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Abstract

Analyzing Socially Unacceptable Discourse001
(SUD) online is a critical challenge for reg-002
ulators and platforms amidst growing con-003
cerns over harmful content. While Pre-trained004
Masked Language Models (PMLMs) have005
proven effective for many NLP tasks, their per-006
formance often degrades in multi-label SUD007
classification due to overlapping linguistic cues008
across categories. In this work, we propose009
an artifact-guided pre-training strategy that in-010
jects statistically salient linguistic features, re-011
ferred to as artifacts, into the masked language012
modelling objective. By leveraging context-013
sensitive tokens, we guide an importance-014
weighted masking scheme during pre-training015
to enhance generalization across discourse016
types. We further use these artifact signals017
to inform a lightweight dataset curation pro-018
cedure that highlights noisy or ambiguous in-019
stances. This supports targeted relabeling and020
filtering, enabling more explainable and con-021
sistent annotation with minimal changes to the022
original data. Our approach provides consistent023
improvements in 10 datasets extensively used024
in SUD classification benchmarks.025
Disclaimer: This article contains some extracts of026
unacceptable and upsetting language.027

1 Introduction028

In an era defined by global crises, rising inequal-029

ity, and the proliferation of extreme online con-030

tent, regulators at different levels pressingly need031

to adopt effective Machine Learning (ML) solu-032

tions to detect Socially Unacceptable Discourse033

(SUD) (Saran, 2023).034

The ever-changing and evolving nature of social035

discourse not only presents significant challenges036

to understanding it but also limits the capabilities037

of the available discourse analysis tools. Analyzing038

SUD on the other hand is an even more challenging039

task that requires context-aware models capable of040

understanding its subtleties and nuances.041

Pre-trained Masked Language Models (PMLMs) 042

have proven effective in different NLP tasks, includ- 043

ing accurate classification of inadequate content 044

(Swamy et al., 2019; Markov and Daelemans, 2021; 045

Fortuna et al., 2021; Yin and Zubiaga, 2021; Tora- 046

man et al., 2022; Antypas and Camacho-Collados, 047

2023; Yigezu et al., 2023; Carneiro et al., 2023). 048

These models however, face multiple challenges 049

when used for online discourse analysis (Carneiro 050

et al., 2023), where they require to learn from noisy 051

data containing multiple distributions annotated 052

with shallow categories (Niaouri et al., 2024). In 053

this scenario, counting on inaccurate content la- 054

belling can in turn lead to severe (or too weak) 055

censorships that may disadvantage content creators 056

or contributing to information gaps (Draper and 057

Neschke, 2023). We also notice that PMLMs under- 058

perform when required to generalize over different 059

label distributions (multi-class) and thus have to 060

specialize over different types of speech that here- 061

after we refer to as SUD (Vehovar et al., 2020; 062

de Maiti and Fišer, 2021; Carneiro et al., 2023). 063

Masked Language Models (MLMs) are often 064

trained with a random masking schema over a 065

generic corpus, where a model learns to predict 066

randomly masked (and/or replaced) tokens con- 067

sidering their surrounding context (Devlin et al., 068

2019). 069

Intuitively, we can expect that the same linguistic 070

pattern or keywords can appear in different types 071

of discourse, breaking the assumption that a given 072

class has a unique structure and vocabulary. In such 073

a case, the language model ability to recognize and 074

disentangle a given language feature depends on 075

the model’s understanding of the context around re- 076

current textual fragments that statistically represent 077

a given class. To discover such patterns, an MLM 078

must learn the heterogeneous contexts surrounding 079

the pivotal textual feature. This begs the question: 080

Could we improve the performance of MLMs by 081

selectively focusing on more representative SUD 082
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tokens/features during the pre-training?083

