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Abstract

Sign language datasets are often not repre-
sentative in terms of vocabulary, underscor-
ing the need for models that generalize to un-
seen signs. Vector quantization is a promis-
ing approach for learning discrete, token-like
representations, but it has not been evaluated
whether the learned units capture spurious cor-
relations that hinder out-of-vocabulary perfor-
mance. This work investigates two phonolog-
ical inductive biases: Parameter Disentangle-
ment, an architectural bias, and Phonological
Semi-Supervision, a regularization technique,
to improve isolated sign recognition of known
signs and reconstruction quality of unseen signs
with a vector-quantized autoencoder. The pri-
mary finding is that the learned representations
from the proposed model are more effective
for one-shot reconstruction of unseen signs and
more discriminative for sign identification com-
pared to a controlled baseline. This work pro-
vides a quantitative analysis of how explicit,
linguistically-motivated biases can improve the
generalization of learned representations of
sign language.

1 Introduction

The development of robust sign language models
is often constrained by the limited scale and vo-
cabulary of available datasets (Bragg et al., 2019;
De Sisto et al., 2022). This data scarcity makes the
ability to generalize to out-of-vocabulary (OOV)
signs a significant challenge for the field. Sign
languages are highly productive systems, where a
finite set of phonological features, such as hand-
shape, location, and movement patterns can be
combined to form a vast lexicon (Stokoe, 1960;
Brentari, 1998). A model that learns to represent
these underlying phonological components of signs
can improve sign recognition (Kezar et al., 2023b),
and we hypothesize such phonological learning
bias could improve reconstruction of novel combi-
nations of those components in unseen signs.
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Figure 1: We show that out-of-vocabulary signs are
more accurately reconstructed when trained under two
phonological inductive biases: first, disentangling the
input stream by ASL parameter; then, encoding each
stream as a sequence of learned components, some of
which are aligned with expert labels.

Vector-Quantized Variational Autoencoders
(VQ-VAEs) have emerged as a powerful method
for learning discrete latent representations of data,
which are attractive for their potential use as tokens
in sequence models (Van Den Oord et al., 2017;
Razavi et al., 2019). Prior work has explored VQ
for creating data-driven representations of signs, of-
ten as an alternative to linguistic glosses (Abzaliev
and Mihalcea, 2024; Tasyurek et al., 2025). How-
ever, standard VQ models are trained with a com-
pression objective that may encourage the learn-
ing of "tangled" representations, where the learned
codes capture spurious, dataset-specific correla-
tions that do not generalize to unseen signs (Hig-
gins et al., 2017). This reflects a theoretical limi-
tation formally proven by Locatello et al. (2019),
who showed that the unsupervised learning of dis-
entangled representations is "fundamentally impos-
sible" without inductive biases on both the models
and the data. This finding shows that a search for



principled sources for such biases is not just moti-
vated, but necessary.

This paper therefore investigates whether
phonologically-motivated inductive biases can im-
prove a VQ-VAE’s ability to reconstruct and rec-
ognize out-of-vocabulary (OOV) signs. We draw
these biases from the Prosodic Model (Brentari,
1998) and the ASL-LEX 2.0 database (Sehyr et al.,
2021), two lexicon-wide descriptions of ASL struc-
ture, and implement them through two mechanisms
(Figure 1). The first is Parameter Disentanglement
(PD), an architectural method that uses a multi-
stream VQ-VAE to learn separate codebooks for
distinct articulators and movement parameters. The
second is Phonological Semi-Supervision (PSS), a
supervisory method that uses an auxiliary classifi-
cation loss with expert phonological labels to reg-
ularize the latent codebooks and align them with
established linguistic features.

This paper proceeds as follows: Section 2 re-
views relevant background literature. Section 3 de-
tails the VQ-ASL framework. Section 4 describes
the experimental setup for a controlled ablation
study. Section 5 presents the results, and Section 6
discusses their implications and the limitations of
the study. The main finding is that the proposed in-
terventions offer complementary benefits, improv-
ing OOV generalization for both sign reconstruc-
tion and recognition, and revealing a trade-off be-
tween reconstruction fidelity and the discriminative
quality of the learned representations.

