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Abstract

Analyzing Socially Unacceptable Discourse
(SUD) online is a critical challenge for reg-
ulators and platforms amidst growing con-
cerns over harmful content. While Pre-trained
Masked Language Models (PMLMs) have
proven effective for many NLP tasks, their per-
formance often degrades in multi-label SUD
classification due to overlapping linguistic cues
across categories. In this work, we propose
an artifact-guided pre-training strategy that in-
jects statistically salient linguistic features, re-
ferred to as artifacts, into the masked language
modelling objective. By leveraging context-
sensitive tokens, we guide an importance-
weighted masking scheme during pre-training
to enhance generalization across discourse
types. We further use these artifact signals
to inform a lightweight dataset curation pro-
cedure that highlights noisy or ambiguous in-
stances. This supports targeted relabeling and
filtering, enabling more explainable and con-
sistent annotation with minimal changes to the
original data. Our approach provides consistent
improvements in 10 datasets extensively used
in SUD classification benchmarks.

Disclaimer: This article contains some extracts of
unacceptable and upsetting language.

1 Introduction

In an era defined by global crises, rising inequal-
ity, and the proliferation of extreme online con-
tent, regulators at different levels pressingly need
to adopt effective Machine Learning (ML) solu-
tions to detect Socially Unacceptable Discourse
(SUD) (Saran, 2023).

The ever-changing and evolving nature of social
discourse not only presents significant challenges
to understanding it but also limits the capabilities
of the available discourse analysis tools. Analyzing
SUD on the other hand is an even more challenging
task that requires context-aware models capable of
understanding its subtleties and nuances.

Pre-trained Masked Language Models (PMLMs)
have proven effective in different NLP tasks, includ-
ing accurate classification of inadequate content
(Swamy et al., 2019; Markov and Daelemans, 2021;
Fortuna et al., 2021; Yin and Zubiaga, 2021; Tora-
man et al., 2022; Antypas and Camacho-Collados,
2023; Yigezu et al., 2023; Carneiro et al., 2023).
These models however, face multiple challenges
when used for online discourse analysis (Carneiro
et al., 2023), where they require to learn from noisy
data containing multiple distributions annotated
with shallow categories (Niaouri et al., 2024). In
this scenario, counting on inaccurate content la-
belling can in turn lead to severe (or too weak)
censorships that may disadvantage content creators
or contributing to information gaps (Draper and
Neschke, 2023). We also notice that PMLMs under-
perform when required to generalize over different
label distributions (multi-class) and thus have to
specialize over different types of speech that here-
after we refer to as SUD (Vehovar et al., 2020;
de Maiti and FiSer, 2021; Carneiro et al., 2023).

Masked Language Models (MLMs) are often
trained with a random masking schema over a
generic corpus, where a model learns to predict
randomly masked (and/or replaced) tokens con-
sidering their surrounding context (Devlin et al.,
2019).

Intuitively, we can expect that the same linguistic
pattern or keywords can appear in different types
of discourse, breaking the assumption that a given
class has a unique structure and vocabulary. In such
a case, the language model ability to recognize and
disentangle a given language feature depends on
the model’s understanding of the context around re-
current textual fragments that statistically represent
a given class. To discover such patterns, an MLM
must learn the heterogeneous contexts surrounding
the pivotal textual feature. This begs the question:
Could we improve the performance of MLMs by
selectively focusing on more representative SUD



tokens/features during the pre-training?

Recent research efforts (Ramponi and Tonelli,
2022; Levine et al., 2020; Moon et al., 2020) have
highlighted the advantage of leveraging relevant
textual features to enhance the language model
generalization benefits to downstream task such
as SUD classification.

We thus study the possibility of injecting sta-

tistical knowledge of SUD features at the MLMs
pre-training stage. Furthermore, such a strategy
permits us to obtain interpretable cues over the
model decision space that we can also leverage to
estimate noisy labels and perform data curation
over the analyzed corpora. We notice that such a
strategy is so-far overlooked in the automatic SUD
analysis literature.
Contribution: In this work we propose a new SUD
classification framework that selectively focuses on
and ranks informative tokens related to SUD cat-
egories. In turn, it leverages such a knowledge to
train unsupervised and supervised MLMs. The pro-
posed approach uses the contextual significance of
tokens, to weight the training loss and to estimate
noisy labels. We extensively evaluate our contri-
bution in building a SUD classification benchmark
with 13 different datasets.