Recent research efforts (Ramponi and Tonelli,084

2022; Levine et al., 2020; Moon et al., 2020) have085

highlighted the advantage of leveraging relevant086

textual features to enhance the language model087

generalization benefits to downstream task such088

as SUD classification.089

We thus study the possibility of injecting sta-090

tistical knowledge of SUD features at the MLMs091

pre-training stage. Furthermore, such a strategy092

permits us to obtain interpretable cues over the093

model decision space that we can also leverage to094

estimate noisy labels and perform data curation095

over the analyzed corpora. We notice that such a096

strategy is so-far overlooked in the automatic SUD097

analysis literature.098

Contribution: In this work we propose a new SUD099

classification framework that selectively focuses on100

and ranks informative tokens related to SUD cat-101

egories. In turn, it leverages such a knowledge to102

train unsupervised and supervised MLMs. The pro-103

posed approach uses the contextual significance of104

tokens, to weight the training loss and to estimate105

noisy labels. We extensively evaluate our contri-106

bution in building a SUD classification benchmark107

with 13 different datasets.108

2 Related Work109

SUD classification An extensive research effort110

addresses hate speech and socially unacceptable111

discourse (SUD) detection in online environments.112

Recent works have advanced various techniques113

for hate speech detection, ranging from traditional114

supervised learning to deep neural architectures.115

Malik et al. (2024) examine domain adaptation116

and multilingual detection strategies. Mollas et al.117

(2022) propose taxonomies and benchmarks to stan-118

dardize evaluation.119

Carneiro et al. (2023) and Niaouri et al. (2025)120

constructed a novel corpus combining texts from di-121

verse online platforms (social media, forums, news122

comments) with varied annotation guidelines. An123

extensive benchmark of state-of-the-art classifica-124

tion methods reveal inconsistencies in hate speech125

corpora, such as overlapping characteristics in dif-126

ferent data distribution (often related to the same127

label having different contextual interpretations),128

but also annotation biases as classification models129

trained on single-domain data suffered up to 28%130

performance drops when tested cross-domain due131

to platform-specific linguistic patterns.132

Explainable Hate Speech detection Several 133

explainable hate speech detection efforts have 134

focused on developing frameworks that com- 135

bine detection accuracy with interpretable reason- 136

ing. Hartvigsen et al. (2022) introduce explain- 137

able detection models tailored to nuanced and 138

context-dependent hate speech. The HARE frame- 139

work (Yang et al., 2023b) leverages large lan- 140

guage models (LLMs) to generate detailed ratio- 141

nales through chain-of-thought prompting. This 142

approach addresses logical gaps in different human- 143

annotated datasets, achieving superior detection 144

performance (3.8% F1 improvement over base- 145

lines) while enhancing model generalizability. 146

Benchmark datasets (Piot and Parapar, 2025) 147

have emerged as critical tools for evaluation. The 148

HateXplain (Salles et al., 2025) dataset introduced 149

word/phrase-level annotations of human rationales 150

across 20K social media posts, enabling simul- 151

taneous evaluation of classification accuracy and 152

explanation faithfulness. This resource revealed 153

that models achieving significant accuracy improve- 154

ment often fail to align with human reasoning pat- 155

terns, highlighting the need for explanation-aware 156

training. We note that technical approaches such as 157

Text-based methods can leverage Deep learning ar- 158

chitectures combined with post-hoc explainability 159

techniques, demonstrating the effectiveness of at- 160

tention mechanisms with post-hoc analysis (Murad 161

et al., 2024). 162

By contrast, we propose a solution that tackles 163

challenges in bias mitigation and cross-domain gen- 164

eralization, providing interpretable cues related to 165

model confidence in generalizing over a large scale 166

and heterogeneous domain in which label noise is 167

amplified. 168

3 Proposed Approach 169

This section outlines our methodology for enhanc- 170

ing SUD classification. Hereafter, we provide a 171

linguistically grounded definition of SUD and we 172

describe a novel extraction technique of informa- 173

tive tokens. We then present an MLM pretraining 174

strategy, introducing a refinement procedure that 175

leverages computed artifacts to explain and curate 176

data for our downstream classification task. 177

3.1 Socially Unacceptable Discourse (SUD) 178

Definition Socially Unacceptable Discourse 179

(SUD) encompasses a spectrum of harmful commu- 180

nicative acts characterized by offensive, inciting, 181
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or derogatory language. This includes both ex-182

