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ABSTRACT

Recently, advancements in video synthesis have attracted significant attention.
Video synthesis models such as AnimateDiff and Stable Video Diffusion have
demonstrated the practical applicability of diffusion models in creating dynamic
visual content. The emergence of SORA has further spotlighted the potential
of video generation technologies. Despite advancements, the extension of video
lengths remains constrained by computational resources. Most existing video syn-
thesis models are limited to generating short video clips. In this paper, we propose
a novel post-tuning methodology for video synthesis models, called ExVideo.
This approach is designed to enhance the capability of current video synthesis
models, allowing them to produce content over extended temporal durations while
incurring lower training expenditures. In particular, we design extension strategies
across common temporal model architectures respectively, including 3D convolu-
tion, temporal attention, and positional embedding. To evaluate the efficacy of
our proposed post-tuning approach, we trained ExSVD, an extended model based
on Stable Video Diffusion model. Our approach enhances the model’s capacity to
generate up to 5× its original number of frames, requiring only 1.5k GPU hours of
training on a dataset comprising 40k videos. Importantly, the substantial increase
in video length doesn’t compromise the model’s innate generalization capabilities,
and the model showcases its advantages in generating videos of diverse styles and
resolutions. We will release the source code and the enhanced model publicly1.

1 INTRODUCTION

In recent years, diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) have achieved out-
standing results in image synthesis, significantly surpassing previous GANs (Dhariwal & Nichol,
2021). These achievements have subsequently fostered a burgeoning interest in the adaptation of
diffusion models for video synthesis. Models such as Stable Video Diffusion (Blattmann et al.,
2023), AnimateDiff (Guo et al., 2023), and VideoCrafter (Chen et al., 2023a) epitomize this re-
search trajectory, showcasing the ability to produce frames that are not only coherent but also of
high visual quality. These achievements underscore the practicality and potential of employing dif-
fusion models in the field of video synthesis. With the groundbreaking results of SORA (Liu et al.,
2024) reported at the beginning of 2024, the research direction of video synthesis has once again
attracted widespread attention.

Although current video synthesis models are capable of producing video clips of satisfactory quality,
the generated videos are generally short, and extending their duration remains a challenge. Current
methodologies can be categorized into three types to generate longer videos. 1) Pre-training using
long video datasets (Chen et al., 2024b; Wang et al., 2023b; Bain et al., 2021). Through extensive
training with long video samples, it is foreseeable that models can improve their ability to generate
longer videos. However, training with such datasets would result in prohibitively escalated costs.
Consequently, given the computational constraints, current video generation models are primarily
trained on short video clips. 2) Generating videos in a streaming (Kodaira et al., 2023) or slid-
ing window (Duan et al., 2024) manner. Without further training, longer videos can be generated
by stitching together several short video segments. However, this approach leads to lower video

1Project page: https://zxqwertyuiopasdfghjk.github.io/ExVideoProjectPage/.
This page is presented anonymously, and the source code is withheld during the double-blind review process.
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coherence. In addition, existing video generation models lack the capability for long-term video
understanding, making the accumulation of errors inevitable. As a result, during the generation of
long videos, the visual quality is prone to deterioration, manifesting as a breakdown in the imagery.
3) Frame interpolation (Huang et al., 2022; Wu et al., 2024). Video frame interpolation models offer
a method to augment the frame count of generated videos. However, this approach is inadequate
for extending the narrative timeframe of the video. While it increases the number of frames, main-
taining the original frame rate would result in an unnatural slow-motion effect, thereby failing to
extend the narrative span of the video content. These outlined challenges underscore the necessity
for innovative solutions capable of overcoming the existing hurdles associated with video duration
extension, without compromising video quality or coherence.

Recent breakthroughs in the development of LLMs (large language models) (Xiong et al., 2023;
Xiao et al., 2023; Chen et al., 2023c) have inspired us. Notably, LLMs, despite being trained on
fixed-length data, exhibit remarkable proficiency in understanding contexts of variable lengths. This
flexibility is further enhanced through the integration of supplementary components and the applica-
tion of lightweight training procedures, enabling the processing of exceptionally lengthy texts. Such
innovations have motivated us to explore analogous methodologies within video synthesis models.
In this paper, we introduce a novel post-tuning strategy, called ExVideo, specifically designed to em-
power existing video synthesis models to produce extended-duration videos within the constraints
of limited computational resources. We have designed an extension structure for mainstream video
synthesis model architectures. This framework incorporates adapter components, meticulously en-
gineered to preserve the intrinsic generalization capabilities of the base model. Through post-tuning,
we enhance the temporal modules of the model, thereby facilitating the processing of content across
longer temporal spans.

