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Abstract
Sign language datasets are often not repre-001
sentative in terms of vocabulary, underscor-002
ing the need for models that generalize to un-003
seen signs. Vector quantization is a promis-004
ing approach for learning discrete, token-like005
representations, but it has not been evaluated006
whether the learned units capture spurious cor-007
relations that hinder out-of-vocabulary perfor-008
mance. This work investigates two phonolog-009
ical inductive biases: Parameter Disentangle-010
ment, an architectural bias, and Phonological011
Semi-Supervision, a regularization technique,012
to improve isolated sign recognition of known013
signs and reconstruction quality of unseen signs014
with a vector-quantized autoencoder. The pri-015
mary finding is that the learned representations016
from the proposed model are more effective017
for one-shot reconstruction of unseen signs and018
more discriminative for sign identification com-019
pared to a controlled baseline. This work pro-020
vides a quantitative analysis of how explicit,021
linguistically-motivated biases can improve the022
generalization of learned representations of023
sign language.024

1 Introduction025

The development of robust sign language models026

is often constrained by the limited scale and vo-027

cabulary of available datasets (Bragg et al., 2019;028

De Sisto et al., 2022). This data scarcity makes the029

ability to generalize to out-of-vocabulary (OOV)030

signs a significant challenge for the field. Sign031

languages are highly productive systems, where a032

finite set of phonological features, such as hand-033

shape, location, and movement patterns can be034

combined to form a vast lexicon (Stokoe, 1960;035

Brentari, 1998). A model that learns to represent036

these underlying phonological components of signs037

can improve sign recognition (Kezar et al., 2023b),038

and we hypothesize such phonological learning039

bias could improve reconstruction of novel combi-040

nations of those components in unseen signs.041
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Figure 1: We show that out-of-vocabulary signs are
more accurately reconstructed when trained under two
phonological inductive biases: first, disentangling the
input stream by ASL parameter; then, encoding each
stream as a sequence of learned components, some of
which are aligned with expert labels.

Vector-Quantized Variational Autoencoders 042

(VQ-VAEs) have emerged as a powerful method 043

for learning discrete latent representations of data, 044

which are attractive for their potential use as tokens 045

in sequence models (Van Den Oord et al., 2017; 046

Razavi et al., 2019). Prior work has explored VQ 047

for creating data-driven representations of signs, of- 048

ten as an alternative to linguistic glosses (Abzaliev 049

and Mihalcea, 2024; Tasyurek et al., 2025). How- 050

ever, standard VQ models are trained with a com- 051

pression objective that may encourage the learn- 052

ing of "tangled" representations, where the learned 053

codes capture spurious, dataset-specific correla- 054

tions that do not generalize to unseen signs (Hig- 055

gins et al., 2017). This reflects a theoretical limi- 056

tation formally proven by Locatello et al. (2019), 057

who showed that the unsupervised learning of dis- 058

entangled representations is "fundamentally impos- 059

sible" without inductive biases on both the models 060

and the data. This finding shows that a search for 061
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principled sources for such biases is not just moti-062

