
Under review as a conference paper at ICLR 2024

VALUE FACTORIZATION FOR ASYNCHRONOUS
MULTI-AGENT REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Value factorization has become widely used to design high-quality and scalable
multi-agent reinforcement learning algorithms. However, existing methods as-
sume agents execute synchronously, which does not align with the asynchronous
nature of real-world multi-agent systems. In these systems, agents often make de-
cisions at different times, executing asynchronous (macro-)actions characterized
by varying and unknown duration. Our work introduces value factorization to the
asynchronous framework. To this end, we formalize the consistency requirement
between joint and individual macro-action selection, proving it generalizes the
synchronous case. We then propose approaches that use asynchronous centralized
information to enable factorization architectures to support macro-actions. We
evaluate the resultant asynchronous value factorization algorithms across increas-
ingly complex domains that are standard benchmarks in the macro-action litera-
ture. Crucially, the proposed methods scale well in these challenging coordination
tasks where their synchronous counterparts fail.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) has achieved impressive results in several cooperative
domains (Samvelyan et al., 2019; Mordatch & Abbeel, 2017). Due to partial observability and
communication constraints, MARL algorithms often aim to learn policies that condition on local
information, while leveraging centralized data at training time to foster collaborative behaviors (i.e.,
Centralised Training with Decentralised Execution (CTDE) (Tuyls & Weiss, 2012)). Value-based
algorithms have been particularly successful at CTDE by factoring a joint action value into per-
agent utilities conditioned on local information (Rashid et al., 2018; Wang et al., 2021). To achieve
a sound factorization, these methods ensure consistency between the local greedy actions and the
joint greedy action selection; a principle known as the Individual Global Max (IGM) (Son et al.,
2019). Agents can thus execute in a decentralized manner by selecting actions according to the local
utilities while learning in a centralized fashion using a factored, joint action-value.

Despite the merits of factorization, current algorithms assume agents execute in a synchronous way
(Yu et al., 2022; Rashid et al., 2018; Wang et al., 2021)—selecting a primitive action that starts and
ends simultaneously for each agent at each execution step. This assumption does not hold in many
real-world scenarios where agents use asynchronous decision-making, selecting and completing ac-
tions with varying duration at different times. These temporally extended behaviors are known as
macro-actions and generalize the primitive action case, allowing agents to be asynchronous (Amato
et al., 2019). Macro-actions have several advantages over primitive ones as they (i) foster explain-
ability by representing complex real-world behavior that may require multiple steps (e.g., navigating
to a waypoint, waiting for a human); (ii) benefit value-backup, improving the efficiency of value
functions learning (Mcgovern et al., 1999; Sutton et al., 1999b); (iii) enable the decision-making to
take place at a higher level, (possibly) using existing controllers to execute behaviors (e.g., a nav-
igation stack) without learning end-to-end decisions (e.g., control motor velocities). Nonetheless,
limited attention has been devoted to this area of research (Xiao et al., 2020a;b), motivating the
need for principled and scalable approaches. Value factorization is a natural candidate for achieving
scalable asynchronous MARL, but such solutions have yet to be investigated.

This paper introduces value factorization for the macro-action framework. We formulate the Individ-
ual Global Max (IGM) principle for action and advantage value functions based on macro-actions.
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We show both principles generalize the primitive case, representing a broader class of functions.
This formalization is not trivial since it requires considering the agents’ terminated and ongoing
macro-actions at the joint and individual levels. We also bridge the gap between asynchronous
MARL and existing primitive value factorization, introducing Asynchronous Value Factorization
(AVF) algorithms. Core to AVF is an asynchronous (macro-)state collection process, which stores
extra information conditioned on agents’ macro-action selection. Our ablation studies show the piv-
otal importance of this mechanism, as algorithms trained without the macro-state fail to learn even
simple cooperative behaviors. AVF enables factorization architectures to employ macro-actions,
creating scalable asynchronous MARL approaches.

We evaluate the proposed methods in various problems of increasing complexity, using standard
benchmark tasks in the macro-action literature (Xiao et al., 2020b). These problems have an increas-
ing number of agents with multiple cooperative behaviors to learn, sub-tasks to complete, and se-
vere partial observability. Crucially, primitive factorization and existing macro-action baselines fail
to cope with the complexity of these scenarios. In contrast, AVF methods successfully learn asyn-
chronous decentralized policies in most tasks, allowing us to achieve significantly higher payoffs and
learn good decentralized behaviors where the original factorization methods fail. To our knowledge,
this is the first formalization of IGM for macro-actions and value factorization macro-action-based
algorithms. Our theory and approaches show impressive performance and lay the groundwork for
future macro-action-based value factorization methods.

2 PRELIMINARIES

This section introduces two common formalizations for fully cooperative multi-agent tasks with
primitive and macro-actions, which share most of the notation.1

Tasks with primitive actions are modeled as Decentralized Partially Observable Markov
Decision Processes (Dec-POMDPs) (Oliehoek & Amato, 2016), represented as tuple
⟨N ,S,U , Ts, r,O, TO, γ⟩: N is a finite set of agents; S is a finite set of states; U ≡ ⟨U i⟩i∈N
and O ≡ ⟨Oi⟩i∈N are the finite sets of primitive joint actions and observations, while U i, Oi

are the individual ones. At each step, every agent i chooses an action, forming the joint ac-
tion u ≡ ⟨ui ∈ U i⟩i∈N . After performing u, the environment transitions from a state s to
a new s′, following a transition probability function Ts : S × U × S → [0, 1] (defined as
Ts(s,u, s

′) = Pr(s′|s,u)), and returning a joint reward r : S × U → R for being in state
s ∈ S and taking actions u ∈ U . In a partially-observable setting, agents receive an observa-
tion o ≡ ⟨oi⟩i∈N ∈ O according to an observation probability function TO : O × U × S → [0, 1]
(defined as TO(o,u, s

′) = P (o|s′,u)), and each agent maintains a policy πi(ui|hi)—a mapping
from local action-observation histories hi = (oi0, u

i
0, o

i
1, , . . . , u

i
t) ∈ Hi to actions. A local history

represents the actions taken and observations received at each step (up to step t). In finite-horizon
Dec-POMDPs, the objective is to find a joint policy π(u|h) that maximizes the expected discounted
return from a state s0: V π(s0) = Eπ

[
Σz−1

t=0 γ
trt+1

]
, where γ ∈ [0, 1) is a discount factor, z is the

problem horizon, and h = ⟨o0,u0, . . . ,ut⟩ ∈H is the joint action-observation history.

2.1 VALUE FACTORIZATION

Value factorization methods learn a centralized action-value function that is factored over agent
utilities and depend only on local histories for action selection. Formally, a general centralized
action-value function for a policy π can be defined as Qπ(h,u) = Eπ [Σ

∞
t=0γ

trt+1|h,u].
Additive (VDN) factors the joint action-value as a sum of per-agent utilities (Sunehag et al., 2018):
Q(h,u) =

∑|N |
i=1 Qi(h

i, ui), which has good performance in many cases but can only represent a
limited set of joint Q-functions.