In theory, ExVideo is designed to be compatible with the majority of existing video synthesis models.
To empirically validate the efficacy of our post-tuning methodology, we applied it to the Stable Video
Diffusion model (Blattmann et al., 2023), a popular open-source image-to-video model. Through
ExVideo, we can extend the original frame synthesis capacity from a limit of 25 frames to 128
frames. Importantly, this expansion was achieved without compromising the model’s distinguished
generative capabilities. Additionally, the enhanced model exhibits the versatility to be seamlessly
integrated with text-to-image models (Podell et al., 2023; Li et al., 2024b; Chen et al., 2023b). This
synergistic amalgamation establishes robust and versatile text-to-video pipelines. This adaptability
underscores the potential of our post-training technique, the source code and the extended model
will be released publicly. In summary, the contributions of this paper include:

• We present ExVideo, a post-tuning technique for video synthesis models that can extend
the temporal scale of existing models to facilitate the generation of long videos.

• Based on Stable Video Diffusion (SVD), we have trained an extended video synthesis
model named ExSVD. This model is capable of generating coherent videos of up to 128
frames while preserving the generative capabilities of the original model.

• Through comprehensive empirical experiments, we demonstrate the feasibility of enhanc-
ing video synthesis models via post-tuning, thereby presenting an innovative approach to
the training of large-scale models for extended video synthesis.

2 RELATED WORK

2.1 DIFFUSION MODELS

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) are a category of generative models
that characterize the content generation as a Markov random process. Unlike GANs (Goodfellow
et al., 2014), diffusion models do not require adversarial training, thus making their training process
more stable. Moreover, through an iterative generation process, diffusion models are capable of
producing images with exceptionally high quality. In recent years, image synthesis models based
on diffusion, including Pixart (Chen et al., 2023b), Imagen (Saharia et al., 2022), Hunyuan-DiT
(Li et al., 2024b), and the Stable Diffusion series (Rombach et al., 2022; Podell et al., 2023; Kang
et al., 2024), have achieved impressive success. Diffusion models have given rise to a vast open-
source technology ecosystem. Technologies such as LoRA (Hu et al., 2021), ControlNet (Zhang
et al., 2023), DreamBooth (Ruiz et al., 2023), Textual Inversion (Gal et al., 2022), and IP-Adapter
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(Ye et al., 2023) have endowed the generation process of diffusion models with a high degree of
controllability, thereby meeting the needs of various application scenarios.

2.2 VIDEO SYNTHESIS

Given the remarkable success of diffusion models in image synthesis, video synthesis approaches
based on diffusion have also been proposed in recent years. For example, by adding motion mod-
ules to the UNet model (Ronneberger et al., 2015) in Stable Diffusion (Rombach et al., 2022), An-
imateDiff (Guo et al., 2023) transfers the capabilities of image synthesis to video synthesis. Stable
Video Diffusion (Blattmann et al., 2023) is an image-to-video model architecture and can synthesize
video clips after end-to-end video synthesis training. Unlike image synthesis models, video synthe-
sis models require substantial computational resources since the model needs to process multiple
frames simultaneously. As a result, most existing video generation models (Guo et al., 2023; Chen
et al., 2023a; Wang et al., 2023a) can only produce very short video clips. For instance, AnimateDiff
can generate up to 32 frames, while Stable Video Diffusion can generate a maximum of 25 frames.
This limitation prompts us to explore the methodology to construct video synthesis models over
longer temporal scales.

2.3 EXTENDING GENERATIVE MODELS

Although the existing diffusion models are trained with a fixed scale, such as Stable Diffusion being
trained at a fixed resolution of 512 × 512, some approaches can extend them to larger scales. For
instance, in image synthesis, approaches like Mixture of Diffusers (Jiménez, 2023), MultiDiffusion
(Bar-Tal et al., 2023), and ScaleCrafter (He et al., 2023) can increase the resolution of generated
images by altering the inference process of the UNet model in Stable Diffusion. Similar techniques
have also emerged in the field of large language models. With the help of positional encoding
technologies such as RoPE (Su et al., 2024) and ALiBi (Press et al., 2021), large language models
can extrapolate to longer text processing tasks under the premise of training with limited-length
texts. Post-tuning can further help language models achieve super-long text comprehension and
generation (Xiong et al., 2023; Chen et al., 2023c). These research findings have inspired and
motivate us to explore the extension of video synthesis models. We aim to endow existing video
synthesis models with the capability to generate longer videos.