plicit and implicit threats, negative stereotyping,183

obscene expressions, and aggressive or dehuman-184

izing rhetoric (Vehovar et al., 2020; de Maiti and185

Fišer, 2021). From a linguistic standpoint, SUD186

often parallels hate speech and extremist narratives,187

exhibiting features such as objectifying nominaliza-188

tions, third-person plural pronouns that reinforce189

in-group/out-group dynamics, present-tense con-190

structions that create immediacy, and imperative191

verbs that encourage harmful behavior (Okulska192

and Kołos, 2024).193

SUD Classification Given an text item, namely a194

sequence of T tokens X = (x1, x2, . . . , xT ), SUD195

classification assigns to X one of K predefined196

categories C = {c1, c2, . . . , cK}, each correspond-197

ing to a distinct type of harmful or inappropriate198

discourse labelled in the corpus.199

A fundamental challenge in SUD classifica-200

tion lies in its context-dependence: the same lex-201

ical items may function differently across dis-202

course types generating noisy labels in widely used203

datasets that solely dispose of context-insensitive204

annotations. To address this, we propose a context-205

aware artifact extraction and masking framework206

that selectively emphasizes semantically informa-207

tive tokens during pretraining. Extracting and scor-208

ing language artifacts will first permit us to weigh209

their importance during model training, raising the210

focus on statistically relevant contexts that, in turn,211

we leverage to define an explainable methodology212

to estimate label noise in SUD annotated corpora.213

We observe that not every token in a text se-214

quence contributes equally to semantic richness215

or contextual understanding. In this sense, model216

training by random token masking (Meng et al.,217

2024), while widely adopted, can result in subop-218

timal representation learning by overemphasizing219

frequent but uninformative tokens. In the following220

part, we describe our artifact scoring and extraction221

method.222

3.2 Scoring SUD Artifacts223

PMI Importance Score To estimate token224

salience across SUD categories, we adopt Point-225

wise Mutual Information (PMI) (Fano, 1963), a226

well-established measure of word-class association.227

Following Gururangan et al. (2018) and Ramponi228

and Tonelli (2022), we compute:229

PMI (xt, c) = log2

(
P (xt|c)

P (xt) · P (c)

)
(1) 230

where P (xt|c) is the conditional probability of to- 231

ken xt given its context class c, P (xt) its marginal 232

probability in the overall corpus, and P (c) the prior 233

probability of class c. To improve comparability 234

and mitigate sensitivity to low-frequency tokens, 235

we normalize PMI using the normalized PMI score 236

(NPMI), and further rescale it to the range [0, 1] us- 237

ing min-max normalization. When a token appears 238

across multiple classes, we compute its overall im- 239

portance score as the average of its scaled NPMI 240

scores across all associated classes. 241

BERTopic (BT) importance Score Our second 242

extraction strategy employs BERTopic (Grooten- 243

dorst, 2022), a transformer-based topic modeling 244

framework that clusters semantically similar texts 245

using Sentence-BERT embeddings 1 (Reimers, 246

2019). We identify salient tokens within each topic 247

using class Term Frequency - Inverse Document 248

Frequency (cTF-IDF) (Joachims et al., 1997). This 249

metric reflects a token’s frequency within a topic 250

relative to its frequency across the corpus: 251

cTF -IDF (t, Ti) = P (t | Ti) · log
(

N

|Dt|

)
(2) 252

where P (t | Ti) is the normalized frequency of 253

token t in its topic Ti ∈ N, N is the total number of 254

documents, and |Dt| is the number of documents 255

containing t. In our work, we consider that a token 256

is assigned to one or multiple topics in an unsuper- 257

vised manner using a clustering algorithm (Groo- 258

tendorst, 2022). Hence, Ti represents a cluster 259

index. A global importance score is then obtained 260

by averaging each token’s normalized relevance 261

across all topics in which it appears. 262

3.3 Artifact-Guided Masked Language 263

Modeling Pretraining 264

Extracting and scoring tokens permits us to incorpo- 265

rate an importance score into the MLM pretraining 266

objective. This integration biases the loss function, 267

assigning a weight to the selected tokens. In this 268

section, we present the masking strategy we adopt 269

and the details of the aforementioned loss function. 270

1We use the paraphrase-MiniLM-L3-v2 model to gener-
ate sentence embeddings.
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Token Masking Strategies To investigate the271

effect of artifact-guided masking, we consider four272

masking strategies : (1) Random Masking, in273

which tokens are masked uniformly at random,274

and the standard MLM loss is applied (Devlin275

et al., 2019). (2) Top-k Masking, where only the276

k percentage tokens, with the highest importance277

scores are masked during training. (3) Random278

Masking with Weighted Loss, where tokens279

are randomly masked, while the loss is scaled280

by token-level importance weights. (4) Top-k281

Masking with Weighted Loss, extends the Top-k282

Masking approach by applying an importance-283

weighted loss to the masked tokens.284

285

Weighted MLM Objective Given a corpus D =286

{X1, . . . , XN}, where each text item is composed287

by a set of tokens, namely Xi = (x1, . . . , xT ),288

a subset M ⊆ {1, . . . , T} is selected for mask-289

ing. Tokens at these positions are replaced with the290

[MASK] string placeholder. The model is trained291

to predict each masked token xt from the corrupted292

sequence X̃i, minimizing the standard negative log-293

likelihood:294

ℓt = − log
(
pθ(xt | X̃)