2 Background

We review prior work in sign language representa-
tion learning, the theoretical foundations of disen-
tangled representation learning, and the linguistic
models that motivate our proposed inductive biases.

2.1 Representation Learning for Sign
Language

The popular input modality for modern sign lan-
guage recognition is skeletal pose data, extracted
from video using tools like MediaPipe or Open-
Pose (Lugaresi et al., 2019; Cao et al., 2019). This
representation can be seen as a form of phonetic
bias, because it abstracts away from signer-specific
visual details like clothing or background, focusing
instead on the underlying articulatory movements
while enhancing privacy (Bragg et al., 2020). Var-
ious neural architectures have been employed to
learn features from this data. 3D Convolutional

Neural Networks (3D CNN5s) can capture spatio-
temporal features directly from video, but are com-
putationally intensive and may learn spurious vi-
sual cues (Pu et al., 2021). Graph Convolutional
Networks (GCNs) are naturally suited to skeletal
data, as they explicitly model the topological struc-
ture of the human body and can learn the dynamic
relationships between joints over time (Yan et al.,
2018; Jiang et al., 2021). More recently, contrastive
learning objectives have been used to align visual
representations of signs with textual descriptions,
improving the grounding of the learned features
without supervision (Jiang et al., 2024; Hao et al.,
2021).

The goal of obtaining discrete representations
for signs includes manual and learned efforts. For-
mal symbolic systems like SignWriting provide
a manual transcription system, analogous to writ-
ten text (Sutton, 1990). Data-driven approaches,
particularly those using vector quantization, have
also been explored to learn discrete tokenizations
of sign language, often as an intermediate step for
sign language translation or production (Moryossef
et al., 2021; Saunders et al., 2020). A recent
preprint, "Disentangle and Regularize," also inves-
tigates articulator-based disentanglement for sign
language production, though with a focus on con-
tinuous latent spaces and different regularization
techniques (Tasyurek et al., 2025). Our work is
distinct in its focus on vector quantization and the
use of phonological semi-supervision to structure
the discrete codebooks for OOV generalization in
isolated sign recognition.

2.2 Disentangled Representation Learning

The goal of disentangled representation learning is
to produce a latent space where each dimension,
or group of dimensions, corresponds to a distinct,
meaningful factor of variation in the data (Higgins
et al., 2017). A model that successfully disentan-
gles the underlying generative factors is hypothe-
sized to exhibit better compositional generalization,
data efficiency, and robustness. In the context of
signing, these factors may be defined as the five
phonological parameters: handshape, palm orienta-
tion, location, movement, and non-manual markers.

A foundational work in this area is the 5-VAE,
proposed by Higgins et al. (2017). This frame-
work modifies the standard Variational Autoen-
coder (VAE) objective by introducing a hyper-
parameter, [, that increases the weight of the
Kullback-Leibler (KL) divergence term in the loss
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Figure 2: Brentari’s Prosodic Model (Brentari, 1998) is
hierarchical; the boxed variables represent disentangled
parameters in this work.

function. A value of § > 1 imposes a stronger
constraint on the information capacity of the latent
bottleneck, forcing the model to learn a more effi-
cient, and therefore more disentangled, representa-
tion by balancing reconstruction accuracy against
the statistical independence of the latent variables.

However, the pursuit of unsupervised disentan-
glement faced a significant theoretical challenge
from Locatello et al. (2019). They provided a for-
mal proof demonstrating that for any dataset gen-
erated from disentangled latent factors, there ex-
ists an infinite family of transformations that can
produce a perfectly entangled latent space while
yielding the exact same data distribution. As an un-
supervised model only has access to the observed
data, it cannot distinguish between the true dis-
entangled model and its entangled counterparts.
Their conclusion is sobering: "the unsupervised
learning of disentangled representations is funda-
mentally impossible without inductive biases on
both the models and the data." This study provides
the central motivation for this work, which seeks
to identify and implement a principled source for
such biases.

2.3 Linguistic Theory as a Stratified Inductive
Bias

Our work responds to the challenge posed by Lo-
catello et al. (2019) by using formal linguistic the-
ory as a robust source of inductive biases, an ap-
proach aligned with Knowledge-Infused Learning
(KiL) (Gaur et al., 2022). We apply this knowl-
edge in a stratified manner for a deep infusion:
a low-level architectural bias enforces parame-
ter disentanglement on the articulators, while a

higher-level phonological semi-supervision acts
as a conceptual bottleneck that guides the model
through linguistically-defined concepts (Koh et al.,
2020). The specific knowledge for this work is
the Prosodic Model of sign language phonology,
developed by Brentari (1998).

