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Abstract
In this work, we develop a stronger characterization of the optimization and generalization landscape
of ICL through contributions on architectures, low-rank parameterization, and correlated designs:
(1) We study the landscape of 1-layer linear attention and 1-layer H3, a state-space model. Under a
suitable correlated design assumption, we prove that both implement 1-step preconditioned gradient
descent. (2) By studying correlated designs, we provide new risk bounds for retrieval augmented
generation (RAG) and task-feature alignment which reveal how ICL sample complexity benefits
from distributional alignment. (3) We derive the optimal risk for low-rank parameterized attention
weights in terms of covariance spectrum. Through this, we also shed light on how LoRA can adapt
to a new distribution by capturing the shift between task covariances.

1. Introduction

ICL capability has become an important feature of LLM and its ability presents an important research
avenue to develop stronger theoretical and mechanistic understanding of LLMs. To this aim, there
has been significant recent interest in demystifying ICL [1, 18, 26, 29, 44, 46]. A notable result in this
direction is the observation that multilayer linear attention models [38, 40] implement preconditioned
gradient descent (PGD) during ICL [1]. While this line of works provide a fresh perspective to ICL,
the existing studies do not address many questions arising from real-life applications.

To this aim, we revisit the theoretical exploration of ICL with linear data model and make the
following contributions:

1. We investigate the landscape of linear attention and H3 [10], a widely popular state-space model
(SSM), and prove that under correlated design, both implement 1-step PGD (c.f. Proposition 3).
Our analysis reveals that the gating mechanism in H3 imitates attention. We also empirically
show that H3 has the advantage of implementing sample-weighting allowing it to outperform
linear attention in temporally-heterogeneous settings in Appendix D and Figure 4.

2. We assess the impact of distributional alignment on the sample complexity of ICL. Specifically,
we characterize the performance of Retrieval Augmented Generation (RAG) (c.f. Theorem 6)
and Task-Feature Alignment (c.f. Theorem 7), where the in-context examples are α-correlated
with either the query or the task vector. For both settings, we prove that alignment amplifies
the effective sample size of ICL by a factor of α2d+ 1, highlighting that aligned data are crucial
for the success of ICL in few-shot settings.
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3. We show that, under low-rank parameterization, optimal attention-weights still implements
PGD according to the truncated eigenspectrum of the fused task-feature covariance (see
Section 3.2). We similarly derive risk upper bounds for LoRA adaptation (c.f. Eq. (13)), and
show that, these bounds accurately predict the empirical performance.

2. Problem Setup and Preliminaries

We construct the input in-context prompt similar to [1, 29, 46] as follows.
Linear data distribution. Let (x, y) ∈ Rd × R be a (feature, label) pair generated by a linear model
parameterized by β ∈ Rd, i.e., y = x⊤β + ξ, where x and β are feature and task vectors, and ξ is the
label noise. Given demonstrations (xi, yi)n+1

i=1 sampled from a single β, define the input prompt

Z = [z1 . . . zn zn+1]⊤ =
[
x1 . . . xn xn+1
y1 . . . yn 0

]⊤
∈ R(n+1)×(d+1). (1)

Then, given Z, the goal of the model is to predict the correct label yn+1 corresponding to xn+1. For
cleaner notation, when it is clear from context, we drop the subscript n+1 and set x = xn+1, z = zn+1.
Different from the previous work [1, 29, 30, 46] where (xi)n+1

i=1 and β are assumed to be independent,
our analysis focuses on a more general setting that captures the dependency between (xi)n+1

i=1 and β.
Model architectures. Similar to the previous work [1, 29, 40, 46] and to simplify the model structure,
we focus on single-layer models and omit the nonlinearity from the Transformer. Given the input
prompt Z ∈ R(n+1)×(d+1) in (1), which can be treated as a sequence of (d + 1)-dimensional tokens, the
single-layer linear attention ATT and H3-like single-layer SSM SSM are denoted by

ATT(Z) = (ZWqW⊤k Z⊤)ZWv (2a)

SSM(Z) =
(
(ZWq) ⊙ ((ZWk ⊙ ZWv) ∗ f )

)
(2b)

where Wk, Wq, Wv ∈ R
(d+1)×(d+1) denote the key, query and value weight matrices, respectively.

In (2b), the parameter f ∈ Rn+1 is a 1-D convolutional filter that mixes tokens.

2.1. In-context Linear Estimation

We will next study the algorithms that can be implemented by the single-layer models ATT and SSM.
Background: 1-step gradient descent. Consider minimizing squared loss and solving linear
regression using one step of PGD and WPGD. Given n samples (xi, yi)n

i=1, define

X = [x1 · · · xn]⊤ ∈ Rn×d and y = [y1 · · · yn]⊤ ∈ Rn.

Starting from β0 = 0d and letting η = 1/2 be the step size, a single-step (sample-weighted) GD
preconditioned with weights W ∈ Rd×d and ω ∈ Rn return predictions

ŷ = x⊤WX⊤y := gPGD(Z), and ŷ = x⊤WX⊤(ω ⊙ y) := gWPGD(Z), (3)

where Z is defined in (1) consisting of X, y and x. Our goal is to find the optimal W, as well as ω
that minimize the population risks defined as follows.

min
W
LPGD(W) where LPGD(W) = E

[
(y − gPGD(Z))2

]
, (4a)

min
W,ω
LWPGD(W) where LWPGD(W) = E

[
(y − gWPGD(Z))2

]
. (4b)
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Here, the expectation is over the randomness in (xi, ξi)n+1
i=1 and β, and we useW to represent the set

of corresponding trainable parameters. The search spaces for ω and W are Rn and Rd×d, respectively.
Note that similar to [1, 29], we consider a training objective with a causal mask to ensure inputs

cannot attend to their own labels and training can be parallelized. Let Z0 = [z1 . . . zn 0]⊤ be the
features post-causal masking at time/index n + 1. Given weights Wk,Wq,Wv and the filter f for SSM,
predictions at the query token z take the forms following sequence-to-sequence mappings in (2):

gATT(Z) = (z⊤WqW⊤k Z⊤0 )Z0Wvv, and gSSM(Z) =
(
(z⊤Wq)⊤ ⊙ ((Z0Wk ⊙ Z0Wv) ∗ f )n+1

)
v,

where v ∈ Rd+1 is the linear prediction head and ((Z0Wk ⊙ Z0Wv) ∗ f )n+1 returns the last row of the
convolution output. Note that SSM can implement the mask by setting f0 = 0. Thus, the objectives
for both models take the following forms.

min
Wk ,Wq,Wv,v

LATT(W) where LATT(W) = E
[
(y − gATT(Z))2

]
, (5a)

min
Wk ,Wq,Wv,v, f

LSSM(W) where LSSM(W) = E
[
(y − gSSM(Z))2

]
. (5b)

Here, similarly, the expectation subsumes the randomness of (xi, ξi)n+1
i=1 and β andW represents the

set of trainable parameters. The search space for matrices Wk, Wq, Wv is R(d+1)×(d+1), for head v is
Rd+1, and for f is Rn+1.

Note that for all the optimization methods (c.f. (4), (5)), to simplify the analysis, we train the
models without capturing additional bias terms. Therefore, in the following, we introduce the
centralized data assumptions such that the models are trained to make unbiased predictions.

To begin with, a cross moment of random variables is defined as the expectation of a monomial
of these variables, with the order of the cross moment being the same as order of the monomial.
Then, it motivates the following data assumptions.

Assumption 1 All cross moments of the entries of (xi)n+1
i=1 and β with odd orders are zero.

Assumption 2 (ξi)n+1
i=1 are independent of (xi)n+1

i=1 , β, and their odd-order cross moments are zero.

Note that compared to [1, 29, 46], Assumption 1 is more general which also subsumes the dependent
data setting. Next, we introduce the following result establishing the equivalence among optimizing
1-layer linear attention (c.f. (5a)), 1-layer H3 (c.f. (5b)), and 1-step gradient descent (c.f. (4)).

Proposition 3 Suppose Assumptions 1 and 2 hold. Consider the objectives as defined in (4) and (5),
and let L⋆PGD, L

⋆
WPGD, L

⋆
ATT, and L⋆SSM be their optimal risks, respectively. Then,

L⋆PGD = L
⋆
ATT and L⋆WPGD = L

⋆
SSM.

Additionally, if the examples (xi, yi)n
i=1 follow the same distribution and are conditionally independent

given x,β, then SSM/H3 can achieve the optimal loss using the all-ones filter and L⋆PGD = L
⋆
SSM.

We defer the proof to Appendix A.1. Proposition 3 establishes that analyzing the optimization
landscape of ICL for both single-layer linear attention and the H3 model can be effectively reduced
to examining the behavior of a one-step PGD algorithm. Notably, under the independent, RAG and
task-feature alignment data settings discussed above, examples (xi, yi)n

i=1 are independently sampled
given x and β, and we therefore conclude that L⋆PGD = L

⋆
ATT = L

⋆
SSM. Leveraging this result, the

subsequent section of the paper concentrate on addressing (4a), taking into account various linear
data distributions.
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3. Main Results

In light of Proposition 3, optimizing a 1-layer linear-attention or H3 model is equivalent to solving
the objective (4a). Therefore, in this section, we examine the properties of the one-step PGD in (4a)
considering multiple problem settings, including distinct data distributions and low-rank training.

3.1. Analysis of Linear Data Models

We first consider the standard independent data setting. We will then examine correlated designs.
Independent data model. Let Σx and Σβ be the covariance matrices of the input feature and task
vectors, respectively, and σ ≥ 0 be the noise level. We assume

β ∼ N(0,Σβ), xi ∼ N(0,Σx), ξi ∼ N(0, σ2), 1 ≤ i ≤ n + 1 (6)

and the label is obtained via yi = x⊤i β + ξi. Our following result characterizes the optimal solution of
(4a). Note that the data generated from (6) satisfies the conditions in Proposition 3. Therefore, the
same results can be applied to both linear-attention and H3 models.

Theorem 4 Consider independent linear data as defined in (6), and suppose the covariance matrices
Σx,Σβ are full rank. Recap the objective from (4a) and let W⋆ := arg minW LPGD(W), and L⋆ =
LPGD(W⋆). Additionally, let Σ = Σ1/2

x ΣβΣ
1/2
x and M = tr (Σ) + σ2. Then W⋆ and L⋆ satisfy

W⋆ = Σ−1/2
x W̄⋆Σ−1/2

x and L⋆ = M − ntr
(
ΣW̄⋆

)
, (7)

where we define W̄⋆ =
(
(n + 1)Id + MΣ−1

)−1
.

Corollary 5 Consider noiseless i.i.d. linear data where Σx = Σβ = Id and σ = 0. Then, the
objective in (4a) returns

W⋆ =
1

n + d + 1
Id and L⋆ = d −

nd
n + d + 1

.

