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ABSTRACT

One weakness of machine learning algorithms is the poor ability of models to
solve new problems without forgetting previously acquired knowledge. The Con-
tinual Learning (CL) paradigm has emerged as a protocol to systematically in-
vestigate settings where the model sequentially observes samples generated by a
series of tasks. In this work, we take a task-agnostic view of continual learning
and develop a hierarchical information-theoretic optimality principle that facili-
tates a trade-off between learning and forgetting. We discuss this principle from
a Bayesian perspective and show its connections to previous approaches to CL.
Based on this principle, we propose a neural network layer, called the Mixture-of-
Variational-Experts layer, that alleviates forgetting by creating a set of information
processing paths through the network which is governed by a gating policy. Due
to the general formulation based on generic utility functions, we can apply this
optimality principle to a large variety of learning problems, including supervised
learning, reinforcement learning, and generative modeling. We demonstrate the
competitive performance of our method in continual supervised learning and in
continual reinforcement learning.

1 INTRODUCTION

Acquiring new skills without forgetting previously acquired knowledge is a hallmark of human and
animal intelligence. Biological learning systems leverage task-relevant knowledge from preceding
learning episodes to guide subsequent learning of new tasks to accomplish this. Artificial learning
systems, such as neural networks, usually lack this crucial property and experience a problem coined
”catastrophic forgetting” (McCloskey & Cohen, 1989). Catastrophic forgetting occurs when we
naively apply machine learning algorithms to solve a sequence of tasks T1:t, where adaptation to
task Tt prompts overwriting of parameters learned for tasks T1:t−1.

The Continual Learning (CL) paradigm (Thrun, 1998) has emerged as a way to investigate such
problems systematically. We can divide CL approaches into three broad categories: rehearsal and
memory consolidation, regularization and weight consolidation, and architecture and expansion
methods. Rehearsal methods train a generative model to learn the data-generating distribution to
reproduce data of old tasks (Shin et al., 2017; Rebuffi et al., 2017). In contrast, regularization meth-
ods (e.g., Kirkpatrick et al., 2017; Ahn et al., 2019; Han & Guo, 2021a) introduce an additional
constraint to the learning objective to prevent changes in task-relevant parameters. Finally, CL can
be achieved by modifying the design of a model during learning (e.g., Lin et al., 2019; Rusu et al.,
2016; Golkar et al., 2019).

Despite recent progress in CL, there are still open questions (Parisi et al., 2019). For example, most
existing algorithms share a significant drawback in that they require task-specific knowledge, such
as the number of tasks and which task is currently at hand. Approaches sharing this drawback are
multi-head methods (e.g., El Khatib & Karray, 2019; Nguyen et al., 2017; Ahn et al., 2019) and
methods that compute a per-task loss, which requires storing old weights and task information (e.g.,
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Kirkpatrick et al., 2017; Zenke et al., 2017; Sokar et al., 2021; Yoon et al., 2018; Chaudhry et al.,
2021; Han & Guo, 2021b). Extracting relevant task information is a difficult problem, in particular
when distinguishing tasks without contextual input (Hihn & Braun, 2020b). Thus, providing the
model with such task-relevant information yields overly optimistic results (Chaudhry et al., 2018a).

To deal with more realistic CL scenarios, therefore, models must learn to compensate for the lack of
auxiliary information. The approach we propose here tackles this problem by formulating a hierar-
chical learning system, that allows us to learn a set of sub-modules specialized in solving particular
tasks. To this end, we introduce hierarchical variational continual learning (HCVL) and devise the
mixture-of-variational-experts layer (MoVE layers) as an instantiation of HVCL. MoVE layers con-
sist of M experts governed by a gating policy, where each expert maintains a posterior distribution
over its parameters alongside a corresponding prior. A sparse selection reduces computation as only
a small subset of the parameters must be updated during the back-propagation of the loss (Shazeer
et al., 2017). To mitigate catastrophic forgetting we condition the prior distributions on previously
observed tasks and add a penalty term on the Kullback-Leibler-Divergence between the expert pos-
terior and its prior.

In ensemble methods two main questions arise. The first one concerns the question of optimally se-
lecting ensemble members using appropriate selection and fusion strategies (Kuncheva, 2004). The
second one, is the question of how to ensure expert diversity (Kuncheva & Whitaker, 2003; Bian &
Chen, 2021). We argue that ensemble diversity benefits continual learning and investigate two com-
plementary diversity objectives: the entropy of the expert selection process and a similarity measure
between different experts based on Wasserstein exponential kernels in the context of determinantal
point processes (Kulesza et al., 2012).

To summarize, our contributions are the following: (i) we extend VCL to a hierarchical multi-
prior setting, (ii) we derive a computationally efficient method for task-agnostic continual learning
from this general formulation, (iii) to improve expert specialization and diversity, we introduce and
evaluate novel diversity measures.

This paper is structured as follows: we introduce our method in Section 2, we design, perform, and
evaluate the main experiments in Section 3, in Section 4, we discuss novel aspects of the current
work in the context of previous literature and conclude with a final summary in Section 5.

2 HIERARCHICAL VARIATIONAL CONTINUAL LEARNING

In this section we first extend the variational continual learning (VCL) setting introduced by Nguyen
et al. (2017) to a hierarchical multi-prior setting and then introduce a neural network implementation
as a generalized application of this paradigm in Section 2.1.