Brentari’s model describes signs as being com-
posed of a hierarchical and simultaneous arrange-
ment of phonological parameters (Figure 2). This
linguistic framework provides a blueprint for a
stratified inductive bias, which we implement us-
ing mechanisms from Knowledge-Infused Learn-
ing (Gaur et al., 2022). The architectural bias in
our model is informed by Brentari’s factorization
of signs into articulators (hands, face), place of ar-
ticulation (location), and prosodic features (move-
ment). We additionally use the discrete, contrastive
features described by the theory, such as the hand-
shapes cataloged in ASL-LEX 2.0 (Sehyr et al.,
2021), to regularize the learning process through
an auxiliary loss. For a complete description of the
ASL-LEX features, see Appendix A. Despite the
availability of several phonological models (e.g.,
H-M-H, Liddell & Johnson, 1989; Dependency
Model, van der Kooij, 2002), we adopt Brentari’s
prosodic model as best suited for semi-supervised
learning. It offers (1) a clear inventory of con-
trastive features aligned with linguistic theory, and
(2) a hierarchical structure that maps well onto the
discrete components produced by our model.

By leveraging both architectural and
regularization-based KilL strategies, guided
by different strata of Brentari’s Prosodic Model,
we aim to provide the structured priors necessary
for learning a meaningful and generalizable
disentangled representation of signs.

3 The VQ-ASL Framework

This section provides a detailed technical de-
scription of the proposed VQ-ASL framework.
It begins by detailing the baseline architec-
ture, a Transformer-based VQ-VAE (Section 3.1),
and subsequently elaborates on the two novel,
phonologically-motivated interventions: Parame-
ter Disentanglement (PD) and Phonological Semi-
Supervision (PSS) (Section 3.2).

3.1 Baseline Transformer VQ-VAE

The baseline model is a Vector-Quantized Vari-
ational Autoencoder (VQ-VAE), which learns
a discrete latent representation of an input se-



quence (Van Den Oord et al., 2017). The encoder
and decoder components are implemented using
Transformer architectures (Vaswani et al., 2017)
to effectively model the sequential nature of sign
language pose data.

The encoder, E, takes a sequence of pose vec-
tors X € RT*P as input, where T is the num-
ber of frames and D is the dimensionality of the
pose vector for each frame. The Transformer en-
coder processes this sequence and outputs a set of
N,, continuous latent vectors, Z, = E(X), where
Z, € RVpx*Le and L. is the latent channel dimen-
sion. In the baseline model, these [V, vectors form
a single, unstructured latent sequence.

The vector quantization layer serves as the in-
formation bottleneck. It contains a learnable code-
book, C' € RE*Le which consists of K discrete
code vectors, {c;} szl‘ For each continuous vector
zéz) € Z., the quantizer identifies the nearest code
vector in the codebook using L2 distance:

ki = argmin |25 — ¢;|3.
J

The output of the VQ layer is a sequence of quan-
tized vectors Z, € RNr*Le where each vector z(gi)
is the selected codebook vector cj,. Because the
arg min operation is non-differentiable, a straight-
through estimator is used to copy gradients from
the decoder input Z; directly to the encoder output
Z, during backpropagation.

The decoder, D, has a symmetric Transformer
architecture to the encoder. It takes the sequence
of quantized vectors Z, as input and reconstructs
the original pose sequence, X = D(Zy).

The total loss function for the baseline model,
LBaseline> 18 @ sum of three components, following
the formulation of Van Den Oord et al. (2017):

»CBase]ine - ﬁrecon + 'Ccodebook + /8 ﬁcommit-

The reconstruction loss, Liecon, 1S the mean
squared error (MSE) between the input and recon-
structed poses, Lrecon = || X — X ||2, which trains
the encoder and decoder. The codebook loss,
Leodebook = |[sg[Ze] — Z4||3, updates the codebook
vectors to move them closer to the encoder outputs,
where ‘sg* denotes the stop-gradient operator. The
commitment 1088, Leommit = || Ze — $8[Z¢] 13, reg-
ularizes the encoder output to remain close to the
chosen code vectors, with 3 as a weighting hyper-
parameter.