Monotonic (QMIX) uses a non-linear monotonic mixer to combine utilities (Rashid et al., 2018):
∂Q(h,u)

∂Qi(hi, ui)
≥ 0,∀i ∈ N (1)

1For clarity, we refer to joint sets with calligraphic letters; individual ones are italic uppercase with su-
perscript agents’ indexes; joint actions, observations, and histories are lowercase bold; individual ones are
lowercase. The macro-action equivalents are marked with a .̂
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The mixer network takes extra state information as input to better factor Q(h,u) and uses positive
weights to enforce the monotonicity constraint. QMIX can represent a wider range of Q-functions
than VDN but is still limited to functions that can be factored into a non-linear monotonic combina-
tion of the agents’ individual utilities.

These factorization algorithms are effective CTDE methods, maintaining consistent decentralized
and joint decision-making to satisfy the IGM principle (Son et al., 2019) (Eq. 2). This is particularly
important for scalability as it enables tractable joint action selection by deriving the joint greedy
action from each agent’s local utility. Specifically, the argmax over the joint value function is the
same as argmaxing over each local utility:

argmax
u∈U

Q(h,u) =
(
argmax
u1∈U1

Q1(h
1, u1), . . . , argmax

un∈Un
Qn(h

n, un)
)
,∀ h ∈ H (2)

Advantage-based (QPLEX) uses a decomposition of Q-functions to form an equivalent advantage-
based IGM (Adv-IGM) that requires advantage values to be non-positive. Q-functions can be de-
composed as the sum of history value and advantage functions as follows: (Wang et al., 2016):

Q(h,u) = V (h) +A(h,u) (3)

and QPLEX decomposed learned local Qi(h
i, ui) into history and advantage utilities as follows:2

V (hi) = max
ui

Q(hi, ui) A(hi, ui) = Q(hi, ui)− V (hi) ∀i ∈ N (4)

Such utilities are fed into a transformation module to condition the values on extra state informa-
tion. After the transformation, QPLEX factorizes the joint action-value function as Eq. 3, using
an attention module to enhance credit assignment and fully represents the functions satisfying IGM
(Yang et al., 2020). Crucially, QPLEX’s authors show the Adv-IGM can be satisfied by decompos-
ing utilities as Eq. 4 (which limits the range of advantage utilities to be ≤ 0), which allows for
avoiding structural constraints in the mixer (Rashid et al., 2018; Sunehag et al., 2018). While the
non-negativity of the advantage is an intrinsic property of the optimal function, Wang et al. (2016)
showed how learning an arbitrary advantage function separately (i.e., without a fixed, non-negative
decomposition as in Eq. 4), lead to significantly higher practical performance.

2.2 LEARNING MACRO-ACTION-BASED POLICIES

Macro-Action Dec-POMDPs (MacDec-POMDPs) (Amato et al., 2019) extend Dec-POMDPs to
include durative actions, augmenting the Dec-POMDP tuple with ⟨M, Ô, Tôi∈N ⟩: where M ≡
⟨M i⟩i∈N and Ô ≡ ⟨Ôi⟩i∈N are the set of joint macro-actions and macro-observations. Similar
to the primitive case, we define joint macro-action-macro-observation histories (or macro-histories)
ĥt ∈ Ĥ and local ones ĥi

t ∈ Ĥi. Macro-actions are based on the options framework (Sutton
et al., 1999a); an agent’s i macro-action mi is defined as a tuple ⟨Imi , πmi , βmi⟩: Imi ⊂ Ĥi is
the initiation set; πmi(·|hi) is the macro-action low-level policy; βmi : Hi → [0, 1] is the termi-
nation condition.3 The different histories allow the agents to maintain the necessary information
locally to know how to execute and terminate mi. During decentralized execution, agents inde-
pendently select a macro-action that forms the joint one m = ⟨mi⟩i∈N , and maintain a high-level
policy πMi(mi|ĥi). At each step of mi’s low-level policy, the agent independently accumulates the
joint reward. Upon terminating its macro-action, an agent i receives a macro-observation ôi ∈ Ôi

according to a macro-observation probability function Tôi : Oi × M i × S → [0, 1], defined as
Tôi(ô

i,mi, s′) = Pr(ôi|mi, s′), and resets the reward accumulation for the next macro-action. The
aim is to find a joint high-level policy πM(m|ĥ) that maximizes the expected discounted return.

Macro-action baselines. Fully centralized and decentralized macro-action methods have been re-
cently proposed (Xiao et al., 2020a;b). In Cen-MADDRQN, a centralized agent maintains a joint
macro-history ĥ and accumulates a joint reward r(s,m, τ ) = Σtm+τ−1

t=tm γt−tmrt where tm is the
starting time-step of m, and tm + τ − 1 marks its termination step when any agent finishes its
macro-action. Hence, τ is the number of time steps between any two macro-action terminations.

2Hence, QPLEX does not learn Vi(h
i), Ai(h

i, ui) in the agents’ networks as in the original dueling archi-
tecture (Wang et al., 2016), which could improve performance and sample efficiency.

3While we consider a deterministic termination, our results can be trivially extended to a probabilistic one.
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A memory buffer D is used to store joint transition tuples ⟨ô,m,m−, ô′, r⟩. At each training iter-
ation, the centralized agent samples a mini-batch of sequential experiences from D and filters out
the tuples where all the macro-actions are still executing. Hence, it updates the centralized macro-
action-value function by minimizing the following loss:

E⟨ô,m,m−,ô′,r⟩∼D

[(
r + γτQ′

(
ĥ′, argmax

m′
Q(ĥ′,m′|m−)

)
−Q(ĥ,m)

)2
]

(5)

where m− = {mi ∈ M i | βmi∼πMi (·|ĥi) = 0, ∀i ∈ N} is the joint macro-action for agents
whose actions will continue at the next step, and Q′ is a target action-value estimator (van Hasselt
et al., 2016). The conditional prediction is crucial for a correct estimation as only a few agents
typically switch to a new macro-action at the next step (Xiao et al., 2020a). Dec-MADDRQN
works similarly to Cen-MADDRQN but learns each agent’s Q-function in a decentralized manner.
Recently, Policy Gradient (PG) (actor-critic) macro-action algorithms have been proposed (Xiao
et al., 2022). However, PG methods can be less sample efficient than value-based ones (Sutton
& Barto, 2018). For this reason, we focus on value-based factorization as in recent literature (Yang
et al., 2020; Son et al., 2019), noting our AVF can be potentially applied to the PG’s critic component.

3 METHODS

We first introduce the IGM principles for the asynchronous framework, proving they generalize the
primitive cases. Then, we extend previous factorization methods to use macro-actions by proposing
their AVF versions and investigating the use of extra asynchronous information in the mixers.

3.1 MACRO-ACTION-BASED IGM

To achieve principled asynchronous factorization, we must ensure the consistency of greedy macro-
action selection in joint and local macro-action-value functions. This is more challenging than the
primitive case as macro-actions typically last for several steps. For this reason, we must define the
spaces of macro-actions that have yet to terminate under the current history as well as the ones that
have terminated. For the joint case, we will leverage the conditional prediction of Eq. 5 that only
applies the argmax operator on agents that have to sample a new durative action, while maintaining
the same set of ongoing macro-actions. On the other hand, in the decentralized case, only the agents
with a terminated macro-action select a new one based on local information. Broadly speaking, in
most cases we have to enforce the macro-action selection consistency on only a subset of the agents.