VCL describes a general learning paradigm wherein an agent stays close to an old strategy (”prior”)
it has learned on a previous task t − 1 while learning to solve a new task t (”posterior”). Given
datasets of input-output pairs Dt = {xit, yit}

Nt
i=0 of tasks t ∈ {1, ..., T}, the main learning objective

of minimizing the log-likelihood log pθ(y
i
t|xit) for task t is augmented with an additional loss term

in the following way:

LtVCL =

Nt∑
i=1

Eθ
[
log pθ(y

i
t|xit)

]
− DKL [pt(θ)||pt−1(θ)] , (1)

where p(θ) is a distribution over the models parameter θ and Nt is the number of samples for task
t. The constraint encourages the agent to find an optimal trade-off between solving a new task and
retaining knowledge about old tasks. Over the course of T datasets, Bayes’ rule then recovers the
posterior

p(θ|D1:T ) ∝ p(θ|D1:T−1)p(DT |θ) (2)

which forms a recursion: the posterior after seeing T datasets is obtained by multiplying the poste-
rior after T − 1 with the likelihood and normalizing accordingly.

This multi-head strategy has two main drawbacks: (i) it introduces an organizational overhead due
to the growing number of network heads, and (ii) task boundaries must be known at all times,
making it unsuitable for more complex continual learning settings. In the following we argue that

2



Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

Gate Experts

Layer

U(xti, y)

θ ∼ pt(θ|xti,m)

y = σ(g(θ, xti))

−β2 DKL(pt(θ|m)||p1:t−1(θ|m)))−β1 DKL(pt(m|xt
i)||p1:t−1(m|xt

i)))

xti ∼ pt(x) mt
i ∼ pt(m|xti)

pt(x): Data from task t
pt(m|x): Gating policy of task t
p1:t−1(m|x): Gating prior policy of tasks 1 : t− 1
pt(θ|m): Expert policy of task t
p1:t−1(θ|m) Expert prior policy of tasks 1 : t− 1
g(θ, x): Input processing, e.g., convolution
σ(·): Activation function
U(x, y): Utility function

Figure 1: This figure illustrates our proposed design. Each layer implements a top-k expert selection
conditioned on the output of the previous layer. Each expert m maintains a distribution over its
weights p(θ|m) = N (µm, σm) and a set of bias variables bm.

we can alleviate these problems by combining multiple decision-makers with a learned selection
policy.

To extend VCL to the hierarchical case, we assume that samples are drawn from a set of M in-
dependent data generating processes, i.e., the likelihood is given by a mixture model p(y|x) =∑M
m=1 p(m|x)p(y|m,x). We define an indicator variable z ∈ Z, where zi,tm is 1 if the output yti of

sample i from task t was generated by expert m and zero otherwise:

p(yit|xit,Θ) =

M∑
m=1

p(zi,mt |xit, ϑ)p(yit|xit, ωm), (3)

where ϑ are the parameters of the selection policy, ωm the parameters of the m-th expert, and
Θ = {ϑ, {ωm}Mm=1} the combined model parameters. The posterior after observing T tasks is then
given by

p(Θ|D1:T ) ∝ p(ϑ)p(ω)

T∏
t=1

Nt∏
i=1

M∑
m=1

p(zi,mt |xit, ϑ)p(yit|xit, ωm) (4)

= p(Θ)

T∏
t=1

p(Dt|Θ) ∝ p(Θ|D1:T−1)p(DT |Θ).

The Bayes posterior of an expert p(ωm|D1:T ) is recovered by computing the marginal over the
selection variables Z. Again, this forms a recursion, in which the posterior p(Θ|D1:T ) depends on
the posterior after seeing T − 1 tasks and the likelihood p(DT |Θ). Finally, we formulate the HVCL
objective for task t as:

LtHVCL =

Nt∑
i=1

Ep(Θ)

[
log p(yit|xit,Θ)

]
− DKL [pt(ϑ)||p1:t−1(ϑ)]− DKL [pt(ω)||p1:t−1(ω)] , (5)

whereNt is the number of samples in task t, and the likelihood p(y, x|Θ) is defined as in equation 3.

2.1 SPARSELY GATED MIXTURE-OF-VARIATIONAL LAYERS

As we aim to tackle not only supervised learning problems, but also reinforcement learning prob-
lems, we assume in the following a generic scalar utility function U(x, fθ(x)) that depends both
on the input x and the parameterized agent function fθ(x) that generates the agent’s output y. We
assume the agents output function fθ(x) is composed of multiple layers. Our layer design builds on
the sparsely gated Mixture-of-Expert (MoE) layers (Shazeer et al., 2017), which in turn draws on
the paradigm introduced by Jacobs et al. (1991). MoEs consist of a set of m experts M and a gating
network p(m|x) whose output is a (sparse) m-dimensional vector. All experts have an identical
architecture but separate parameters. Let p(m|x) be the gating output and p(y|m,x) the response
of an expert m given input x. The layer’s output is then given by a weighted sum of the experts re-
sponses. To save computation time we employ a top-k gating scheme, where only the k experts with
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Specialized, 
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Specialized and
diverse
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Posterior p0
Prior q0
Posterior p1
Prior q1

det( K )
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2
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2h2 )