vated, but necessary.063

This paper therefore investigates whether064

phonologically-motivated inductive biases can im-065

prove a VQ-VAE’s ability to reconstruct and rec-066

ognize out-of-vocabulary (OOV) signs. We draw067

these biases from the Prosodic Model (Brentari,068

1998) and the ASL-LEX 2.0 database (Sehyr et al.,069

2021), two lexicon-wide descriptions of ASL struc-070

ture, and implement them through two mechanisms071

(Figure 1). The first is Parameter Disentanglement072

(PD), an architectural method that uses a multi-073

stream VQ-VAE to learn separate codebooks for074

distinct articulators and movement parameters. The075

second is Phonological Semi-Supervision (PSS), a076

supervisory method that uses an auxiliary classifi-077

cation loss with expert phonological labels to reg-078

ularize the latent codebooks and align them with079

established linguistic features.080

This paper proceeds as follows: Section 2 re-081

views relevant background literature. Section 3 de-082

tails the VQ-ASL framework. Section 4 describes083

the experimental setup for a controlled ablation084

study. Section 5 presents the results, and Section 6085

discusses their implications and the limitations of086

the study. The main finding is that the proposed in-087

terventions offer complementary benefits, improv-088

ing OOV generalization for both sign reconstruc-089

tion and recognition, and revealing a trade-off be-090

tween reconstruction fidelity and the discriminative091

quality of the learned representations.092

2 Background093

We review prior work in sign language representa-094

tion learning, the theoretical foundations of disen-095

tangled representation learning, and the linguistic096

models that motivate our proposed inductive biases.097

2.1 Representation Learning for Sign098

Language099

The popular input modality for modern sign lan-100

guage recognition is skeletal pose data, extracted101

from video using tools like MediaPipe or Open-102

Pose (Lugaresi et al., 2019; Cao et al., 2019). This103

representation can be seen as a form of phonetic104

bias, because it abstracts away from signer-specific105

visual details like clothing or background, focusing106

instead on the underlying articulatory movements107

while enhancing privacy (Bragg et al., 2020). Var-108

ious neural architectures have been employed to109

learn features from this data. 3D Convolutional110

Neural Networks (3D CNNs) can capture spatio- 111

temporal features directly from video, but are com- 112

putationally intensive and may learn spurious vi- 113

sual cues (Pu et al., 2021). Graph Convolutional 114

Networks (GCNs) are naturally suited to skeletal 115

data, as they explicitly model the topological struc- 116

ture of the human body and can learn the dynamic 117

relationships between joints over time (Yan et al., 118

2018; Jiang et al., 2021). More recently, contrastive 119

learning objectives have been used to align visual 120

representations of signs with textual descriptions, 121

improving the grounding of the learned features 122

without supervision (Jiang et al., 2024; Hao et al., 123

2021). 124

The goal of obtaining discrete representations 125

for signs includes manual and learned efforts. For- 126

mal symbolic systems like SignWriting provide 127

a manual transcription system, analogous to writ- 128

ten text (Sutton, 1990). Data-driven approaches, 129

particularly those using vector quantization, have 130

also been explored to learn discrete tokenizations 131

of sign language, often as an intermediate step for 132

sign language translation or production (Moryossef 133

et al., 2021; Saunders et al., 2020). A recent 134

preprint, "Disentangle and Regularize," also inves- 135

tigates articulator-based disentanglement for sign 136

language production, though with a focus on con- 137

tinuous latent spaces and different regularization 138

techniques (Tasyurek et al., 2025). Our work is 139

distinct in its focus on vector quantization and the 140

use of phonological semi-supervision to structure 141

the discrete codebooks for OOV generalization in 142

isolated sign recognition. 143

2.2 Disentangled Representation Learning 144

The goal of disentangled representation learning is 145

to produce a latent space where each dimension, 146

or group of dimensions, corresponds to a distinct, 147

meaningful factor of variation in the data (Higgins 148

et al., 2017). A model that successfully disentan- 149

gles the underlying generative factors is hypothe- 150

sized to exhibit better compositional generalization, 151

data efficiency, and robustness. In the context of 152

signing, these factors may be defined as the five 153

phonological parameters: handshape, palm orienta- 154

tion, location, movement, and non-manual markers. 155

A foundational work in this area is the β-VAE, 156

proposed by Higgins et al. (2017). This frame- 157

work modifies the standard Variational Autoen- 158

coder (VAE) objective by introducing a hyper- 159

parameter, β, that increases the weight of the 160

Kullback-Leibler (KL) divergence term in the loss 161
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Figure 2: Brentari’s Prosodic Model (Brentari, 1998) is
hierarchical; the boxed variables represent disentangled
parameters in this work.

