater than 99%. However, those
models explicitly use the fact that the information is simply rotated, whereas ICK is modeling a smooth
transformation in the prediction function as a function of angle. This ICK classification model is much closer
in concept to the way Rotating MNIST is used to evaluate unsupervised domain adaptation. While the
evaluation strategy is different than our random validation set, the state-of-the-art accuracy on unsupervised
domain adaption is 87.1% (Wang et al., 2020). Due to the lack of complete and fair comparisons, we are not
claiming that ICKy is state-of-the-art for classification, but ICKy’s classification model does seem reasonable
and viable based upon this result.

6 Discussion

Computational Complexity and Flexibility of ICK Compared to exact composite GP models
which scale O(N3), the training process of our ICK framework is more efficient as it leverages standard
backpropagation to learn both the paramters of NN and the kernel function. Specifically, let NB be the
number of data points in one mini-batch and p be the number of inducing points for Nyström approximation.
The computational complexity for g(·) is O(p2NB + p3). The computational complexity for the forward pass
of fNN(·) is O (NB(k1k2 + · · · kL−1kL)) where k1, ..., kL are the widths of each layer for a neural network of
depth L. In addition, our ICK framework is more flexible compared to other joint models (i.e. BNNs and
CNN-RF). Specifically, the BNNs of Pearce et al. (2020) cannot simulate complicated kernels such as the
spectral mixture kernel we use in Section 5.1.

Limitations As described in Section 5.1.3, ICKy starts to yield higher prediction error when we have more
than 3 different sources of information. This phenomenon is likely to be caused by vanishing gradient as
we may need to multiply small numbers together due to the nature of inner product. Furthermore, in some
cases, the properties of predictive posterior given by ICK ensemble are dominated by the neural network as
shown in Appendix H. It can sometimes be challenging to choose an appropriate NN architecture to make
sure it does not interfere with other specified kernels. In addition, as highlighted in Section 8.3.2 of Williams
& Rasmussen (2006), it is important to note that the predictive variance using the Nyström method is not
guaranteed to be positive. This can result in the kernel matrix no longer being positive-semidefinite, making
the Cholesky decomposition infeasible. In such cases, we recommend either reducing the rank of the Nyström
approximation or experimenting with alternative kernel functions.

Broader Impacts We believe our framework is extensively applicable to regression problems in many
fields of study involving high-dimensional data and multiple sources of information with perceptible trends,
such as remote sensing, spatial statistics, or clinical diagnosis. Also, we are not aware of any negative societal
impacts of our work.

7 Conclusion

This paper presents a novel yet surprisingly simple Implicit Composite Kernel (ICK) framework to learn
from hybrid data containing both high-dimensional information and low-dimensional information with prior
knowledge. We first analytically show the resemblance between ICK and composite GPR models and then
conduct experiments using both synthetic and real-world data. It appears that ICK outperforms various
benchmark models in our experiments with lowest prediction errors and highest correlations even with very
limited data. Overall, we show that our ICK framework is exceptionally powerful when learning from hybrid
data with prior knowledge incorporated, and we hope our work can inspire more future research on joint
machine learning models, enhancing their performance, efficiency, flexibility, and generalization capability.

15

Published in Transactions on Machine Learning Research (02/2024)

References
Ben Adlam, Jaehoon Lee, Lechao Xiao, Jeffrey Pennington, and Jasper Snoek. Exploring the uncertainty

properties of neural networks’ implicit priors in the infinite-width limit. arXiv preprint arXiv:2010.07355,
2020.

Ben Adlam, Jaehoon Lee, Shreyas Padhy, Zachary Nado, and Jasper Snoek. Kernel regression with infinite-
width neural networks on millions of examples. arXiv preprint arXiv:2303.05420, 2023.

Abdullah Al Imran, Md Nur Amin, Md Rifatul Islam Rifat, and Shamprikta Mehreen. Deep neural network
approach for predicting the productivity of garment employees. In 2019 6th International Conference on
Control, Decision and Information Technologies (CoDIT), pp. 1402–1407. IEEE, 2019.

Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning, volume 4. Springer,
2006.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine learning.
Siam Review, 60(2):223–311, 2018.

Mohamed A Bouhlel and Joaquim RRA Martins. Gradient-enhanced kriging for high-dimensional problems.
Engineering with Computers, 35(1):157–173, 2019.

Mohamed Amine Bouhlel, Nathalie Bartoli, Abdelkader Otsmane, and Joseph Morlier. Improving kriging
surrogates of high-dimensional design models by partial least squares dimension reduction. Structural and
Multidisciplinary Optimization, 53(5):935–952, 2016.

Nidhan Choudhuri, Subhashis Ghosal, and Anindya Roy. Nonparametric binary regression using a gaussian
process prior. Statistical Methodology, 4(2):227–243, 2007.