2 Related Work

SUD classification An extensive research effort
addresses hate speech and socially unacceptable
discourse (SUD) detection in online environments.
Recent works have advanced various techniques
for hate speech detection, ranging from traditional
supervised learning to deep neural architectures.
Malik et al. (2024) examine domain adaptation
and multilingual detection strategies. Mollas et al.
(2022) propose taxonomies and benchmarks to stan-
dardize evaluation.

Carneiro et al. (2023) and Niaouri et al. (2025)
constructed a novel corpus combining texts from di-
verse online platforms (social media, forums, news
comments) with varied annotation guidelines. An
extensive benchmark of state-of-the-art classifica-
tion methods reveal inconsistencies in hate speech
corpora, such as overlapping characteristics in dif-
ferent data distribution (often related to the same
label having different contextual interpretations),
but also annotation biases as classification models
trained on single-domain data suffered up to 28%
performance drops when tested cross-domain due
to platform-specific linguistic patterns.

Explainable Hate Speech detection Several
explainable hate speech detection efforts have
focused on developing frameworks that com-
bine detection accuracy with interpretable reason-
ing. Hartvigsen et al. (2022) introduce explain-
able detection models tailored to nuanced and
context-dependent hate speech. The HARE frame-
work (Yang et al., 2023b) leverages large lan-
guage models (LLMs) to generate detailed ratio-
nales through chain-of-thought prompting. This
approach addresses logical gaps in different human-
annotated datasets, achieving superior detection
performance (3.8% F1 improvement over base-
lines) while enhancing model generalizability.

Benchmark datasets (Piot and Parapar, 2025)
have emerged as critical tools for evaluation. The
HateXplain (Salles et al., 2025) dataset introduced
word/phrase-level annotations of human rationales
across 20K social media posts, enabling simul-
taneous evaluation of classification accuracy and
explanation faithfulness. This resource revealed
that models achieving significant accuracy improve-
ment often fail to align with human reasoning pat-
terns, highlighting the need for explanation-aware
training. We note that technical approaches such as
Text-based methods can leverage Deep learning ar-
chitectures combined with post-hoc explainability
techniques, demonstrating the effectiveness of at-
tention mechanisms with post-hoc analysis (Murad
et al., 2024).

By contrast, we propose a solution that tackles
challenges in bias mitigation and cross-domain gen-
eralization, providing interpretable cues related to
model confidence in generalizing over a large scale
and heterogeneous domain in which label noise is
amplified.

3 Proposed Approach

This section outlines our methodology for enhanc-
ing SUD classification. Hereafter, we provide a
linguistically grounded definition of SUD and we
describe a novel extraction technique of informa-
tive tokens. We then present an MLM pretraining
strategy, introducing a refinement procedure that
leverages computed artifacts to explain and curate
data for our downstream classification task.

3.1 Socially Unacceptable Discourse (SUD)

Definition Socially Unacceptable Discourse
(SUD) encompasses a spectrum of harmful commu-
nicative acts characterized by offensive, inciting,



or derogatory language. This includes both ex-
plicit and implicit threats, negative stereotyping,
obscene expressions, and aggressive or dehuman-
izing rhetoric (Vehovar et al., 2020; de Maiti and
FiSer, 2021). From a linguistic standpoint, SUD
often parallels hate speech and extremist narratives,
exhibiting features such as objectifying nominaliza-
tions, third-person plural pronouns that reinforce
in-group/out-group dynamics, present-tense con-
structions that create immediacy, and imperative
verbs that encourage harmful behavior (Okulska
and Kotos, 2024).

SUD Classification Given an text item, namely a
sequence of T" tokens X = (x1,x2,...,27), SUD
classification assigns to X one of K predefined
categories C = {cy, ca, ..., ck }, each correspond-
ing to a distinct type of harmful or inappropriate
discourse labelled in the corpus.