Definition 3.1 (Mac-IGM). Given a joint macro-history ĥ ∈ Ĥ , we define the set of macro-action
spaces M i where agent’s i macro-action mi has terminated under local macro-history ĥi ∈ ĥ as:

(Terminated macro-action spaces) M+ = {M i ∈ M | βmi∼π
Mi (·|ĥi) = 1, ∀i ∈ N} (6)

Then, for a joint macro-action-value function Q : Ĥ×M 7→ R|M|, if per-agent macro-action-value
functions ⟨Qi : Ĥ

i ×M i 7→ R|Mi|⟩i∈N exist such that:

argmax
m∈M

Q(ĥ,m | m−) =

{
argmaxmi∈Mi Qi(ĥ

i,mi) if M i ∈ M+

mi ∈ m− otherwise
, ∀i ∈ N (7)

then, we say ⟨Qi(ĥ
i,mi )⟩i∈N satisfies Mac-IGM for Q(ĥ,m |m−).

Definition 3.1 ensures the greedy action selection is the same for both the centralized and decentral-
ized action selection processes only for terminated macro-actions. We can consider a Dec-POMDP
to be a degenerate form of a MacDec-POMDP where the macro-actions are primitive actions that
terminate after one step. We can also include the primitive actions in the macro-action set of each
agent: U i ⊂M i, ∀i ∈ N (Amato et al., 2014). It follows that Mac-IGM represents a broader class
of functions over the primitive IGM. We provide formal proof of such a claim in Appendix A.
Proposition 3.2. Denoting with

F IGM =

{(
QIGM : H × U → R|U|,

〈
QIGM

i : Hi × U i → R|Ui|
〉
i∈N

)
| Eq. 2 holds

}
(8)

FMac-IGM =

{(
QMac-IGM : Ĥ ×M → R|M|,

〈
QMac-IGM

i : Ĥi ×M i → R|Mi|
〉
i∈N

)
| Eq. 7 holds

}
(9)
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the class of functions satisfying IGM and Mac-IGM respectively, then:

F IGM ⊂ FMac-IGM (10)

Moreover, to design the asynchronous QPLEX algorithm (i.e., AVF-QPLEX), we define the
MacAdv-IGM principle that transfers the IGM onto macro-action-based advantage functions.

Definition 3.3 (MacAdv-IGM). Given a joint macro-history ĥ ∈ Ĥ andM+ (Eq. 6), for a joint
macro-action-value function Q : Ĥ ×M 7→ R|M| defined as (3), if per-agent macro-action-value
functions ⟨Qi : Ĥ

i ×M i → R|Mi|⟩i∈N defined as Qi(ĥ
i,mi) = Vi(ĥ

i) + Ai(ĥ
i,mi) exist such

that:

argmax
m∈M

A(ĥ,m |m−) =

{
argmaxmi∈Mi Ai(ĥ

i,mi) if M i ∈ M+

mi ∈ m− otherwise
, ∀i ∈ N (11)

then, we say ⟨Qi(ĥ
i,mi)⟩i∈N satisfies MacAdv-IGM for Q(ĥ,m |m−).

Defining MacAdv-IGM is also not trivial due to the agents’ terminated and ongoing macro-actions
at the joint and individual levels. In addition, our definition is more general than the primitive
advantage-based IGM (Section 2), since it does require advantage values to be non-positive nor the
decomposition of Eq. 4. Nonetheless, it remains an equivalent transformation over the Mac-IGM as
shown below. We provide formal proof of such a claim in Appendix A.
Proposition 3.4. The consistency requirement of MacAdv-IGM in Eq. 11 is equivalent to the Mac-
IGM one in Eq. 7. Hence, denoting with

FMacAdv-IGM =
{(

QMacAdv-IGM : Ĥ×M → R|M|, ⟨QMacAdv-IGM
i : Ĥi×M i → R|Mi|⟩i∈N

)
| Eq 11 holds

}
(12)

the class of functions satisfying MacAdv-IGM, we can conclude that FMac-IGM ≡ FMacAdv-IGM.

Similarly to Proposition 3.2, we can also conclude that MacAdv-IGM represents a broader class of
functions over the primitive Adv-IGM, and summarize the relationship between the primitive and
macro-action classes of functions.
Proposition 3.5. Denoting with F {Adv-IGM,MacAdv-IGM} the classes of functions satisfying Adv-IGM
and MacAdv-IGM, respectively, then:

F IGM ≡ F Adv-IGM ⊆ FMac-IGM ≡ FMacAdv-IGM. (13)

Appendix A includes all the missing proofs and further discussions.

3.2 ASYNCHRONOUS VALUE FACTORIZATION

The overall architecture of AVF-based algorithms is depicted in Fig. 1. On the left, we provide
a high-level overview of all the primitive value factorization mixers we employ in our framework,
namely VDN, QMIX, and QPLEX (Sunehag et al., 2018; Rashid et al., 2018; Wang et al., 2021). We
refer to the resultant algorithms as AVF-{VDN, QMIX, QPLEX}. In more detail, the centralized
network QΘ used at training time is composed of agents’ decentralized networks ⟨Qθi⟩i∈N (depicted
in yellow), and a chosen mixer module Qϕ (shown in blue), where θi, ϕ parameterize individuals
and mixing networks. During execution, each agent i maintains an individual local macro-history
ĥi to sample its macro-action mi. The low-level policy associated with mi thus starts its execution

Agent Agent 

...

...

Mixing Network 

MLP

GRU

MLP

...

Additive MixerMonotonic MixerTransformation

Dueling Mixer

AVF-QPLEX AVF-QMIX AVF-VDN

Figure 1: Overview of AVF-based architectures. We summarize the factorization methods we inves-
tigate for AVF with purple (QPLEX), green (QMIX), and orange (VDN) boxes.
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at step tmi . The policy then continues until βmi(htmi+τ−1) = 1 which marks its termination at step
tmi + τ −1 (where τ is the length of the macro-action). Meanwhile, we accumulate the joint reward
signal r = Σtm+τ−1

t=tm γt−tmrt that will be used to guide the centralized training procedure. Hence,
upon terminating its macro-action, agent i receives a new macro-observation ô

′i and macro-state ŝ
′i

and updates its macro-history ĥ
′i = ⟨ĥi,mi, ô

′i⟩. Conversely, agents that are still executing their
macro-action do not update their macro-state and observation, as described in the previous section.
We discuss what a macro-state is and its importance in the next section.