3 METHODOLOGY

In this section, we first review the architectures of mainstream video diffusion models, then discuss
the methodologies we have adopted to extend the temporal modules for long video synthesis, and
finally introduce the post-tuning strategy.

3.1 PRELIMINARIES

The huge demands of computational resources for training video synthesis models lead to a prevalent
practice of adapting existing image synthesis models for video generation. This adaptation is typ-
ically achieved by incorporating temporal modules into the model for generating dynamic content.
We provide a comprehensive overview of temporal module architectures as follows:

• 3D convolution (Li et al., 2021): Convolution layers form the foundational blocks in com-
puter vision. 2D convolution layers have been employed in the UNet (Ronneberger et al.,
2015) architecture, which is widely used in diffusion models. By extending 2D convo-
lutions into the third dimension, these layers are seamlessly adapted in video synthesis
models. Research indicates that convolution layers in diffusion models exhibit a high de-
gree of adaptability across various resolutions (Bar-Tal et al., 2023), which is a testament
to their capacity for generalization.

• Temporal attention (Vaswani et al., 2017): In image synthesis, the importance of attention
mechanisms is underscored by their contribution to the generation of images with remark-
able fidelity, as evidenced by the ablation studies in latent diffusion (Rombach et al., 2022).
Transferring spatial attention mechanisms to the video domain raises concerns regarding
computational efficiency due to the quadratic time complexity of the attention operators.

3
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Trainable Positional Embedding

Video RepresentationFrame ids

+

Identity 3D Convolution

Other Modules

…

Static Positional Embedding

Video RepresentationFrame ids

+

Other Modules

…

… …

Temporal Block Extended Temporal Block

Figure 1: The architecture of extended temporal blocks in Stable Video Diffusion. We replace the
static positional embedding with a trainable positional embedding and add an adaptive identity 3D
convolution layer to learn long-term video features. The modifications are adaptive, preserving the
original generalization abilities of the pre-trained model. All parameters outside the temporal block
are fixed while training for lower memory usage.

To circumvent this computational bottleneck, advanced video synthesis models typically
adopt temporal attention layers (Guo et al., 2023; Blattmann et al., 2023) that optimize
efficiency by curtailing the volume of embeddings processed by each attention operator.

• Positional embedding (Su et al., 2024): The native attention layers cannot model the po-
sitional information in videos. Therefore, video synthesis models typically incorporate po-
sitional embeddings to enrich the embedding space with positional information. Positional
embeddings can be instantiated through diverse methodologies. For example, Animate-
Diff (Guo et al., 2023) opts for learnable parameters to establish positional embeddings,
whereas Stable Video Diffusion (Blattmann et al., 2023) utilizes trigonometric functions to
generate static positional embeddings.

3.2 EXTENDING TEMPORAL MODULES

Most video synthesis models are pre-trained on videos comprising only a constrained number of
frames due to limited computational resources. For instance, Stable Video Diffusion Blattmann
et al. (2023) is capable of generating a maximum of 25 frames, while AnimateDiff Guo et al. (2023)
is limited to synthesizing image sequences of up to 32 frames. To augment these models to produce
extended videos, we propose enhancements to the temporal modules within these models.