)
(3)295

To emphasize semantically salient tokens, each ℓt296

is scaled by an importance score wt, derived from297

our artifact extraction methods presented in 3.2 and298

a binary mask indicator (at = 1[t ∈ M]):299

ℓ
Weighted
t = ℓt · wt · at (4)300

The final objective averages the weighted loss301

across all masked positions:302

LWeighted
MLM =

∑T
t=1 ℓ

Weighted
t∑T

t=1 at
(5)303

This formulation biases training toward artifact-304

relevant tokens while maintaining stable optimiza-305

tion across variable-length sequences.306

Model Architecture Figure 1 illustrates the307

artifact-guided masked language modeling process.308

Masked tokens are processed through a stack of309

bidirectional transformer layers, yielding contextu-310

alized representations hLt . These hidden states are311

projected into the vocabulary space using a learned312

output matrix E, producing logits ut = hLt E
⊤,313

Figure 1: Artifact-weighted MLM. Selected tokens
are masked and passed through a bidirectional trans-
former (Devlin et al., 2019). Token-level predictions are
compared against ground truth, with losses scaled by
artifact-derived importance scores.

which are then transformed into output probabili- 314

ties via a softmax function: 315

yt = softmax(ut) (6) 316

These probabilities are used to compute the artifact- 317

weighted loss defined in Equation 5, where each 318

token’s contribution is scaled by its corresponding 319

importance score. 320

3.4 Dataset Curation via Token Diagnostics 321

To evaluate Artifact-Guided pretraining, we ana- 322

lyze token-level reconstruction loss. Our assump- 323

tion is to have the possibility to identify statistically 324

important tokens that are difficult-to-reconstruct at 325

MLM training stage as they can reflect distribu- 326

tional noise or semantic ambiguities that impair 327

downstream performance. To that extent, we intro- 328

duce a token scoring function based on label noise 329

estimation, that aims to quantify token relationship 330

with noise. 331

Noise-Driven Token (ND) Score We introduce 332

a token-level scoring scheme based on annotation 333

uncertainty. Following principles from confident 334

learning (Northcutt et al., 2022), we identify fre- 335

quent tokens in samples flagged as likely misla- 336

beled, namely those having high discrepancies be- 337

tween predicted labels and class-conditional noise 338

expectations. We extract these candidates using the 339
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Cleanlab toolkit (Northcutt et al., 2022), employ-340