The agents use a centralized memory buffer D to store the joint transition tuple
⟨ô, ŝ,m,m−, ô′, ŝ′, r⟩. At each training iteration, we sample a mini-batch of experiences from
this buffer. As described by previous work (Xiao et al., 2020a), we filter out the experiences where
none of the macro-actions have terminated yet (i.e., the intermediate execution steps of the low-level
policies, where ô

′i = ôi, ŝ
′i = ŝi,∀i ∈ N ). We then compute the individual utilities that are fed

into the (chosen) mixer, along with the joint macro-state. The mixing network employs the same
architecture as the primitive case and outputs the factored joint value that drives the learning process.
In summary, AVF-based algorithms are trained end-to-end to minimize Eq. 14, which resembles the
fully centralized case of Eq. 5. After each training step, we update the target weights in a Polyak
average fashion (Polyak & Juditsky, 1992).

E⟨ô,ŝ,m,m−,ô′,ŝ′,r⟩∼D

[(
r + γτQΘ′

(
ĥ′, argmax

m′
QΘ

(
ĥ′, ŝ′,m′ | m−

))
−QΘ

(
ĥ, ŝ,m

))2
]

(14)

Appendix B provides the pseudocode of AVF-based algorithms, and discusses the limitations and
broader impact of our framework.

Macro-state. Mixing methods that characterize recent factorization approaches, use extra informa-
tion to condition the local utilities and/or the joint factored value and improve the estimation of the
latter.4 In primitive, synchronous action setups it is trivial to collect a single vector of information
at each time step and use it for centralized training. However, performing asynchronous centralized
training makes the process significantly harder as the utilities are computed over local histories dat-
ing back to previous steps. These should be then combined with information collected at that same
step to avoid introducing noise in the factored value—we have to maintain temporal consistency.
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Figure 2: AVF buffer; green macro-actions continue
at the next step; red ones end. We consider different
ways to employ extra information (blue columns).

Crucially, the macro-action literature does
not consider factorization (Amato et al.,
2019; Xiao et al., 2020b), nor the asyn-
chronous nature that extra information has
in these settings.

Consider the explanatory centralized asyn-
chronous buffer in Fig. 2 as a practical ex-
ample. For simplicity, we only discuss the
case with two agents, but our discussion ap-
plies to an arbitrary number of agents. In
addition, we highlight the memory compo-
nents that are affected by (any) macro-action termination with a dashed line at step t3. Following the
discussion in Section 2, we limit our example to the only samples collected when any agent termi-
nates its macro-action (highlighted in red) since these are the only ones used to train asynchronous
algorithms (Xiao et al., 2020a). In more detail, consider step t3 in Fig. 2, where agent 1 terminates
its macro-action m1

t0 that was running since step t0. Upon termination, agent 1 receives a local next
observation o1t4 according to the real state of the environment at that moment, st4 (last column in
Fig. 2), and terminate the joint reward accumulation. The agent thus updates its history and samples
a new macro-action m1

t4 .5 Both the new macro-action and the reward accumulation thus start in
the next step t4. Conversely, agent n will not receive a new observation since its macro-action mn

t1
started at step t1 and has not terminated yet.

Regarding the temporal consistency of extra state information, we investigate three different mech-
anisms by considering the additional blue columns depicted in Fig. 2.

4We consider the state as in factorization literature Rashid et al. (2018); Wang et al. (2021).
5The subscript indicates the step at which the macro-action starts; the superscript denotes the agent.
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Using the real state. The actual state of the environment gets updated at every step, regardless
of macro-action terminations. However, using this information in the centralized mixer introduces
noise. In particular, the environment’s state at the current step, and the state used to draw agents’
observations, sample their macro-actions, and estimate utilities, typically occur at different steps as
shown in the previous example. We refer to such a situation as temporal inconsistency. As a practical
example, consider a generic mixing architecture (e.g., the ones described in Section 2) that takes as
input individuals’ utilities ⟨Qi(ĥ

i,mi)⟩i∈N and the current environment’s state s to estimate a joint
action value Q(ĥ, s,m|m−) satisfying Eq. 7. By applying the implicit function theorem (Krantz
& Parks, 2002), such joint value can be viewed as a function of individuals’ utilities. Let us discuss
the temporal inconsistency problem by using the joint sample at step t3:

Q
(
ĥt3 , st3 ,mt3 |m

−
t3

)
= Q

(
st3 , Q

1(ĥ1
t0 ,m

1
t0), Q

n(ĥn
t1 ,m

n
t1)

)
= Q

(
Q1(ĥ1

t0 , st3 ,m
1
t0), Q

n(ĥn
t1 , st3 ,m

n
t1)

)
where ĥt3 = ⟨ĥ1

t0 , ĥ
n
t1⟩, mt3 = ⟨m1

t0 ,m
n
t1⟩, m

−
t3 = ⟨mn

t1⟩

Here, individual utilities are implicitly transformed using st3 . However, local histories and macro-
actions come from the state at time t0, t1, respectively. Hence, while using future information in
the mixer does not hinder Mac-IGM or MacAdv-IGM, such information does not provide useful
information and only acts as noise during the joint estimation.

Using the macro-state of each agent. We could instead store a macro-state for each agent, fol-
lowing the same update rule of the asynchronous MARL’s buffer (i.e., yellow columns in Fig. 2).
Broadly speaking, each agent i collects the state ŝit of the environment at the time t of selecting
its macro-action mi

t. The agent thus stores a transition to the next environment’s state only when
terminating mi

t, similarly to how macro-observations are collected. We identified two ways to feed
the macro-state in the mixer: (i) we can use the macro-state of the agent whose macro-action has
terminated, or (ii) use a joint macro-state that comprises the macro-state of all the agents at that
step. The former solution would reduce the noise in the joint estimation since at least one individual
utility will be transformed using the correct macro-state. Following the previous example, we have:

Q
(
ĥt3 , ŝ

1
t0 ,mt3 |m

−
t3

)
= Q

(
ŝ1t0 , Q

1(ĥ1
t0 ,m

1
t0), Q

n(ĥn
t1 ,m

n
t1)

)
= Q

(
Q1(ĥ1

t0 , ŝ
1
t0 ,m

1
t0), Q

n(ĥn
t1 , ŝ

1
t0 ,m

n
t1)

)
However, agent n, who has not terminated its macro-action, still transforms its local utility based

on past (or future) information, introducing noise. In contrast, agent 1 employs the same state used
for sampling its local history and macro-action and, similarly to the primitive case, this typically
improves the joint estimation (Rashid et al., 2018; Wang et al., 2021; Yang et al., 2020). In contrast,
the latter solution feeds the joint macro-state of all the agents (i.e., ⟨ŝ1t0 , ŝ

n
t1), ⟩ into the mixer. Despite

the dimensionality of such an input, we expect the mixer to learn how to exploit the only information
relevant to each individual, in order to improve the joint estimation.

Experiments in Section 4 confirm our hypothesis. Using the joint macro-state allows to learn good
cooperative behaviors. In contrast, our ablation study shows that the noise introduced by using
temporally inconsistent information leads to policies that fail even in our simplest tasks.