function. A value of β > 1 imposes a stronger162

constraint on the information capacity of the latent163

bottleneck, forcing the model to learn a more effi-164

cient, and therefore more disentangled, representa-165

tion by balancing reconstruction accuracy against166

the statistical independence of the latent variables.167

However, the pursuit of unsupervised disentan-168

glement faced a significant theoretical challenge169

from Locatello et al. (2019). They provided a for-170

mal proof demonstrating that for any dataset gen-171

erated from disentangled latent factors, there ex-172

ists an infinite family of transformations that can173

produce a perfectly entangled latent space while174

yielding the exact same data distribution. As an un-175

supervised model only has access to the observed176

data, it cannot distinguish between the true dis-177

entangled model and its entangled counterparts.178

Their conclusion is sobering: "the unsupervised179

learning of disentangled representations is funda-180

mentally impossible without inductive biases on181

both the models and the data." This study provides182

the central motivation for this work, which seeks183

to identify and implement a principled source for184

such biases.185

2.3 Linguistic Theory as a Stratified Inductive186

Bias187

Our work responds to the challenge posed by Lo-188

catello et al. (2019) by using formal linguistic the-189

ory as a robust source of inductive biases, an ap-190

proach aligned with Knowledge-Infused Learning191

(KiL) (Gaur et al., 2022). We apply this knowl-192

edge in a stratified manner for a deep infusion:193

a low-level architectural bias enforces parame-194

ter disentanglement on the articulators, while a195

higher-level phonological semi-supervision acts 196

as a conceptual bottleneck that guides the model 197

through linguistically-defined concepts (Koh et al., 198

2020). The specific knowledge for this work is 199

the Prosodic Model of sign language phonology, 200

developed by Brentari (1998). 201

Brentari’s model describes signs as being com- 202

posed of a hierarchical and simultaneous arrange- 203

ment of phonological parameters (Figure 2). This 204

linguistic framework provides a blueprint for a 205

stratified inductive bias, which we implement us- 206

ing mechanisms from Knowledge-Infused Learn- 207

ing (Gaur et al., 2022). The architectural bias in 208

our model is informed by Brentari’s factorization 209

of signs into articulators (hands, face), place of ar- 210

ticulation (location), and prosodic features (move- 211

ment). We additionally use the discrete, contrastive 212

features described by the theory, such as the hand- 213

shapes cataloged in ASL-LEX 2.0 (Sehyr et al., 214

2021), to regularize the learning process through 215

an auxiliary loss. For a complete description of the 216

ASL-LEX features, see Appendix A. Despite the 217

availability of several phonological models (e.g., 218

H-M-H, Liddell & Johnson, 1989; Dependency 219

Model, van der Kooij, 2002), we adopt Brentari’s 220

prosodic model as best suited for semi-supervised 221

learning. It offers (1) a clear inventory of con- 222

trastive features aligned with linguistic theory, and 223

(2) a hierarchical structure that maps well onto the 224

discrete components produced by our model. 225

By leveraging both architectural and 226

regularization-based KiL strategies, guided 227

by different strata of Brentari’s Prosodic Model, 228

we aim to provide the structured priors necessary 229

for learning a meaningful and generalizable 230

disentangled representation of signs. 231

3 The VQ-ASL Framework 232

This section provides a detailed technical de- 233

scription of the proposed VQ-ASL framework. 234

It begins by detailing the baseline architec- 235

ture, a Transformer-based VQ-VAE (Section 3.1), 236

and subsequently elaborates on the two novel, 237

phonologically-motivated interventions: Parame- 238

ter Disentanglement (PD) and Phonological Semi- 239

Supervision (PSS) (Section 3.2). 240

3.1 Baseline Transformer VQ-VAE 241

The baseline model is a Vector-Quantized Vari- 242

ational Autoencoder (VQ-VAE), which learns 243

a discrete latent representation of an input se- 244
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quence (Van Den Oord et al., 2017). The encoder245

and decoder components are implemented using246

Transformer architectures (Vaswani et al., 2017)247

to effectively model the sequential nature of sign248

language pose data.249

The encoder, E, takes a sequence of pose vec-250

tors X ∈ RT×D as input, where T is the num-251

ber of frames and D is the dimensionality of the252

pose vector for each frame. The Transformer en-253

coder processes this sequence and outputs a set of254

Np continuous latent vectors, Ze = E(X), where255

Ze ∈ RNp×Lc and Lc is the latent channel dimen-256

sion. In the baseline model, these Np vectors form257

a single, unstructured latent sequence.258

The vector quantization layer serves as the in-
formation bottleneck. It contains a learnable code-
book, C ∈ RK×Lc , which consists of K discrete
code vectors, {cj}Kj=1. For each continuous vector

z
(i)
e ∈ Ze, the quantizer identifies the nearest code

vector in the codebook using L2 distance:

ki = argmin
j

∥z(i)e − cj∥22.

The output of the VQ layer is a sequence of quan-259

tized vectors Zq ∈ RNp×Lc , where each vector z(i)q260

is the selected codebook vector cki . Because the261

argmin operation is non-differentiable, a straight-262

through estimator is used to copy gradients from263

the decoder input Zq directly to the encoder output264

Ze during backpropagation.265

The decoder, D, has a symmetric Transformer266

architecture to the encoder. It takes the sequence267

of quantized vectors Zq as input and reconstructs268

the original pose sequence, X̂ = D(Zq).269

The total loss function for the baseline model,
LBaseline, is a sum of three components, following
the formulation of Van Den Oord et al. (2017):

LBaseline = Lrecon + Lcodebook + βLcommit.