See Appendix B.2 for proofs. Note that Theorem 4 is consistent with prior work [1, Theorem 1]
when specialized to isotropic task covariance. However, their result is limited as the features and task
are assumed to be independent. This prompts us to ask: What is the optimization landscape with
correlated in-context samples? Toward this, we consider the following correlated linear models.
Retrieval augmented generation. To provide a statistical model of the practical RAG approaches,
given the query vector xn+1 = x, we propose to draw ICL demonstrations that are similar to x with
the same shared task vector β. As an approximate proxy, we assume that β ∼ N(0, Id), x ∼ N(0, Id)
and that RAG samples α-correlated demonstrations (xi, yi)n

i=1 as follows:

xi
∣∣∣ x ∼ N(αx, (1 − α2)Id), ξi ∼ N(0, σ2) and yi = x⊤i β + ξi, 1 ≤ i ≤ n. (8)

The full analysis of RAG is provides in Appendix B.3. Specifically, when we carry out the analysis
by assuming α = O

(
1/
√

d
)

and d/n = O (1), our derivation leads to the following result:

Theorem 6 Consider linear model as defined in (8). Recap the objective from (4a) and let W⋆ :=
arg minW LPGD(W), and L⋆ = LPGD(W⋆). Additionally, let κ = α2d + 1 and suppose α = O

(
1/
√

d
)
,

d/n = O (1) and d is sufficiently large. Then W⋆ and L⋆ have approximate forms

W⋆ ≈
1

κn + d + σ2 Id and L⋆ ≈ d + σ2 −
κnd

κn + d + σ2 . (9)
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Task-feature alignment. We also consider another dependent data setting where task and feature
vectors are assumed to be correlated. Assume that the shared task vector is sampled by β ∼ N(0, Id)
and letting κ = α2d + 1, we sample the α-correlated ICL demonstrations (xi, yi)n+1

i=1 as follows:

xi
∣∣∣ β ∼ N(αβ, Id), ξi ∼ N(0, σ2) and yi = κ

−1/2x⊤i β + ξi, 1 ≤ i ≤ n + 1. (10)

Above, κ−1/2 is a normalization factor to ensure that label variance remains invariant to α. To keep
the exposition cleaner, we defer the full analysis to Theorem 14 in Appendix B.4. Similar to the
RAG setting, we obtain the following results for the optimal parameter and risk.

Theorem 7 Consider linear model as defined in (10). Recap the objective from (4a) and let
W⋆ := arg minW LPGD(W), and L⋆ = LPGD(W⋆). Additionally, given κ = α2d + 1 and suppose
α = O

(
1/
√

d
)
, d/n = O (1) and d is sufficiently large. Then W⋆ and L⋆ have approximate forms

W⋆ ≈
1

κn + (d + σ2)/κ
Id and L⋆ ≈ d + σ2 −

κnd
κn + (d + σ2)/κ

. (11)

Here, (9) and (11) are reminiscent of Corollary 5 and setting α = 0 reduces to the results of
Corollary 5. Observe that, α2d + 1 is the dominant multiplier ahead of n in both results. Thus, we
deduce that, α-correlated models reduce the in-context sample complexity by a factor of α2d + 1.

3.2. Low-rank Parameterization and LoRA

In this section, we investigate training low-rank models, which assume Wk,Wq ∈ R
(d+1)×r where r is

the rank restriction. Equivalently, we consider objective (4a) under condition rank (W) = r.

Lemma 8 Consider independent linear data as defined in (6). Recap the objective from (4a) and
enforce rank (W) ≤ r and W⊤ = W. Let Σ = Σ1/2

x ΣβΣ
1/2
x and M = tr (Σ) + σ2. Denoting λi to be

the i’th largest eigenvalue of Σ, we have that

min
rank(W)≤r,W=W⊤

L(W) = M −
r∑

i=1

nλ2
i

(n + 1)λi + M
. (12)

Note that tr (Σ) =
∑d

i=1 λi. Removing the rank constraint and considering noiseless data setting, this
reduces to the following optimal risk L⋆ =

∑d
i=1

λi+M
n+1+M/λi

. See Appendix C.1 for more details.

Impact of LoRA: Based on the above lemma, we consider the impact of LoRA for adapting the
pretrained model to a new task distribution under jointly-diagonalizable old and new eigenvalues of
Σ, Σnew, (λi)d

i=1, (λnew
i )d

i=1. Consider adapting LoRA matrix to the combined key and value weights
in attention, which reflects minimizing the population loss L̃(Wlora) := L(W +Wlora) in (4a) with
fixed W. Suppose tr (Σ) = tr (Σnew) = M, σ = 0 and W is jointly diagonalizable with Σ, Σnew, then
LoRA’s risk is upper-bounded by

min
rank(Wlora)≤r

L̃(Wlora) ≤ min
|I|≤r,I⊂[d]

∑
i<I

λi + M
n + 1 + M/λi

+
∑
i∈I

λnew
i + M

n + 1 + M/λnew
i

 . (13)

Note that, the right hand side is provided assuming the optimal LoRA-updated model Wlora is also
jointly diagonalizable with covariances Σ, Σnew, and W.
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Figure 1: In this work, we investigate the optimization landscape of in-context learning from the
lens of architecture choice, the role of distributional alignment, and low-rank parameterization. The
empirical performance (solid curves) are aligned with our theoretical results (dotted curves) from
Section 3. More experimental details and discussion are discussed in Appendix D.
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Appendix A. Equivalence among Gradient Descent, Attention, and SSMs

In this section, we present the proofs related to Section 2. Recap that given data

X = [x1 · · · xn]⊤ ∈ Rn×d,

ξ = [ξ1 · · · ξn]⊤ ∈ Rn,

y = [y1 · · · yn]⊤ = Xβ + ξ ∈ Rn,

Z0 = [z1 . . . zn 0d+1]⊤ =
[
x1 . . . xn 0d

y1 . . . yn 0

]⊤
∈ R(n+1)×(d+1),

and corresponding prediction functions

gPGD(Z) = x⊤WX⊤y, (14a)

gWPGD(Z) = x⊤WX⊤(ω ⊙ y), (14b)

gATT(Z) = (z⊤WqW⊤k Z⊤0 )Z0Wvv, (14c)

gSSM(Z) =
(
(z⊤Wq)⊤ ⊙ ((Z0Wk ⊙ Z0Wv) ∗ f )n+1

)
v, (14d)

we have objectives

min
W
LPGD(W) where LPGD(W) = E

[
(y − gPGD(Z))2

]
, (15a)

min
W,ω
LWPGD(W) where LWPGD(W) = E

[
(y − gWPGD(Z))2

]
, (15b)

min
Wk ,Wq,Wv,v

LATT(W) where LATT(W) = E
[
(y − gATT(Z))2

]
, (15c)

min
Wk ,Wq,Wv,v, f

LSSM(W) where LSSM(W) = E
[
(y − gSSM(Z))2

]
. (15d)

Here, the expectation is over the randomness in (xi, ξi)n
i=1 and β, and the search space for W is Rd×d,

for ω is Rn, for Wk,Wq,Wv is R(d+1)×(d+1), for v is Rd+1, and for f is Rn+1.

A.1. Proof of Proposition 3

Consider the problem setting as discussed in Section 2, Proposition 3 can be proven by the following
two lemmas.

Lemma 9 Suppose Assumptions 1 and 2 hold. Then, given the objectives (15a) and (15c), we have

min
Wq,Wk ,Wv,v

LATT(W) = min
W
LPGD(W).

Proof Recap the linear attention estimator from (14c) and denote

WqW⊤k =
[
W̄ w1
w⊤2 w

]
and Wvv =

[
v1
v

]
,

11
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where W̄ ∈ Rd×d, w1,w2, v1 ∈ R
d, and w, v ∈ R. Then we have

gATT(Z) = (z⊤WqW⊤k Z⊤0 )Z0Wvv

= [x⊤ 0]
[
W̄ w1
w⊤2 w

] [
X⊤ 0d

y⊤ 0

] [
X y
0⊤d 0

] [
v1
v

]
= (x⊤W̄X⊤ + x⊤w1y⊤)(Xv1 + yv)

= x⊤(vW̄)X⊤y + x⊤w1y⊤Xv1 + x⊤
(
W̄X⊤Xv1 + v ∥y∥2ℓ2 w1

)
= x⊤(vW̄ + w1v⊤1 )X⊤y + x⊤

(
W̄X⊤Xv1 + v ∥y∥2ℓ2 w1

)
= x⊤W̃X⊤y︸     ︷︷     ︸

g̃ATT(Z)

+ x⊤
(
W̄X⊤Xv1 + v ∥y∥2ℓ2 w1

)︸                             ︷︷                             ︸
ε

, (16)

where W̃ := vW̄ + w1v⊤1 .
We first show that for any given parameters Wk,Wq,Wv, v,

E
[
(gATT(Z) − y)2

]
≥ E

[
(g̃ATT(Z) − y)2

]
. (17)

To this goal, we have

E
[
(gATT(Z) − y)2

]
− E

[
(g̃ATT(Z) − y)2

]
= E

[
(g̃ATT(Z) + ε − y)2

]
− E

[
(g̃ATT(Z) − y)2

]
= E[ε2] + 2E[(g̃ATT(Z) − y)ε] (18)

where we have decomposition

(g̃ATT(Z) − y)ε = (x⊤W̃X⊤y − y)x⊤
(
W̄X⊤Xv1 + v ∥y∥2ℓ2 w1

)
= y⊤XW̃⊤xx⊤

(
W̄X⊤Xv1 + v ∥y∥2ℓ2 w1

)
− yx⊤

(
W̄X⊤Xv1 + v ∥y∥2ℓ2 w1

)
= y⊤XW̃⊤xx⊤W̄X⊤Xv1︸                      ︷︷                      ︸

(a)

+ v ∥y∥2ℓ2 y⊤XW̃⊤xx⊤w1︸                      ︷︷                      ︸
(b)

− yx⊤W̄X⊤Xv1︸          ︷︷          ︸
(c)

− vy ∥y∥2ℓ2 x⊤w1︸          ︷︷          ︸
(d)

.

In the following, we consider the expectations of (a), (b), (c), (d) sequentially, which return zeros
under Assumptions 1 and 2. Note that since Assumption 1 holds, expectation of any odd order of
monomial of the entries of X, x,β returns zero, i.e., order of x⊤βx is 3 and therefore E[x⊤βx] = 0d.

(a) : E
[
y⊤XW̃⊤xx⊤W̄X⊤Xv1

]
= E

[
(Xβ + ξ)⊤XW̃⊤xx⊤W̄X⊤Xv1

]
= E

[
β⊤X⊤XW̃⊤xx⊤W̄X⊤Xv1

]
+ E

[
ξ⊤XW̃⊤xx⊤W̄X⊤Xv1

]
= 0.

(b) : E
[
v ∥y∥2ℓ2 y⊤XW̃⊤xx⊤w1

]
= E

[
v(Xβ + ξ)⊤(Xβ + ξ)(Xβ + ξ)⊤XW̃⊤xx⊤w1

]
= E

[
v ∥ξ∥2ℓ2 ξ

⊤XW̃⊤xx⊤w1
]

= 0.
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(c) : E
[
yx⊤W̄X⊤Xv1

]
= E

[
(x⊤β + ξ)x⊤W̄X⊤Xv1

]
= E

[
β⊤xx⊤W̄X⊤Xv1

]
+ E

[
ξx⊤W̄X⊤Xv1

]
= 0.

(d) : E
[
vy ∥y∥2ℓ2 x⊤w1

]
= vE

[
(β⊤x + ξ)(Xβ + ξ)⊤(Xβ + ξ)x⊤w1

]
= vE

[
ξ ∥ξ∥2ℓ2 x⊤w1

]
= 0.

Combining the results with (18) returns that

E
[
(gATT(Z) − y)2

]
− E

[
(g̃ATT(Z) − y)2

]
= E[ε2] ≥ 0 (19)

which completes the proof of (17). Therefore, we obtain

min
Wq,Wk ,Wv,v

E
[
(gATT(Z) − y)2

]
≥ min

W̃
E

[
(g̃ATT(Z) − y)2

]
= min

W
E

[
(gPGD(Z) − y)2

]
.

We conclude the proof of this lemma by showing that for any W ∈ Rd×d in gPGD, there exist
Wk,Wq,Wv, v such that gATT(Z) = gPGD(Z). Let

Wk =Wv = Id+1, Wq =

[
W 0d

0⊤d 0

]
, and v =

[
0d

1

]
.

Then we obtain

gATT(Z) = x⊤WX⊤y = gPGD(Z), (20)

which completes the proof.