4 EXPERIMENTS

We investigate the scalability of AVF algorithms based on VDN (Sunehag et al., 2018), QMIX
(Rashid et al., 2018), and QPLEX (Wang et al., 2021). Our experiments aim to answer the following
questions: (i) Can asynchronous factorization learn decentralized policies for complex cooperative
tasks? (ii) Does AVF improve performance over Dec-MADDRQN (Xiao et al., 2020a)?6 (iii) Are
our claims regarding the noise induced by using the real state of the environments correct? We also
perform additional comparisons with primitive action factorization methods to show that primitive
baselines fail at solving our complex tasks. All the data are collected on Xeon E5-2650 CPU nodes
with 64GB of RAM, using the hyper-parameters in Appendix F. Considering the importance of
having statistically significant results (Colas et al., 2019), we report the average return smoothed
over the last ten episodes of 20 runs per method, with shaded regions representing the standard
error. Finally, Appendix C also discusses the environmental impact and the solution we adopted to
offset the estimated CO2 emissions of our experiments.

6We compare against Dec-MADDRQN as it also considers decentralized execution.
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Figure 3: Overview of BP (a), WTD (b), and CT (c) tasks.
We consider multiple settings that differ by complexity
(e.g., size, task prioritization) and number of agents.

We use standard benchmark environ-
ments in macro-action literature (Xiao
et al., 2020a;b), depicted in Fig. 3: (i)
BoxPushing (BP). The goal is to move
the big box to the goal. An agent
can push the small box, but the big
one requires both agents to push it si-
multaneously. Agents only observe the
state of the cell in front of them, mak-
ing high-dimensional grids significantly
hard. We consider three variations BP-
{10, 20, 30}, where the number indi-
cates the size of the grid. (ii) Warehouse Tool Delivery (WTD). A continuous space scenario with
multiple workshops, each with a human worker assembling an item. Four work phases are required
to complete the item, and each phase requires a tool. The manipulator has to search for the right
tool and hand it to the mobile robots, which then have to deliver it to the human worker. Agents
must learn the correct tools for each phase while observing the system’s state only when close to a
workstation. We consider three variants. WTD-S: one working human that works at a fixed speed
and two mobile robots. WTD-D: two working humans with a faster first work phase and two mobile
robots. WTD-T: three working humans with slower work phases and two mobile robots. WTD-T1:
three working humans with different speeds and three mobile robots. (iii) Capture Target (CT). A
group of agents has to capture a randomly moving target simultaneously. When successful, agents
get a reward of 1. Agents observe their position and the target’s location with a flickering probability
of 0.3. We significantly increased the complexity of the original CT by considering 10 agents and 1
target (CT-10). Appendix D contains an exhaustive description of the tasks.

AVF performance. Fig. 4 shows the results of our evaluation. As discussed in Section 1, Dec-
MADDRQN performs well in the small BP-10 task but fails at learning the optimal joint policy
in larger grids. In the challenging WTD tasks, it obtains the lowest return across all the prob-
lem variations. Regarding AVF algorithms, AVF-VDN has comparable results to Dec-MADDRQN
in BP domains but learns behaviors with higher payoffs in WTD-{D, T, T1}. Despite improving
over the fully decentralized case, the limited class of functions that VDN can represent (Sunehag
et al., 2018) leads AVF-VDN to obtain the lowest performance over the proposed asynchronous
factorization methods. Similarly, the monotonicity constraint prevents AVF-QMIX from correctly
factorizing value functions for which an agent’s best action depends on a simultaneous action of
another agent (Rashid et al., 2018). Such behavior is pivotal in tightly cooperative settings, as the
optimal policy consists of agents performing a specific action simultaneously. Nonetheless, AVF-
QMIX’s mixer relies on our joint macro-state information and learns behaviors with higher payoffs
than Dec-MADDRQN and AVF-VDN in most environments. Finally, AVF-QPLEX addresses the
limited expressiveness of previous approaches, achieving better performance in all the domains.

To further confirm the superior performance of AVF-QPLEX, we performed additional experiments
in CT-10. For an exhaustive comparison, we include two more baselines, the fully centralized
value-based Cen-MADDRQN Xiao et al. (2020a), and the CTDE policy gradient Mac-IAICC Xiao

BP-10 BP-20 BP-30

WTD-S WTD-D WTD-T WTD-T1

Episode Episode Episode

EpisodeEpisodeEpisodeEpisode

A
vg
. R
et
ur
n

A
vg
. R
et
ur
n

Figure 4: Comparison of Asynchronous Value Factorization algorithms and Dec-MADDRQN (Xiao
et al., 2020a) in BoxPushing (top) and Warehouse Tool Delivery (bottom) tasks.
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Table 1: Average return of AVF algorithms and the baselines in CT-10.

Dec-MADDRQN Cen-MADDRQN AVF-VDN AVF-QMIX AVF-QPLEX Mac-IAICC

0.05 ± 0.02 0.35 ± 0.09 0.13 ± 0.05 0.26 ± 0.08 0.61 ± 0.09 0.29 ± 0.06

et al. (2022).7 Results in Table 1 further confirm our intuitions as Dec-MADDRQN fails at solv-
ing the task, while Mac-IAICC and Cen-MADDRQN achieve higher performance than most AVF
baselines. Nonetheless, only our AVF-QPLEX is able to solve the problem in most of the runs.

Figure 5: Results using the real state or a single macro-state for
the mixers in BP-10 and WTD-S.

Ablation study. Fig. 5
shows the key role of the joint
macro-state, using BP-10 and
WTD-S as representative exam-
ples. We consider AVF-{QMIX,
QPLEX}, feeding into the mixer:
(i) the real state of the environ-
ment (i.e., blue rightmost column
of Fig. 2), or (ii) the macro-state
of the only agents which termi-
nated their macro-action. Hence,
the mixer introduces noise in the
joint estimation. Both methods achieve negative payoffs, in contrast to the return of AVF methods
that use the joint macro-state (Fig. 4). These results confirm our intuition of Section 3.2 and the
importance of temporal consistency, as noisy joint action-value estimations caused by temporally
uncorrelated states hinder the learning of a good performing, joint asynchronous policy.

Primitive factorization and PG results. Given the assumptions of MacDec-POMDPs, comparing
over synchronous, primitive action methods does not provide a fair comparison. Nonetheless, we
performed experiments with the primitive VDN, QMIX, and QPLEX in the primitive action versions
of BP-10, WTD-S, CT-10, to show the complexity of the employed benchmarks. Appendix D.1
presents the primitive tasks and reports the average return obtained by primitive methods. Overall,
VDN and QMIX fail at learning a policy that solves the tasks, while QPLEX is only capable of
learning sub-optimal behaviors in all the domains.

For an exhaustive comparison, Appendix E shows the performance of the authors’ implementations
of Mac-IAICC (Xiao et al., 2022), and Cen-MADDRQN Xiao et al. (2020a) in the other two most
complex setups, BP-30 and WTD-T1. Overall, Mac-IAICC may eventually converge to the same
value as our AVF approaches but remains much less sample-efficient and more computationally
demanding due to using a centralized critic for each agent. In contrast, Dec-MADDRQN has higher
performance in BP-30 due to the limited size of the joint observation, but performs worse than
AVF-QPLEX in WTD-T1 due to the higher complexity and dimensionality of the task.