ing a confusion score that quantifies semantically341

contextually ambiguous tokens with the following342

score :343

St =
ft

maxt′ ft′
(7)344

where ft is the frequency of token t in potentially345

misannotated instances, normalized by the maxi-346

mum token frequency among all such instances.347

To focus on informative textual features, we ex-348

clude stop words and retain only the top 25% most349

frequent tokens within this error subset.350

Noise Removal Algorithm For each masked to-351

ken, we compute reconstruction loss during pre-352

training and pair it with the computed importance353

score, aiming to curate dataset label by flagging354

text instances that contain high-scoring tokens.355

Such a methodology allows human-in-the-loop356

intervention and exploratory analysis of candidate357

tokens that the user can iterate in (ranking) order358

to investigate and curate label noise prior to per-359

form SUD classification. Our intuition rely on the360

fact that frequent tokens likely belong to patterns361

recognized and learned by the model to generalize362

over SUD classes. In this manner, we propose to363

consider such token-level statistics across the rela-364

tive model reconstruction capabilities at pretraining365

stage. To correct noisy instances in a given corpus,366

we propose two strategies:367

(1) Relabeling that replaces a label of an in-368

stance X , if this latter is different from the instance369

label in which the token with the highest score (in370

X) occurs globally more often.371

Example 1 Given a corpus C and a text instances372

X = {”abc”} ∈ C assigned with label 0. Let373

us consider that "b" would be the token with the374

highest score that occurs more often in instances375

assigned with label 1 ∈ C, the label of X changes376

to 1.377

(2) Filtering, that removes from the corpus an378

instance X if this latter is assigned with a label379

different from the instance label in which the token380

with the highest score (in X) occurs globally more381

often.382

Example 2 Given a corpus C′ and a text instances383

Y = {”cde”} ∈ C′ assigned with label 1. Let384

us consider that "d" would be the token with the385

highest score that occurs more often in instances386

assigned with label 0 ∈ C′, Y is removed from C′.387

Downstream Task For the evaluation of our 388

methods we fine-tune our models on a multi-class 389

classification task targeting Socially Unacceptable 390

Discourse (SUD), as defined in Section 3.1. 391

The model architecture comprises a pretrained 392

encoder that produces contextualized token repre- 393

sentations, which are aggregated and passed to a 394

lightweight classification head, a linear projection 395

followed by a softmax activation, to yield a proba- 396

bility distribution over the target classes. Training 397

is conducted using the standard cross-entropy loss 398

between predicted distributions and ground-truth 399

labels (Devlin et al., 2019; Clark et al., 2020; Zhang 400

et al., 2023; Yang et al., 2023a; Moon et al., 2020; 401

Sun et al., 2019). 402

4 Experimental Setup 403

In this section, we present the experimental 404

framework employed to evaluate our artifact- 405

aware pretraining approach, detailing the datasets 406

and model configurations. Model training and 407

evaluation were carried out using key libraries 408

such as transformers, datasets, PyTorch, and 409

TensorFlow. Comprehensive information on pack- 410

age versions and the computational environment is 411

available in our temporary anonymized repository 412

to facilitate reproducibility: https://anonymous. 413

4open.science/r/Anonymous_Submission-6 414

65B. 415

4.1 Datasets 416

We utilize the GSUD dataset introduced by 417

Carneiro et al. (2023), which aggregates 13 pub- 418

licly available English-language datasets spanning 419

up to 12 SUD classes. Table 4 (Appendix) sum- 420

marizes the datasets included in our experiments. 421

The full corpus comprises approximately 500K in- 422

stances, with a significant imbalance across classes. 423

The neither class accounts for over 70% of the sam- 424

ples, while individual SUD categories vary in fre- 425

quency. All datasets are publicly available and re- 426

leased under permissive licenses. Our use of these 427

datasets is consistent with their original purpose, 428

which was primarily classification and moderation 429

of hate speech-related content. More details on the 430

GSUD dataset are found in the work of Carneiro 431

et al. (2023). 432

4.2 Models and Training Setup 433

We experiment with four transformer-based 434

models from the Hugging Face library: 435
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bert-base-uncased (110M parameters),436

bert-large-uncased (340M), roberta-base437

(125M), and roberta-large (355M). All ex-438

periments were conducted on an infrastructure439

equipped with NVIDIA A100 GPUs (80 GB440

memory) and 2 TB main memory, equipped with 2441

AMD Milan EPYC 7543 processors (32 cores at442

2.80 GHz).443

MLM Pretraining Pretraining is conducted on444

the GSUD corpus (∼155K samples), to which we445

apply stratified under-sampling of the dominant446

neither class (10% retention).2 Hyperparameters447

are tuned empirically. The final setup includes a448

learning rate of 1× 10−5, weight decay of 0.001,449

batch size of 128, and 5 training epochs.3450

Downstream Classification Task Following pre-451

training, models are fine-tuned on each single452

dataset composing GSUD for multi-class text clas-453

sification. We split data using the following ratio:454

80% training, 10% validation, and 10% test using455

stratified sampling. We employ the Hugging Face456

AutoModelForSequenceClassification wrap-457

per, to attach a fully connected classification head458

to the pretrained encoder. Input sequences are to-459

kenized using the corresponding AutoTokenizer460

for each model. Fine-tuning is conducted for three461

epochs with a batch size of 16, a learning rate of462

2× 10−5, and weight decay of 0.01. Each model463

is fine-tuned and evaluated across 10 runs with dif-464

ferent seeds. Model performance is reported as the465

mean and standard deviation of the macro-averaged466

F1-score on the held-out test set.467

5 Results468

In this section we present and discuss the results of469

the proposed SUD classification framework.470

5.1 Artifact-based Pretraining471

Pretraining Strategy Evaluation Our first re-472

search objective is to evaluate the effectiveness of473

the different pretraining strategies discussed and474

proposed in the paper. Figure 2 shows the mean475

F1 score of SUD classification conducted with the476

2A secondary configuration was also evaluated consisting
of a focused subset containing only SUD-labeled instances
(∼120K samples), emphasizing domain-specific language.
However, as this configuration did not yield any noticeable
differences we omit to report the relative results.

3The hyperparameter search space included the following
configurations: learning rate ∈ {5 × 10−5, 2 × 10−5, 1 ×
10−5}, weight decay ∈ {0.1, 0.01, 0.001}, batch size ∈
{64, 128}, and number of epochs ∈ {3, 5}.

Figure 2: Aggregated F1 Score Performance Across
Pretraining Paradigms and Experimental Conditions
for BERT-Base, RoBerta-Base, BERT-Large, and
RoBERTa-Large.