Lemma 10 Suppose Assumptions 1 and 2 hold. Then, given the objectives in (15), we have

min
Wq,Wk ,Wv,v, f

LSSM(W) = min
W,ω
LWPGD(W). (21)

Additionally, if the examples (xi, yi)n
i=1 follow the same distribution and are conditionally independent

given x and β, then SSM/H3 can achieve the optimal loss using the all-ones filter and

min
W,ω
LWPGD(W) = min

W
LPGD(W). (22)

Proof Recap the SSM estimator from (14d) and let

Wq =
[
wq1 wq2 · · · wq,d+1

]
,

Wk =
[
wk1 wk2 · · · wk,d+1

]
,

Wv =
[
wv1 wv2 · · · wv,d+1

]
,

13
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where wq j,wk j,wv j ∈ R
d+1 for j ≤ d + 1, and let

v =


v1
v2
· · ·

vd+1

 , and f =


f0
f1
· · ·

fn

 .
Then we have

gSSM(Z) =
(
(z⊤Wq)⊤ ⊙ ((Z0Wk ⊙ Z0Wv) ∗ f )n+1

)
v

=

n∑
i=1

fn+1−i · v⊤




w⊤q1 z
· · ·

w⊤q,d+1 z

 ⊙


w⊤k1 ziw⊤v1 zi

· · ·

w⊤k,d+1 ziw⊤v,d+1 zi




=

n∑
i=1

fn+1−i · v⊤


w⊤q1 zw⊤k1 ziw⊤v1 zi

· · ·

w⊤q,d+1 zw⊤k,d+1 ziw⊤v,d+1 zi

 .
Next for all j ≤ d + 1, let

wq j =

[
w̄q j

wq j

]
, wk j =

[
w̄k j

wk j

]
, wv j =

[
w̄v j

wv j

]
where w̄q j, w̄k j, w̄v j ∈ R

d and wq j,wk j,wv j ∈ R. Then we have

w⊤q j zw⊤k j ziw⊤v j zi =
(
w̄⊤q jx

) (
w̄⊤k jxi + wk jyi

) (
w̄⊤v jxi + wv jyi

)
= x⊤w̄q j

(
wv jw̄⊤k j + wk jw̄⊤v j

)
xiyi +

(
w̄⊤q jx

) (
w̄⊤k jxi

) (
w̄⊤v jxi

)
+

(
wk jwv jw̄⊤q jxy2

i

)
= x⊤W′jxiyi + δ j(x, xi, xi) + w′j

⊤xy2
i

where

W′j := w̄q j
(
wv jw̄⊤k j + wk jw̄⊤v j

)
∈ Rd×d,

w′j := wk jwv jw̄q j ∈ R
d,

δ j(x, xi, xi) :=
(
w̄⊤q jx

) (
w̄⊤k jxi

) (
w̄⊤v jxi

)
∈ R.

Then

gSSM(Z) =
n∑

i=1

fn+1−i ·

d+1∑
j=1

v j
(
x⊤W′jxiyi + δ j(x, xi, xi) + w′j

⊤xy2
i

)
= x⊤

d+1∑
j=1

v jW′j

 X(y ⊙ f̃ ) +
n∑

i=1

fn+1−i ·

d+1∑
j=1

v j · δ j(x, xi, xi) +

d+1∑
j=1

v jw′j
⊤

 xy⊤(y ⊙ f̃ )

= x⊤W̃Xỹ︸   ︷︷   ︸
g̃SSM(Z)

+ δ̃(x, X, X)︸      ︷︷      ︸
ε1

+ w̃⊤xy⊤ ỹ︸   ︷︷   ︸
ε2

.

14
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where

f̃ := [ fn · · · f1]⊤ ∈ Rn,

ỹ := y ⊙ f̃ ∈ Rn,

W̃ :=
d+1∑
j=1

v jW′j ∈ R
d×d,

w̃ :=
d+1∑
j=1

v jw′j ∈ R
d,

δ̃(x, X, X) :=
n∑

i=1

fn+1−i ·

d+1∑
j=1

v j · δ j(x, xi, xi) ∈ R.

Next we will show that for any Wk,Wq,Wv, v,

E
[
(gSSM(Z) − y)2

]
≥ E

[
(g̃SSM(Z) − y)2

]
.

To start with, we obtain

E
[
(gSSM(Z) − y)2

]
= E

[
(g̃SSM(Z) + ε1 + ε2 − y)2

]
= E

[
(g̃SSM(Z) − y)2

]
+ E

[
(ε1 + ε2)2

]
+ 2E

[
(g̃SSM(Z) − y)(ε1 + ε2)

]
(23)

where there is decomposition

(g̃SSM(Z) − y)(ε1 + ε2) = δ̃(x, X, X) · x⊤W̃Xỹ︸                   ︷︷                   ︸
(a)

− δ̃(x, X, X)y︸       ︷︷       ︸
(b)

+ w̃⊤xy⊤ ỹ · x⊤W̃Xỹ︸                 ︷︷                 ︸
(c)

− y · w̃⊤xy⊤ ỹ︸       ︷︷       ︸
(d)

.

In the following, similar to the proof of Lemma 9, we consider the expectations of (a), (b), (c), (d)
sequentially, which return zeros under Assumptions 1 and 2. Note that δ j(x, xi, xi)’s and δ̃(x, X, X)
are summation of monomials of entries of (x, X,β) with order 3, and entries of y and y are summation
of monomials of entries of (x, X,β) with even orders: e.g., y = x⊤β + ξ where ξ is of oder 0 and x⊤β
is of order 2.

(a) : E
[
δ̃(x, X, X) · x⊤W̃Xỹ

]
= E

[
δ̃(x, X, X) · x⊤W̃X(Xβ ⊙ f̃ )

]
+ E

[
δ̃(x, X, X) · x⊤W̃X(ξ ⊙ f̃ )

]
= E

[
δ̃(x, X, X) · x⊤W̃X

]
E

[
ξ ⊙ f̃

]
= 0.

(b) : E
[
δ̃(x, X, X)y

]
= E

[
δ̃(x, X, X)(x⊤β + ξ)

]
= E

[
δ̃(x, X, X)x⊤β

]
+ E

[
δ̃(x, X, X)ξ

]
= 0.

15



Fine-grained Analysis of In-context Linear Estimation

(c) : E
[
w̃⊤xy⊤ ỹ · x⊤W̃Xỹ

]
= E

[
w̃⊤x(Xβ + ξ)⊤(Xβ ⊙ f̃ + ξ ⊙ f̃ ) · x⊤W̃X(Xβ ⊙ f̃ + ξ ⊙ f̃ )

]
= 0.

(d) : E
[
y · w̃⊤xy⊤ ỹ

]
= E

[
(x⊤β + ξ) · w̃⊤x(Xβ + ξ)⊤(Xβ ⊙ f̃ + ξ ⊙ f̃ )

]
= 0.

Combining the results with (23) results that

E
[
(gSSM(Z) − y)2

]
− E

[
(g̃SSM(Z) − y)2

]
= E

[
(ε1 + ε2)2

]
≥ 0.

Therefore we obtain,

min
Wq,Wk ,Wv,v, f

E
[
(gSSM(Z) − y)2

]
≥ min

W̃, f̃
E

[
(g̃SSM(Z) − y)2

]
= min

W,ω
E

[
(gWPGD(Z) − y)2

]
.

Next we show that for any choices of W and ω in gWPGD, there are Wq,k,v, v, f such that gSSM ≡ gWPGD.
To this end, given ω = [ω1 . . . ωn]⊤, let

Wq = Id+1, Wk =

[
W⊤ 0d

0⊤d 0

]
, Wv =

[
0d×d 0d

1⊤d 0

]
, v =

[
1d

0

]
and f =


0
ωn

· · ·

ω1

 .
Then we get

((Z0Wk ⊙ Z0Wv) ∗ f )n+1 =

(([
XW⊤ 0n

0d 0

]
⊙

[
y1⊤d 0n

0d 0

])
∗ f

)
n+1

=

[∑n
i=1 ωi · yiWxi

0

]
=

[
WX⊤(y ⊙ ω)

0

]
,

and therefore
gSSM(Z) = x⊤WX⊤(y ⊙ ω) = gWPGD(Z),

which completes the proof of (21).
Next, to show (22), for any W ∈ Rd×d, let L(ω) = E

[(
x⊤WX⊤(y ⊙ ω) − y

)2
]
. Then we have

∂L(ω)
∂ωi

= E

2
x⊤W

n∑
j=1

ω jy jx j − y

 (x⊤Wyixi
)

= 2
n∑

j=1

ω j E
[
(x⊤Wy jx j)(x⊤Wyixi)

]
− 2E

[
yx⊤Wyixi

]
.
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Here since (xi, yi)n
i=1 follow the same distribution and are conditionally independent given x and β, for

any i , j , j′, E
[
(x⊤Wyixi)2

]
= E

[
(x⊤Wy jx j)2

]
and E

[
(x⊤Wy jx j)(x⊤Wyixi)

]
= E

[
(x⊤Wy j′x j′)(x⊤Wyixi)

]
.

Then let

E
[
(x⊤Wy jx j)(x⊤Wyixi)

]
=

c1, i , j
c2, i = j

and E
[
yx⊤Wyixi

]
= c3,

where (c1, c2, c3) := (c1(W), c2(W), c3(W)). We get

∂L(ω)
∂ωi

= 2c1ω
⊤1n + 2(c2 − c1)ωi − 2c3.

If c2 − c1 = 0, then ∂L(ω)
∂ωi

≡ 2c1ω
⊤1n − 2c3 for all i ≤ n and any ω ∈ Rn achieves the same

performance.
If c2 − c1 , 0, setting ∂L(ω)

∂ωi
= 0 returns

ωi =
c3 − c1

∑n
j=1 ω j

c2 − c1
:= C for all i ≤ n.

Therefore the optimal loss is achieved via setting ω = C1n. Without loss of generality, we can update
W → CW. Then ω = 1n, and we obtain

min
W,ω
E

[(
x⊤WX⊤(y ⊙ ω) − y

)2
]
= min

W
E

[
(x⊤WX⊤y − y)2

]
which completes the proof of (22).

A.2. Equivalence between g⋆ATT and g⋆PGD
While Proposition 3 demonstrates the equivalence of optimal losses, we also study the uniqueness
and equivalence of optimal prediction functions. To this end, we analyze the strong convexity of
LPGD(W) and derive the subsequent lemmas.

Lemma 11 Suppose Assumption 2 holds and let ξ = [ξ1 ξ2 · · · ξn]⊤. Then the loss LPGD(W) in (4a)
is strongly-convex if and only if E[(x⊤WX⊤Xβ)2] + E[(x⊤WX⊤ξ)2] is strongly-convex. Additionally,
let g⋆PGD, g⋆ATT be the optimal prediction functions of (4a) and (5a). Then under the conditions of
Assumptions 1 and 2, and the strong convexity, g⋆PGD = g⋆ATT.

Lemma 12 Suppose that the label noise (ξi)n
i=1 are i.i.d., zero-mean, variance σ2 and independent

of everything else, and that there is a decomposition x = x1 + x2, X = X1 + X2, and β = β1 + β2
such that either of the following holds

• σ > 0, and (x1, X1) have full rank covariance and are independent of each other and (x2, X2).

• (x1,β1, X1) have full rank covariance and are independent of each other and (x2,β2, X2).

Then, the loss LPGD(W) in (4a) is strongly-convex.