3.2 Phonological Inductive Biases

We propose two inductive biases rooted in ASL
phonology: parameter disentanglement and phono-
logical semi-supervision.

3.2.1 Parameter Disentanglement (PD)

Parameter Disentanglement enforces a factoriza-
tion of the latent space through an architectural bias.
Instead of a single monolithic encoder-decoder
pair, the model is structured into multiple parallel
streams, each dedicated to a phonetically indepen-
dent parameter of the sign. The input pose space X
and the latent parameter space N, are partitioned
into channels corresponding to these components.
The operationalized parameters are derived from
Brentari’s Prosodic Model (Brentari, 1998): articu-
lators (left/right hand, facial expressions), prosodic
features (left/right hand path movement), and place
of articulation (location relative to other parts of
the body).

Each stream X (%) C X possesses its own en-
coder F, decoder Dy, and a dedicated codebook
C;. The input keypoints are filtered for each stream
such that they contain minimal overlap between pa-
rameters:

o X(RH) X (LH): the 21 coordinates for the right
or left hand, uniformly translated such that the
wrist is at the origin. Uniform frame sample.

o X (MOVR) X (MOVL). the wrist keypoint for the
right or left hand. All frames.

o X(N\MM): the face keypoints translated such
that the nose is at the origin. Uniform frame
sample.

o X (BODY). 4] the keypoints except face and
hands. Uniform frame sample.

The total latent space is the concatenation of
the stream-specific latents, N, = > < Np,s, with
the total bottleneck size held matching that of
the baseline architecture. The total reconstruc-
tion loss is the sum of the reconstruction losses
from each individual stream. To capture linguistic
constraints, the codebooks for the left and right
hand articulators (C™") and C'®®)) and move-
ments (C(-MOY) and C'(RMOV)y are shared, enforc-
ing a symmetry constraint on these inventories.
Furthermore, each stream employs specific pre-
processing and attention-masking strategies.



Hyperparameter Description Search Range Final Value
Transformer Dim Hidden dimension of the Transformer layers. [64, 512] 256
Transformer Layers Num. layers in encoder/decoder. [1, 6] 5
Latent Dim (L.) Dimensionality of each code vector. [4, 32] 32
Num. Latent Vecs (V) Number of vectors in the bottleneck. [10, 100] 30
Codebook Size (K) Number of entries in each codebook. [10, 500] 200
Commitment Cost (3)  Weight for the VQ commitment loss. [1e-6, 0.1] 3e-6
Diversity Weight () Weight for codebook diversity loss. [0.01, 3.0] 3.0
Learning Rate Adam optimizer learning rate. [1e-5, 0.005] 8.61e-5
Dropout Dropout probability in Transformer layers. [0.0, 0.5] 0.2

Table 1: Hyperparameter Search and Final Configuration. A search was conducted to find the best values for the
baseline model. These values were then held constant across all model variants for a fair comparison.

3.2.2 Phonological Semi-Supervision (PSS)

Phonological Semi-Supervision introduces a
regularization-based bias by using expert labels
from the ASL-LEX 2.0 database to guide the orga-
nization of the codebooks (Sehyr et al., 2021). This
regularization provides a weak supervisory signal
that encourages the learned discrete codes to align
with meaningful, contrastive phonological features.
For each phonological parameter in ASL-LEX
(e.g., Handshape, which has over 60 distinct val-
ues), a subset of codes within the corresponding
codebook (e.g., the shared hand articulator code-
book, Ca, ,, ri) is arbitrarily pre-assigned to repre-
sent these expert-defined features. During training,
if a sign has a known phonological label y ¢, an aux-
iliary loss is applied. With a specified probability,
the quantization step is forced to select the code
vector ¢y, that corresponds to the ground-truth la-
bel. The codebook and commitment losses are
then computed with respect to this forced code, en-
couraging the encoder to produce outputs that are
semantically aligned with ASL-LEX 2.0 features.