A fundamental challenge in SUD classifica-
tion lies in its context-dependence: the same lex-
ical items may function differently across dis-
course types generating noisy labels in widely used
datasets that solely dispose of context-insensitive
annotations. To address this, we propose a context-
aware artifact extraction and masking framework
that selectively emphasizes semantically informa-
tive tokens during pretraining. Extracting and scor-
ing language artifacts will first permit us to weigh
their importance during model training, raising the
focus on statistically relevant contexts that, in turn,
we leverage to define an explainable methodology
to estimate label noise in SUD annotated corpora.

We observe that not every token in a text se-
quence contributes equally to semantic richness
or contextual understanding. In this sense, model
training by random token masking (Meng et al.,
2024), while widely adopted, can result in subop-
timal representation learning by overemphasizing
frequent but uninformative tokens. In the following
part, we describe our artifact scoring and extraction
method.

3.2 Scoring SUD Artifacts

PMI Importance Score To estimate token
salience across SUD categories, we adopt Point-
wise Mutual Information (PMI) (Fano, 1963), a
well-established measure of word-class association.
Following Gururangan et al. (2018) and Ramponi
and Tonelli (2022), we compute:

P(a1lc)
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where P(x¢|c) is the conditional probability of to-
ken z; given its context class ¢, P(x) its marginal
probability in the overall corpus, and P(c) the prior
probability of class c. To improve comparability
and mitigate sensitivity to low-frequency tokens,
we normalize PMI using the normalized PMI score
(NPMI), and further rescale it to the range [0, 1] us-
ing min-max normalization. When a token appears
across multiple classes, we compute its overall im-
portance score as the average of its scaled NPMI
scores across all associated classes.

PMI (z¢,c) = log, <

BERTopic (BT) importance Score Our second
extraction strategy employs BERTopic (Grooten-
dorst, 2022), a transformer-based topic modeling
framework that clusters semantically similar texts
using Sentence-BERT embeddings ' (Reimers,
2019). We identify salient tokens within each topic
using class Term Frequency - Inverse Document
Frequency (cTF-IDF) (Joachims et al., 1997). This
metric reflects a token’s frequency within a topic
relative to its frequency across the corpus:

¢TF-IDF(t,T;) = P(t| T}) - log (,;) )
t

where P(t | T;) is the normalized frequency of
token ¢ in its topic T; € N, N is the total number of
documents, and |D;| is the number of documents
containing ¢. In our work, we consider that a token
is assigned to one or multiple topics in an unsuper-
vised manner using a clustering algorithm (Groo-
tendorst, 2022). Hence, T; represents a cluster
index. A global importance score is then obtained
by averaging each token’s normalized relevance
across all topics in which it appears.

3.3 Artifact-Guided Masked Language
Modeling Pretraining

Extracting and scoring tokens permits us to incorpo-
rate an importance score into the MLM pretraining
objective. This integration biases the loss function,
assigning a weight to the selected tokens. In this
section, we present the masking strategy we adopt
and the details of the aforementioned loss function.

'We use the paraphrase-MiniLM-L3-v2 model to gener-
ate sentence embeddings.



Token Masking Strategies To investigate the
effect of artifact-guided masking, we consider four
masking strategies : (1) Random Masking, in
which tokens are masked uniformly at random,
and the standard MLM loss is applied (Devlin
et al., 2019). (2) Top-k Masking, where only the
k percentage tokens, with the highest importance
scores are masked during training. (3) Random
Masking with Weighted Loss, where tokens
are randomly masked, while the loss is scaled
by token-level importance weights. (4) Top-k
Masking with Weighted Loss, extends the Top-%
Masking approach by applying an importance-
weighted loss to the masked tokens.

Weighted MLLM Objective Given a corpus D =
{Xy,..., XN}, where each text item is composed
by a set of tokens, namely X; = (z1,...,27),
asubset M C {1,...,T} is selected for mask-
ing. Tokens at these positions are replaced with the
[MASK] string placeholder. The model is trained
to predict each masked token x; from the corrupted
sequence X;, minimizing the standard negative log-
likelihood:

tr = ~log (pa(ar | X)) ©

To emphasize semantically salient tokens, each ¢;
is scaled by an importance score wy, derived from
our artifact extraction methods presented in 3.2 and
a binary mask indicator (a; = 1[t € M]):

ngeighted _ ‘et Cwy - ay (4)

The final objective averages the weighted loss
across all masked positions:

T Weighted
Weighted Zt:l gt
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This formulation biases training toward artifact-
relevant tokens while maintaining stable optimiza-
tion across variable-length sequences.