Firstly, the inherent functionality of 3D convolution layers to adaptively accommodate various scales
has been previously validated through empirical studies (Jiménez, 2023; Bar-Tal et al., 2023; He
et al., 2023), even without necessitating fine-tuning. Consequently, we opt to retain the 3D convo-
lution layers in their original form to preserve these capabilities. Secondly, regarding the temporal
attention modules, research on large language models has demonstrated the potential for scaling ex-
isting models to accommodate longer contextual sequences (Xiong et al., 2023; Chen et al., 2023c).
Inspired by these findings, we fine-tune the parameters within the temporal attention layers during
the training process to enhance their efficacy over extended frame sequences. Thirdly, for the posi-
tional embedding layers, either static or trainable embeddings cannot be directly applied to longer
videos. To circumvent this pitfall while ensuring compatibility with a wide array of existing video
models, we use extended trainable parameters to replace the original positional embeddings. These
extended trainable positional embeddings are initialized in a cyclic pattern, drawing upon the config-
urations of the pre-existing embeddings. Further, drawing inspiration from various adapter models
(Hu et al., 2021; Zhang et al., 2023), we incorporate an additional identity 3D convolution layer after
the positional embedding layer, aimed at learning long-term information. The central unit of this 3D
convolution kernel is initialized as an identity matrix, and the remaining parameters are initialized
to zero. The identity 3D convolution layer ensures that, before training, there is no alteration to the
video representation, thereby maintaining consistency with the original computational process.
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We apply our devised extending approach to Stable Video Diffusion (Blattmann et al., 2023), which
is a popular model within open-source communities for video synthesis. The comparative architec-
tures, both pre and post-extension, are illustrated in Figure 1. Because of the fundamental similari-
ties that underpin the construction of temporal blocks within video synthesis models, our extending
approach can also be applied to various video synthesis models.

3.3 POST-TUNING

After extending the temporal blocks in the video synthesis models, we enhance the model’s abili-
ties to generate extended videos via post-tuning. To circumvent potential copyright concerns with
video content, we employed a publicly available dataset OpenSoraPlan2, which comprises 40,258
videos. These videos were sourced from copyright-free platforms, including Mixkit3, Pexels4, and
Pixabay5. The videos in this dataset maintain a resolution of 512 × 512. ExVideo expands its ca-
pacity to 128 frames. Over such extended sequences, full training is deemed impractical because
of the substantial computational requirements. Instead, we employed several engineering optimiza-
tions aimed at optimizing GPU memory usage. These optimizations are crucial for managing the
increased computational load and facilitating efficient training within limited hardware resources:

• Parameter freezing: All parameters except the temporal blocks are frozen.

• Mixed precision training (Micikevicius et al., 2017): We deploy a mixed precision train-
ing program by converting a subset of parameters to 16-bit floating-point format.

• Gradient checkpointing (Feng & Huang, 2021): Gradient checkpointing is enabled in the
model. By storing intermediate states during forward passes and recomputing gradients
on-demand during the backward pass, this technique effectively decreases memory usage.

• Flash Attention (Dao, 2023): We integrate Flash Attention to enhance the computational
efficiency of attention mechanisms.

• Shard optimizer states and gradients: We leverage DeepSpeed (Rasley et al., 2020), a
library optimized for distributed training, to enable shard optimizer states and gradients
across multiple GPUs.

The loss function and the noise scheduler are consistent with the original model. The learning rate
is 1× 10−5 and the batch size on each GPU is 1. The training was conducted using only 8 NVIDIA
A100 GPUs over one week. In order to ensure the stability of the training process, exponential
moving averages were employed for the update of weights.

4 EXPERIMENTS

By integrating extended temporal modules into the original Stable Video Diffusion (SVD) model
and performing post-tuning, we have developed the Extended Stable Video Diffusion (ExSVD)
model. This enhanced model is capable of generating coherent videos with lengths of up to 128
frames. To validate its capabilities, we have conducted comprehensive experiments comprising
three components. First, we perform a comparative analysis between our ExSVD and the original
SVD model to elucidate the enhancements achieved through post-tuning. Second, we evaluate the
performance of ExSVD in comparison to other publicly accessible models. Finally, we present
illustrative examples to provide a tangible understanding of the model’s performance.

4.1 EVALUATION ON EXTENDED MODEL PERFORMANCE

To assess the performance of ExVideo, we present the results of our ExSVD model and compare
them with those of the original SVD model across two primary dimensions: automatic metrics and
human evaluation.

2https://huggingface.co/datasets/LanguageBind/Open-Sora-Plan-v1.0.0
3https://mixkit.co/
4https://www.pexels.com/
5https://pixabay.com/
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(a) Video Quality (b) Video-Condition Consistency

Figure 2: Automatic metrics computed based on the videos generated by ExSVD and the original
SVD model. When the model is extended to a larger time scale, our approach effectively preserves
the original capabilities of the model.