The reconstruction loss, Lrecon, is the mean270

squared error (MSE) between the input and recon-271

structed poses, Lrecon = ∥X − X̂∥22, which trains272

the encoder and decoder. The codebook loss,273

Lcodebook = ∥sg[Ze]− Zq∥22, updates the codebook274

vectors to move them closer to the encoder outputs,275

where ‘sg‘ denotes the stop-gradient operator. The276

commitment loss, Lcommit = ∥Ze − sg[Zq]∥22, reg-277

ularizes the encoder output to remain close to the278

chosen code vectors, with β as a weighting hyper-279

parameter.280

3.2 Phonological Inductive Biases 281

We propose two inductive biases rooted in ASL 282

phonology: parameter disentanglement and phono- 283

logical semi-supervision. 284

3.2.1 Parameter Disentanglement (PD) 285

Parameter Disentanglement enforces a factoriza- 286

tion of the latent space through an architectural bias. 287

Instead of a single monolithic encoder-decoder 288

pair, the model is structured into multiple parallel 289

streams, each dedicated to a phonetically indepen- 290

dent parameter of the sign. The input pose space X 291

and the latent parameter space Np are partitioned 292

into channels corresponding to these components. 293

The operationalized parameters are derived from 294

Brentari’s Prosodic Model (Brentari, 1998): articu- 295

lators (left/right hand, facial expressions), prosodic 296

features (left/right hand path movement), and place 297

of articulation (location relative to other parts of 298

the body). 299

Each stream X(s) ⊂ X possesses its own en- 300

coder Es, decoder Ds, and a dedicated codebook 301

Cs. The input keypoints are filtered for each stream 302

such that they contain minimal overlap between pa- 303

rameters: 304

• X(RH), X(LH): the 21 coordinates for the right 305

or left hand, uniformly translated such that the 306

wrist is at the origin. Uniform frame sample. 307

• X(MOVR), X(MOVL): the wrist keypoint for the 308

right or left hand. All frames. 309

• X(NMM): the face keypoints translated such 310

that the nose is at the origin. Uniform frame 311

sample. 312

• X(BODY): all the keypoints except face and 313

hands. Uniform frame sample. 314

The total latent space is the concatenation of 315

the stream-specific latents, Np =
∑

sNp,s, with 316

the total bottleneck size held matching that of 317

the baseline architecture. The total reconstruc- 318

tion loss is the sum of the reconstruction losses 319

from each individual stream. To capture linguistic 320

constraints, the codebooks for the left and right 321

hand articulators (C(LH) and C(RH)) and move- 322

ments (C(LMOV) and C(RMOV)) are shared, enforc- 323

ing a symmetry constraint on these inventories. 324

Furthermore, each stream employs specific pre- 325

processing and attention-masking strategies. 326
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Hyperparameter Description Search Range Final Value

Transformer Dim Hidden dimension of the Transformer layers. [64, 512] 256
Transformer Layers Num. layers in encoder/decoder. [1, 6] 5
Latent Dim (Lc) Dimensionality of each code vector. [4, 32] 32
Num. Latent Vecs (Np) Number of vectors in the bottleneck. [10, 100] 30
Codebook Size (K) Number of entries in each codebook. [10, 500] 200
Commitment Cost (β) Weight for the VQ commitment loss. [1e-6, 0.1] 3e-6
Diversity Weight (γ) Weight for codebook diversity loss. [0.01, 3.0] 3.0
Learning Rate Adam optimizer learning rate. [1e-5, 0.005] 8.61e-5
Dropout Dropout probability in Transformer layers. [0.0, 0.5] 0.2

Table 1: Hyperparameter Search and Final Configuration. A search was conducted to find the best values for the
baseline model. These values were then held constant across all model variants for a fair comparison.