&)

Model Architecture Figure 1 illustrates the
artifact-guided masked language modeling process.
Masked tokens are processed through a stack of
bidirectional transformer layers, yielding contextu-
alized representations h}. These hidden states are
projected into the vocabulary space using a learned
output matrix E, producing logits u; = hFET,
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Figure 1: Artifact-weighted MLM. Selected tokens
are masked and passed through a bidirectional trans-
former (Devlin et al., 2019). Token-level predictions are
compared against ground truth, with losses scaled by
artifact-derived importance scores.

which are then transformed into output probabili-
ties via a softmax function:

y¢ = softmax (uy) (6)

These probabilities are used to compute the artifact-
weighted loss defined in Equation 5, where each
token’s contribution is scaled by its corresponding
importance score.

3.4 Dataset Curation via Token Diagnostics

To evaluate Artifact-Guided pretraining, we ana-
lyze token-level reconstruction loss. Our assump-
tion is to have the possibility to identify statistically
important tokens that are difficult-to-reconstruct at
MLM training stage as they can reflect distribu-
tional noise or semantic ambiguities that impair
downstream performance. To that extent, we intro-
duce a token scoring function based on label noise
estimation, that aims to quantify token relationship
with noise.

Noise-Driven Token (ND) Score We introduce
a token-level scoring scheme based on annotation
uncertainty. Following principles from confident
learning (Northcutt et al., 2022), we identify fre-
quent tokens in samples flagged as likely misla-
beled, namely those having high discrepancies be-
tween predicted labels and class-conditional noise
expectations. We extract these candidates using the



Cleanlab toolkit (Northcutt et al., 2022), employ-
ing a confusion score that quantifies semantically
contextually ambiguous tokens with the following
score :

Si= I ™
maxy fy

where f; is the frequency of token ¢ in potentially
misannotated instances, normalized by the maxi-
mum token frequency among all such instances.
To focus on informative textual features, we ex-
clude stop words and retain only the top 25% most
frequent tokens within this error subset.

Noise Removal Algorithm For each masked to-
ken, we compute reconstruction loss during pre-
training and pair it with the computed importance
score, aiming to curate dataset label by flagging
text instances that contain high-scoring tokens.

Such a methodology allows human-in-the-loop
intervention and exploratory analysis of candidate
tokens that the user can iterate in (ranking) order
to investigate and curate label noise prior to per-
form SUD classification. Our intuition rely on the
fact that frequent tokens likely belong to patterns
recognized and learned by the model to generalize
over SUD classes. In this manner, we propose to
consider such token-level statistics across the rela-
tive model reconstruction capabilities at pretraining
stage. To correct noisy instances in a given corpus,
we propose two strategies:

(1) Relabeling that replaces a label of an in-
stance X, if this latter is different from the instance
label in which the token with the highest score (in
X) occurs globally more often.

Example 1 Given a corpus C and a text instances
X = {"abc”} € C assigned with label 0. Let
us consider that "b" would be the token with the
highest score that occurs more often in instances
assigned with label 1 € C, the label of X changes
to 1.

(2) Filtering, that removes from the corpus an
instance X if this latter is assigned with a label
different from the instance label in which the token
with the highest score (in X)) occurs globally more
often.

Example 2 Given a corpus C’ and a text instances
Y = {"cde”} € C' assigned with label 1. Let
us consider that "d" would be the token with the
highest score that occurs more often in instances
assigned with label 0 € C’, Y is removed from C’.

Downstream Task For the evaluation of our
methods we fine-tune our models on a multi-class
classification task targeting Socially Unacceptable
Discourse (SUD), as defined in Section 3.1.