As mentioned above, in this work, we study three specific linear models: with general independent,
RAG-related, and task-feature alignment data. Note that for all the three cases, according to
Proposition 3, we have L⋆PGD = L

⋆
ATT = L

⋆
SSM. Additionally, the second claim in Lemma 12 holds, and

LPGD(W) is strongly convex. Therefore, following Lemma 11, we have g⋆PGD = g⋆ATT.
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A.3. Proof of Lemma 11

Proof Recap the loss LPGD(W) in (15a) and prediction gPGD(Z) in (14a), we have

LPGD(W) = E[(y − gPGD(Z))2]

= E
[(

x⊤β + ξ − x⊤WX⊤(Xβ + ξ)
)2

]
= E

[
(x⊤β − x⊤WX⊤Xβ)2 + 2(x⊤β − x⊤WX⊤Xβ)(ξ − x⊤WX⊤ξ) + (ξ − x⊤WX⊤ξ)2

]
= E

[
(x⊤β − x⊤WX⊤Xβ)2 + (ξ − x⊤WX⊤ξ)2

]
+ 2E[(x⊤β − x⊤WX⊤Xβ)(ξ − x⊤WX⊤ξ)]

= E
[
(x⊤β − x⊤WX⊤Xβ)2 + (ξ − x⊤WX⊤ξ)2

]
(24)

= E
[
(x⊤WX⊤Xβ)2 + (x⊤WX⊤ξ)2

]︸                                     ︷︷                                     ︸
f1(W)

−2E[β⊤xx⊤WX⊤Xβ + ξx⊤WX⊤ξ]︸                                         ︷︷                                         ︸
f2(W)

+ E[(x⊤β)2 + ξ2]︸            ︷︷            ︸
constant

where (24) follows Assumption 2. Since f2(W) is convex, LPGD(W) is strongly-convex if and only if
f1(W) is strongly-convex, which completes the proof of strong convexity.

Next, (19) and (20) in the proof of Lemma 9 demonstrate that the optimal loss is achievable and
is achieved at ε = 0. Subsequently, (16) indicates that g⋆ATT has the same form as g⋆PGD. Under the
strong convexity assumption, g⋆PGD is unique, which leads to the conclusion that g⋆PGD = g⋆ATT.

A.4. Proof of Lemma 12

Proof According to Lemma 11, LPGD(W) is strongly-convex as long as either E[(x⊤WX⊤Xβ)2]
or E[(x⊤WX⊤ξ)2] is strongly-convex. Therefore, in this lemma, the two claims correspond to the
strong convexity of E[(x⊤WX⊤ξ)2] and E[(x⊤WX⊤Xβ)2] terms, respectively.

Suppose the decomposition claim holds. Without losing generality, we may assume (x1,β1, X1)
are zero-mean because we can allocate the mean component to (x2,β2, X2) without changing the
covariance.
• Claim 1: Let Σ̄x = E[x1x⊤1 ], Σ̄β = E[β1β

⊤
1 ], and Σ̄X = E[X⊤1 X1]. If the first claim holds, using

independence, observe that we can write

E[(x⊤WX⊤ξ)2] = E[(x⊤1 WX⊤1 ξ)
2] + E[(x⊤1 WX⊤2 ξ)

2] + E[(x⊤2 WX⊤1 ξ)
2] + E[(x⊤2 WX⊤2 ξ)

2],

where the last three terms of the right hand side are convex and the first term obeys

E[(x⊤1 WX⊤1 ξ)
2] = σ2 E[x⊤1 WX⊤1 X1W⊤x1]

= σ2tr
(
E[x1x⊤1 WX⊤1 X1W⊤]

)
= σ2tr

(
Σ̄xWΣ̄XW⊤

)
= σ2

∥∥∥∥∥∥
√
Σ̄xW

√
Σ̄X

∥∥∥∥∥∥2

F
.

Since noise level σ > 0, using the full-rankness of covariance matrices Σ̄x and Σ̄X, we conclude with
strong convexity of E[(x⊤WX⊤ξ)2].
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• Claim 2: Now recall that Σ̄X = E[X⊤1 X1] and set A = X⊤1 X1 − Σ̄X and B = X⊤2 X2 + Σ̄X. Observe
that E[A] = 0. If the second claim holds, E[X⊤X] = E[A + B]. Note that (A,β1, x1) are independent
of each other and (B,β2, x2). Using independence and E[A] = 0, similarly write

E[(x⊤WX⊤Xβ)2] = E[(x⊤W Aβ)2] + E[(x⊤WBβ)2].

Now using E[β1] = E[x1] = 0 and their independence from rest, these terms obeys

E[(x⊤W Aβ)2] = E[(x⊤1 W Aβ1)2] + E[(x⊤1 W Aβ2)2] + E[(x⊤2 W Aβ1)2] + E[(x⊤2 W Aβ2)2]

E[(x⊤WBβ)2] = E[(x⊤1 WBβ1)2] + E[(x⊤1 WBβ2)2] + E[(x⊤2 WBβ1)2] + E[(x⊤2 WBβ2)2].

In both equations, the last three terms of the right hand side are convex. To proceed, we focus on the
first terms. Using independence and setting ΣX = E[X⊤X] ⪰ Σ̄X ≻ 0, we note that

E[(x⊤1 W Aβ1)2] + E[(x⊤1 WBβ1)2] = E[(x⊤1 WX⊤Xβ1)2]

where x1,β1, X are independent and full-rank covariance. To proceed, note that

E[(x⊤1 WX⊤Xβ1)2] = E[(x⊤1 WΣXβ1)2] + E[(x⊤1 W(X⊤X − ΣX)β1)2].

Observing the convexity of the right hand side and focusing on the first term, we get

E[(x⊤1 WΣXβ1)2] = tr
(
Σ̄xWΣXΣ̄βΣXW⊤

)
=

∥∥∥∥∥∥
√
Σ̄xWΣX

√
Σ̄β

∥∥∥∥∥∥2

F
.

Using the fact that covariance matrices, Σ̄x,ΣX, Σ̄β, are full rank concludes the strong convexity
proof of E[(x⊤WX⊤Xβ)2].

Appendix B. Analysis of General Data Distribution

In this section, we provide the proofs in Section 3, which focuses on solving Objective (4a). For the
sake of clean notation, let L(W) := LPGD(W) and g := gPGD in this section.

B.1. Supporting Results

We begin by deriving the even moments of random variables.
• 2n’th moment of a normally distributed variable: Let u ∼ N(0, σ2). Then we have

E[u2n] = σ2n(2n − 1)!!. (25)
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• 4’th moment: Let u ∼ N(0, Id). Then for any W,W′ ∈ Rd×d, we have

E
[
(u⊤Wu)(u⊤W′u)

]
= E


 d∑

i, j=1

Wi juiu j


 d∑

i, j=1

W′i juiu j




= E


 d∑

i=1

Wiiu2
i


 d∑

i=1

W′iiu
2
i


 + E


∑

i, j

Wi juiu j


∑

i, j

W′i juiu j




=

d∑
i=1

WiiW′ii E
[
u4

i

]
+

∑
i, j

WiiW′j j E[u2
i ]E[u2

j] +
∑
i, j

Wi jW′i j E[u2
i ]E[u2

j] +
∑
i, j

Wi jW′ji E[u2
i ]E[u2

j]

= 3
d∑

i=1

WiiW′ii +
∑
i, j

WiiW′j j +
∑
i, j

Wi jW′i j +
∑
i, j

Wi jW′ji

=

d∑
i, j=1

WiiW′j j +

d∑
i, j=1

Wi jW′i j +

d∑
i, j=1

Wi jW′ji

= tr (W) tr
(
W′

)
+ tr

(
W′W⊤

)
+ tr

(
WW′

)
. (26)

• 4’th cross-moment: Let u, v ∼ N(0, Id) and for any W ∈ Rd×d, let ΛW =W ⊙ Id. Then we have

E
[
(u⊤Wvv⊤u)2

]
= E


 d∑

i, j=1

Wi juiv j


2  d∑

i=1

uivi


2

= E


 d∑

i, j=1

W2
i ju

2
i v2

j +
∑
i,i′

Wi jWi′ juiui′v2
j +

∑
j, j′

Wi jWi j′u2
i v jv j′ +

∑
i′,i, j′, j

Wi jWi′ j′uiui′v jv j′


 d∑

i=1

u2
i v2

i +
∑
i, j

uiu jviv j




= E


 d∑

i, j=1

W2
i ju

2
i v2

j


 d∑

i=1

u2
i v2

i

 +
∑

i, j

Wi jW jiu2
i u2

jv
2
i v2

j




= E


 d∑

i=1

W2
iiu

2
i v2

i +
∑
i, j

W2
i ju

2
i v2

j


 d∑

i=1

u2
i v2

i


 +∑

i, j

Wi jW ji

= E


 d∑

i=1

W2
iiu

4
i v4

i +
∑
i, j

W2
iiu

2
i v2

i u2
jv

2
j


 + E


∑

i, j

W2
i ju

4
i v2

jv
2
i +

∑
i, j

W2
i ju

2
i v4

ju
2
j +

∑
i, j,k

W2
i ju

2
i v2

ju
2
kv2

k


 +∑

i, j

Wi jW ji

= 9
d∑

i=1

W2
ii + (d − 1)

d∑
i=1

W2
ii + 6

∑
i, j

W2
i j + (d − 2)

∑
i, j

W2
i j +

∑
i, j

Wi jW ji

= 3
d∑

i=1

W2
ii + (d + 4)

d∑
i, j=1

W2
i j +

d∑
i, j=1

Wi jW ji

= 3tr
(
Λ2

W

)
+ (d + 4)tr

(
WW⊤

)
+ tr

(
W2

)
. (27)
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• 6’th moment: Let u ∼ N(0, Id). Then for any W,W′ ∈ Rd×d, we have

E
[
(u⊤Wu)(u⊤W′u) ∥u∥2ℓ2

]
= E


 d∑

i, j=1

Wi juiu j


 d∑

i, j=1

W′i juiu j


 d∑

i=1

u2
i




= E


 d∑

i=1

Wiiu2
i


 d∑

i=1

W′iiu
2
i


 d∑

i=1

u2
i


 + E


∑

i, j

Wi juiu j


∑

i, j

W′i juiu j


 d∑

i=1

u2
i




=

d∑
i=1

WiiW′ii E

u4
i

 d∑
i′=1

u2
i′


 +∑

i, j

WiiW′j j E

u2
i u2

j

 d∑
i′=1

u2
i′




+
∑
i, j

Wi jW′i j E

u2
i u2

j

 d∑
i′=1

u2
i′


 +∑

i, j

Wi jW′ji E

u2
i u2

j

 d∑
i′=1

u2
i′




= (d + 4)

3 d∑
i=1

WiiW′ii +
∑
i, j

WiiW′j j +
∑
i, j

Wi jW′i j +
∑
i, j

Wi jW′ji

 (28)

= (d + 4)

 d∑
i, j=1

WiiW′j j +

d∑
i, j=1

Wi jW′i j +

d∑
i, j=1

Wi jW′ji


= (d + 4)

(
tr (W) tr

(
W′

)
+ tr

(
W′W⊤

)
+ tr

(
WW′

))
, (29)

where (28) is obtained by following

E

u4
i

 d∑
i′=1

u2
i′


 = E[u6] + (d − 1)E[u4]E[u2] = 3(d + 4),

E

u2
i u2

j

 d∑
i′=1

u2
i′


 = 2E[u4]E[u2] + (d − 2)E[u2]E[u2]E[u2] = d + 4.
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• 8’th moment: Let u ∼ N(0, Id). Then for any W,W′ ∈ Rd×d, we have

E
[
(u⊤Wu)(u⊤W′u) ∥u∥4ℓ2

]
= E


 d∑

i, j=1

Wi juiu j


 d∑

i, j=1

W′i juiu j


 d∑

i, j=1

u2
i u2

j




= E


 d∑

i=1

Wiiu2
i


 d∑

i=1

W′iiu
2
i


 d∑

i=1

u4
i +

∑
i, j

u2
i u2

j


 + E


∑

i, j

Wi juiu j


∑

i, j

W′i juiu j


 d∑

i=1

u4
i +

∑
i, j

u2
i u2

j




=

d∑
i=1

WiiW′ii E

u4
i

 d∑
i′=1

u4
i′ +

∑
i′, j′

u2
i′u

2
j′


 +∑

i, j

WiiW′j j E

u2
i u2

j

 d∑
i′=1

u4
i′ +

∑
i′, j′

u2
i′u

2
j′




+
∑
i, j

Wi jW′i j E

u2
i u2

j

 d∑
i′=1

u4
i′ +

∑
i′, j′

u2
i′u

2
j′


 +∑

i, j

Wi jW′ji E

u2
i u2

j

 d∑
i′=1

u4
i′ +

∑
i′, j′

u2
i′u

2
j′




= (d + 4)(d + 6)

3 d∑
i=1

WiiW′ii +
∑
i, j

WiiW′j j +
∑
i, j

Wi jW′i j +
∑
i, j

Wi jW′ji

 (30)

= (d + 4)(d + 6)

 d∑
i, j=1

WiiW′j j +

d∑
i, j=1

Wi jW′i j +

d∑
i, j=1

Wi jW′ji


= (d + 4)(d + 6)

(
tr (W) tr

(
W′

)
+ tr

(
W′W⊤

)
+ tr

(
WW′

))
. (31)

where (30) is obtained by following

E

u4
i

 d∑
i′=1

u4
i′ +

∑
i′, j′

u2
i′u

2
j′




= E[u8] + (d − 1)E[u4]E[u4] + 2(d − 1)E[u6]E[u2] + (d − 1)(d − 2)E[u4]E[u2]E[u2]

= 105 + 9(d − 1) + 30(d − 1) + 3(d − 1)(d − 2)

= 3(d + 4)(d + 6),

E

u2
i u2

j

 d∑
i′=1

u4
i′ +

∑
i′, j′

u2
i′u

2
j′




= 2E[u6]E[u2] + (d − 2)E[u4](E[u2])2 + 2E[u4]E[u4] + 4(d − 2)E[u4](E[u2])2 + (d − 2)(d − 3)(E[u2])4

= 30 + 3(d − 2) + 18 + 12(d − 2) + (d − 2)(d − 3)

= (d + 4)(d + 6).