4 Experimental Setup

This section details the experimental design, includ-
ing the dataset (Section 4.1), model configurations
(Section 4.2), implementation details, and evalua-
tion metrics (Section 4.3) used to systematically
assess the impact of the proposed phonological in-
ductive biases.

4.1 Dataset and Splits

The experiments are conducted on the Sem-Lex
Benchmark, a large-scale dataset for American
Sign Language (ASL) modeling (Kezar et al.,
2023a). It consists of over 84,000 videos of iso-

lated signs produced by 41 deaf ASL signers, cov-
ering a vocabulary of 3,149 unique signs. Cru-
cially, the dataset is cross-referenced with ASL-
LEX 2.0, providing the expert-annotated phonolog-
ical feature labels, ), required for the Phonological
Semi-Supervision (PSS) intervention (Sehyr et al.,
2021). The dataset can be formally represented as
D = {(X;, ®;,v:)} Y, where X; is the input pose
sequence, ¥; is the set of its phonological labels,
and y; is the sign’s identifier.

To evaluate OOV generalization, this work uti-
lizes the benchmark’s "unseen gloss" split. The
dataset is partitioned such that the vocabularies of
the training, validation, and test sets are disjoint.
Any sign evaluated in the test set has not been seen
during training, providing a direct measure of the
model’s ability to generalize to novel signs rather
than novel instances of familiar signs.

4.2 Models Compared

The study is designed as a controlled ablation to
isolate the effects of Parameter Disentanglement
(PD) and Phonological Semi-Supervision (PSS).
Four model configurations are compared:

1. Baseline: The standard Transformer VQ-
VAE described in Section 3.1.

2. VQ-ASL-PD: The baseline model aug-
mented with the multi-stream Parameter Dis-
entanglement architecture.

3. VQ-ASL-PSS: The baseline model trained
with the Phonological Semi-Supervision aux-
iliary loss.

4. VQ-ASL (Full): The proposed model incor-
porating both PD and PSS.



Table 2: Reconstruction Fidelity (MSE) on Seen (Dy,in) vs. Unseen (D) Data. Lower is better. The overall
MSE columns show the generalization gap, while the channel-wise columns provide a detailed breakdown of test

performance for the disentangled models.

Overall MSE Channel-wise Test MSE
Model Drrain Drest x®RH)  y(LH)  y(NMM)  y(BoDY)  x(MOVR)  x (MOVL)
Baseline 0.039 0.058
VQ-ASL-PSS  0.037 0.055
VQ-ASL-PD 0.032 0.046 0.051 0.019 0.117 0.126 0.023 0.009
VQ-ASL (Full) 0.029 0.041 0.015 0.005 0.005 0.068 0.017 0.009

A hyperparameter search was conducted exclu-
sively on the Baseline model using the validation
set, which contains unseen signs. The search was
performed with Optuna (Akiba et al., 2019), a hy-
perparameter optimization framework. The opti-
mization objective was to minimize reconstruction
loss while simultaneously maximizing codebook
utilization (measured by increase in perplexity over
training) to prevent codebook collapse. The opti-
mal hyperparameters found for the baseline were
then fixed and used for all other model variants to
ensure that any observed performance differences
are attributable to the specific interventions and not
to differences in tuning. Table 1 summarizes the
key hyperparameters and their selected values. For
further implementation details see Appendix B.

4.3 Evaluation Metrics

The models were evaluated using two primary anal-
yses designed to test our hypotheses regarding
OOV generalization.

Reconstruction Error. 'We measured the Mean
Squared Error (MSE) between the ground-truth
(X) and reconstructed (X ) pose sequences—the
distance between each skeletal point in the original
and reconstructed sequence across every frame—
as an intrinsic evaluation of each models’ recon-
struction quality. We hypothesized that while OOV
reconstruction would be worse than in-vocabulary
(IV), this generalization gap would be lessened by
the proposed inductive biases.

Phonological Alignment. After training each
model, we froze their encoders and additionally
trained two MLP probes on the quantized encod-
ings Z, to measure how well the learned codes
align with labeled ASL phonology.

The first probe Misg (Zg, 0) = p(yg|v) is trained
for the downstream task of isolated sign recogni-
tion. This probe measures the how discriminative

the learned features are for signs that were not seen
in training. If a model leverages spurious correla-
tions in the train set, then these learned components
may not reliably distinguish OOV signs.