Figure 2: Left: We seek experts that are both specialized, i.e., their posterior p is close to their prior
q, and diverse, i.e., posteriors are sufficiently distant from one another. Right: To this effect, we
maximize the determinant of the kernel matrix K, effectively filling the feature space. In the case
of two experts this would mean to maximize det(K) = 1 − k(p0, p1), which we can achieve by
maximizing the Wasserstein-2 distance between the posteriors.

highest gating activation are evaluated and use an additional penalty that encourages gating sparsity
(see Section 2.1). In all our experiments we set k = 1, to drive expert specialization (see Section
2.2.1) and reduce computation time. We implement the learning objective for task t as layer-wise
regularization in the following way:

LtMoVE =

Nt∑
i=1

[
Ep(Θ)

[
U(xti, fΘ(xti))

]
−

L∑
l=1

Eplt(m|xt
i),p

l
t(θ|m)

[
β1 DKL

[
plt(m|xti)||pl1:t−1(m|xti)

]
+ β2 DKL

[
plt(θ|m)||pl1:t−1(θ|m)

] ]]
,

(6)
where L is the total number of layers, Θ = {θ, {ϑm}Mm=1} the combined parameters,and the tem-
perature parameters β1,2 govern the layer-wise trade-off between utility and information-cost.

Thus, we allow for two major generalizations compared to equation 5: in lieu of the log-likelihood
we allow for generic utility functions, and instead of applying the constraint on the gating parame-
ters, we apply it directly on the gating output distribution p(m|x). This implies, that the weights of
the gating policy are not sampled. Otherwise the gating mechanism would involve two stochastic
steps: one in sampling the weights and a second one in sampling the expert index. This potentially
high selection variance hinders expert specialization (see Section 2.2.1). Encouraging the gating
policy to stay close to its prior also ensures that similar inputs are assigned to the same expert. Next
we consider how we could extend objective 6 further by additional terms that encourage diversity
between different experts.

2.2 ENCOURAGING EXPERT DIVERSITY

In the following, we argue that a diverse set of experts may mitigate catastrophic forgetting in con-
tinual learning, as experts specialize more easily in different tasks, which improves expert selection.
We present two expert diversity objectives. The first one arises directly from the main learning ob-
jective and is designed to act as a regularizer on the gating policy while the second one is a more
sophisticated approach that aims for diversity in the expert parameter space. The latter formulation
introduces a new class of diversity measures, as we discuss in more detail in Section 4.

2.2.1 DIVERSITY THROUGH SPECIALIZATION

The relationship between objectives of the form described by equation 6 with the emergence of
expert specialization has been previously investigated for simple learning problems (Genewein et al.,
2015) and in the context of meta-learning (Hihn & Braun, 2020b), but not in the context of continual
learning. We assume a two-level hierarchical system of specialized decision-makers where low-
level decision-makers p(m|x) select which high-level decision-maker p(y|m,x) serve as experts for
a particular input x. By co-optimizing

max
p(y|x,m),p(m|x)

E[U(x, y)]− β1I(X;M)− β2I(X;Y |M), (7)

the combined system finds an optimal partitioning of the input space X , where I(·|·) denotes the
(conditional) mutual information between random variables. In fact, the hierarchical VCL objective
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given by equation 5 can be regarded as a special case of the information-theoretic objective given
by equation 7, if we interpret the prior as the learning strategy of task t− 1 and the posterior as the
strategy of task t, and set β1 = β2 = 1. All these hierarchical decision systems correspond to a
multi prior setting, where different priors associated with different experts can specialize on differ-
ent sub-regions of the input space. In contrast, specialization in the context of continual learning
can be regarded as the ability of partitioning the task space, where each expert decision-maker m
solves a subset of old tasks Tm ⊆ T1:t. In both cases, expert diversity is a natural consequence of
specialization if the gating policy p(m|x) partitions between the experts.

In addition to the implicit pressures for specialization already implied by equation 6, here we inves-
tigate the effect of an additional entropy cost. Inspired by recent entropy regularization techniques
(Eysenbach et al., 2018; Galashov et al., 2019; Grau-Moya et al., 2019), we aim to improve the gat-
ing policy by introducing the entropy cost − β3

Nb

∑
x∈BH(M), where M is the set of experts and X

the inputs in a mini-batch B of size Nb, and β3 a weight. Thus, by minimizing the marginal entropy
H(M) we prefer solutions that minimize the number of active experts. We compute these values
batch-wise, as the full entropies over p(x) are not tractable.