baseline models and different pretraining strate- 477

gies (Random Masking + Weighted Loss, Top- 478

k Masking + Weighted Loss, Random Mask- 479

ing, Top-k Masking) leveraging the proposed arti- 480

facts scores (PMI Figure 2(top) and BERTopic Fig- 481

ure 2(bottom)). Here, we report the global mean 482

of the classification performed in all the dataset 483

reported in Table 4 across all masking proportions 484

(Top-k = 5%, 10%, 15%, 25%, 35%). Our re- 485

sults indicate that pretraining strategies incorporat- 486

ing Weighted Loss exhibit the best performance 487

across all the settings, confirming the hypothesis 488

that models reinforce their generalizability when 489

reconstructed loss is weighted according to the con- 490

text importance. 491

Masking Percentage Optimization Figure 3 492

presents the F1 scores of BERT-Base across differ- 493

ent masking percentages under Pretraining with 494

PMI and BERTopic artifact masking. Again, 495

weighted Loss strategies consistently outperform 496

their non-weighted counterparts, yielding optimal 497

performances at the 25% masking level. In general 498

we note that BERT-Base has performance either 499

on par, or superior than the other models. Hence, 500

in the following part of the evaluation, we solely 501

consider BERT-Base. 502

5.2 Dataset Curation via Token Diagnostics 503

To analyze the errors and individuate the effec- 504

tiveness of artifact-guided pretraining in learning 505
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Figure 3: F1 Score Performance of BERT-Base Across
Different Masking Percentages

meaningful token representations, we analyse the506

correlation between token-level statistical score and507

reconstruction difficulty (model loss) in the whole508

GSUD using the BERT-Base model. Figure 4 visu-509

alizes mean token reconstruction loss as a function510

of artifact extraction score (log scale), limited to the511

top 25% of tokens per method. Each dot represents512

a single token. To quantify these relationships, we513

compute Pearson correlations between reconstruc-514

tion loss and the log-transformed artifact scores.515

For the Noise-Driven score, we observe a strong516

negative correlation (r = −0.64), indicating that517

tokens with higher importance scores tend to be518

reconstructed more accurately in our framework.519

Such results show that frequent tokens assigned520

with noisy label are well reconstructed by the521

MLM, suggesting a relationship with learned pat-522

terns used to discriminate. In contrast, BERTopic523

(r = 0.01) and PMI (r = 0.03) show no correla-524

tions with reconstruction loss, indicating a weaker525

association between their frequency and model un-526

certainty during pretraining.527

Dataset-Specific Curation We begin by evaluat-528

ing our curation strategy within each dataset inde-529

pendently, leveraging the proposed scores vs. loss530

diagnostics. Specifically, we curate our dataset531

by flagging sentences containing high-scoring to-532

kens selected by the following thresholds (depicted533

in Figure 4): PMI ≥ 0.4, BERTopic ≥ 0.6, and534

Noise-Driven Score ≥ 0.2 or ≥ 0.4. These values535

were selected to retain only the most salient tokens536

based on distributional breakpoints and qualitative537

review. Thresholds are reported here in raw form,538

while log-transformed values are used for visual-539

ization in plots. We then apply the token-level540

diagnostics described in Section 3.4 to curate the541

datasets with the two types of intervention: (1) Re-542

labeling, and (2) Filtering prior to perform SUD543

classification.544

Table 1 presents the performance impact of each545

method across 13 datasets. We observe that cura-546

tion strategies yield mixed results: in datasets such 547

as Founta, Gab, and Hateval, both relabeling and 548

filtering significantly improve performance, sug- 549

gesting that model errors were at least partly driven 550

by annotation inconsistencies or label noise. Con- 551

versely, for datasets such as Davidson and Olid, 552

the gains are modest or neutral, and aggressive fil- 553

tering thresholds can even lead to degradation. Im- 554

portantly, we found that certain datasets exhibited 555

unexpected performance drops under these inter- 556

ventions, particularly Fox and Grimminger. 557

Large Scale Curation We extend our analysis 558

considering SUD classification in the complete 559

(GSUD ) corpus. Such scenario is challenging, as it 560

introduces further annotation noise due to hetero- 561

geneous labeling criteria of different sources. We 562

apply the same token-level relabeling and filtering 563

methods described in the previous experiment. Ta- 564

ble 2 (left) shows the absolute F1 scores for each 565

method on the GSUD corpus (∼155K samples) (we 566

apply stratified under-sampling of the dominant nei- 567

ther class (10% retention) as suggested in (Carneiro 568

et al., 2023)). Relabeling with noise-driven diag- 569

nostics at a 0.2 threshold performs best, achieving 570

an F1 score of 66.9. Table 2 (right) reports the 571

relative differences from the baseline. The same 572

method yields the highest gain (+11.2), followed by 573

BERTopic (+8.1). Filtering methods show smaller 574

but consistent improvements. These results indi- 575

cate that our token-based techniques are effective 576

not only for individual datasets but also when ap- 577

plied to a large scale scenario, better resolving 578

cross-dataset inconsistencies. 579

5.3 Human-Guided Explainable Approach 580

While applying automatic relabeling and filtering 581

strategies by automatically filtering noisy instances, 582

we observe that even limited interventions could 583

lead to notable drops in performance on certain 584

datasets, such as Grimminger and Fox as shown in 585

Table 1. To understand this, we analyze token distri- 586

butions depicted in Figure 5 (Appendix), which dis- 587

plays the normalized frequency of selected tokens 588

in each dataset, for which the ND score is greater 589

than or equal to 0.4. We observe that salient tokens 590

potentially related to SUD (e.g., b*tch, f*cking) 591

are under-represented in Grimminger and Fox, 592

suggesting that previously repaired instances con- 593

tain neutral language. Guided by such explana- 594

tion, we restrict the interventions to tokens with 595

high support and semantic relevance to SUD. In 596

7



Figure 4: Mean token reconstruction loss vs. artifact extraction score (log scale). Each dot represents a single
artifact from the top 25% of scores.