5 CONCLUSION

This paper introduces Value Factorization for Asynchronous Multi-Agent Reinforcement Learning
to design scalable macro-action algorithms. To this end, we proposed the IGM principle for macro-
actions, ensuring consistency between centralized and decentralized greedy action selection. In
addition, we showed the proposed Mac-IGM and MacAdv-IGM generalize the primitive case and
represent a wider class of functions. We also introduced AVF algorithms that leverage asynchronous
decision-making and value factorization. Our approach relies on a joint macro-state to maintain
temporal consistency in local agents’ state information, allowing the use of existing factorization ar-
chitectures. Crucially, the proposed AVF framework can be applied with arbitrary mixing strategies.
Extensive evaluations of complex coordination tasks showed that AVF approaches outperformed
primitive factorization methods and existing macro-action baselines. Overall, our methods success-
fully learn asynchronous decentralized policies for challenging tasks where primitive factorization
methods perform poorly. These methods show how more general action representations can be used
in MARL to scale to large domains while learning high-quality solutions.

7Comparing over a PG method is unfair, due to the well-known sample inefficiency compared to value-
based approaches. However, Mac-IAICC is the state-of-the-art CTDE method for macro-actions.
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6 ETHICS AND REPRODUCIBILITY STATEMENTS

In this section, we briefly discuss two paragraphs regarding the ethics and reproducibility statements
as detailed in the ICLR author guide.

Ethics Statement. We acknowledge our work does not contain any source of ethics concern as
described in the ICLR Code of Ethics. In particular, we do not perform studies involving human
subjects, nor release data sets or potentially harmful insights, methodologies, and applications. We
also don’t have conflicts of interest and sponsorship, discrimination/bias/fairness concerns, privacy
and security issues, legal compliance, and research integrity issues.

Reproducibility Statement. We put significant effort into ensuring reproducibility. While we in-
tend to release source code upon publication of our work, we included exhaustive details in multiple
parts of the paper to help with reproducibility. In particular, we clearly discuss the underlying theo-
retical framework of Asynchronous MARL in Section 2.2. Given the strong link with the primitive
case, we unified all the notation, where possible, to improve clarity. Section 2 also discusses in detail
all the methodologies on which we build AVF. Similarly, Section 3 first introduces all our theoretical
results, along with the related assumptions. Complete proofs for these are provided in Appendix A,
and Section 4 further confirm our claims with extensive experiments in standard benchmark envi-
ronments for Asynchronous MARL. Moreover, Section 4 clearly details our data collection process
and how results are visualized. Finally, we included a detailed discussion about the limitations and
broader impact of our work in Appendix C.
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APPENDICES

A REPRESENTATIONAL COMPLEXITY OF MAC-IGM AND MACADV-IGM

As discussed by VDN and QMIX (Sunehag et al., 2018; Rashid et al., 2018), common value factor-
ization approaches cannot guarantee representing their respective classes of true value functions in
a Dec-POMDP. The same limitation holds in MacDec-POMDPs; agents’ observations do not repre-
sent the full state in partially observable settings. Similarly, per-agent value function ordering can
(potentially) be wrong in a macro-action context. Formally, given an agent i at a time step t it could
happen that:

Qi(ĥ
i,mi) > Qi(ĥ

i,m′i) when Q(s, (m−i,mi)) < Q
(
s, (m−i,m′i)

)
where m−a is the joint action of all the agents excluding i. However, there are several ways to
alleviate such an issue. First, it is possible to condition per-agent action values (or state and ad-
vantage values) with state information during offline training as in QMIX (Rashid et al., 2018),
QPLEX (Wang et al., 2021). Moreover, if can not assume that (ĥ,m) (i.e., the joint macro-history
and action) is sufficient to fully model Q(s,m) (which is a common assumption in prior factoriza-
tion approaches), we can potentially store additional history-related information in recurrent layers
(Sunehag et al., 2018).

A.1 REPRESENTATIONAL EXPRESSIVENESS OF AVF ALGORITHMS

The proposed AVF framework does not change the architectural design of the chosen factorization
method. Hence, the algorithms investigated in Section 4, namely AVF-{VDN, QMIX, QPLEX},
maintain the same considerations of the original factorization methods in terms of representational
expressiveness.

In particular, AVF-VDN can factorize arbitrary joint macro-action value functions that can be addi-
tively decomposed into individual utilities. AVF-QMIX extends the family of factorizable functions
to non-linear monotonic combinations. Finally, AVF-QPLEX does not involve architectural con-
straints and is capable of achieving the entire class of functions satisfying the underlying IGM.

A.1.1 OMITTED PROOFS IN SECTION 3

Proposition 3.2. Denoting with

F IGM =

{(
QIGM : H × U → R|U|,

〈
QIGM

i : Hi × U i → R|Ui|
〉
i∈N

)
| Eq. 2 holds

}
(15)

FMac-IGM =

{(
QMac-IGM : Ĥ ×M → R|M|,

〈
QMac-IGM

i : Ĥi ×M i → R|Mi|
〉
i∈N

)
| Eq. 7 holds

}
(16)

the class of functions satisfying IGM and Mac-IGM respectively, then:
F IGM ⊂ FMac-IGM (17)

Proof. MacDec-POMDPs extends Dec-POMDPs by replacing the primitive actions available to
each agent with option-based macro-actions. However, as shown in (Amato et al., 2019), the macro-
action set contains primitive actions to guarantee the same globally optimal policy:

U i ⊂M i, ∀i ∈ N (18)

Meaning that ∀i ∈ N , |Mi| > |Ui|, which implies |M| > |U|. It also follows that O ⊆ Ô as
a MacDec-POMDP is, in the limit where only primitive actions are selected, equivalent to a Dec-
POMDP. For these reasons, we can conclude that |Ĥ ×M| > |H×U| (i.e., the domain over which
primitive action-value functions are defined is smaller than the domain over which macro-action-
value functions are defined). Hence, F IGM ⊂ FMac-IGM.

Proposition 3.4. The consistency requirement of MacAdv-IGM in Eq. 11 is equivalent to the Mac-
IGM one in Eq. 7. Hence, denoting with

FMacAdv-IGM =
{(

QMacAdv-IGM : Ĥ×M → R|M|, ⟨QMacAdv-IGM
i : Ĥi×M i → R|Mi|⟩i∈N

)
| Eq 11 holds

}
(19)

the class of functions satisfying MacAdv-IGM, we can conclude that FMac-IGM ≡ FMacAdv-IGM.
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Proof. Given a joint macro-history ĥ ∈ Ĥ on which ⟨Qi(ĥ
i,mi)⟩i∈N satisfies Mac-IGM for

Q(ĥ,m | m−), we show Eq. 11 represents the same consistency constraint as Eq. 7. By ap-
plying the dueling decomposition from (Wang et al., 2016), we know Q(ĥ,m | m−) = V (ĥ) +

A(ĥ,m |m−), and Qi(ĥ
i,mi) = V (ĥi) + Ai(ĥ

i,mi), ∀i ∈ N . Hence, the state-value functions
defined over macro-histories do not influence the action selection process. For the joint value, we
can thus conclude that:

argmax
m∈M

Q(ĥ,m |m−) = argmax
m∈M

V (ĥ) +A(ĥ,m |m−) = argmax
m∈M

A(ĥ,m |m−) (20)

Similarly, for the individual values:

∀i ∈N ,

{
argmaxmi∈Mi Qi(ĥ

i,mi) if M i ∈M+

mi ∈m− otherwise

=

{
argmaxmi∈Mi V (ĥi) +Ai(ĥ

i,mi) if M i ∈M+

mi ∈m− otherwise

=

{
argmaxmi∈Mi Ai(ĥ

i,mi) if M i ∈M+

mi ∈m− otherwise

(21)

Broadly speaking, we know the history values act as a constant for both the joint and local estimation
and do not influence the argmax operator. By combining Eq. 20, 21, we conclude the equivalence
between Eq. 7, 11.