3.2.2 Phonological Semi-Supervision (PSS)327

Phonological Semi-Supervision introduces a328

regularization-based bias by using expert labels329

from the ASL-LEX 2.0 database to guide the orga-330

nization of the codebooks (Sehyr et al., 2021). This331

regularization provides a weak supervisory signal332

that encourages the learned discrete codes to align333

with meaningful, contrastive phonological features.334

For each phonological parameter in ASL-LEX335

(e.g., Handshape, which has over 60 distinct val-336

ues), a subset of codes within the corresponding337

codebook (e.g., the shared hand articulator code-338

book, CALH/RH
) is arbitrarily pre-assigned to repre-339

sent these expert-defined features. During training,340

if a sign has a known phonological label yf , an aux-341

iliary loss is applied. With a specified probability,342

the quantization step is forced to select the code343

vector cyf that corresponds to the ground-truth la-344

bel. The codebook and commitment losses are345

then computed with respect to this forced code, en-346

couraging the encoder to produce outputs that are347

semantically aligned with ASL-LEX 2.0 features.348

4 Experimental Setup349

This section details the experimental design, includ-350

ing the dataset (Section 4.1), model configurations351

(Section 4.2), implementation details, and evalua-352

tion metrics (Section 4.3) used to systematically353

assess the impact of the proposed phonological in-354

ductive biases.355

4.1 Dataset and Splits356

The experiments are conducted on the Sem-Lex357

Benchmark, a large-scale dataset for American358

Sign Language (ASL) modeling (Kezar et al.,359

2023a). It consists of over 84,000 videos of iso-360

lated signs produced by 41 deaf ASL signers, cov- 361

ering a vocabulary of 3,149 unique signs. Cru- 362

cially, the dataset is cross-referenced with ASL- 363

LEX 2.0, providing the expert-annotated phonolog- 364

ical feature labels, Y , required for the Phonological 365

Semi-Supervision (PSS) intervention (Sehyr et al., 366

2021). The dataset can be formally represented as 367

D = {(Xi,Φi, yi)}Ni=1, where Xi is the input pose 368

sequence, Φi is the set of its phonological labels, 369

and yi is the sign’s identifier. 370

To evaluate OOV generalization, this work uti- 371

lizes the benchmark’s "unseen gloss" split. The 372

dataset is partitioned such that the vocabularies of 373

the training, validation, and test sets are disjoint. 374

Any sign evaluated in the test set has not been seen 375

during training, providing a direct measure of the 376

model’s ability to generalize to novel signs rather 377

than novel instances of familiar signs. 378

4.2 Models Compared 379

The study is designed as a controlled ablation to 380

isolate the effects of Parameter Disentanglement 381

(PD) and Phonological Semi-Supervision (PSS). 382

Four model configurations are compared: 383

1. Baseline: The standard Transformer VQ- 384

VAE described in Section 3.1. 385

2. VQ-ASL-PD: The baseline model aug- 386

mented with the multi-stream Parameter Dis- 387

entanglement architecture. 388

3. VQ-ASL-PSS: The baseline model trained 389

with the Phonological Semi-Supervision aux- 390

iliary loss. 391

4. VQ-ASL (Full): The proposed model incor- 392

porating both PD and PSS. 393
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Table 2: Reconstruction Fidelity (MSE) on Seen (Dtrain) vs. Unseen (Dtest) Data. Lower is better. The overall
MSE columns show the generalization gap, while the channel-wise columns provide a detailed breakdown of test
performance for the disentangled models.

Overall MSE Channel-wise Test MSE

Model Dtrain Dtest X(RH) X(LH) X(NMM) X(BODY) X(MOVR) X(MOVL)

Baseline 0.039 0.058
VQ-ASL-PSS 0.037 0.055
VQ-ASL-PD 0.032 0.046 0.051 0.019 0.117 0.126 0.023 0.009
VQ-ASL (Full) 0.029 0.041 0.015 0.005 0.005 0.068 0.017 0.009