Dataset Baseline Relabeling Filtering
Noise-Driven ≥ 0.2 Noise-Driven ≥ 0.4 BERTopic ≥ 0.6 PMI ≥ 0.4 Noise-Driven ≥ 0.2 Noise-Driven ≥ 0.4 BERTopic ≥ 0.6 PMI ≥ 0.4

Davidson 76.31.2 73.32.2 75.82.3 75.51.6 76.31.2 72.23.7 75.8 1.5 76.51.7 76.31.2
Founta 76.30.7 79.91.5 78.60.9 76.7 0.6 76.30.7 79.6 1.6 78.4 0.9 75.90.7 76.30.7
Fox 67.02.7 60.24.6 58.73.1 64.5 0.7 66.82.7 55.6 6.3 62.3 4.2 64.54.3 66.92.7
Gab 90.00.3 95.20.3 93.20.5 90.4 0.5 90.30.4 93.1 0.5 91.8 0.5 90.40.6 90.00.3
Grimminger 72.52.5 52.74.5 67.85.8 70.1 0.3 72.22.2 58.7 3.7 68.95.5 72.13.6 72.42.5
Hasoc2019 46.71.8 45.23.4 42.12.4 44.1 3.3 46.71.8 43.5 3.8 44.1 2.9 46.01.3 46.71.8
Hasoc2020 56.42.2 53.13.9 54.32.3 54.0 2.0 53.42.2 58.1 3.6 52.8 2.2 56.72.9 56.42.2
Hateval 77.01.0 87.10.7 84.50.7 77.7 1.3 77.01.0 84.9 1.8 80.9 1.2 77.30.5 77.01.0
Jigsaw 55.11.0 63.62.0 61.31.1 57.9 0.9 54.61.2 60.1 2.7 58.2 1.2 55.40.9 54.71.0
Olid 78.01.0 79.71.5 78.81.0 77.3 1.1 77.41.0 80.3 2.2 77.7 1.3 77.73.6 77.51.0
Reddit 84.80.9 82.51.5 86.51.2 84.5 0.6 84.90.7 83.7 1.8 86.4 1.3 85.10.8 84.90.8
Stormfront 77.91.7 63.64.2 70.92.0 75.9 0.2 77.81.8 69.1 3.7 75.2 2.5 78.12.2 77.91.7
Trac 74.60.6 80.41.4 78.21.2 74.9 1.3 74.70.5 79.1 0.9 77.5 1.3 75.01.4 74.11.3

Table 1: Performance comparison of our relabeling and filtering methods at a dataset level. Scores are averages of
10 runs with different seeds, while subscripts indicate standard deviation. We depict scores above the baseline in
bold.

Method Relabeling Filtering
Noise-Driven (≥ 0.2) 66.91.6 62.21.4

Noise-Driven (≥ 0.4) 62.81.1 61.41.3

BERTopic (≥ 0.6) 65.10.5 60.70.6

PMI (≥ 0.4) 60.10.7 60.20.4

Table 2.1: F1 scores for relabeling and filtering methods.

Method Relabeling Filtering
Noise-Driven (≥ 0.2) +11.1 +3.3
Noise-Driven (≥ 0.4) +4.3 +2.0
BERTopic (≥ 0.6) +8.1 +0.8
PMI (≥ 0.4) -0.2 +0.0

Table 2.2: Relative differences from baseline.

Table 2: Comparison of relabeling and filtering methods
(left) on a class-balanced subset of the GSUD corpus in
F1 scores and their relative differences from baseline
(right). Scores are averages of 10 runs with different
seeds, while subscripts indicate standard deviation.

this experiment, we also consider token ranking597

using BERTopic-based score. This selective ap-598

proach leads to more consistent improvements in599

ten datasets as reflected in Table 3.600

6 Conclusion601

The results of this study offer several insights into602

the role of SUD artifacts in guiding pretraining and603

improving dataset quality for the task of SUD clas-604

sification. While standard masked language model-605

ing provides only limited improvements in down-606

Dataset Baseline Relabeling Filtering
ND ≥ 0.2 ND ≥ 0.4 BT ≥ 0.6 ND ≥ 0.2 ND≥ 0.4 BT ≥ 0.6