4.1.1 AUTOMATIC EVALUATION

Parameter Settings: The comparative experiments are conducted based on VBench (Huang et al.,
2024), which is a comprehensive suite of tools designed to automatically assess the quality of gen-
erated videos. Following VBench’s prompt sampling methodology, we assigned 5 random seeds to
each prompt for the text-to-video generation process. Initially, we employed the Hunyuan-DiT (Li
et al., 2024b) text-to-image model to generate 5 images for each prompt. Subsequently, for each
image, both our ExSVD and the SVD models were used to generate corresponding videos, resulting
in a total of 4720 (944× 5) videos for each model. We used the DDIM (Song et al., 2020) sampler
with 50 sampling steps in our experiments.

Evaluation Metrics: VBench assesses video performance from two broad perspectives: video qual-
ity and video-condition consistency. Video quality focuses on the perceptual quality of the synthe-
sized video, including temporal quality and frame-wise quality. This category is composed of seven
sub-metrics: subject consistency, background consistency, temporal flickering, motion smoothness,
dynamic degree, aesthetic quality, and imaging quality. Video-condition consistency focuses on
whether the synthesized video aligns with the user-provided guiding condition (text prompt) and in-
cludes metrics from semantic and style dimensions. This category is composed of nine sub-metrics:
object class, multiple objects, human action, color, spatial relationship, scene, appearance style,
temporal style, and overall consistency. It is important to note that the dynamic degrees in the orig-
inal implementation of VBench are sensitive to frames per second (FPS) and the total number of
frames. Our findings indicate that this metric can significantly impact the overall score, potentially
resulting in biased comparisons between different models. Our model will achieve an exceptionally
high score when we use a high FPS, which is ultimately inconsequential. We will address this issue
in future research, as there currently are no valid metrics available for evaluation.

Quantitive Results: Based on the generated videos from our ExSVD and the original SVD model,
we have calculated all the automatic metrics in VBench. The results are depicted in Figure 2. From
the perspective of video quality, most metrics of the ExSVD model are on par with those of the
SVD model, indicating that ExSVD does not degrade the video quality of the original SVD model.
In the temporal flickering dimension, the ExSVD model demonstrates superior performance. This
enhancement is primarily attributed to the extended temporal block in the ExSVD model, which
bolsters the model’s motion prediction capabilities. After post-tuning, the ExSVD model exhibits
enhanced temporal consistency, resulting in fewer flickering phenomena and thus a higher tempo-
ral flickering score. From the perspective of video-condition consistency, the performances of the

6
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Table 1: User preference between SVD and ExSVD.

ExSVD is better Tie SVD is better
48.35% 16.88% 34.77%

Table 2: Comparison with other open-accessible models on VBench.

Model Total
Score

Subject
Consistency

Background
Consistency

Temporal
Flickering

Motion
Smoothness

Aesthetic
Quality

Imaging
Quality

Object
Class

OpenSora 79.23% 94.45% 97.90% 99.47% 98.20% 56.18% 60.94% 83.37%
AnimateDiff 80.27% 95.30% 97.68% 98.75% 97.76% 67.16% 70.10% 90.90%

VideoCrafter2 80.44% 96.85% 98.22% 98.41% 97.73% 63.13% 67.22% 92.55%
Pika 80.69% 96.94% 97.36% 99.74% 99.50% 62.04% 61.87% 88.72%

T2V-Turbo 81.01% 96.28% 97.02% 97.48% 97.34% 63.04% 72.49% 93.96%
CogVideoX 81.61% 96.23% 96.52% 98.66% 96.92% 61.98% 62.90% 85.23%

LaVie 81.75% 97.90% 98.45% 98.76% 98.42% 67.62% 70.39% 97.52%
Kling 81.85% 98.33% 97.60% 99.30% 99.40% 61.21% 65.62% 87.24%
SVD 81.73% 96.52% 97.89% 94.66% 97.58% 69.56% 65.25% 88.10%

ExSVD (ours) 81.91% 96.11% 97.79% 98.71% 99.31% 70.47% 68.16% 88.99%

Model Multiple
Objects

Human
Action Color Spatial

Relationship Scene Appearance
Style

Temporal
Style

Overall
Consistency

OpenSora 58.41% 85.80% 87.49% 67.51% 42.47% 23.89% 24.55% 27.07%
AnimateDiff 36.88% 92.60% 87.47% 34.60% 50.19% 22.42% 26.03% 27.04%