The second probe Mopgg (Zy, 6) is trained to rec-
ognize the phonological features in ASL-LEX 2.0:
ferr @ Zy — yg. For the supervised models
(VQ-ASL-PSS, VQ-ASL (Full)), this probe is an
intrinsic evaluation of how successfully the PSS ob-
jective was learned, as well as confirmation that the
ASL-LEX 2.0 features generalize to unseen signs.
For the purely self-supervised models (Baseline,
VQ-ASL-PD), Mprr measures the extent to which
ASL-LEX 2.0 features may emerge through induc-
tion from data alone.

We hypothesized that a positive correlation will
exist between the two probes’ performance, that
is, successfully recognizing ASL-LEX 2.0 features
will facilitate the ISR task on signs unseen during
training. We also hypothesized that, for the super-
vised models (VQ-ASL-PSS and VQ-ASL (Full))
when the ISR probe misclassifies a sign, its errors
with respect to PFR will be less severe if the disen-
tanglement intervention (PD) is applied.

5 Results and Analysis

Our results suggest that out-of-vocabulary (OOV)
generalization is improved by modeling different
aspects of lexical structure. Separating the model
by phonological parameter (disentanglement) im-
proves the generation of sign form, creating a more
productive system for novel combinations and re-
ducing reconstruction MSE by 21%. In parallel, us-
ing phonological labels as a constraint (Phonologi-
cal Semi-Supervision) stabilizes the model’s under-
standing of sign identity, increasing sign recogni-
tion MRR by 14%.



Table 3: Phonological Alignment Results. We report Mean Reciprocal Rank (MRR) and Recall@ 10 (%) for two
MLP probes trained on the frozen latent codes (Z,) for both In-Vocabulary (Dirin) and Out-of-Vocabulary (Dieg)

signs.
ISR Probe PFR Probe
Dtrain Dtest (OOV) Dtrain Dtest (OOV)
Model MRR R@10 MRR R@10 MRR R@10 MRR R@10
Baseline 452 52.3 381 45.1 515 58.3 488 55.5
VQ-ASL-PD 441 51.5 372 44.2 502 57.1 475 54.1
VQ-ASL-PSS .503 58.2 435 50.4 .593 61.2 .565 58.4
VQ-ASL (Full) .528 61.3 452 52.8 618 62.3 583 59.8

5.1 Reconstruction Error

Table 2 presents the reconstruction performance
for each model. The full VQ-ASL model achieves
the lowest overall test MSE (0.041), indicating
the most accurate OOV reconstruction. The
VQ-ASL-PD model provides a substantial indi-
vidual improvement, reducing the test MSE to
0.046 from the baseline’s 0.058. In contrast, the
VQ-ASL-PSS model offers a smaller gain in re-
construction fidelity, with a test MSE of 0.055.
The combination of both interventions in the full
model demonstrates a constructive interaction ef-
fect, yielding the best overall reconstruction qual-

ity.

5.2 Phonological Alignment

Table 3 presents the results from the two phonolog-
ical alignment probes. The ISR probe results show
a complementary narrative to the reconstruction
findings. Here, PSS is the primary driver of perfor-
mance, with the VQ-ASL-PSS model improving
the OOV MRR to .435 over the baseline’s .381.
The VQ-ASL-PD model shows a slight degrada-
tion in OOV ISR performance, with an MRR of
.372, highlighting a trade-off between the inter-
ventions. The PFR probe results for the unsuper-
vised models show the Baseline achieves an OOV
MRR of .488, indicating some emergent phono-
logical structure. For the supervised models, the
high OOV PFR scores for VQ-ASL-PSS (.565) and
VQ-ASL (Full) (.583) confirm the PSS objective
was learned successfully and generalizes. Across
all models, a positive correlation exists between the
MRR performance of the two probes. The full VQ-
ASL model achieves the best performance on both
probes, demonstrating the complementary nature
of the two biases.

6 Discussion

The empirical results demonstrate that the proposed
inductive biases improve OOV generalization in
qualitatively different and complementary ways.
This section interprets these findings, discusses
their broader implications for future research, and
concludes with the primary takeaway of this work.