Proposition 3.5. Denoting with F {Adv-IGM,MacAdv-IGM} the classes of functions satisfying Adv-IGM
and MacAdv-IGM, respectively, then:

F IGM ≡ F Adv-IGM ⊂ FMac-IGM ≡ FMacAdv-IGM. (22)

Proof. The result naturally follows from Proposition 3.2, 3.5, and the result of (Wang et al., 2021)
that showed the equivalence between the class of functions represented by the primitive IGM and
Adv-IGM. In more detail, from the latter we know F IGM ≡ FAdv-IGM. Moreover, Proposition 3.2
showed us that F IGM ⊂ FMac-IGM, from which follows that FAdv-IGM ⊂ FMac-IGM. In addition,
Proposition 3.5 showed us that FMac-IGM ≡ FMacAdv-IGM. Combining these results, we conclude the
relationship in Eq. 22.

B PSEUDOCODE, LIMITATIONS AND BROADER IMPACT

The general flow of our asynchronous approaches is presented in Algorithm 1.

In more detail, the centralized network QΘ used during the training phase is composed of agents’
decentralized networks ⟨Qθi⟩i∈N , and the chosen mixer module Qϕ. The same holds for the target
centralized network typically used in value-based approaches van Hasselt et al. (2016) (line 2). At
each time step, if the temporally extended action of an agent i ended at the previous time-step, i
observes the next macro observation ô′i that is then used to sample a new macro action mi within
a standard ϵ-greedy policy Mnih et al. (2013). It also collects its new macro-state ŝi that some of
the factorization architectures will employ. The cumulate reward signal also resets to 0 (lines 6-11).
After executing a step of their low-level policies πmi , we accumulate the joint reward and receive a
new macro observation ô′i if mi ends (lines 12-14). A joint sample is stored in the centralized buffer
D (line 15). At training time, we sample and squeeze a batch of trajectories from D as described
in the next section. We then compute the per-agent action-values as in DDRQN Hausknecht &
Stone (2015) (lines 16-18). Such action-values are fed into the mixer with (possibly) extra state
information to compute the factored values required by the loss in Eq. 14 to perform a gradient
descent step (lines 19-20). Finally, we update the target weights in a Polyak average fashion Polyak
& Juditsky (1992) (line 21).
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Algorithm 1 Asynchronous Value Factorization
1: Given:

• Agents decentralized and target networks ⟨Qθi,θ′
i
⟩i∈N

• Mixer and target mixer networks Qϕ, Qϕ′

• Centralized memory buffer D
• Initial macro observations and macro-states ⟨ôi, ŝi⟩i∈N
• N° of episodes e, time-out t′, update frequency f , target network update coefficient ω

2: Centralized QΘ and target QΘ′ networks for training are composed by (⟨Qθi⟩i∈N , Qϕ),
(⟨Qθ′

i
⟩i∈N , Qϕ′)

3: for episode = 1 to e do
4: for t = 0 to t′ do
5: for each agent i do
6: if mi is terminated then
7: Reset cumulative reward r
8: ôi ← ô′i

9: Get the macro-state ŝi from the environment
10: mi ∼ ϵ-greedy policy using Qθi (ĥ

i,mi)
11: end if
12: end for
13: Execute m = {mi}i∈N in the environment
14: Accumulate joint reward r
15: ô′ ← ⟨ô′i⟩i∈N ; ∀i, if mi does not end, ô′i = ôi

16: Store ⟨ô,m, ô′, r, ŝ⟩ into D
17: if t % f = 0 then
18: Sample and filter trajectories as in Section 3.2
19: Compute per-agent action-values using ⟨Qθi,θ′

i
, ĥi,mi, ĥ′i⟩i∈N

20: Factorize action-values using Qϕ, Qϕ′ , ŝ
21: Perform a gradient descent step on L(Θ) following Eq. 5 on the mixed values
22: Update target weights Θ′ ← ωΘ′ + (1− ω)Θ
23: end if
24: end for
25: end for

B.1 LIMITATIONS

We mainly identify three limitations in the proposed AVF framework:

• Most previous factorization approaches cannot guarantee to fully represent their respective
classes of value functions in a Dec-POMDP (Sunehag et al., 2018; Rashid et al., 2018;
2020); the same limitation holds in AVF-based algorithms that maintain the same repre-
sentation expressiveness of the original methods. In particular, agents’ observations do
not represent the true state in partially observable settings, and per-agent value function
ordering can (potentially) be wrong also in a macro-action context (Rashid et al., 2018).

• AVF-{QMIX, QPLEX} methods employ extra information per agent during factorization,
which could cause scalability issues when considering many agents. While such a problem
does not arise in our experiments, it would be possible to train an encoder to feed into
AVF’s mixers a compact representation of per-agent data.

• MacDec-POMDPs assume that low-level policies for executing macro-actions are known
and fixed. However, asynchronous decision-making settings are common in the real world
but have been rarely studied in the previous MARL literature. For this reason, principled
methods are needed for the fixed (MacDec-POMDP) case before extending them to learn
macro-actions (e.g., by employing skill discovery approaches to learn macro-actions (Ey-
senbach et al., 2019)).
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B.2 BROADER IMPACT

Regarding the broader impact of our work, we do believe macro-actions have the potential to scale
MARL into the real world. Temporally extended actions enable decision-making at a higher level
and naturally represent complex real-world behavior (e.g., lifting an object). that can exploit existing
robust controllers or be defined by a (human) expert, making them more explainable than other
sequences of primitive actions. By extending MARL algorithms to the macro-action case, realistic
multi-agent coordination problems can be solved that are orders of magnitude larger than problems
solved by previous primitive MARL algorithms.

C ENVIRONMENTAL IMPACT

Despite being significantly less computationally demanding than conventional Deep Learning ap-
proaches, training agents with MARL algorithms leads to environmental impacts due to intensive
computations that (possibly) run on computer clusters for an extended time. Nonetheless, it is crucial
to foster sample efficiency (i.e., reducing the training time for the agents, hence the computational
resources used to train them) to reduce the environmental footprint of such learning systems. In this
direction, our work considers designing macro-action methods that significantly improve the sample
efficiency of the learning algorithms (i.e., the number of simulation steps required to learn a policy),
as shown by previous research on the topic (Xiao et al., 2020a;b). Our experiments were conducted
using a private infrastructure with a carbon efficiency of ≈ 0.275kgCO2eq

kWh , requiring a cumulative
≈72 hours of computation. Total emissions are estimated to be ≈ 4.26kgCO2eq using the Machine
Learning Impact calculator of which 100% were offset through Treedom.