Davidson 76.31.2 75.51.4 77.32.1 76.51.0 76.21.7 76.61.8 76.51.0
Founta 76.30.7 78.40.5 78.20.7 78.10.7 78.21.0 77.80.5 77.90.7
Fox 67.02.7 67.24.1 70.63.6 70.33.4 65.75.2 70.43.6 70.63.6
Gab 90.00.3 92.40.3 91.00.4 90.80.4 92.20.4 91.00.5 90.80.4
Grimminger 72.52.5 68.43.3 72.73.2 72.53.0 71.45.2 72.63.1 72.63.1
Hasoc2019 46.71.8 48.52.5 46.42.0 46.02.0 47.82.4 45.62.0 46.02.0
Hasoc2020 56.42.2 58.24.3 56.21.7 56.21.7 56.72.7 56.21.7 56.21.7
Hateval 77.01.0 82.60.9 82.20.9 81.80.9 83.30.7 82.50.9 81.80.9
Jigsaw 55.11.0 64.51.5 58.20.9 58.40.9 60.50.8 58.71.1 58.40.9
Olid 78.01.0 80.10.8 77.70.7 77.60.7 78.61.1 77.70.7 77.60.7
Reddit 84.80.9 86.71.0 85.70.9 85.90.7 86.40.8 85.11.1 85.90.7
Stormfront 77.91.7 76.32.5 78.11.8 78.11.8 77.82.1 78.11.1 78.11.8
Trac 74.60.6 75.21.6 75.10.7 75.10.7 75.41.2 75.20.6 75.20.7

Table 3: Comparison of F1 scores (meanstd) across
datasets with different noise-handling strategies: base-
line (original labels), relabeling using Noise-Driven
(ND) and BERTopic (BT) approaches, and filtering
based on noise scores.

stream performance across model architectures, in- 607

troducing artifact-weighted loss consistently yields 608

better results. By assigning greater importance to 609

semantically important tokens, the model is encour- 610

aged to focus on contextually challenging regions. 611

Beyond model performance, our curation strategy, 612

based on token-level relabeling and filtering, proves 613

valuable for interpretability. With minimal changes 614

to the data, the method reveals annotation incon- 615

sistencies, offering a lightweight mechanism for 616

surfacing potential labeling issues. This enables 617

more transparent error analysis and targeted refine- 618

ment. 619
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7 Limitations620

While our artifact-guided curation framework621

demonstrates clear potential, it presents several622

limitations. Most notably, it is not a substitute623

for comprehensive human annotation. Although624

our approach effectively surfaces tokens in am-625

biguous or noisy environments through artifact-626

based heuristics, it may overlook subtle linguistic627

inconsistencies or contextual errors that only hu-628

man annotators can reliably detect. As a result, a629

dedicated annotation campaign supported by our630

solution remains necessary to validate and comple-631

ment our dataset curation methods. Moreover, we632

plan to extend the human-in-the-loop approach to633

the GSUD corpus, increasing our ability to assess634

the method’s effectiveness in this setting, where635

tailored adaptation and computational challenges636

require to be addressed. Finally, the token selec-637

tion thresholds, though informed by distributional638

patterns and qualitative assessment, remain heuris-639

tic. Future work could investigate more principled,640

data-driven approaches to enhance the robustness641

and generalizability of the dataset curation frame-642

work.643
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Dataset Source Sample Type # Samples Labels
Davidson Davidson et al. (2017) Tweets 25,000 hate, offensive, neither
Founta Founta et al. (2018) Tweets 100,000 abusive, hate, neither
Fox Gao and Huang (2017) Threads 1,528 hate, neither
Gab Kocon et al. (2021) Posts 34,000 hate, neither
Grimminger Grimminger and Klinger (2021) Tweets 3,000 hate, neither
HASOC2019 Mandl et al. (2019) Facebook, Twitter 12,000 hate, offensive, profane, neither
HASOC2020 Mandl et al. (2020) Facebook posts 12,000 hate, offensive, profane, neither
Hateval Basile et al. (2019) Tweets 13,000 hate, neither
Jigsaw Van Aken et al. (2018) Wikipedia talk pages 220,000 identity hate, insult, obscene, severe toxic, threat, toxic, neither
Olid Zampieri et al. (2019) Tweets 14,000 offensive, neither
Reddit Yuan and Rizoiu (2022) Posts 22,000 hate, neither
Stormfront De Gibert et al. (2018) Threads 10,500 hate, neither
Trac Kumar et al. (2018) Facebook posts 15,000 aggressive, neither

Table 4: Summary of datasets used in this study Carneiro et al. (2023).
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