VideoCrafter2 40.66% 95.00% 92.92% 35.86% 55.29% 25.13% 25.84% 28.23%
Pika 43.08% 86.20% 90.57% 61.03% 49.83% 22.26% 24.22% 25.94%

T2V-Turbo 54.65% 95.20% 89.90% 38.67% 55.58% 24.42% 25.51% 28.16%
CogVideoX 62.11% 99.40% 82.81% 66.35% 53.20% 24.91% 25.38% 27.59%

LaVie 64.88% 96.40% 91.65% 38.68% 49.59% 25.09% 25.24% 27.39%
Kling 68.05% 93.40% 89.90% 73.03% 50.86% 19.62% 24.17% 26.42%
SVD 61.55% 95.20% 82.81% 37.17% 43.68% 25.12% 25.71% 28.39%

ExSVD (ours) 63.38% 95.60% 84.04% 39.94% 43.14% 24.91% 25.96% 28.55%

ExSVD and SVD models are generally consistent. In the spatial relationship and multiple objects
metrics, ExSVD achieves higher scores. This indicates that ExSVD is capable of fully leveraging the
text-to-image model to synthesize realistic videos based on the generated images. Overall, ExVideo
enhances the total number of frames and duration of videos without compromising video quality.

Human Evaluation: In addition to the automatic metrics evaluation, we conducted a human pref-
erence experiment involving 30 participants to facilitate a comparative analysis between the SVD
and our ExSVD model. In each evaluation session, we randomly selected two videos that both cor-
responded to the same prompt and presented them to the participants. Participants were instructed
to choose from one of three options: “Left is better”, “Tie”, or “Right is better”, without disclosing
the names of the models. Each participant evaluated up to 30 randomly selected video pairs. The
results, detailed in Table 1, indicate that our ExSVD model outperformed the SVD model in terms
of human preference, achieving a win rate of 48.35% compared to SVD’s win rate of 34.77%.

4.2 COMPARISON WITH PUBLICLY ACCESSIBLE MODELS

We further evaluated the performance of ExSVD in comparison to other publicly available models.
To facilitate a comprehensive analysis that incorporates both text-to-video and image-to-video mod-
els, we designed a text-to-video pipeline that integrates ExSVD with Hunyuan-DiT. This allows for
a uniform assessment of the models across the text-to-video task. The parameter settings of this
evaluation were consistent with those outlined in the previous subsection.

Baseline Models: For a thorough evaluation of our models, we selected top-performing video syn-
thesis models for comparison. The chosen models include OpenSora (Zheng et al., 2024), Animate-
Diff (Guo et al., 2023), VideoCrafter2 (Chen et al., 2024a), Pika (Pika, 2024), T2V-Turbo (Li et al.,
2024a), CogVideoX (Yang et al., 2024), LaVie (Wang et al., 2023a), and Kling (Team, 2024).

Quantitive Results: The results are summarized in Table 2, where the metrics of the baseline mod-
els are collected from the original VBench leaderboard. Due to the variability of the dynamic degree
metric with respect to frame and FPS, we have opted not to include it in the table. In comparison to
other models, our ExSVD outperforms the competition, achieving the highest overall score and ex-
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celling in the aesthetic quality, temporal style, and overall consistency metrics. Additionally, ExSVD
exhibits competitive performance in the dimensions of temporal flickering, motion smoothness, and
multiple objects.

4.3 CASE STUDY

4.3.1 VISUAL COMPARISON

We present a series of video examples generated by ExSVD and other video synthesis models to
facilitate an intuitive comparison of their performance. The illustrative results from these models
are displayed in Figure 3. We highly recommend readers watch the videos on our anonymous project
page. A noteworthy observation from this comparison is that the majority of existing video synthesis
models tend to produce videos characterized by limited motion dynamics. In contrast, our extended
model, which benefits from post-tuning processes applied over extended temporal durations, exhibits
a markedly improved ability to generate videos with significant movement. In the second example,
Kling, a competitive close-source model, demonstrates the capability to generate realistic videos,
but it is unable to generate the astronaut in the style of Van Gogh. This disparity in performance
highlights the advanced generative capabilities of our model.