2.2.2 PARAMETER DIVERSITY

Our second diversity formulation builds on Determinantal Point Processes (DPPs) (Kulesza et al.,
2012), a mechanism that produces diverse subsets by sampling proportionally to the determinant of
the kernel matrix of points within the subset (Macchi, 1975). A point process P on a ground set Y
is a probability measure over finite subsets of Y . P is a DPP if, when Y is a random subset drawn
according to P , we have, for everyA ⊂ Y , P (A ⊂ Y ) = det(KA) for some real, symmetricN ×N
matrix K indexed by the elements of Y . Here, KA = [Kij ]i,j∈A denotes the restriction of K to the
entries indexed by elements of A, and we adopt det(K∅) = 1. If A = {i} is a singleton, then we
have P (i ∈ Y ) = Ki,i. In this case, the diagonal of K gives the marginal probabilities of inclusion
for individual elements of Y . Since P is a probability measure, all principal minors of K must be
nonnegative, and thus K itself must be positive semidefinite, which we can achieve by constructing
K by a kernel function k(x0, x1), such that for any x0, x1 ∈ X :

k(x0, x1) = 〈φ(x0), φ(x1)〉F , (8)

whereX is a vector space andF is a inner-product space such that ∀x ∈ X : φ(x) ∈ F . Specifically,
we use a exponential kernel based on the Wasserstein-2 distance W (p, q) between two probability
distributions p and q. The pth Wasserstein distance between two probability measures p and q in
Pp(M) is defined as

Wp(p, q) :=

(
inf

γ∈Γ(p,q)

∫
M×M

d(x, y)p dγ(x, y)

)1/p

, (9)

where Γ(p, q) denotes the collection of all measures on M × M with marginals p and q on the
first and second factors. Let p and q be two isotropic Gaussian distributions and W 2

2 (q, p) the
Wasserstein-2 distance between p and q. The exponential Wasserstein-2 kernel is then defined by

k(p, q) = exp

(
−W

2
2 (p, q)

2h2

)
, (10)

where h is the kernel width. We show in Appendix B that equation 10 gives a valid kernel. This
formulation has two properties that make it suitable for our purpose. Firstly, the Wasserstein distance
is symmetric, i.e., W 2

2 (p, q) = W 2
2 (q, p), which in turn will lead to a symmetric kernel matrix. This

is not true for other similarity measures on probability distributions, such as DKL (Cover & Thomas,
2012). Secondly, if p and q are Gaussian and mean-field approximations, i.e., covariance matrices
are given by diagonal matrices, i.e., Σp = diag(dp) and Σq = diag(dq), W 2

2 (p, q) can be computed
in closed form as

W 2
2 (p, q) = ||µp − µq||22 + ||

√
dp −

√
dq||2, (11)

where µp,q are the means and dp,q the diagonal entries of distributions p and q. We provide a more
detailed derivation of equation 11 in Appendix A. From a geometric perspective, the determinant of
the kernel matrix represents the volume of a parallelepiped spanned by feature maps corresponding
to the kernel choice. We seek to maximize this volume, effectively filling the parameter space – see
Figure 2 for an illustration.
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Baselines S-MNIST P-MNIST

Dense Neural Network 86.15 (±1.00) 17.26 (±0.19)
Offline re-training + task oracle 99.64 (±0.03) 97.59 (±0.02)

Task-Agnostic

HVCL (ours) 97.50 (±0.33) 97.07 (±0.62)
HVCL w/ GR (ours) 98.60 (±0.35) 97.47 (±0.52)
UGCL w/ BNN (Ebrahimi et al., 2020) 97.70 (±0.03) 92.50 (±0.01)
Brain-inspired RtF (van de Ven et al., 2020) 99.66 (±0.13) 97.31 (±0.04)
HIBNN (Kessler et al., 2021) 91.00 (±2.20) 93.70 (±0.60)
BCL (Raghavan & Balaprakash, 2021) 98.71 (±0.06) 97.51 (±0.05)
TLR (Mazur et al., 2021) 80.64 (±1.25)

Task-Aware

DGR+distill. (Shin et al., 2017) 99.59 (±0.40) 97.51 (±0.04)
VCL (Nguyen et al., 2017) 98.50 (±1.78) 96.60 (±1.34)
CURL (Rao et al., 2019) 99.10 (±0.06)
SAML (Sokar et al., 2021) 97.95 (±0.07)
DEN (Yoon et al., 2018) 99.26 (±0.01)

Baselines Split-CIFAR-10 CIFAR-100

Conv. Neural Network 66.62 (±1.06) 19.80 (±0.19)
Offline re-training + task oracle 80.42 (±0.95) 52.30 (±0.02)

Task-Agnostic

HVCL (ours) 78.41 (±1.18) 33.10 (±0.62)
HVCL w/ GR (ours) 81.00 (±1.15) 37.20 (±0.52)
CL-DR (Han & Guo, 2021a) 86.72 (±0.30) 25.62 (±0.22)
NCL (Kao et al., 2021) 38.79 (±0.24)
TLR (Mazur et al., 2021) 74.89 (±0.61
MAS (He & Zhu, 2022) 73.50 (±1.54)

Task-Aware

GEM (Lopez-Paz & Ranzato, 2017) 79.10 (±1.60) 40.60 (±1.90)
MCCL (KJ & N Balasubramanian, 2020) 82.90 (±1.20) 43.50 (±0.60)
CCLwFP (Han & Guo, 2021b) 86.33 (±1.47) 65.19 (±0.65)
HAL (Chaudhry et al., 2021) 75.19 (±2.57) 47.88 (±2.76)
SI (Zenke et al., 2017) 63.31 (±3.79) 36.33 (±4.23)
AGEM (Chaudhry et al., 2018b) 74.07 (±0.76) 46.88 (±1.81)

Table 1: Results in the supervised CL benchmarks. Results were averaged over ten random seeds
with the standard deviation given in the parenthesis. We report results of other methods as given in
their original studies.