The model architecture comprises a pretrained
encoder that produces contextualized token repre-
sentations, which are aggregated and passed to a
lightweight classification head, a linear projection
followed by a softmax activation, to yield a proba-
bility distribution over the target classes. Training
is conducted using the standard cross-entropy loss
between predicted distributions and ground-truth
labels (Devlin et al., 2019; Clark et al., 2020; Zhang
et al., 2023; Yang et al., 2023a; Moon et al., 2020;
Sun et al., 2019).

4 Experimental Setup

In this section, we present the experimental
framework employed to evaluate our artifact-
aware pretraining approach, detailing the datasets
and model configurations. Model training and
evaluation were carried out using key libraries
such as transformers, datasets, PyTorch, and
TensorFlow. Comprehensive information on pack-
age versions and the computational environment is
available in our temporary anonymized repository
to facilitate reproducibility: https://anonymous.
4open.science/r/Anonymous_Submission-6
65B.

4.1 Datasets

We utilize the G°UP dataset introduced by
Carneiro et al. (2023), which aggregates 13 pub-
licly available English-language datasets spanning
up to 12 SUD classes. Table 4 (Appendix) sum-
marizes the datasets included in our experiments.
The full corpus comprises approximately S00K in-
stances, with a significant imbalance across classes.
The neither class accounts for over 70% of the sam-
ples, while individual SUD categories vary in fre-
quency. All datasets are publicly available and re-
leased under permissive licenses. Our use of these
datasets is consistent with their original purpose,
which was primarily classification and moderation
of hate speech-related content. More details on the
GSUP dataset are found in the work of Carneiro
et al. (2023).

4.2 Models and Training Setup

We experiment with four transformer-based
models from the Hugging Face library:
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bert-base-uncased (110M parameters),
bert-large-uncased (340M), roberta-base
(125M), and roberta-large (355M). All ex-
periments were conducted on an infrastructure
equipped with NVIDIA A100 GPUs (80 GB
memory) and 2 TB main memory, equipped with 2
AMD Milan EPYC 7543 processors (32 cores at
2.80 GHz).

MLM Pretraining Pretraining is conducted on
the G¥UP corpus (~155K samples), to which we
apply stratified under-sampling of the dominant
neither class (10% retention).> Hyperparameters
are tuned empirically. The final setup includes a
learning rate of 1 x 1075, weight decay of 0.001,
batch size of 128, and 5 training epochs.’

Downstream Classification Task Following pre-
training, models are fine-tuned on each single
dataset composing G°UP for multi-class text clas-
sification. We split data using the following ratio:
80% training, 10% validation, and 10% test using
stratified sampling. We employ the Hugging Face
AutoModelForSequenceClassification wrap-
per, to attach a fully connected classification head
to the pretrained encoder. Input sequences are to-
kenized using the corresponding AutoTokenizer
for each model. Fine-tuning is conducted for three
epochs with a batch size of 16, a learning rate of
2 x 1075, and weight decay of 0.01. Each model
is fine-tuned and evaluated across 10 runs with dif-
ferent seeds. Model performance is reported as the
mean and standard deviation of the macro-averaged
F1-score on the held-out test set.

5 Results

In this section we present and discuss the results of
the proposed SUD classification framework.

5.1 Artifact-based Pretraining

Pretraining Strategy Evaluation Our first re-
search objective is to evaluate the effectiveness of
the different pretraining strategies discussed and
proposed in the paper. Figure 2 shows the mean
F1 score of SUD classification conducted with the

%A secondary configuration was also evaluated consisting
of a focused subset containing only SUD-labeled instances
(~120K samples), emphasizing domain-specific language.
However, as this configuration did not yield any noticeable
differences we omit to report the relative results.

3The hyperparameter search space included the following
configurations: learning rate € {5 x 107°,2 x 107°,1 x
1075}, weight decay € {0.1,0.01,0.001}, batch size €
{64,128}, and number of epochs € {3, 5}.
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Figure 2: Aggregated F1 Score Performance Across
Pretraining Paradigms and Experimental Conditions
for BERT-Base, RoBerta-Base, BERT-Large, and
RoBERTa-Large.

baseline models and different pretraining strate-
gies (Random Masking + Weighted Loss, Top-
k Masking + Weighted Loss, Random Mask-
ing, Top-k Masking) leveraging the proposed arti-
facts scores (PMI Figure 2(top) and BERTopic Fig-
ure 2(bottom)). Here, we report the global mean
of the classification performed in all the dataset
reported in Table 4 across all masking proportions
(Top-k = 5%, 10%, 15%, 25%, 35%). Our re-
sults indicate that pretraining strategies incorporat-
ing Weighted Loss exhibit the best performance
across all the settings, confirming the hypothesis
that models reinforce their generalizability when
reconstructed loss is weighted according to the con-
text importance.