6.1 Interpreting the
Reconstruction-Recognition Trade-off

The results reveal a trade-off between reconstruc-
tion fidelity and representation discriminability.
The architectural bias of Parameter Disentangle-
ment (PD) is the primary driver of improved re-
construction, yet it slightly harms sign recognition
accuracy when used alone. Conversely, Phonologi-
cal Semi-Supervision (PSS) is the primary driver
of recognition accuracy but offers only a minor
benefit to reconstruction.

This finding provides empirical support for the
arguments of Locatello et al. (2019). Our results
demonstrate that a purely structural inductive bias
(PD), while effective for a generative task like re-
construction, is insufficient to guarantee the emer-
gence of a semantically meaningful latent space
for a discriminative task. The model, guided only
by architectural separation and reconstruction loss,
learns to represent fine-grained motion details that
are not necessarily contrastive for sign identifica-
tion, thus slightly harming classification. It is only
with the addition of a semantic inductive bias (PSS),
which forces the model’s representations to align
with expert-defined, contrastive features, that the
latent space becomes well-structured for recogni-
tion.



6.2 Implications and Future Work

The framework and findings presented here open
several avenues for future research. The work is
positioned as a step toward more complex sign lan-
guage understanding tasks. The phonologically
structured codebooks learned by VQ-ASL could
serve as a powerful pre-trained tokenizer for mod-
els targeting continuous sign language recognition
and translation, where generalizable decomposi-
tion strategies are necessary to mitigate the limited
vocabularies in existing datasets.

Furthermore, this framework can be adapted to
serve as a computational tool for exploring and
validating linguistic hypotheses (Appendix C).

6.3 Limitations and Ethical Considerations

It is important to acknowledge the limitations of
this study. First, the scope is restricted to isolated
signs. This work does not address the significant
challenges of co-articulation, prosody, and gram-
matical non-manual markers that are present in
continuous, conversational signing. The proposed
model is best viewed as a pre-training strategy for
these more complex tasks.

Second, the evaluation of reconstruction quality
relies on automated metrics (MSE on pose data),
which are known to be imperfect proxies for hu-
man perception of motion quality and naturalness.
Stronger claims about reconstruction would require
human evaluation studies.

Third, the benchmarking in this paper is to iso-
late the effects of the proposed interventions. While
providing a rigorous assessment of intervention ef-
fects, the models are not compared against pub-
lished state-of-the-art results on different bench-
marks. We do not intend to make claims about
state-of-the-art performance in, for example, iso-
lated sign recognition, but rather contribute novel
architectural biases and carefully demonstrate their
value in representation learning for sign languages.

Finally, any model trained on existing datasets is
susceptible to inheriting their biases. The Sem-Lex
dataset, while large, has a demographic composi-
tion that is not fully representative of the broader
signing community, with a majority of signers be-
ing white and female (Kezar et al., 2023a). The
performance of the VQ-ASL model may not gener-
alize equally well across all demographic groups,
and further work is needed to assess and mitigate
these potential biases.

6.4 Conclusion

This work suggests that while vector quantization is
a promising method for learning discrete sign rep-
resentations, its success may be contingent on the
inclusion of phonological priors. Our findings indi-
cate that purely data-driven VQ models struggle to
learn representations that are simultaneously gen-
erative and discriminative. However, by infusing
the model with explicit linguistic knowledge—both
through architectural constraints and weak super-
vision—we can guide the learning process toward
a more structured and generalizable latent space.
This provides a conservative but principled path
forward for developing more robust sign language
models.
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A Phonological Feature Assignment

The Parameter Disentanglement (PD) architecture
and the Phonological Semi-Supervision (PSS) loss
require a mapping from the phonological features
described in ASL-LEX 2.0 to the specific model
streams. Table 4 details this assignment for the 16
features used in this work, based on the descriptions
provided by Kezar et al. (2023a).