3 EXPERIMENTS

We evaluate our approach in current supervised CL benchmarks in Section 3.1, in a generative
learning setting in Section 3.2, and in the CRL setup in Section 3.3. We give experimental details in
Appendix C and additional ablation studies in Appendix D.

3.1 CONTINUAL SUPERVISED LEARNING SCENARIOS

The basic setting of continual learning is defined as an agent which sequentially observes data from
a series of tasks while maintaining performance on older tasks. We evaluate the performance of
our method in this setting in split MNIST, permuted MNIST, split CIFAR-10/100 (see Table 1).
We follow the domain incremental setup (van de Ven et al., 2020), where task information is not
available, but we also compare against task-incremental methods, where the task information is
available, to give a complete overview of current methods.

The first benchmark builds on the MNIST dataset. Five binary classification tasks from the MNIST
dataset arrive in sequence and at time step t the performance is measured as the average classification
accuracy on all tasks up to task t. In permuted MNIST the task received at each time step t consists
of labeled MNIST images whose pixels have undergone a fixed random permutation. The second
benchmark is a variation of the CIFAR-10/100 datasets. In Split CIFAR-10, we divide the ten classes
into five binary classification tasks. CIFAR-100 is like the CIFAR-10, except it has 100 classes and
tasks are defined as a 10-way classification problem, thus forming ten tasks in total.

We achieve comparable results to current state-of-the-art approaches (see Table 1 on all supervised
learning benchmarks.

3.2 GENERATIVE CONTINUAL LEARNING

Generative CL is a simple but powerful paradigm (van de Ven et al., 2020). The main idea is to learn
the data generating distribution and simulate data of previous tasks. We can extend our approach to
the generative setting by modeling a variational autoencoder using the novel layers we propose in
this work.

We model the distribution of the latent variable z in the variational autoencoder by using a densely
connected MoVE layer with 3 experts. Using multiple experts enables us to capture a richer class
of distributions than a single Gaussian distribution could, as is usually the case in simple VAEs.
We can interpret this as z following a Gaussian Mixture Model, whose components are mutually
exclusive and modeled by experts. We integrate the generated data by optimizing a mixture of the
loss on the new task data and the loss of the generated data We were able to improve our results in
the supervised settings by incorporating a generative component, as we show in Table 1. We show
additional empirical results in Appendix D.4.
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Figure 3: In this figure we show results in the CRL benchmark. To measure the continual learning
performance in the RL settings, we normalize rewards and plot the sum of normalized rewards.
The maximum of 5.0 indicates no forgetting, while 1.0 shows the total forgetting of old tasks. We
comapre against EWC (Kirkpatrick et al., 2017), and UCL (Ahn et al., 2019).

3.3 CONTINUAL REINFORCEMENT LEARNING

In the continual reinforcement learning (CRL) setting, the agent is tasked with finding an optimal
policy in sequentially arriving RL problems. To benchmark our method, we follow the experimental
protocol of Ahn et al. (2019) and use a series of tasks from the PyBullet environments (Ellenberger,
2018–2019). The environments we selected have different states and action dimensions. This im-
plies we can’t use a single model to learn policies and value functions. To remedy this, we pad
each state and action with zeros to have equal dimensions. The Ant environment has the highest
dimensionality with a state dimensionality of 28 and an action dimensionality of 8. All others are
zero-padded to have this dimensionality.

Here, we extend SAC (Haarnoja et al., 2018) by implementing all neural networks with MovE
layers. When a new task arrives, the old posterior over the expert parameters and the gating posterior
become the new priors. After each update step in task t, we evaluate the agent in all previous tasks
T1:t for three episodes each. We divide the reward achieved during evaluation by the mean reward
during training and report the cumulative normalized reward, which gives an upper bound of t in the
t-th task.

We compare our approach against a simple continuously trained SAC implementation with dense
neural networks, EWC (Kirkpatrick et al., 2017), and the recently published UCL (Ahn et al., 2019)
method. UCL is similar to our approach in that it also employs Bayesian neural networks, but
the weight regularization acts on a per-weight basis. Note that UCL and EWC both require task
information to compute task-specific losses. Our results (see Figure 3) show that our approach can
sequentially learn new policies while maintaining an acceptable performance on previously seen
tasks. Our method outperforms UCL (Ahn et al., 2019) and EWC (Kirkpatrick et al., 2017). In
this setting naively training the agent sequentially (labeled ”Dense”) yields poor performance. This
behavior indicates the complete forgetting of old policies.

4 DISCUSSION

The principle we propose in this work falls into a wider class of methods that deal with learning and
decision-making problems by integrating information-theoretic cost functions. Such information-
constrained machine learning methods have enjoyed recent interest in a variety of research fields,
e.g., as reinforcement learning (Eysenbach et al., 2018; Ghosh et al., 2018; Leibfried & Grau-Moya,
2019; Hihn et al., 2019; Arumugam et al., 2020), MCMC optimization (Hihn et al., 2018; Pang et al.,
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2020), meta-learning (Rothfuss et al., 2018; Hihn & Braun, 2020a), continual learning (Nguyen
et al., 2017; Ahn et al., 2019), and self-supervised learning (Thiam et al., 2021; Tsai et al., 2021).