A hyperparameter search was conducted exclu-394

sively on the Baseline model using the validation395

set, which contains unseen signs. The search was396

performed with Optuna (Akiba et al., 2019), a hy-397

perparameter optimization framework. The opti-398

mization objective was to minimize reconstruction399

loss while simultaneously maximizing codebook400

utilization (measured by increase in perplexity over401

training) to prevent codebook collapse. The opti-402

mal hyperparameters found for the baseline were403

then fixed and used for all other model variants to404

ensure that any observed performance differences405

are attributable to the specific interventions and not406

to differences in tuning. Table 1 summarizes the407

key hyperparameters and their selected values. For408

further implementation details see Appendix B.409

4.3 Evaluation Metrics410

The models were evaluated using two primary anal-411

yses designed to test our hypotheses regarding412

OOV generalization.413

Reconstruction Error. We measured the Mean414

Squared Error (MSE) between the ground-truth415

(X) and reconstructed (X̂) pose sequences—the416

distance between each skeletal point in the original417

and reconstructed sequence across every frame—418

as an intrinsic evaluation of each models’ recon-419

struction quality. We hypothesized that while OOV420

reconstruction would be worse than in-vocabulary421

(IV), this generalization gap would be lessened by422

the proposed inductive biases.423

Phonological Alignment. After training each424

model, we froze their encoders and additionally425

trained two MLP probes on the quantized encod-426

ings Zq to measure how well the learned codes427

align with labeled ASL phonology.428

The first probe MISR(Zq, θ) ≈ p(yg|v) is trained429

for the downstream task of isolated sign recogni-430

tion. This probe measures the how discriminative431

the learned features are for signs that were not seen 432

in training. If a model leverages spurious correla- 433

tions in the train set, then these learned components 434

may not reliably distinguish OOV signs. 435

The second probe MPFR(Zq, θ) is trained to rec- 436

ognize the phonological features in ASL-LEX 2.0: 437

fPFR : Zq → yϕ. For the supervised models 438

(VQ-ASL-PSS, VQ-ASL (Full)), this probe is an 439

intrinsic evaluation of how successfully the PSS ob- 440

jective was learned, as well as confirmation that the 441

ASL-LEX 2.0 features generalize to unseen signs. 442

For the purely self-supervised models (Baseline, 443

VQ-ASL-PD), MPFR measures the extent to which 444

ASL-LEX 2.0 features may emerge through induc- 445

tion from data alone. 446

We hypothesized that a positive correlation will 447

exist between the two probes’ performance, that 448

is, successfully recognizing ASL-LEX 2.0 features 449

will facilitate the ISR task on signs unseen during 450

training. We also hypothesized that, for the super- 451

vised models (VQ-ASL-PSS and VQ-ASL (Full)) 452

when the ISR probe misclassifies a sign, its errors 453

with respect to PFR will be less severe if the disen- 454

tanglement intervention (PD) is applied. 455

5 Results and Analysis 456

Our results suggest that out-of-vocabulary (OOV) 457

generalization is improved by modeling different 458

aspects of lexical structure. Separating the model 459

by phonological parameter (disentanglement) im- 460

proves the generation of sign form, creating a more 461

productive system for novel combinations and re- 462

ducing reconstruction MSE by 21%. In parallel, us- 463

ing phonological labels as a constraint (Phonologi- 464

cal Semi-Supervision) stabilizes the model’s under- 465

standing of sign identity, increasing sign recogni- 466

tion MRR by 14%. 467
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Table 3: Phonological Alignment Results. We report Mean Reciprocal Rank (MRR) and Recall@10 (%) for two
MLP probes trained on the frozen latent codes (Zq) for both In-Vocabulary (Dtrain) and Out-of-Vocabulary (Dtest)
signs.

ISR Probe PFR Probe

Dtrain Dtest (OOV) Dtrain Dtest (OOV)

Model MRR R@10 MRR R@10 MRR R@10 MRR R@10

Baseline .452 52.3 .381 45.1 .515 58.3 .488 55.5
VQ-ASL-PD .441 51.5 .372 44.2 .502 57.1 .475 54.1
VQ-ASL-PSS .503 58.2 .435 50.4 .593 61.2 .565 58.4
VQ-ASL (Full) .528 61.3 .452 52.8 .618 62.3 .583 59.8