4.3.2 GENERALIZATION ABILITIES

Although the model is trained at a fixed resolution and exclusively utilizes realistic video datasets,
the extended variant demonstrates remarkable capabilities, allowing for the generation of videos
across a spectrum of resolutions and styles. To rigorously assess the performance of ExSVD, we
conduct additional evaluations across various resolutions. Figure 4 illustrates several generated
video examples that underscore the model’s capacity to generate videos in various resolutions and
aspect ratios. This adaptability ensures that the generated videos maintain visual integrity regardless
of the resolution parameters. Furthermore, Figure 5 presents an array of stylistic variations, further
emphasizing the model’s versatility in accommodating diverse artistic expressions. These examples
underscore the robustness and generalizability of ExSVD, offering flexibility in video generation
across varying contexts.

5 LIMITATIONS

While ExVideo can enhance the capabilities of video diffusion models, the post-tuned version con-
tinues to be constrained by the inherent limitations of its foundational model. Notably, the extended
Stable Video Diffusion struggles to accurately synthesize human portraits, leading to frequent in-
stances of truncated frames. To develop a model capable of synthesizing high-quality long videos, it
is imperative to train a robust base model. Nevertheless, due to limitations in resources, we are un-
able to independently pre-train a large video synthesis model. Consequently, we eagerly anticipate
the release of open-source models in the future to advance our research endeavors.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we delve into the enhancement of video diffusion models through post-tuning. Specifi-
cally, we propose a post-tuning approach called ExVideo, which can extend the duration of generated
videos and release the potential of video synthesis models. Based on Stable Video Diffusion, our
approach achieves a quintupling in the number of frames, while preserving the original generaliza-
tion abilities. ExVideo is designed within the constraints of limited computational resources, thus it
is exceptionally memory-efficient. By integrating this method with other open-source technologies,
we facilitate pipelines conducive to the production of high-quality videos. However, despite the
advancements achieved through post-tuning, the enhanced model remains inherently constrained by
the limitations of the base model. Looking ahead, we are committed to furthering our exploration
of video synthesis models through post-tuning methodologies. This will include the application of
ExVideo across a broader range of model architectures, as well as the training of these models on
larger and more varied datasets.
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(g) LaVie

(e) T2V-Turbo

(c) VideoCrafter2

(i) ExSVD

(b) AnimateDiff

(a) OpenSora

(d) Pika

(f) CogVideoX

(h) Kling

Figure 3: Visual comparisons of text-to-video results from several existing video synthesis models
and our Extended model. The prompts are “a boat sailing smoothly on a calm lake” and “an astronaut
flying in space, Van Gogh style”. In our pipeline, the first frame is generated by Hunyuan-DiT, and
ExSVD generates the video according to the first frame. We highly recommend readers watch the
videos on our anonymous project page: https://zxqwertyuiopasdfghjk.github.io/
ExVideoProjectPage/.
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(a) 576×1024

(b) 1024×576 (c) 1024×1024

Figure 4: Video examples in various resolutions. The first frame is generated by Stable Diffusion 3,
and the prompt is “bonfire, on the stone”.

(b) Pixel art style

(a) Flat anime style

Figure 5: Examples in various styles generated by ExSVD, where the first frame is generated by
Stale Diffusion 3. The prompt is “A beautiful coastal beach in spring, waves lapping on sand”,
followed by the description of style.
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(a) Before post-tuning, the camera is irregularly jittering.

(c) After 64000 steps, complex motion emerges.

(b) After 32000 steps, the camera is moving smoothly.

Figure 6: Video examples in different training phases. The first frame is generated by Hunyuan DiT,
and the prompt is “sunset, mountains, clouds”. We present the optical flow to visualize the motion,
where pixels with similar colors are moving in similar directions.

A APPENDIX

A.1 VISUALIZATION OF TRAINING PROCESS

We investigated the evolution of the model’s capabilities during the training process. Figure 6
presents the generated videos that exemplify the model’s performance at three distinct phases of
training. It is difficult to present the dynamics using still images, thus we present the optical flow,
computed by RAFT (Teed & Deng, 2020), to the right of each example for a clearer demonstration
of motion. Initially, before training, the extended model architecture was solely capable of guaran-
teeing the structural integrity of the video frames, which suffered from pronounced jittering artifacts.
Progressing through the training, after 32,000 steps, the model began to produce videos displaying
smooth camera movements. With continued training up to 64,000 steps, the model further advanced
to create complex motions, such as clouds and mountains moving with nuanced, layered speed. The
model effectively understands the depth and spatial relationships within the scene. This example
intuitively illustrates the process of the model learning long-term information.
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