Masking Percentage Optimization Figure 3
presents the F1 scores of BERT-Base across differ-
ent masking percentages under Pretraining with
PMI and BERTopic artifact masking. Again,
weighted Loss strategies consistently outperform
their non-weighted counterparts, yielding optimal
performances at the 25% masking level. In general
we note that BERT-Base has performance either
on par, or superior than the other models. Hence,
in the following part of the evaluation, we solely
consider BERT-Base.

5.2 Dataset Curation via Token Diagnostics

To analyze the errors and individuate the effec-
tiveness of artifact-guided pretraining in learning
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Figure 3: F1 Score Performance of BERT-Base Across
Different Masking Percentages

meaningful token representations, we analyse the
correlation between token-level statistical score and
reconstruction difficulty (model loss) in the whole
G3UP using the BERT-Base model. Figure 4 visu-
alizes mean token reconstruction loss as a function
of artifact extraction score (log scale), limited to the
top 25% of tokens per method. Each dot represents
a single token. To quantify these relationships, we
compute Pearson correlations between reconstruc-
tion loss and the log-transformed artifact scores.
For the Noise-Driven score, we observe a strong
negative correlation (r = —0.64), indicating that
tokens with higher importance scores tend to be
reconstructed more accurately in our framework.
Such results show that frequent tokens assigned
with noisy label are well reconstructed by the
MLM, suggesting a relationship with learned pat-
terns used to discriminate. In contrast, BERTopic
(r = 0.01) and PMI (r = 0.03) show no correla-
tions with reconstruction loss, indicating a weaker
association between their frequency and model un-
certainty during pretraining.

Dataset-Specific Curation We begin by evaluat-
ing our curation strategy within each dataset inde-
pendently, leveraging the proposed scores vs. loss
diagnostics. Specifically, we curate our dataset
by flagging sentences containing high-scoring to-
kens selected by the following thresholds (depicted
in Figure 4): PMI > 0.4, BERTopic > 0.6, and
Noise-Driven Score > 0.2 or > 0.4. These values
were selected to retain only the most salient tokens
based on distributional breakpoints and qualitative
review. Thresholds are reported here in raw form,
while log-transformed values are used for visual-
ization in plots. We then apply the token-level
diagnostics described in Section 3.4 to curate the
datasets with the two types of intervention: (1) Re-
labeling, and (2) Filtering prior to perform SUD
classification.

Table 1 presents the performance impact of each
method across 13 datasets. We observe that cura-

tion strategies yield mixed results: in datasets such
as Founta, Gab, and Hateval, both relabeling and
filtering significantly improve performance, sug-
gesting that model errors were at least partly driven
by annotation inconsistencies or label noise. Con-
versely, for datasets such as Davidson and Olid,
the gains are modest or neutral, and aggressive fil-
tering thresholds can even lead to degradation. Im-
portantly, we found that certain datasets exhibited
unexpected performance drops under these inter-
ventions, particularly Fox and Grimminger.

Large Scale Curation We extend our analysis
considering SUD classification in the complete
(G3UP) corpus. Such scenario is challenging, as it
introduces further annotation noise due to hetero-
geneous labeling criteria of different sources. We
apply the same token-level relabeling and filtering
methods described in the previous experiment. Ta-
ble 2 (left) shows the absolute F1 scores for each
method on the GSUP corpus (~155K samples) (we
apply stratified under-sampling of the dominant nei-
ther class (10% retention) as suggested in (Carneiro
et al., 2023)). Relabeling with noise-driven diag-
nostics at a 0.2 threshold performs best, achieving
an F1 score of 66.9. Table 2 (right) reports the
relative differences from the baseline. The same
method yields the highest gain (+11.2), followed by
BERTopic (+8.1). Filtering methods show smaller
but consistent improvements. These results indi-
cate that our token-based techniques are effective
not only for individual datasets but also when ap-
plied to a large scale scenario, better resolving
cross-dataset inconsistencies.