5.1 Reconstruction Error468

Table 2 presents the reconstruction performance469

for each model. The full VQ-ASL model achieves470

the lowest overall test MSE (0.041), indicating471

the most accurate OOV reconstruction. The472

VQ-ASL-PD model provides a substantial indi-473

vidual improvement, reducing the test MSE to474

0.046 from the baseline’s 0.058. In contrast, the475

VQ-ASL-PSS model offers a smaller gain in re-476

construction fidelity, with a test MSE of 0.055.477

The combination of both interventions in the full478

model demonstrates a constructive interaction ef-479

fect, yielding the best overall reconstruction qual-480

ity.481

5.2 Phonological Alignment482

Table 3 presents the results from the two phonolog-483

ical alignment probes. The ISR probe results show484

a complementary narrative to the reconstruction485

findings. Here, PSS is the primary driver of perfor-486

mance, with the VQ-ASL-PSS model improving487

the OOV MRR to .435 over the baseline’s .381.488

The VQ-ASL-PD model shows a slight degrada-489

tion in OOV ISR performance, with an MRR of490

.372, highlighting a trade-off between the inter-491

ventions. The PFR probe results for the unsuper-492

vised models show the Baseline achieves an OOV493

MRR of .488, indicating some emergent phono-494

logical structure. For the supervised models, the495

high OOV PFR scores for VQ-ASL-PSS (.565) and496

VQ-ASL (Full) (.583) confirm the PSS objective497

was learned successfully and generalizes. Across498

all models, a positive correlation exists between the499

MRR performance of the two probes. The full VQ-500

ASL model achieves the best performance on both501

probes, demonstrating the complementary nature502

of the two biases.503

6 Discussion 504

The empirical results demonstrate that the proposed 505

inductive biases improve OOV generalization in 506

qualitatively different and complementary ways. 507

This section interprets these findings, discusses 508

their broader implications for future research, and 509

concludes with the primary takeaway of this work. 510

6.1 Interpreting the 511

Reconstruction-Recognition Trade-off 512

The results reveal a trade-off between reconstruc- 513

tion fidelity and representation discriminability. 514

The architectural bias of Parameter Disentangle- 515

ment (PD) is the primary driver of improved re- 516

construction, yet it slightly harms sign recognition 517

accuracy when used alone. Conversely, Phonologi- 518

cal Semi-Supervision (PSS) is the primary driver 519

of recognition accuracy but offers only a minor 520

benefit to reconstruction. 521

This finding provides empirical support for the 522

arguments of Locatello et al. (2019). Our results 523

demonstrate that a purely structural inductive bias 524

(PD), while effective for a generative task like re- 525

construction, is insufficient to guarantee the emer- 526

gence of a semantically meaningful latent space 527

for a discriminative task. The model, guided only 528

by architectural separation and reconstruction loss, 529

learns to represent fine-grained motion details that 530

are not necessarily contrastive for sign identifica- 531

tion, thus slightly harming classification. It is only 532

with the addition of a semantic inductive bias (PSS), 533

which forces the model’s representations to align 534

with expert-defined, contrastive features, that the 535

latent space becomes well-structured for recogni- 536

tion. 537
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6.2 Implications and Future Work538

The framework and findings presented here open539

several avenues for future research. The work is540

positioned as a step toward more complex sign lan-541

guage understanding tasks. The phonologically542

structured codebooks learned by VQ-ASL could543

serve as a powerful pre-trained tokenizer for mod-544

els targeting continuous sign language recognition545

and translation, where generalizable decomposi-546

tion strategies are necessary to mitigate the limited547

vocabularies in existing datasets.548

Furthermore, this framework can be adapted to549

serve as a computational tool for exploring and550

validating linguistic hypotheses (Appendix C).551

6.3 Limitations and Ethical Considerations552

It is important to acknowledge the limitations of553

this study. First, the scope is restricted to isolated554

signs. This work does not address the significant555

challenges of co-articulation, prosody, and gram-556

matical non-manual markers that are present in557

continuous, conversational signing. The proposed558

model is best viewed as a pre-training strategy for559

these more complex tasks.560

Second, the evaluation of reconstruction quality561

relies on automated metrics (MSE on pose data),562

which are known to be imperfect proxies for hu-563

man perception of motion quality and naturalness.564

Stronger claims about reconstruction would require565

human evaluation studies.566

Third, the benchmarking in this paper is to iso-567

late the effects of the proposed interventions. While568

providing a rigorous assessment of intervention ef-569

fects, the models are not compared against pub-570

lished state-of-the-art results on different bench-571

marks. We do not intend to make claims about572

state-of-the-art performance in, for example, iso-573

lated sign recognition, but rather contribute novel574

architectural biases and carefully demonstrate their575

value in representation learning for sign languages.576

Finally, any model trained on existing datasets is577

susceptible to inheriting their biases. The Sem-Lex578

dataset, while large, has a demographic composi-579

tion that is not fully representative of the broader580

signing community, with a majority of signers be-581

ing white and female (Kezar et al., 2023a). The582

performance of the VQ-ASL model may not gener-583

alize equally well across all demographic groups,584

and further work is needed to assess and mitigate585

these potential biases.586

6.4 Conclusion 587

This work suggests that while vector quantization is 588

a promising method for learning discrete sign rep- 589

resentations, its success may be contingent on the 590

inclusion of phonological priors. Our findings indi- 591

cate that purely data-driven VQ models struggle to 592

learn representations that are simultaneously gen- 593

erative and discriminative. However, by infusing 594

the model with explicit linguistic knowledge—both 595

through architectural constraints and weak super- 596

vision—we can guide the learning process toward 597

a more structured and generalizable latent space. 598

This provides a conservative but principled path 599

forward for developing more robust sign language 600

models. 601
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A Phonological Feature Assignment757