B Implementation Details

All model variants were designed with comparable
total parameter counts and total bottleneck sizes
(N x L) to ensure that performance differences
are attributable to architectural and training strate-
gies, not model capacity. For the PD models, the
total bottleneck size and the aggregate number of
codebook entries were kept consistent with the
baseline. The allocation of latent vectors and code-
book entries to each phonological stream was pro-
portional to the descriptive complexity of that pa-
rameter as defined in ASL-LEX 2.0 (Sehyr et al.,
2021). For instance, the handshape articulators,
which are described by multiple sub-features (e.g.,
selected fingers, flexion), received a larger portion
of the latent space compared to simpler binary fea-
tures like wrist twist. Sufficient capacity was allo-
cated to each codebook to allow for the learning of
features not explicitly annotated in ASL-LEX, such
as palm orientation and complex path movements.

B.1 Mitigating Codebook Collapse

A common challenge in training VQ-VAEs is
"codebook collapse," also known as the "dead
code" problem (Razavi et al., 2019). This occurs
when a large portion of the code vectors in the code-
book are never selected as the nearest neighbor to
any encoder output during training. As a result,
these "dead" codes receive no gradients from the
codebook loss term and are never updated, leading
to an inefficient use of the model’s representational
capacity. In addition to the commitment loss term,
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which helps stabilize training, two techniques were
employed to ensure high codebook utilization.

First, the Gumbel-Softmax distribution is used
as a differentiable approximation to the discrete cat-
egorical sampling of codes (Jang et al., 2017; Mad-
dison et al., 2017). Using a temperature-annealing
schedule, this encourages exploration in the early
stages of training, making it less likely for codes to
become permanently unused.

Second, a dead code re-initialization strategy is
implemented. Periodically during training (e.g.,
every 1000 steps), the usage of each code vector
is tallied. Any code vector whose usage count
falls below a predefined threshold is considered
"dead" and is re-initialized. The re-initialization
is performed by setting the dead code vector to be
the average of a small random sample of encoder
output vectors from the current mini-batch. This
ensures that all parts of the codebook remain in a
high-density region of the encoder’s output space,
making them likely to be selected and updated in
subsequent training steps.

C Linguistic Hypotheses for Future Work

Several directions are of particular interest:

» Hierarchical Hypothesis: The hierarchical
nature of phonological features in Brentari’s
model could be explored more explicitly.
Techniques like residual vector quantization,
where a second codebook quantizes the error
of the first, could be used to model the re-
lationship between a high-level feature like
"handshape" and its constituent sub-features
like "selected fingers" and "flexion."

* Gradient Hypothesis: Not all phonological
parameters may be equally suited to discrete
representation. By analyzing gradients within
the codebook space or selectively disabling
quantization for certain channels (e.g., move-
ment path), one could experimentally measure
which aspects of signing are more continuous
in nature.

* Phonotactic Hypothesis: The model implic-
itly learns the rules of valid phoneme combina-
tions (phonotactics). By feeding the decoder
random permutations of learned codes, the re-
construction error could serve as a proxy for
phonotactic legality. This could be used to
predict which novel combinations of features
would form "plausible" new signs in ASL.



Table 4: Mapping of ASL-LEX 2.0 Phonological Features to VQ-ASL Streams

Phonological Feature

Description

Assigned Stream

Major Location
Minor Location
Selected Fingers
Flexion

Flexion Change
Spread

Spread Change
Thumb Position
Thumb Contact
Sign Type
Movement
Repeated Movement
Wrist Twist
Non-Manual Signal
Mouth Morpheme
Head Movement

Broad location of the sign (e.g., neutral, head)
Specific location of the sign (e.g., forehead, cheek)
Which fingers are active in the handshape

The joint configuration of the selected fingers
Whether the flexion of fingers changes
Whether selected fingers touch one another
Whether the spread of fingers changes
Position of the thumb relative to fingers
Whether the thumb makes contact with fingers
Number of hands and symmetry

The primary path movement of the hand(s)
Whether the movement is repeated

Whether the hand rotates about the wrist
Presence of a required facial expression
Presence of a required mouth gesture
Presence of a required head movement

X(BODY)
(BODY)
(L) x(Ri)
(LH) x (Ri)
(MOVL), X(MOVR)
(L) x(ri)
(MOVL)’ X(MOVR)
(Lr) (i)
(L) (i)
(1) | x(Ri)
(MOVL)’X(MOVR)
(MOVL)7 X(MOVR)
(MOVL))X(MOVR)
(NMM)

(
(

NMM)

PP P PR e e e e

NMM)
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