5.3 Human-Guided Explainable Approach

While applying automatic relabeling and filtering
strategies by automatically filtering noisy instances,
we observe that even limited interventions could
lead to notable drops in performance on certain
datasets, such as Grimminger and Fox as shown in
Table 1. To understand this, we analyze token distri-
butions depicted in Figure 5 (Appendix), which dis-
plays the normalized frequency of selected tokens
in each dataset, for which the ND score is greater
than or equal to 0.4. We observe that salient tokens
potentially related to SUD (e.g., b*tch, f*cking)
are under-represented in Grimminger and Fox,
suggesting that previously repaired instances con-
tain neutral language. Guided by such explana-
tion, we restrict the interventions to tokens with
high support and semantic relevance to SUD. In
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Figure 4: Mean token reconstruction loss vs. artifact extraction score (log scale). Each dot represents a single

artifact from the top 25% of scores.

Dataset Baseline Relabeling Filtering
Noise-Driven > 0.2 | Noise-Driven > 0.4 | BERTopic > 0.6 | PMI > 0.4 | Noise-Driven > 0.2 | Noise-Driven > 0.4 | BERTopic > 0.6 | PMI > 0.4
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Hateval 77.010 87.10.7 84.50.7 717 13 77.010 84.9 ;3 80.9 12 77.30.5 77.010
Jigsaw 55110 63.62. 61.3, 57.9 0.9 54.61.2 60.1 7 582, 55409 54710
Olid 78.01.0 79715 78.81 77311 77410 80.3 5, 71713 71736 71510
Reddit 84.80.9 82515 86.5, 84.5 06 84.9¢.7 83.71s 86.4 13 85.1p.8 84.9) 5
Stormfront | 77.917 63.612 70.92.0 75.9 0.2 77818 69.1 37 752495 7815, 77917
Trac 74.60.6 80.4; 4 7821 74913 74.70.5 79.1 09 77513 75.01.4 74113

Table 1: Performance comparison of our relabeling and filtering methods at a dataset level. Scores are averages of
10 runs with different seeds, while subscripts indicate standard deviation. We depict scores above the baseline in

bold.
Method Relabeling Fi]tering Dataset Baseline Relabeling Filtering
. ; ND>02 [ ND>04 | BT>0.6 | ND> 0.2 | ND> 0.4 | BT = 0.6
Noise-Driven (> 0.2) 66.91.6 62.21 .4 Davidson 76312 | 75514 7735, 76.50 76217 | 76615 | 765,
Noise-Driven (= 0.4) 62.81 1 614, 5 Founta 76307 | 78405 | 78207 | T8doz | 78210 | 77805 | 7191
. = s - Fox 67027 | 6724, 70.65.6 70.3; 4 65.752 70456 | 70.63¢
BERTopic (> 0.6) 65.10.5 60.70.6 Gab 90005 | 92405 | 9100 | 90804 | 92204 | 91005 | 90.8,
> Grimminger | 72.555 68.433 72.755 72.530 T1.45 9 72.63.1 72.63 1
PMI (> 0.4) 60.10.7 60.20.4 Hasoc2019 | 46715 | 48525 | 46420 | 46050 | 47804 | 45.600 | 46000
. . Hasoc2020 | 56455 | 58213 | 56217 | 56217 | 56727 | 56217 | 56211
Table 2.1: F1 scores for relabeling and filtering methods. Hateval 77010 | $2609 | 82200 | 81800 | 833, | 82500 | SL8no
Tigsaw 55010 | 6455 | 58209 | 5840y | 60505 | 5871, | 5849
- —— Olid 78010 | 80lgs | 77707 | 77607 | 78611 | 7107 | 77607
Method Relabeling | Filtering Reddit 84800 | 86710 | 85700 | 85907 | 864gs | 85.1,; | 85907
Noise-Driven (> 0.2) +11.1 +3.3 Stormfront | 77.917 | 76325 7811 | 78Iis | 77851 | 80u1 | 7811
- : = Trac Ta6os | 75216 | T5dor | 75007 | 75412 | 75206 | 752
Noise-Driven (> 0.4) +4.3 +2.0 o = o . 1 00 =
BERTopic (> 0.6) +8.1 +0.8 .
= Table 3: Comparison of F1 scores (meangy) across
PMI (> 0.4) 02 +0.0 P (meangq)

Table 2.2: Relative differences from baseline.