B.2. Independent Data with General Covariance

Proof of Theorem 4. Consider a general independent linear model as defined in (6) where Σx and
Σβ are full-rank feature and task convariance matrices and

x ∼ N(0,Σx), β ∼ N(0,Σβ), ξ ∼ N(0, σ2), and y = x⊤β + ξ.

Let
X = [x1 · · · xn]⊤, ξ = [ξ1 · · · ξn]⊤, and y = [y1 · · · yn]⊤ = Xβ + ξ.
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To simplify and without loss of generality, let x̄ = Σ−1/2
x x, X̄ = XΣ−1/2

x , β̄ = Σ1/2
x β where we

have
x̄ ∼ N(0, I), β̄ ∼ N(0,Σ1/2

x ΣβΣ
1/2
x )

and
y = x̄⊤β̄ + ξ, y = X̄β̄ + ξ.

Then recap the loss from (4a), and we obtain

L(W) = E
[
(y − g(Z))2

]
= E

[(
x⊤β + ξ − x⊤WX⊤(Xβ + ξ)

)2
]

= E
[
(x⊤β − x⊤WX⊤Xβ)2 + 2(x⊤β − x⊤WX⊤Xβ)(ξ − x⊤WX⊤ξ) + (ξ − x⊤WX⊤ξ)2

]
= E

[
(x⊤β − x⊤WX⊤Xβ)2

]
+ E

[
(x⊤WX⊤ξ)2

]
+ σ2, (32)

where the last equality comes from the independence of label noise ξ, ξ.
We first consider the following term

E
[
(x⊤WX⊤ξ)2

]
= E

[
(x̄⊤(Σ1/2

x WΣ1/2
x )X̄⊤ξ)2

]
= nσ2 · tr

(
W̄W̄⊤

)
where we define W̄ = Σ1/2

x WΣ1/2
x . Next, focus on the following

E
[
(x⊤β − x⊤WX⊤Xβ)2

]
= E

[
(x̄⊤β̄ − x̄⊤W̄X̄⊤X̄β̄)2

]
= E

[(
x̄⊤

(
I − W̄X̄⊤X̄

)
β̄
)2

]
= tr

(
E

[(
I − W̄X̄⊤X̄

)
Σ

(
I − W̄X̄⊤X̄

)⊤])
= tr (Σ) − tr

(
Σ(W̄ + W̄⊤)E[X̄⊤X̄]

)
+ tr

(
W̄⊤W̄ E[X̄⊤X̄ΣX̄⊤X̄]

)
= tr (Σ) − 2n · tr

(
ΣW̄

)
+ tr

(
W̄⊤W̄ E[X̄⊤X̄ΣX̄⊤X̄]

)
,

where Σ := Σ1/2
x ΣβΣ

1/2
x .

Let x̄i ∈ R
n be the i’th column of X̄ and Σi j be the (i, j)’th entry of Σ. Then the (i, j) entry of

matrix X̄⊤X̄ΣX̄⊤X̄ is

(X̄⊤X̄ΣX̄⊤X̄)i j =

d∑
k=1

d∑
p=1

Σkp x̄⊤i x̄k x̄⊤p x̄ j.
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Then we get

i , j : E
[(

X̄⊤X̄ΣX̄⊤X̄
)
i j

]
= Σi j E[x̄⊤i x̄i x̄⊤j x̄ j] + Σ ji E[x̄⊤i x̄ j x̄⊤i x̄ j] = n2Σi j + nΣ ji

i = j : E
[(

X̄⊤X̄ΣX̄⊤X̄
)
ii

]
= Σii E

[
x̄⊤i x̄i x̄⊤i x̄i

]
+

∑
j,i

Σ j j E
[
x̄⊤i x̄ j x̄⊤j x̄i

]
= Σii E

[
(x2

i1 + · · · + x2
in)2

]
+ n

∑
j,i

Σ j j

= Σii(3n + n(n − 1)) + n
∑
j,i

Σ j j

= n

Σii(n + 1) +
d∑

j=1

Σ j j


= n (Σii(n + 1) + tr (Σ)) .

Therefore
E[X̄⊤X̄ΣX̄⊤X̄] = n(n + 1)Σ + n · tr (Σ) I.

Combining all together results in

L(W) = tr (Σ) − 2ntr
(
ΣW̄

)
+ n(n + 1)tr

(
ΣW̄⊤W̄

)
+ n(tr (Σ) + σ2)tr

(
W̄W̄⊤

)
+ σ2,

= M − 2ntr
(
ΣW̄

)
+ n(n + 1)tr

(
ΣW̄⊤W̄

)
+ nMtr

(
W̄W̄⊤

)
, (33)

where M := tr (Σ) + σ2. Setting ∇W̄L(W) = 0 returns

−2n · Σ + 2n(n + 1) · ΣW̄ + 2nMW̄ = 0 =⇒ W̄⋆ =
(
(n + 1)I + MΣ−1

)−1
.

Then we have
W⋆ = Σ−1/2

x
(
(n + 1)I + MΣ−1

)−1
Σ
−1/2
x

and
L⋆ = L(W⋆) = M − ntr

(
((n + 1)Σ−1 + MΣ−2)−1

)
.

B.3. Retrieval Augmented Generation with α Correlation

In this section, we consider the retrieval augmented generation (RAG) linear model similar to (8),
where we first draw the query vector x and task vector β via

x ∼ N(0, I) and β ∼ N(0, I).

We then draw data (xi)n
i=1 to be used in-context according to the rule corr_coef(x, xi) ≥ α ≥ 0. Hence,

for i ≤ n we sample

xi
∣∣∣ x ∼ N(αx, γ2I), ξi ∼ N(0, σ2) and yi = x⊤i β + ξi, (34)

which results in (8) by setting γ2 = 1 − α2.
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Theorem 13 (Extended version of Theorem 6) Consider linear model as defined in (34). Recap
the objective from (4a) and let W⋆ := arg minW LPGD(W), and L⋆ = LPGD(W⋆). Then W⋆ and L⋆
satisfy

W⋆ = cI and L⋆ = d + σ2 − cnd(α2(d + 2) + γ2) (35)

where

c =
α2(d + 2) + γ2

α4n(d + 2)(d + 4) + α2γ2(d + 2)(d + 2n + 3) + γ4(d + n + 1) + σ2(α2(d + 2) + γ2)
.

Suppose α = O
(
1/
√

d
)
, d/n = O (1) and d is sufficiently large. Let κ = α2d + 1 and γ2 = 1 − α2.

Then W⋆ and L⋆ have approximate forms

W⋆ ≈
1

κn + d + σ2 I and L⋆ ≈ d + σ2 −
κnd

κn + d + σ2 . (36)

Proof Here, for clean notation and without loss of generality, we define and rewrite (34) via

gi ∼ N(0, I), ξi ∼ N(0, σ2) and xi = αx + γgi, yi = (αx + γgi)⊤β + ξi.

Then we obtain

L(W) = E
[
(y − g(Z))2

]
= E

[(
x⊤β + ξ − x⊤WX⊤(Xβ + ξ)

)2
]

= E
[
(x⊤β − x⊤WX⊤Xβ)2 + 2(x⊤β − x⊤WX⊤Xβ)(ξ − x⊤WX⊤ξ) + (ξ − x⊤WX⊤ξ)2

]
= E

[
(x⊤β − x⊤WX⊤Xβ)2

]
+ E

[
(x⊤WX⊤ξ)2

]
+ σ2. (37)

To begin with, let

N1 = tr (W)2 + tr
(
WW⊤

)
+ tr

(
W2

)
, N2 = tr

(
WW⊤

)
, and N3 = tr (W) .

We first focus on the second term in (37)

E
[
(x⊤WX⊤ξ)2

]
= E


 n∑

i=1

ξix⊤W(αx + γgi)

2
= nσ2 E

[
x⊤W(αx + γg)(αx + γg)⊤W⊤x

]
= nσ2

(
α2 E[x⊤Wxx⊤W⊤x] + γ2 E[x⊤W gg⊤W⊤x]

)
= nσ2

(
α2N1 + γ

2N2
)
. (It follows (26) and independence of x, g.)

Next, the first term in (37) can be decomposed into

E
[
(x⊤β − x⊤WX⊤Xβ)2

]
= E

[
(x⊤β)2

]︸      ︷︷      ︸
(a)

+ E
[
(x⊤WX⊤Xβ)2

]︸                 ︷︷                 ︸
(b)

− 2E
[
x⊤βx⊤WX⊤Xβ

]︸                   ︷︷                   ︸
(c)

.
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In the following, we consider solving (a)-(c) sequentially.

(a) : E
[
(x⊤β)2

]
= d.

(b) : E
[
(x⊤WX⊤Xβ)2

]
= E


x⊤W

n∑
i=1

(αx + γgi)(αx + γgi)⊤β

2
= E


 n∑

i=1

x⊤W(α2xx⊤ + γ2 gi g⊤i + αγxg⊤i + αγgix⊤)β

2
= α4n2 E

[
(x⊤Wxx⊤β)2

]
+ γ4 E


 n∑

i=1

x⊤W gi g⊤i β
2 + α2γ2 E


 n∑

i=1

x⊤Wxg⊤i β
2 + α2γ2 E


 n∑

i=1

x⊤W gix⊤β
2

+2α2γ2n2 E
[
x⊤Wxx⊤ββ⊤gg⊤W⊤x

]
+ 2α2γ2nE

[
x⊤Wxg⊤βx⊤W gx⊤β

]
=

(
α4n2(d + 4)N1 + γ

4n(d + n + 1)N2
)
+

(
α2γ2ndN1 + α

2γ2n(d + 2)N2
)
+

(
2α2γ2n2N1 + 2α2γ2nN1

)
=

(
α4n2(d + 4) + α2γ2n(2n + d + 2)

)
N1 +

(
α2γ2n(d + 2) + γ4n(d + n + 1)

)
N2

= A1N1 + A2N2.

(c) : E
[
x⊤βx⊤WX⊤Xβ

]
= E

 n∑
i=1

x⊤βx⊤W(αx + γgi)(αx + γgi)⊤β


= E

 n∑
i=1

x⊤βx⊤W(α2xx⊤ + γ2 gi g⊤i + αγxg⊤i + αγgix⊤)β


= α2nE

[
x⊤βx⊤Wxx⊤β

]
+ γ2nE

[
x⊤βx⊤W gg⊤β

]
= α2n(d + 2)tr (W) + γ2ntr (W)

=
(
α2n(d + 2) + γ2n

)
N3

= A3N3.