Currently, there are only few methods that perform well in supervised CL and in CRL (e.g., Ahn
et al., 2019; Jung et al., 2020; Cha et al., 2020). These methods require task information, as they
either keep a set of separate task-specific heads (Ahn et al., 2019; Jung et al., 2020) or compute
task-specific losses (Cha et al., 2020). This makes our method one of the first task-agnostic CL
approaches to drop this requirement while still performing competitively.

The hierarchical structure we employ is a variant of the Mixture-of-Experts (MoE) model (Jacobs
et al., 1991), specifically an extension of the sparsely-gated MoE layers (Shazeer et al., 2017).
Sparsely-gated MoE layers enforce a balanced load between experts. In our work, we removed
the incentive to equally distribute inputs, as we aim to find specialized experts, which contradicts a
balanced load. The computational advantage remains, as we still activate only the top-1 expert.

Our method is similar to the approach described by Hihn & Braun (2020b) but differs in two key
aspects. Firstly, we provide a more stable learning procedure as our layers can readily offer end-
to-end training. Secondly, we implement the information-processing constraints on the parameters
instead of the output of the experts, thus shifting the information cost from decision-making to
learning.

Several methods in the current CL literature rest on modular architectures (e.g., Fernando et al.,
2017; Collier et al., 2020; Lin et al., 2019; Lee et al., 2020). Lin et al. (2019) propose to condition
model parameters on the inputs by learning a (deterministic) grouping function. Our approach differs
in two main ways. First, our method can capture uncertainty allowing us to learn stochastic tasks.
Second, our design can incorporate up to 2n paths (or groupings) through a neural net with n layers,
making it more flexible than learning a mapping function. Lee et al. (2020) propose a MoE model
for continual learning, in which the number of experts increases dynamically, utilizing Dirichlet-
Process-Mixtures (Antoniak, 1974) to infer the number of experts. The authors argue that since the
gating mechanism is itself a classifier, training it in an online fashion would result in catastrophic
forgetting. To remedy this, they implement a generative model per expert m to model p(m|x) and
approximate the output as p(y|x) ≈

∑
m p(y|x)p(m|x). In our work, we have demonstrated that

it is possible to implement a gating mechanism based only on the input by coupling it with an
information-theoretic objective to prevent catastrophic forgetting.

Recently, several diversity measures have been proposed. Parker-Holder et al. (2020) introduce
a DDP-based method based on the different states a given policy may reach. Dai et al. (2021)
propose to augment the sampling process in hindsight experience replay (Andrychowicz et al., 2017)
with a DPP-diversity bonus. The method we propose differs from previous methods as we define
diversity in parameter space instead of the policy outcomes or inputs. Additionally, as we define it
on parameters instead of actions, we can apply it straightforwardly to any problem formulation, as
our experiments show.

5 CONCLUSION

We introduced a hierarchical approach to task-agnostic continual learning, derived an application,
and extensively evaluated this method in supervised CL and CRL. While we removed the task-
information limitation, we achieved results competitive to task-aware and to task-agnostic algo-
rithms. We argued that both VCL and hierarchical VCL have strong connections to an information-
theoretic formulation of bounded rationality. We designed a diversity objective that stabilizes learn-
ing and further reduces the risk of catastrophic forgetting. Our method builds on generic utility
functions, we can apply it independently of the underlying problem, which makes our method one
of the first to do so.
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A WASSERSTEIN-DISTANCE BETWEEN TWO GAUSSIANS

The W 2
2 distance between two Gaussians is given by

W 2
2 (p, q) = ||µp − µq||22 + ||

√
dp −

√
dq||2, (12)

Proof: Let p = N (µp,Σp) and q = N (µq, σq) be two Guassian distributions. The Wasserstein-2
distance between p and q is then given by

W 2
2 (p, q) = ||µp − µq||22 + B(Σp,Σq), (13)

where B is the Bures metric between two positive semi-definite matrices:

B(Σp,Σq) = tr(Σp + Σq − 2(Σ1/2
p ΣqΣ

1/2
p )1/2, (14)

where tr(A) is the trace of a matrix A and A1/2 is the matrix square root. Matrix square roots are
computationally expensive to compute and there can potentially be and infinite number of solutions.
In the case where p and q are Gaussian mean-field approximations, i.e., all dimensions are indepen-
dent, Σp and Σq are given by diagonal matrices, such that Σp = diag(dp)i and Σq = diag(dq)i. The
Bures metric then reduces to the Hellinger distance between the diagonals dp and dq , and we have:

W 2
2 (p, q) = ||µp − µq||22 + ||

√
dp −

√
dq||2. (15)

B WASSERSTEIN-2 EXPONENTIAL KERNEL

The exponential Wasserstein-2 kernel between isotropic Gaussian distributions p and q with kernel
width h defined by

k(p, q) = exp

(
−W

2
2 (p, q)

2h2

)
is a valid kernel function.