Table 2: Comparison of relabeling and filtering methods
(left) on a class-balanced subset of the G°UP corpus in
F1 scores and their relative differences from baseline
(right). Scores are averages of 10 runs with different
seeds, while subscripts indicate standard deviation.

this experiment, we also consider token ranking
using BERTopic-based score. This selective ap-
proach leads to more consistent improvements in
ten datasets as reflected in Table 3.

6 Conclusion

The results of this study offer several insights into
the role of SUD artifacts in guiding pretraining and
improving dataset quality for the task of SUD clas-
sification. While standard masked language model-
ing provides only limited improvements in down-

datasets with different noise-handling strategies: base-
line (original labels), relabeling using Noise-Driven
(ND) and BERTopic (BT) approaches, and filtering
based on noise scores.

stream performance across model architectures, in-
troducing artifact-weighted loss consistently yields
better results. By assigning greater importance to
semantically important tokens, the model is encour-
aged to focus on contextually challenging regions.
Beyond model performance, our curation strategy,
based on token-level relabeling and filtering, proves
valuable for interpretability. With minimal changes
to the data, the method reveals annotation incon-
sistencies, offering a lightweight mechanism for
surfacing potential labeling issues. This enables
more transparent error analysis and targeted refine-
ment.



7 Limitations

While our artifact-guided curation framework
demonstrates clear potential, it presents several
limitations. Most notably, it is not a substitute
for comprehensive human annotation. Although
our approach effectively surfaces tokens in am-
biguous or noisy environments through artifact-
based heuristics, it may overlook subtle linguistic
inconsistencies or contextual errors that only hu-
man annotators can reliably detect. As a result, a
dedicated annotation campaign supported by our
solution remains necessary to validate and comple-
ment our dataset curation methods. Moreover, we
plan to extend the human-in-the-loop approach to
the GSUP corpus, increasing our ability to assess
the method’s effectiveness in this setting, where
tailored adaptation and computational challenges
require to be addressed. Finally, the token selec-
tion thresholds, though informed by distributional
patterns and qualitative assessment, remain heuris-
tic. Future work could investigate more principled,
data-driven approaches to enhance the robustness
and generalizability of the dataset curation frame-
work.
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Figure 5: Percentage Frequency of Selected Tokens by
Noise-Driven Method across Datasets
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Dataset Source Sample Type # Samples Labels

Davidson Davidson et al. (2017) Tweets 25,000 hate, offensive, neither

Founta Founta et al. (2018) Tweets 100,000 abusive, hate, neither

Fox Gao and Huang (2017) Threads 1,528 hate, neither

Gab Kocon et al. (2021) Posts 34,000 hate, neither

Grimminger Grimminger and Klinger (2021) Tweets 3,000 hate, neither

HASOC2019 Mandl et al. (2019) Facebook, Twitter 12,000 hate, offensive, profane, neither
HASOC2020 Mandl et al. (2020) Facebook posts 12,000 hate, offensive, profane, neither
Hateval Basile et al. (2019) Tweets 13,000 hate, neither

Jigsaw Van Aken et al. (2018) Wikipedia talk pages 220,000 identity hate, insult, obscene, severe toxic, threat, toxic, neither
Olid Zampieri et al. (2019) Tweets 14,000 offensive, neither

Reddit Yuan and Rizoiu (2022) Posts 22,000 hate, neither

Stormfront De Gibert et al. (2018) Threads 10,500 hate, neither

Trac Kumar et al. (2018) Facebook posts 15,000 aggressive, neither

Table 4: Summary of datasets used in this study Carneiro et al. (2023).
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