The Parameter Disentanglement (PD) architecture758

and the Phonological Semi-Supervision (PSS) loss759

require a mapping from the phonological features760

described in ASL-LEX 2.0 to the specific model761

streams. Table 4 details this assignment for the 16762

features used in this work, based on the descriptions763

provided by Kezar et al. (2023a).764

B Implementation Details765

All model variants were designed with comparable766

total parameter counts and total bottleneck sizes767

(Np × Lc) to ensure that performance differences768

are attributable to architectural and training strate-769

gies, not model capacity. For the PD models, the770

total bottleneck size and the aggregate number of771

codebook entries were kept consistent with the772

baseline. The allocation of latent vectors and code-773

book entries to each phonological stream was pro-774

portional to the descriptive complexity of that pa-775

rameter as defined in ASL-LEX 2.0 (Sehyr et al.,776

2021). For instance, the handshape articulators,777

which are described by multiple sub-features (e.g.,778

selected fingers, flexion), received a larger portion779

of the latent space compared to simpler binary fea-780

tures like wrist twist. Sufficient capacity was allo-781

cated to each codebook to allow for the learning of782

features not explicitly annotated in ASL-LEX, such783

as palm orientation and complex path movements.784

B.1 Mitigating Codebook Collapse785

A common challenge in training VQ-VAEs is786

"codebook collapse," also known as the "dead787

code" problem (Razavi et al., 2019). This occurs788

when a large portion of the code vectors in the code-789

book are never selected as the nearest neighbor to790

any encoder output during training. As a result,791

these "dead" codes receive no gradients from the792

codebook loss term and are never updated, leading793

to an inefficient use of the model’s representational794

capacity. In addition to the commitment loss term,795

which helps stabilize training, two techniques were 796

employed to ensure high codebook utilization. 797

First, the Gumbel-Softmax distribution is used 798

as a differentiable approximation to the discrete cat- 799

egorical sampling of codes (Jang et al., 2017; Mad- 800

dison et al., 2017). Using a temperature-annealing 801

schedule, this encourages exploration in the early 802

stages of training, making it less likely for codes to 803

become permanently unused. 804

Second, a dead code re-initialization strategy is 805

implemented. Periodically during training (e.g., 806

every 1000 steps), the usage of each code vector 807

is tallied. Any code vector whose usage count 808

falls below a predefined threshold is considered 809

"dead" and is re-initialized. The re-initialization 810

is performed by setting the dead code vector to be 811

the average of a small random sample of encoder 812

output vectors from the current mini-batch. This 813

ensures that all parts of the codebook remain in a 814

high-density region of the encoder’s output space, 815

making them likely to be selected and updated in 816

subsequent training steps. 817

C Linguistic Hypotheses for Future Work 818

Several directions are of particular interest: 819

• Hierarchical Hypothesis: The hierarchical 820

nature of phonological features in Brentari’s 821

model could be explored more explicitly. 822

Techniques like residual vector quantization, 823

where a second codebook quantizes the error 824

of the first, could be used to model the re- 825

lationship between a high-level feature like 826

"handshape" and its constituent sub-features 827

like "selected fingers" and "flexion." 828

• Gradient Hypothesis: Not all phonological 829

parameters may be equally suited to discrete 830

representation. By analyzing gradients within 831

the codebook space or selectively disabling 832

quantization for certain channels (e.g., move- 833

ment path), one could experimentally measure 834

which aspects of signing are more continuous 835

in nature. 836

• Phonotactic Hypothesis: The model implic- 837

itly learns the rules of valid phoneme combina- 838

tions (phonotactics). By feeding the decoder 839

random permutations of learned codes, the re- 840

construction error could serve as a proxy for 841

phonotactic legality. This could be used to 842

predict which novel combinations of features 843

would form "plausible" new signs in ASL. 844
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Table 4: Mapping of ASL-LEX 2.0 Phonological Features to VQ-ASL Streams

Phonological Feature Description Assigned Stream

Major Location Broad location of the sign (e.g., neutral, head) X(BODY)

Minor Location Specific location of the sign (e.g., forehead, cheek) X(BODY)

Selected Fingers Which fingers are active in the handshape X(LH), X(RH)

Flexion The joint configuration of the selected fingers X(LH), X(RH)

Flexion Change Whether the flexion of fingers changes X(MOVL), X(MOVR)

Spread Whether selected fingers touch one another X(LH), X(RH)

Spread Change Whether the spread of fingers changes X(MOVL), X(MOVR)

Thumb Position Position of the thumb relative to fingers X(LH), X(RH)

Thumb Contact Whether the thumb makes contact with fingers X(LH), X(RH)

Sign Type Number of hands and symmetry X(LH), X(RH)

Movement The primary path movement of the hand(s) X(MOVL), X(MOVR)

Repeated Movement Whether the movement is repeated X(MOVL), X(MOVR)

Wrist Twist Whether the hand rotates about the wrist X(MOVL), X(MOVR)

Non-Manual Signal Presence of a required facial expression X(NMM)

Mouth Morpheme Presence of a required mouth gesture X(NMM)

Head Movement Presence of a required head movement X(NMM)
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