Proof: The simplest way to show a kernel function k is valid is by deriving k from other valid
kernels. We can express the Wasserstein distance as the sum of two norms as shown in equation 15.
The euclidean norm and the Hellinger distance both form inner product spaces and are thus valid
kernel functions. Their sum is also a valid kernel function, which makes the Wasserstein distance
on isotropic Gaussians a valid kernel. If k(p, q) is a valid kernel, then exp(k(p, q)) is also a valid
kernel.

C EXPERIMENT DETAILS

To implement variational layers we use Gaussian distributions. For simplicity we use a
D−dimensional Gaussian mean-field approximate posterior qt(θ) =

∏D
d=1N (θt|pt,d, σ2

t,d). We
use the flip-out estimator (Wen et al., 2018) to approximate the gradients. In practice, we draw a
single sample to approximate the expectation.

C.1 MNIST EXPERIMENTS

For split MNIST experiments we used dense layers for both the VAE and the classifier. The VAE
encoder contains two layers with 256 units each, followed by 64 units (64 units for the mean and
64 units for log-variance) for the latent variable, and two layers with 256 units for the decoder,
followed by an output layer with 28 ∗ 28 = 784 units. This assumes isotropic Gaussians as priors
and posteriors over the latent variable and allows to compute the DKL if closed form. We used only
one expert for the VAE with β1 = 0.002, β2 = 0.75, a diversity bonus weight of 0.01 and leaky
ReLU activations (Maas et al., 2013) in the hidden layers. We trained with a batch size 256 for 150
epochs. The VAE output activation function is a sigmoid and we trained it using a binary cross-
entropy loss between the normalized pixel values of the original and the reconstructed images. We
used no other regularization methods on the VAE. We used 10.000 generated samples after each
task.
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The classifier consists of two dense layers, each with 256 units with leaky ReLU activations (Maas
et al., 2013) and dropout (Srivastava et al., 2014) layers, followed by an output layer with two units.
All layers of the classifier have two experts. We trained with batch size 256 for 150 epochs using
Adam (Kingma & Ba, 2015) with a learning rate of 6 ∗ 10−4. In the permuted MNIST setting we
used the same architecture, but increased the number of units to 512.

C.2 CIFAR-10 EXPERIMENTS

The VAE encoder consisted of five convolutional layers with stride 4 with two experts, each with
8, 16, 32, 64, and 128 units, followed by two dense units with two experts, each with 256 units.
The latent variable has 128 dimensions, which we model by two dense layers: one with 128 units
for the mean and one with 128 units for the log-variance. The dense layer modeling the mean has
three experts, the layer for the log-variance one expert. We assume isotropic Gaussian distributions
as priors and posteriors over the latent variable, which allows us to compute the DKL if closed form.
The decoder mirrors the encoder and has two dense layers followed by 5 de-convolutional layers
with stride 4 (the last layer has stride 3). All hidden layers use a leaky ReLU activation function
(Maas et al., 2013). The VAE output activation function is a sigmoid and we trained it using a binary
cross-entropy loss between the normalized pixel values of the original and the reconstructed images.
We used no other regularization methods on the VAE. We used 10.000 generated samples after each
task.

The classifier architecture is similar to the encoder architecture. We used five convolutional layers,
followed by two dense layers. All layers used two experts. The convolutional layers have 8, 16, 32,
64, and 128 units per experts, while the dense layers both have 256 units per layer. We used leaky
ReLU as an activation function for the hidden layers and softmax for the output layer. We trained
the classifier using a binary cross-entropy loss between the true and the predicted label. We trained
with batch size 256 for 1000 epochs using the Adam optimizer with a learning rate of 3 ∗ 10−4.

C.3 REINFORCEMENT LEARNING EXPERIMENT DETAILS

Each task was trained for one million time steps. We use the same network architecture as suggested
by the authors UCL: two layer networks (actor and critics) with 16 units each. Each layer has four
experts followed by leaky ReLU (Maas et al., 2013) activation functions. Each We set each SAC
related hyper-parameter as proposed in the original publication (Haarnoja et al., 2018). For UCL
(Ahn et al., 2019), we used the implementation provided by the authors for our experiments and use
the hyper-parameters suggested in the publication. Note that the UCL implementation rests on a
PPO (Schulman et al., 2017) backbone. Our CRL experiments do not use any form of replay (except
for the replay buffer used by SAC).

D ADDITIONAL ABLATION EXPERIMENTS

To further investigate the methods we propose in this work, we designed a set of ablation experi-
ments. In particular, we aim to demonstrate the importance of each component. To this effect, we
run experiments investigating the generator quality in the generative CL setting, study the diversity
bonuses in the supervised CL scenario, and take a closer look at the number of experts and the
influence of the DKL weights in the continual reinforcement learning setup.

D.1 INVESTIGATING DIVERSITY BONUSES

In Section 2.2 we introduced a diversity objective to stabilize learning in a mixture-of-experts sys-
tem. Additionally, we argued in favor of an entropy bonus to encourage a selection policy that favors
high certainty and sparsity. To investigate the validity of these additions, we run a set of experiments
on the Split CIFAR-10 dataset as described in Section 3, but with different bonuses – see Figure 4.
In the baseline setup, we used no other objectives as those described by Equation equation 5.