Here, (b) utilizes the 4’th and 6’th moment results (26) and (29) and we define

A1 = α
4n2(d + 4) + α2γ2n(2n + d + 2)

A2 = α
2γ2n(d + 2) + γ4n(d + n + 1)

A3 = α
2n(d + 2) + γ2n.

Then combining all together results in

L(W) = A1N1 + A2N2 − 2A3N3 + nσ2(α2N1 + γ
2N2) + d + σ2.

To find the optimal solution, set ∇L(W) = 0 and we obtain

A1∇N1 + A2∇N2 − 2A3∇N3 + nσ2(α2∇N1 + γ
2∇N2) = 0. (38)
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Note that we have

∇N1 = ∇
(
tr (W)2 + tr

(
WW⊤

)
+ tr

(
W2

))
= 2tr (W) I + 2W + 2W⊤

∇N2 = ∇tr
(
WW⊤

)
= 2W

∇N3 = ∇tr (W) = I.

Therefore, (38) returns

2A1
(
tr (W) I +W +W⊤

)
+ 2A2W − 2A3 + 2nσ2(α2(tr (W) I +W +W⊤) + γ2W)I = 0, (39)

which implies that the optimal solution W⋆ has the form of cI for some constant c. Then suppose
W⋆ = cI, we have tr (W) = cd and (39) returns

2A1(d + 2)cI + 2A2cI − 2A3I + 2nσ2(α2(d + 2)cI + γ2cI) = 0

=⇒ c =
A3

A1(d + 2) + A2 + nσ2(α2(d + 2) + γ2)

=
α2(d + 2) + γ2

α4n(d + 2)(d + 4) + α2γ2(d + 2)(d + 2n + 3) + γ4(d + n + 1) + σ2(α2(d + 2) + γ2)
.

Then the optimal loss is obtained by setting W⋆ = cI and

L⋆ = L(W⋆) = A1c2d(d + 2) + A2c2d − 2A3cd + nσ2c2d(α2(d + 2) + γ2) + d + σ2

= c2d
(
A1(d + 2) + A2 + nσ2(α2(d + 2) + γ2)

)
− 2A3cd + d + σ2

= d + σ2 − A3cd.

It completes the proof of (35). Now if assuming α = O
(
1/
√

d
)
, d/n = O (1) and sufficiently large

dimension d, we have the approximate

c ≈
α2d + 1

α4d2n + α2d(d + 2n) + (d + n) + σ2(α2d + 1)

=
α2d + 1

(α2d + 1)2n + (α2d + 1)d + σ2(α2d + 1)

=
1

(α2d + 1)n + d + σ2

and

L⋆ ≈ d + σ2 −
(α2d + 1)nd

(α2d + 1)n + d + σ2 .
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B.4. Task-feature Alignment with α Correlation

In this section, we consider the task-feature alignment data model similar to (10), where we first
draw task vector β via

β ∼ N(0, I).

Then we generate examples (xi, yi)n+1
i=1 according to the rule corr_coef(xi,β) ≥ α ≥ 0 via

xi
∣∣∣ β ∼ N(αβ, I), ξi ∼ N(0, σ2) and yi = γ · x⊤i β + ξi, (40)

which results in (10) by setting γ2 = 1/(α2d + 1).

Theorem 14 (Extended version of Theorem 7) Consider linear model as defined in (40). Recap
the objective from (4a) and let W⋆ := arg minW LPGD(W), and L⋆ = LPGD(W⋆). Then W⋆ and L⋆
satisfy

W⋆ = cI and L⋆ = dγ2(∆0α
2 + 1) + σ2 − cndγ2(∆1α

4 + 2∆0α
2 + 1) (41)

where

c =
∆1α

4 + 2∆0α
2 + 1

∆2α6 + ∆3α4 + ∆4α2 + (d + n + 1) + σ2(∆0α4 + 2α2 + 1)/γ2

and 

∆0 = d + 2
∆1 = (d + 2)(d + 4)
∆2 = (d + 2)(d + 4)(d + 6)n
∆3 = (d + 2)(d + 4)(3n + 4)
∆4 = (d + 2)(3n + d + 3) + (d + 8).

Suppose α = O
(
1/
√

d
)
, d/n = O (1) and d is sufficiently large. Let κ = α2d + 1 and γ2 = 1/κ. Then

W⋆ and L⋆ have approximate forms

W⋆ ≈
1

κn + (d + σ2)/κ
and L⋆ ≈ d + σ2 −

κnd
κn + (d + σ2)/κ

. (42)

Proof Here, for clean notation and without loss of generality, we define and rewrite (40) via

gi ∼ N(0, I), ξi ∼ N(0, σ2) and xi = αβ + gi, yi = γx⊤i β + ξi = γ · (αβ + gi)⊤β + ξi.

Recap the loss function from (4a), we obtain

L(W) = E
[
(y − g(Z))2

]
= E

[(
γx⊤β + ξ − x⊤WX⊤(γXβ + ξ)

)2
]

= E
[
γ2(x⊤β − x⊤WX⊤Xβ)2 + 2γ(x⊤β − x⊤WX⊤Xβ)(ξ − x⊤WX⊤ξ) + (ξ − x⊤WX⊤ξ)2

]
= γ2 E

[
(x⊤β − x⊤WX⊤Xβ)2

]
+ E

[
(x⊤WX⊤ξ)2

]
+ σ2. (43)

Similar to Appendix B.3, to begin with, let

N1 = tr (W)2 + tr
(
WW⊤

)
+ tr

(
W2

)
, N2 = tr

(
WW⊤

)
, and N3 = tr (W) ,
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and additionally, given ΛW =W ⊙ I, let

N4 = 3tr
(
Λ2

W

)
+ (d + 4)tr

(
WW⊤

)
+ tr

(
W2

)
.

We first focus on the second term in (43)

E
[
(x⊤WX⊤ξ)2

]
= E


(αβ + g)⊤W

n∑
i=1

ξi(αβ + gi)

2
= nσ2 E

[(
(αβ + g)⊤W(αβ + g′)

)2
]

= nσ2
(
α4 E

[
(β⊤Wβ)2

]
+ 2α2 E

[
(β⊤W g′)2

]
+ E

[
(g⊤W g′)2

])
= nσ2

(
α4

(
tr (W)2 + tr

(
W2

)
+ tr

(
WW⊤

))
+ (2α2 + 1)tr

(
WW⊤

))
= nσ2

(
α4N1 + (2α2 + 1)N2

)
. (It follows (26) and independence of β, g, g′.)

Next, the first term of (43) (omitting γ2) returns the following decomposition:

E
[
(x⊤β − x⊤WX⊤Xβ)2

]
= E

[
((αβ + g)⊤(β −WX⊤Xβ))2

]
= E

[(
αβ⊤β − αβ⊤WX⊤Xβ + g⊤β − g⊤WX⊤Xβ

)2
]

= α2 E[(β⊤β)2] + α2 E[(β⊤WX⊤Xβ)2] + E[(g⊤β)2] + E[(g⊤WX⊤Xβ)2]

− 2α2 E[β⊤ββ⊤WX⊤Xβ] − 2E[β⊤gg⊤WX⊤Xβ]

= α2d(d + 2) + α2E[(β⊤WX⊤Xβ)2]︸                ︷︷                ︸
(a)

+ d + E[(g⊤WX⊤Xβ)2]︸                ︷︷                ︸
(b)

− 2α2E[β⊤ββ⊤WX⊤Xβ]︸                  ︷︷                  ︸
(c)

− 2E[β⊤gg⊤WX⊤Xβ]︸                  ︷︷                  ︸
(d)

.

Consider solving (a)-(d) sequentially as follows:
To begin with, we use the following decomposition for all (a)-(d):

X⊤Xβ =
n∑

i=1

xix⊤i β

=

n∑
i=1

(αβ + gi)(αβ + gi)⊤β

=

n∑
i=1

α2ββ⊤β + αβg⊤i β + αgiβ
⊤β + gi g⊤i β.
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Then, we have

(a) : E[(β⊤WX⊤Xβ)2]

= E


 n∑

i=1

α2β⊤Wββ⊤β + αβ⊤Wβg⊤i β + αβ
⊤W giβ

⊤β + β⊤W gi g⊤i β
2

= α4n2 E
[(
β⊤Wββ⊤β

)2
]
+ α2 E


 n∑

i=1

β⊤Wβg⊤i β
2 + α2 E


 n∑

i=1

β⊤W giβ
⊤β

2 + E

 n∑

i=1

β⊤W gi g⊤i β
2

+2α2nE

 n∑
i=1

β⊤Wββ⊤ββ⊤W gi g⊤i β
 + 2α2 E

 n∑
i=1

β⊤Wβg⊤i ββ
⊤W giβ

⊤β


= α4n2 E

[(
β⊤Wββ⊤β

)2
]
+ α2nE

[(
β⊤Wβg′⊤β

)2
]
+ α2nE

[(
β⊤W g′β⊤β

)2
]
+ E


 n∑

i=1

β⊤W gi g⊤i β
2

+2α2n2 E
[
β⊤Wββ⊤ββ⊤W g′g′⊤β

]
+ 2α2nE

[
β⊤Wβg⊤i ββ

⊤W giβ
⊤β

]
= α4n2(d + 4)(d + 6)N1 + α

2n(d + 4)N1 + α
2n(d + 2)(d + 4)N2 (44)

+ n(n − 1)N1 + nN4 (45)

+ 2α2n2(d + 4)N1 + 2α2n(d + 4)N1 (46)

=
(
α2n(d + 4)(α2n(d + 6) + 2n + 3) + n(n − 1)

)
N1 + α

2n(d + 2)(d + 4)N2 + nN4 (47)

= B1N1 + B2N2 + nN4,

where (44) and (46) utilize (29) and (31), and (45) is obtained via

E


 n∑

i=1

β⊤W gi g⊤i β
2 = nE

[(
β⊤W g′g′⊤β

)2
]
+ n(n − 1)E

[
β⊤W g′g′⊤ββ⊤W g′′g′′⊤β

]
= nN4 + n(n − 1)N1,

which follows (26) and (27).
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(b) : E
[
(g⊤WX⊤Xβ)2

]
= E


 n∑

i=1

α2 g⊤Wββ⊤β + αg⊤Wβg⊤i β + αg⊤W giβ
⊤β + g⊤W gi g⊤i β

2
= α4n2 E

[(
g⊤Wββ⊤β

)2
]
+ α2 E


 n∑

i=1

g⊤Wβg⊤i β
2 + α2 E


 n∑

i=1

g⊤W giβ
⊤β

2 + E

 n∑

i=1

g⊤W gi g⊤i β
2

+2α2nE

 n∑
i=1

g⊤Wββ⊤βg⊤W gi g⊤i β
 + 2α2 E

 n∑
i=1

g⊤Wβg⊤i βg⊤W giβ
⊤β


= α4n2 E

[(
g⊤Wββ⊤β

)2
]
+ α2nE

[(
g⊤Wβg′⊤β

)2
]
+ α2nE

[(
g⊤W g′β⊤β

)2
]
+ E


 n∑

i=1

g⊤W gi g⊤i β
2

+2α2n2 E
[
g⊤Wββ⊤βg⊤W g′g′⊤β

]
+ 2α2nE

[
g⊤Wβg⊤i βg⊤W giβ

⊤β
]

= α4n2(d + 2)(d + 4)N2 + α
2n(d + 2)N2 + α

2nd(d + 2)N2 + n(d + n + 1)N2 (48)

+ 2α2n2(d + 2)N2 + 2α2n(d + 2)N2 (49)

=
(
α2n(d + 2)(α2n(d + 4) + 2n + d + 3) + n(d + n − 1)

)
N2

= B3N2,

where (48) and (49) are obtained using (26), (29) and

E


 n∑

i=1

g⊤W gi g⊤i β
2 = nE

[(
g⊤W g′g′⊤β

)2
]
+ n(n − 1)E

[
g⊤W g′g′⊤βg⊤W g′′g′′⊤β

]
= n(d + 2)N2 + n(n − 1)N2 = n(n + d + 1)N2.