Abhirup Datta, Sudipto Banerjee, Andrew O Finley, and Alan E Gelfand. Hierarchical nearest-neighbor
gaussian process models for large geostatistical datasets. Journal of the American Statistical Association,
111(514):800–812, 2016.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

Petros Drineas, Michael W Mahoney, and Nello Cristianini. On the nyström method for approximating a
gram matrix for improved kernel-based learning. journal of machine learning research, 6(12), 2005.

David Duvenaud. Automatic model construction with Gaussian processes. PhD thesis, University of Cambridge,
2014.

Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende, SM Eslami, and
Yee Whye Teh. Neural processes. arXiv preprint arXiv:1807.01622, 2018.

Adrià Garriga-Alonso, Carl Edward Rasmussen, and Laurence Aitchison. Deep convolutional networks as
shallow gaussian processes. arXiv preprint arXiv:1808.05587, 2018.

Alan E Gelfand and Erin M Schliep. Spatial statistics and gaussian processes: A beautiful marriage. Spatial
Statistics, 18:86–104, 2016.

Mark Girolami and Simon Rogers. Variational bayesian multinomial probit regression with gaussian process
priors. Neural Computation, 18(8):1790–1817, 2006.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Bobby He, Balaji Lakshminarayanan, and Yee Whye Teh. Bayesian deep ensembles via the neural tangent
kernel. Advances in neural information processing systems, 33:1010–1022, 2020.

16

Published in Transactions on Machine Learning Research (02/2024)

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders
are scalable vision learners. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 16000–16009, 2022.

James Hensman, Nicolo Fusi, and Neil D Lawrence. Gaussian processes for big data. arXiv preprint
arXiv:1309.6835, 2013.

Geoffrey E Hinton and Russ R Salakhutdinov. Using deep belief nets to learn covariance kernels for gaussian
processes. Advances in neural information processing systems, 20, 2007.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and generalization
in neural networks. Advances in neural information processing systems, 31, 2018.

Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer networks. Advances in neural
information processing systems, 28, 2015.

Ziyang Jiang, Tongshu Zheng, Mike Bergin, and David Carlson. Improving spatial variation of ground-level
pm2. 5 prediction with contrastive learning from satellite imagery. Science of Remote Sensing, pp. 100052,
2022.

Andre G Journel and Charles J Huijbregts. Mining geostatistics. The Blackburn Press, 1976.

Hyoung-Moon Kim, Bani K Mallick, and Chris C Holmes. Analyzing nonstationary spatial data using
piecewise gaussian processes. Journal of the American Statistical Association, 100(470):653–668, 2005.

Daniel G Krige. A statistical approach to some basic mine valuation problems on the witwatersrand. Journal
of the Southern African Institute of Mining and Metallurgy, 52(6):119–139, 1951.

Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial neural networks for solving ordinary and
partial differential equations. IEEE transactions on neural networks, 9(5):987–1000, 1998.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444, 2015.

Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington, and Jascha Sohl-
Dickstein. Deep neural networks as gaussian processes. arXiv preprint arXiv:1711.00165, 2017.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-Dickstein, and
Jeffrey Pennington. Wide neural networks of any depth evolve as linear models under gradient descent.
Advances in neural information processing systems, 32, 2019.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous relaxation of
discrete random variables. arXiv preprint arXiv:1611.00712, 2016.

Gary Marcus. Deep learning: A critical appraisal. arXiv preprint arXiv:1801.00631, 2018.

Takuo Matsubara, Chris J Oates, and François-Xavier Briol. The ridgelet prior: A covariance function
approach to prior specification for bayesian neural networks. arXiv preprint arXiv:2010.08488, 2020.

Alexander G de G Matthews, Jiri Hron, Richard E Turner, and Zoubin Ghahramani. Sample-then-optimize
posterior sampling for bayesian linear models. In NeurIPS Workshop on Advances in Approximate Bayesian
Inference, 2017.

Alexander G de G Matthews, Mark Rowland, Jiri Hron, Richard E Turner, and Zoubin Ghahramani. Gaussian
process behaviour in wide deep neural networks. arXiv preprint arXiv:1804.11271, 2018.

Brian McFee, Gert Lanckriet, and Tony Jebara. Learning multi-modal similarity. Journal of machine learning
research, 12(2), 2011.

Ben Moseley, Andrew Markham, and Tarje Nissen-Meyer. Solving the wave equation with physics-informed
deep learning. arXiv preprint arXiv:2006.11894, 2020.

17

Published in Transactions on Machine Learning Research (02/2024)

Radford M Neal. Priors for infinite networks. In Bayesian Learning for Neural Networks, pp. 29–53. Springer,
1996.

Roman Novak, Lechao Xiao, Jaehoon Lee, Yasaman Bahri, Greg Yang, Jiri Hron, Daniel A Abolafia, Jeffrey
Pennington, and Jascha Sohl-Dickstein. Bayesian deep convolutional networks with many channels are
gaussian processes. arXiv preprint arXiv:1810.05148, 2018.

Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A. Alemi, Jascha Sohl-Dickstein, and
Samuel S. Schoenholz. Neural tangents: Fast and easy infinite neural networks in python. In International
Conference on Learning Representations, 2020. URL https://github.com/google/neural-tangents.

Tim Pearce, Russell Tsuchida, Mohamed Zaki, Alexandra Brintrup, and Andy Neely. Expressive priors
in bayesian neural networks: Kernel combinations and periodic functions. In Uncertainty in artificial
intelligence, pp. 134–144. PMLR, 2020.

Dejan Petelin, Alexandra Grancharova, and Juš Kocijan. Evolving gaussian process models for prediction of
ozone concentration in the air. Simulation modelling practice and theory, 33:68–80, 2013.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances in neural
information processing systems, 20, 2007.

Ali Rahimi and Benjamin Recht. Weighted sums of random kitchen sinks: Replacing minimization with
randomization in learning. Advances in neural information processing systems, 21, 2008.

Edward Snelson and Zoubin Ghahramani. Sparse gaussian processes using pseudo-inputs. Advances in neural
information processing systems, 18, 2005.

Michalis Titsias. Variational learning of inducing variables in sparse gaussian processes. In Artificial
intelligence and statistics, pp. 567–574. PMLR, 2009.

Mark Van der Wilk, Carl Edward Rasmussen, and James Hensman. Convolutional gaussian processes.
Advances in Neural Information Processing Systems, 30, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Hao Wang, Hao He, and Dina Katabi. Continuously indexed domain adaptation. International Conference
on Machine Learning, 2020.

Ke Wang, Geoff Pleiss, Jacob Gardner, Stephen Tyree, Kilian Q Weinberger, and Andrew Gordon Wilson.
Exact gaussian processes on a million data points. Advances in neural information processing systems, 32,
2019.

Christopher Williams and Matthias Seeger. Using the nyström method to speed up kernel machines. Advances
in neural information processing systems, 13, 2000.

Christopher K Williams and Carl Edward Rasmussen. Gaussian processes for machine learning, volume 2.
MIT press Cambridge, MA, 2006.

Christopher KI Williams and David Barber. Bayesian classification with gaussian processes. IEEE Transactions
on pattern analysis and machine intelligence, 20(12):1342–1351, 1998.

Andrew Wilson and Ryan Adams. Gaussian process kernels for pattern discovery and extrapolation. In
International conference on machine learning, pp. 1067–1075. PMLR, 2013.

Andrew G Wilson, Zhiting Hu, Russ R Salakhutdinov, and Eric P Xing. Stochastic variational deep kernel
learning. Advances in neural information processing systems, 29, 2016a.

Andrew Gordon Wilson, David A Knowles, and Zoubin Ghahramani. Gaussian process regression networks.
arXiv preprint arXiv:1110.4411, 2011.

18

https://github.com/google/neural-tangents

Published in Transactions on Machine Learning Research (02/2024)

Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P Xing. Deep kernel learning. In
Artificial intelligence and statistics, pp. 370–378. PMLR, 2016b.

Tianbao Yang, Yu-Feng Li, Mehrdad Mahdavi, Rong Jin, and Zhi-Hua Zhou. Nyström method vs random
fourier features: A theoretical and empirical comparison. Advances in neural information processing
systems, 25, 2012.

Daoqiang Zhang, Yaping Wang, Luping Zhou, Hong Yuan, Dinggang Shen, Alzheimer’s Disease Neuroimaging
Initiative, et al. Multimodal classification of alzheimer’s disease and mild cognitive impairment. Neuroimage,
55(3):856–867, 2011.

Tongshu Zheng, Michael H Bergin, Shijia Hu, Joshua Miller, and David E Carlson. Estimating ground-
level pm2. 5 using micro-satellite images by a convolutional neural network and random forest approach.
Atmospheric Environment, 230:117451, 2020.

Tongshu Zheng, Michael Bergin, Guoyin Wang, and David Carlson. Local pm2. 5 hotspot detector at 300 m
resolution: A random forest–convolutional neural network joint model jointly trained on satellite images
and meteorology. Remote Sensing, 13(7):1356, 2021.

Daquan Zhou, Bingyi Kang, Xiaojie Jin, Linjie Yang, Xiaochen Lian, Zihang Jiang, Qibin Hou, and Jiashi
Feng. Deepvit: Towards deeper vision transformer. arXiv preprint arXiv:2103.11886, 2021.

19

	Introduction
	Related Work
	Background
	Problem Setup
	Composite GPs
	Correspondence between GPs and NNs

	Implicit Composite Kernel
	Resemblance between Composite GPR and ICK
	Kernel-to-latent-space Transformation
	Nyström Approximation
	Random Fourier Features

	Uncertainty Estimation
	Ensembling
	Computing Variance

	Experiments
	Synthetic Data
	Case when M = 2
	Case when M = 3
	Cases when M > 3

	Remote Sensing Data
	Other Regression Datasets
	Adapting ICK for Classification

	Discussion
	Conclusion