Apart from the classification accuracy, we are interested in three information-theoretic quantities that
allow us to investigate the system closer. Firstly, the mutual information between the data generating
distribution p(x) and the expert selection p(m|x) as measured by I(M ;X) indicates how much
uncertainty over m the gating unit can reduce on average after observing an input x. A higher value
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Figure 4: Here we evaluate the proposed diversity measures in the split CIFAR-10 bench-
mark. We averaged every experiment over three random trials. Information-theoretic quantities
I(M ;X), I(C;X), and H(X) were measured for each layer and averaged.

Figure 5: Experimental results for systems with 1, 2, and 4 experts. As expected, adding experts mit-
igates forgetting. Each curve represents three trials in the continual reinforcement learning domain
as described in Section 3.3.

means that inputs are differentiated better, which is what we would expect from a more diverse set
of experts. I(M ;X) is the highest when we use a DPP-based diversity objective (”DDP”), while
the entropy of selection policy H(M) is lowest when we use an entropy-based diversity measure
(”H-Penalties”), which both show that the objectives we introduced in this study yield the intended
results. Combining both (”DDP+H-Pen.”) enforces a trade-off between both objectives and yields
the best empirical results. We achieve the best results with a DDP diversity bonus combined with an
entropy penalty on the expert selection. We average the results of ten random seeds in each setting.

D.2 NUMBER OF EXPERTS

Our method builds on a mixture of experts model and it is thus natural to assume that increasing the
number of experts improves performance. Indeed, this is the case as we demonstrate in additional
continual reinforcement learning experiments. As Figure D.2 illustrates, adding experts to layers
increases the number of possible information processing paths through the network. Equipped with
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Figure 6: In this figure, we show the influence of the DKL weights β1 and β2 in the continual
reinforcement learning setting. Setting the expert DKL weight β2 < 0.1 results in poor performance,
as posteriors deviate too much from their priors. On the other hand, a lower gating DKL weight β1

allows for a flexible expert allocation and improves performance.

a diverse and specialized set of parameters, each path can be regarded as a distinct sub-network that
learns to solve tasks.

D.3 DKL WEIGHTS

As with any hyper-parameter, setting a specific value for β1,2 has a strong influence on the outcome
of the experiments. Setting it too small will lead to the regularization term dominating the loss,
and the experts can’t learn a new task, as the new parameters remain close to the parameters of the
previous task. A high value will drive the penalty term towards zero, which, in turn, will not preserve
parameters from old tasks. In principle, there are three ways to choose β1,2.

First, by setting β1,2 such that it satisfies an expert information-processing limit. This technique has
the advantage that we can interpret this value, e.g., ”each expert can process 1.57 bits of information
on average, i.e., distinguishing between three options”, but shifts the burden from picking β1,2 to
setting a target entropy (see, e.g., Haarnoja et al. (2018) and Grau-Moya et al. (2019) for an example
of this approach). Second, employing a schedule for β1,2, as, e.g., proposed by Fu et al. (2019).
Last, another option is to run a grid search over a pre-defined range and choose the one that fits best.
In our supervised learning experiments, we used a cyclic schedule for β1 and β2 Fu et al. (2019)
while we kept them fixed in the reinforcement learning experiments. To systematically investigate
the influence of these parameters, we conducted additional experiments (see Figure D.3).

D.4 GENERATIVE CL

We introduce a generative approach to continual learning in Section 3.2 by implementing a Varia-
tional Auto-encoder using our proposed layer design. This addition improved classification perfor-
mance and mitigated catastrophic forgetting, as evidenced by the results shown in Table 1. We train
by integrating artificially generated data into the process by optimizing a mixture loss:

L(θ) =
1

2|Bt|
∑
b∈Bt

`(b) +
1

2|B1:t|
∑

b∈|B1:t|

`(b), (16)

where Bt is batch of data from the current task, B1:t a batch of generated data, and `(b) a loss
function on the batch b.

Borrowing methods from generative learning, we investigate the performance of our proposed VAE
design further, with the main focus on the quality of the generated images. We can not measure
the accuracy directly, as artificial images lack labels. Thus we first use the trained classifier to
obtain labels and compute metrics based on these self-generated labels. We opted for the Inception
Score (IS) (Salimans et al., 2016), as it is widely used in the generative learning community. In this
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Figure 7: Left and middle: measures for the generator quality. Right: The first two rows depict
original images and the corresponding reconstructions. The following five rows are images sampled
from the VAE prior after each task (automobiles vs. airplanes, birds vs. cats, deers vs. frogs, dogs
vs. horses, and ships vs. trucks).

initially proposed formulation, the IS builds on the DKL between the conditional and the marginal
class probabilities as returned by a pre-trained Inception model (Szegedy et al., 2015). To investigate
the quality of the generated images concerning the continually trained classifier, we use a different
version of the Inception Score, which we defined as

IST (G1:T ) = Ex∼G1:T
[DKL [p1:T (y|x)||p1:T (y)]] , (17)

whereG1:T is the data generator trained on tasks up to T , p1:T (y|x) the conditional class distribution
returned by the classifier trained up to task T , and p1:T (y) the marginal class distribution up to Task
T . Note that, IS(G1:T ) ≤ log2Nc, where Nc is the number of classes. We show IST and the
entropy of p(y) in the split CIFAR-10 and split CIFAR-100 setting in Figure 7.
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