(c) : E
[
β⊤ββ⊤WX⊤Xβ

]
= nE

[
β⊤ββ⊤W(αβ + g′)(αβ + g′)⊤β

]
= α2nE

[
β⊤ββ⊤Wββ⊤β

]
+ nE

[
β⊤ββ⊤W g′g′⊤β

]
= α2n(d + 2)(d + 4)tr (W) + n(d + 2)tr (W)

=
(
α2n(d + 2)(d + 4) + n(d + 2)

)
N3

= B4N3.

(d) : E
[
β⊤gg⊤WX⊤Xβ

]
= nE

[
β⊤gg⊤W(αβ + g′)(αβ + g′)⊤β

]
= α2nE

[
β⊤gg⊤Wββ⊤β

]
+ nE

[
β⊤gg⊤W g′g′⊤β

]
= α2n(d + 2)tr (W) + ntr (W)

=
(
α2n(d + 2) + n

)
N3

= B5N3.

31



Fine-grained Analysis of In-context Linear Estimation

Here we define

B1 = α
2n(d + 4)(α2n(d + 6) + 2n + 3) + n(n − 1)

B2 = α
2n(d + 2)(d + 4)

B3 = α
2n(d + 2)(α2n(d + 4) + 2n + d + 3) + n(d + n − 1)

B4 = α
2n(d + 2)(d + 4) + n(d + 2)

B5 = α
2n(d + 2) + n.

Then combining all together results in

L(W) = γ2
(
α2d(d + 2) + d + α2(B1N1 + B2N2 + nN4) + B3N2 − 2α2B4N3 − 2B5N3

)
+ nσ2(α4N1 + (2α2 + 1)N2) + σ2

= γ2
(
α2B1N1 + (α2B2 + B3)N2 − 2(α2B4 + B5)N3 + α

2nN4
)
+ nσ2(α4N1 + (2α2 + 1)N2) + γ2d

(
α2(d + 2) + 1

)
+ σ2

and differentiating it results in

∇L(W) = γ2
(
α2B1∇N1 + (α2B2 + B3)∇N2 − 2(α2B4 + B5)∇N3 + α

2n∇N4
)
+nσ2(α4∇N1+(2α2+1)∇N2).

Similar to the proof in Appendix B.3, W⋆ has the form of W⋆ = cI and we have

∇N1 = ∇
(
tr (W)2 + tr

(
WW⊤

)
+ tr

(
W2

))
= 2tr (W) I + 2W + 2W⊤ = 2c(d + 2)I

∇N2 = ∇tr
(
WW⊤

)
= 2W = 2cI

∇N3 = ∇tr (W) = I

∇N4 = ∇
(
3tr

(
Λ2

W

)
+ (d + 4)tr

(
WW⊤

)
+ tr

(
W2

))
= 6 · diag (ΛW) + 2(d + 4)W + 2W⊤

= 2c(d + 8)I.

Therefore, setting ∇L(W) = 0 returns

γ2
(
2c(d + 2)α2B1 + 2c(α2B2 + B3) − 2(α2B4 + B5) + 2c(d + 8)α2n

)
+2cnσ2(α4(d+2)+2α2+1) = 0

=⇒ c =
α2B4 + B5

(d + 2)α2B1 + (α2B2 + B3) + (d + 8)α2n + nσ2(α4(d + 2) + 2α2 + 1)/γ2

=
α4n(d + 2)(d + 4) + 2α2n(d + 2) + n

α6n2(d + 2)(d + 4)(d + 6) + α4n(d + 2)(d + 4)(3n + 4) + α2n((d + 2)(3n + d + 3) + (d + 8)) + n(d + n + 1) + nσ2(α4(d + 2) + 2α2 + 1)/γ2

=
α4(d + 2)(d + 4) + 2α2(d + 2) + 1

α6n(d + 2)(d + 4)(d + 6) + α4(d + 2)(d + 4)(3n + 4) + α2((d + 2)(3n + d + 3) + (d + 8)) + (d + n + 1) + σ2(α4(d + 2) + 2α2 + 1)/γ2 .

Then the optimal loss is obtained by setting W⋆ = cI and

L⋆ = L(W⋆) = γ2d(α2(d + 2) + 1) + σ2 − γ2(α2B4 + B5)cd.

It completes the proof of (41). Now if assuming α = O
(
1/
√

d
)
, d/n = O (1), γ2 = 1/(α2d + 1) and

sufficiently large dimension d, we have the approximate

c ≈
α4d2 + 2α2d + 1

nα6d3 + 3nα4d2 + (3n + d)α2d + d + n + σ2(α4d + 2α2 + 1)/γ2

≈
(α2d + 1)2

n(α2d + 1)3 + d(α2d + 1) + σ2(α2d + 1)

≈
1

(α2d + 1)n + (d + σ2)/(α2d + 1)
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and

L⋆ ≈ γ
2d(α2d + 1) + σ2 −

γ2(α2d + 1)2nd
(α2d + 1)n + (d + σ2)/(α2d + 1)

= d + σ2 −
(α2d + 1)nd

(α2d + 1)n + (d + σ2)/(α2d + 1)
.

Appendix C. Analysis of Low-Rank Parameterization

C.1. Proof of Lemma 8

Proof Recall the loss function from (33)

L(W) = M − 2ntr
(
ΣW̄

)
+ n(n + 1)tr

(
ΣW̄⊤W̄

)
+ nMtr

(
W̄W̄⊤

)
where W̄ = Σ1/2

x WΣ1/2
x , Σ = Σ1/2

x ΣβΣ
1/2
x and M = tr (Σ) + σ2. For any W̄, let us parameterize

W̄ = UEU⊤ where U ∈ Rd×r denotes the eigenvectors of W̄ and E ∈ Rr×r is a symmetric square
matrix. We will first treat U as fixed and optimize E. We will then optimize U. Fixing U, setting
Σ̄ = U⊤ΣU, we obtain

L(E) = M − 2ntr
(
Σ̄E

)
+ n(n + 1)tr

(
Σ̄E2

)
+ nMtr

(
E2

)
.

Differentiating, we obtain

0.5n−1∇L(E) = −Σ̄ + (n + 1)Σ̄E + ME.

Setting ∇L(E) = 0 returns

E⋆ = (MI + (n + 1)Σ̄)−1Σ̄. (50)

Let λ̄i denote the i’th largest eigenvalue of Σ̄. Plugging in this value, we obtain the optimal risk as a
function of U is given by

L⋆(U) = M − n · tr
(
Σ̄E⋆

)
= M − n · tr

(
(MI + (n + 1)Σ̄)−1Σ̄2

)
(51)

= M − n
r∑

i=1

λ̄2
i

(n + 1)λ̄i + M
= M − n

r∑
i=1

λ̄i

n + 1 + Mλ̄−1
i

. (52)

Now observe that, the right hand side is strictly decreasing function of the eigenvalues λ̄i of Σ̄ =
U⊤ΣU. Thus, to minimize L⋆(U), we need to maximize

∑r
i=1

λ̄i
n+1+Mλ̄−1

i
. It follows from Cauchy

interlacing theorem that λ̄ j ≤ λi where λi is the i’th largest eigenvalue of Σ since Σ̄ is an orthogonal
projection of Σ on U. Consequently, we find the desired bound where

L⋆ = M − n
r∑

i=1

λi

n + 1 + Mλ−1
i

.

The equality holds by setting U to be the top-r eigenvectors of Σ and E = E⋆(U) to be the diagonal
matrix according to (50).
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(b) Noisy label
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Figure 2: Empirical evidence validates Theorem 4 and Proposition 3. We train 1-layer linear attention
and H3 models with prompts containing independent demonstrations following a linear model, and
dotted curves are the theory curves following Eq. (7). (a): We consider noiseless i.i.d. setting where
Σx = Σβ = Id and σ = 0, with results presented in red (attention) and blue (H3) solid curves. (b):
We conduct noisy label experiments by choosing σ , 0. (c): Consider non-isotropic task by setting
Σβ = γ11⊤ + (1 − γ)Id. Solid and dashed curves in (b) and (c) represent attention and H3 results,
respectively. The alignments in (a), (b) and (c) show the equivalence between attention and H3,
validating Theorem 4 and Proposition 3. More experimental details are discussed in Section D.

Appendix D. Experiments

In this section, we conduct synthetic experiments to support our theoretical findings and further
explore the behavior of different models of interest under different conditions. The experiments are
designed to investigate various scenarios, including independent data, retrieval-augmented generation
(RAG), task-feature alignment, low-rank parameterization, and LoRA adaption.

Experimental setting. We train 1-layer attention and H3 models for solving the linear regression ICL.
As described in Section 2, we consider meta-learning setting where task parameter β is randomly
generated for each training sequence. In all experiments, we set the dimension d = 20. Depending on
the in-context length (n), different models are trained to make in-context predictions. We train each
model for 10000 iterations with batch size 128 and Adam optimizer with learning rate 10−3. Since
our study focuses on the optimization landscape, and experiments are implemented via gradient
descent, we repeat 20 model trainings from different initialization and results are presented as the
minimal test risk among those 20 trails. In all the plots, theoretical predictions are obtained via the
corresponding formulae presented in Section 3 and the test risks are normalized by the dimension d.

• Equivalence amongL⋆PGD,L
⋆
ATT andL⋆SSM (Figure 2). To verify Proposition 3 as well as Theorem 4,

we run random linear regression instances where in-context samples are generated obeying (6).
Fig. 2(a)subfigure is identical to Fig. 1(a)subfigure where we set Σx = Σβ = Id and σ = 0. In
Fig. 2(b)subfigure, set Σx = Σβ = I and vary noise level σ2 from 0 to 0.3 × d. In Fig. 2(c)subfigure,
we consider noiseless labels, σ = 0, isotropic feature distribution Σx = Id and set task covariance to
be Σβ = γ11⊤ + (1 − γ)Id by choosing γ in {0, 0.3, 0.6, 0.9}. Note that in Fig. 2(c)subfigure, we train
a sufficient number of models (greater than 20) to ensure the optimal model is obtained. In all the
figures, solid and dashed curves correspond to the ICL results from training 1-layer ATT and SSM
models, respectively, and dotted curves are obtained from (7) in Theorem 4. The alignment of solid,
dashed and dotted curves validates our Proposition 3 and Theorem 4.

•Distributional alignment experiments (Figs. 3(a)subfigure&3(b)subfigure). In Figs. 3(a)subfigure
and 3(b)subfigure, we generate RAG and task-feature alignment data following (8) and (10), re-
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(d) LoRA adaptation

Figure 3: Distributional alignment and low-rank parameterization experiments. (a) and (b) show
the ICL results using data generated via (8) and (10), respectively, by changing α from 0 to 0.6. In
(c), we train low-rank linear attention models by setting Wk,Wq ∈ R

(d+1)×r and in (d), we apply
the low-rank LoRA adaptor, Wlora :=WupW⊤down where Wup,Wdown ∈ R

(d+1)×r, to pretrained linear
attention models and adjust the LoRA parameters under different task distribution. Solid and dotted
curves correspond to the linear attention and theoretical results (c.f. Section 3), respectively, and the
alignments validate our theorems in Section 3. More experimental details are discussed in Section D.

spectively, by setting σ = 0 and varying α from 0 to 0.6. Attention training results are displayed
in solid curves, and we generate theory curve (dotted) via the L⋆ formula as described in (35) in
Appendix B.3 and (41) in Appendix B.4. The empirical alignments corroborate Theorems 13 and
14, further confirming that Proposition 3 is applicable to a broader range of real-world distributional
alignment data.

• Low-rank (Fig. 3(c)subfigure) and LoRA (Fig. 3(d)subfigure) experiments. We also run
simulations to verify our theoretical findings in Section 3.2. Consider the independent data setting as
described in (6). In Fig. 3(c)subfigure, we set Σx = Id, σ = 0 and task covariance to be diagonal with
diagonal entries c[1 2−1 · · · d−1]⊤ for some normalization constant c = d/

∑d
i=1 i−1, and parameterize

the attention model using matrices Wk,Wq ∈ R
(d+1)×r and vary r across the set {1, 5, 10, 20}. Results

show that empirical (solid) and theoretical (dotted, c.f. (12)) curves overlap. In Fig. 3(d)subfigure,
we implement two phases of training. Phase 1: Setting Σx = Σβ = Id and σ = 0, we pretrain
the model with full rank parameters and obtain weights Ŵk, Ŵq, Ŵv ∈ R

(d+1)×(d+1). Phase 2: We
generate new examples with task covariance Σβ being a diagonal matrix with diagonal entries
c′[2−1 2−2 · · · 2−d]⊤ for some normalization constant c′ = d/

∑d
i=1 2−i. Given the rank restriction

r, we train additional LoRA parameters Wup,Wdown ∈ R
(d+1)×r where Wlora :=WupW⊤down and (2a)

becomes ATT(Z) = (Z(ŴqŴ⊤k +WupW⊤down)Z⊤)ZŴv. Fig. 3(d)subfigure presents the results after
two phases of training where dotted curves are drawn from the right hand side of (13) directly. Here,
note that since Σ,Σnew are diagonal, the right hand side of (13) returns the exact optimal risk of
LoRA and the alignments verify it.

• H3 outperforms linear attention (Figure 4). Until now, our analysis has established the equiv-
alence between linear attention and H3 models in solving linear ICL problem. Furthermore, we
also investigate settings where H3 could outperform linear attention due to its sample weighting
ability. In Figs. 4(a)subfigure and 4(b)subfigure, instead of training separate models to fit the different
context lengths, we train a single model with fixed max-length nmax and loss is evaluated as the
average loss given samples from 1 to nmax. Such setting has been wildly studied in the previous
ICL work [2, 11, 23]. We generate data according to (6) with Σx = Σβ = Id and σ = 0, and
train 1-layer linear attention (Fig. 4(a)subfigure) and H3 (Fig. 4(b)subfigure) models with different
max-lengths nmax = 30, 50, 80. Comparison between Fig. 4(a)subfigure and 4(b)subfigure shows that

35



Fine-grained Analysis of In-context Linear Estimation

0 10 20 30 40 50 60 70 80
# in-context samples

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Te
st

 ri
sk

nmax = 30
nmax = 50
nmax = 80

(a) Linear attention

0 10 20 30 40 50 60 70 80
# in-context samples

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Te
st

 ri
sk

nmax = 30
nmax = 50
nmax = 80

(b) H3

30 40 50 60 70 80
nmax

0.45

0.50

0.55

0.60

Av
er

ag
ed

 te
st

 ri
sk

Linear Att
H3

(c) Averaged risk

0 10 20 30 40 50
# in-context samples

0.3
0.4
0.5
0.6
0.7
0.8
0.9

Te
st

 ri
sk

Linear Att
H3

(d) Evolving β

Figure 4: Further comparison for linear attention and H3. In (a) and (b), given maximum context
lengths nmax, we train linear attention and H3 models to minimize the average loss across all positions
n from 1 to nmax. Averaged test risks are presented in (c). In (d), the task vector β evolves gradually
over the context positions i ≤ n via βi = (i/n)β1 + (1 − i/n)β2. In both scenarios, H3 outperforms
linear attention benefiting from its additional convolutional filter (c.f. f in (2b)). More experimental
details are discussed in Section D.

1-layer attention and H3 implement different algorithms in solving the averaged linear regression
problem and H3 is more consistent in generalizing to longer context lengths. In Fig. 4(c)subfigure,
we plot the averaged risks for each model and H3 outperforms linear attention. Furthermore, in
Fig. 4(d)subfigure, we focus on the setting where in-context examples are generated using evolving
task vector β. Specifically, consider that each sequence corresponds to two individual task parameters
β1 ∼ N(0, Id) and β2 ∼ N(0, Id). Then the i’th sample is generated via xi ∼ N(0, Id) and yi = β

⊤
i xi

where βi = λiβ1 + (1 − λi)β2 and λi = i/n. The results are reported in Fig. 4(d)subfigure which again
shows that H3 achieves better performance compared to linear attention, as H3 may benefit from the
additional convolutional filter (c.f. f in (2b)). Here, dotted curve represent the theoretical results
under i.i.d. and noiseless setting, derived from Corollary 5.

Appendix E. Related Work

There is growing interest in understanding the mechanisms behind ICL [5, 27, 37] in large language
models (LLMs) due to its success in continuously enabling novel applications for LLMs [13, 35, 39].
Towards this, Xie et al. [44] explain ICL by language model’s ability to perform implicit Bayesian
inference where, under specific assumptions on the pre-training data distribution, the model infers a
shared latent concept among the in-context examples and leverages the concept to make a prediction.
Hollmann et al. [19], Müller et al. [31, 32] introduce prior-data fitted network (PFN) to approximate
Bayesian inference on synthetic datasets and use it to perform downstream tasks such as tabular
dataset classification. On the other hand, Olsson et al. [34] posit induction heads as the key mechanism
enabling ICL in Transformers. Park et al. [36] study how various distributional properties of training
data aid in the emergence of ICL in Transformers.

In the previous work, Garg et al. [11] explored ICL ability of Transformers. In particular, they
considered in-context prompts where each in-context example is labeled by a target function from
a given function class, including linear models. A number of works have studied this and related
settings to develop a theoretical understanding of ICL [2, 3, 6, 8, 12, 24, 25, 41, 45]. Akyürek
et al. [2] focus on linear regression and provide a construction of Transformer weights that can
enable a single step of GD based on in-context examples. They further show that Transformers
trained on in-context prompts exhibit behaviors similar to the models recovered via explicit learning
algorithm on the in-context examples in a prompt. Along the similar line, Von Oswald et al. [40]
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provide a construction of weights in linear attention-only Transformers that can emulate GD steps
on in-context examples for a linear regression task. Interestingly, they find similarity between their
constructed networks and the networks resulting from training on in-context prompts corresponding
to linear regression tasks. Similar to this line of work, Dai et al. [7] argue that pre-trained language
models act as meta-optimizer which utilize attention to apply meta-gradients to the original language
model based on the in-context examples. Focusing on various NLP tasks, they further connect
it to a specific form of explicit fine-tuning that performs gradient updates to the attention-related
parameters. Inspired by the connection between linear attention and GD, they developed a novel
attention mechanism that mirrors the behavior of GD with momentum. Beyond Transformers,
existing work [14, 21, 47] demonstrate that other model architectures, such as SSM and RNNs, are
also capable of in-context learning (ICL).

Building on these primarily empirical studies, Ahn et al. [1], Duraisamy [9], Mahankali et al.
[29], Zhang et al. [46] focus on developing a theoretical understanding of Transformers trained
to perform ICL. For single-layer linear attention model trained on in-context prompts for random
linear regression tasks with isotropic Gaussian features and isotropic Gaussian weight vectors, Ahn
et al. [1], Mahankali et al. [29] show that the resulting model implements a single step of GD on
in-context examples in a test prompt, thereby corroborating the findings of [40]. They also show
that the learned model implements a PGD step, when faced with anisotropic Gaussian features,
with Mahankali et al. [29] also considering anisotropic Gaussian weight vectors. Ahn et al. [1]
further study multi-layer model and show that the trained model can implement a generalization of
GD++ algorithm, supporting an empirical observation in [40]. On the other hand, Mahankali et al.
[29] extend their single-layer setup to consider suitable non-linear target functions, showing that
learned Transformer again implements a single step of GD on lineare regression objective. For a
single-layer linear attention model, Zhang et al. [46] study the optimization dynamics of gradient
flow while training such a model on in-context prompts for random linear regression tasks. Despite
the non-convexity of the underlying problem, they show the convergence to the global minimum of
the population objective. Similar to Ahn et al. [1], Mahankali et al. [29], they show that the trained
model implements a single step of GD and PGD for isotropic and anisotropic Gaussian features,
respectively. In addition, they also characterize the test-time prediction error for the trained model
while highlighting its dependence on train and test prompt lengths. Interestingly, Zhang et al. [46]
further explore the effect of various distributional shifts, including the shift in task weight vector
distributions between train and test time as well as the covariate shifts among train and test in-context
prompts. Interestingly, they find that while linear-attention models are robust to most shifts, they
exhibit brittleness to the covariate shifts.

While our work shares similarities with this line of works, as discussed in our contributions in
the introduction, we expand the theoretical understanding of ICL along multiple novel dimensions,
which includes the first study of LoRA adaptation for ICL in the presence of a distributional shift.
Furthermore, we strive to capture the effect of retrieval augmentation [22, 33] on ICL through
our analysis. Retrieval augmentation allows for selecting most relevant demonstration out of a
large collection for a test instance, e.g., via a dense retrieval model [20], which can significantly
outperform the typical ICL setup where fixed task-specific demonstrations are provided as in-context
examples [4, 42]. Through a careful modeling of retrieval augmentation via correlated design,
we show that it indeed has a desirable amplification effect where the effective number in-context
examples becomes larger with higher correlation which corresponds to preforming a successful
retrieval of query-relevant demonstrations in a practical retrieval augmented setup.
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Recently, state space models (SSMs) [10, 15–17] have appeared as potential alternatives to
Transformer architecture, with more efficient scaling to input sequence length. Recent studies
demonstrate that such SSMs can also perform ICL for simple non-language tasks [14, 36] as well as
complex NLP tasks [14]. That said, a rigorous theoretical understanding of ICL for SSMs akin to
[1, 29, 46] is missing from the literature. In this work, we provide the first such theoretical treatment
for ICL with SSMs. Focusing on H3 architecture [10], we highlight its advantages over linear
attention in specific ICL settings.

Appendix F. Discussion

In this work, we revisited the loss landscape of in-context learning with 1-layer sequence models. We
have established a general connection between ICL and gradient methods that accounts for correlated
data, non-attention architectures (specifically SSMs), and the impact of low-rank parameterization
including LoRA adaptation. Our results elucidate two central findings: (1) The functions learned by
different sequence model architectures exhibit a strong degree of universality and (ii) Dataset and
prompt design, such as RAG, can substantially benefit ICL performance.

Future directions and limitations. The results of this work fall short of being a comprehensive
theory for ICL in LLMs and can be augmented in multiple directions. First, while the exact
equivalence between H3 and linear attention is remarkable, we should examine whether it extends to
other SSMs. Secondly, while empirically predictive, our RAG and LoRA analyses are not precise
and fully formal. Thirdly, it is desirable to develop a deeper understanding of multilayer architectures
and connect to iterative GD methods as in [1, 40]. Finally, we have studied the population risk of ICL
training whereas one can also explore the sample complexity of pretraining [28, 43]. Moving beyond
the theoretically tractable setup of this work, our simplified models are trained on in-context prompts
from random initialization. Therefore, this theoretical study doesn’t address more challenging
in-context learning tasks, such as question answering, where both in-context demonstration and
general knowledge from pretraining are required. Future work in this area could also shed light on
how certain contexts might elicit undesirable behaviors acquired by an LLM during pretraining, an
aspect not covered in our current analysis. This work also studies a theoretical model for retrieval
augmentation-based ICL. In a real-life retrieval augmentation-based ICL, one needs to account for
the quality of the collection of the retrievable demonstrations and its (negative) impacts on the final
predictions.
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