D DOMAIN DESCRIPTION

D.1 BOX PUSHING (BP)

In this collaborative task, two agents have to work together to push a big box to a goal area at the
top of a grid world to obtain a higher credit than pushing the small box on each own. The small box
is movable with a single agent, while the big one requires two agents to push it simultaneously.

The state space consists of each agent’s position and orientation, as well as the location of each box.
Agents have a set of primitive actions, including moving forward, turning left or right, and staying
in place. The available macro-actions are Go-to-Small-Box(i) and Go-to-Big-Box that navigates the
agent to a predefined waypoint (red) under the corresponding box and terminates with a pose facing
it; and a Push macro-action that makes the agent move forward and terminate when the robot hits
the world boundary or the big box. Each agent observation is very limited in both the primitive and
macro level, which is the state of the front cell: empty, teammate, boundary, small box, or big box.

The team receives a terminal reward of +100 for pushing the big box to the goal area or +10 for
pushing one small box to the goal area. If any agent hits the world’s boundary or pushes the big box
on its own, a penalty of −10 is issued. An episode terminates when any box is moved to the goal
area or reaches the maximum horizon, 100 time steps. In our work, we consider the variant of this
task in terms of the grid world size as shown in Fig. 6.

The original work of Xiao et al. (2020a) also released a primitive action version of the BP task. In
the primitive action version, each agent has four actions: move forward, turn left, turn right, and
stay. The small box moves forward one grid cell when any robot faces it and executes the move
move forward action.

D.2 WAREHOUSE TOOL DELIVERY (WTD)

Warehouse Tool Delivery scenarios vary in the number of agents, humans, and the speed at which
they work. In each scenario, the humans assemble an item with four work phases. Each phase
requires several primitive time steps and a specific tool. We assume that the human already holds
the tool for the first phase, and the rest must be found and delivered in a particular order by a team of
robots to finish the subsequent work phases. The objective of the robot team is to assist the humans
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Figure 6: Overview of the considered Box Pushing task variations.

in completing their tasks as quickly as possible by finding and delivering the correct tools in the
proper order and timely fashion without making the humans wait.

The environmental space is continuous, and the global state includes 1) each mobile robot’s 2D
position; 2) the execution status of the manipulator robot’s macro-action in terms of the rest of
primitive time steps to terminate; 3) the work phase of each human with its completed percentage;
and 4) each tool’s position.

Mobile robots have three navigation macro-actions: 1) Go-W(i) moves the robot to the correspond-
ing workshop and locates at the red spot in the end; 2) Go-TR leads the robot to the red waypoint in
the middle of the tool room; 3) Get-Tool navigates the robot the pre-allocated waypoint beside the
manipulator and wait there, which will not terminate until either receiving a tool or waiting there for
10 time steps. Mobile robots move at a fixed velocity and are only allowed to receive tools from the
manipulator rather than the human. There are three applicable macro-actions for the manipulator
robot: 1) Search-Tool(i) takes 6 time steps to find a particular tool and place it in a staging area
when there are less than two tools there; otherwise, it freezes the robot for the same amount of time.;
2) Pass-to-M(i) takes 4 time steps to pick up the first found tool from the staging area and pass it to
a mobile robot; 3) Wait-M consumes 1 time step to wait for a mobile robot.

Each mobile robot is always aware of its location and the type of tool carried by itself. Meanwhile,
it is also allowed to observe the number of tools in the staging area or a human’s current work phase
when it is at the tool room or the corresponding workshop, respectively. The macro-observation of
the manipulator robot is limited to the type of tools present in the staging area and the identity of the
mobile robot waiting at the adjacent waypoints.

Rewards for this domain are structured such that the team earns a reward of +100 when they deliver
a correct tool to a human on time. However, if the delivery is delayed, an additional penalty of −20
is imposed. Moreover, the team incurs a penalty of −10 if the manipulator robot attempts to pass a
tool to a mobile robot that is not adjacent, and a penalty of −1 happens every time step.

We consider four variations of WTD shown in Fig. 7: a) WTD-S, involves one human and two
mobile robots; b) WTD-D, involves two humans and two mobile robots; c) WTD-T, involves three
humans and two mobile robots. d) WTD-T1, involves three humans and three mobile robots. The
human working speeds under different scenarios are listed in Table 2

Table 2: The number of time steps each human takes on each working phase in scenarios.

Scenarios WTD-S WTD-D WTD-T WTD-T1

Human-0 [20, 20, 20, 20] [27, 20, 20, 20] [40, 40, 40, 40] [38, 38, 38, 38]
Human-1 N/A [27, 20, 20, 20] [40, 40, 40, 40] [38, 38, 38, 38]
Human-2 N/A N/A [40, 40, 40, 40] [27, 27, 27, 27]

Each episode stops when all humans have obtained the correct tools for all work phases or when the
maximum time steps are reached (150 for WTD-S, 150 for WTD-D, and 150 for WTD-T).
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(d) WTD-T1

Figure 7: Overview of the considered Warehouse Tool Delivery task variations.

D.3 CAPTURE TARGET (CT)

In this domain, there are 10 agents represented by blue circles, assigned with the task of captur-
ing a randomly moving target indicated by a red cross (as shown in Fig. 3). Each agent’s macro-
observation captures the same information as its primitive one, including the agent’s position (being
always observable) and the target’s position (being partially observable with a flickering probability
of 0.3). The applicable primitive-actions include moving up, down, left, right, and stay. The macro-
action set consists of Move-to-T, directs the agent to move towards the target with an updated target
position according to the latest primitive observation, and Stay lasts a single time step. The horizon
of this task is 60 time steps, and a terminal reward of +1 is given only when all agents capture the
target simultaneously by being in the same cell.

D.4 RESULTS FOR THE PRIMITIVE FACTORIZATION BASELINES

Table 3 reports the performance of the primitive action baselines VDN, QMIX, QPLEX in the prim-
itive BP-10, WTD-S, CT-10. The primitive version of these environments were obtained by con-
straining macro-actions to one-step action. Crucially, as discussed in Section 4, primitive baselines
struggle to cope with the complexity of the tasks that are typically used in the macro-action liter-
ature, since they require a high degree of cooperation, and are characterized by significant partial
observability.

Table 3: Experiments with primitive factorization VDN, QMIX, QPLEX in the primitive version of
BP-10, WTD-S, CT-10.

VDN QMIX QPLEX

BP-10 -4.1 ± 10.5 -2.0 ± 9.3 13.4 ± 2.6
WTD-S 32 ± 4.5 44 ± 6.2 61 ± 5.3
CT-10 0.04 ± 0.01 0.09 ± 0.03 0.20 ± 0.04

E COMPARISON WITH CEN-MADDRQN AND MAC-IAICC

Fig. 8 shows the performance of the authors’ implementations of Mac-IAICC (Xiao et al., 2022),
and Cen-MADDRQN Xiao et al. (2020a) in the two remaining most complex setups, BP-30 and
WTD-T1. As discussed in the main paper, Mac-IAICC may eventually converge to the same value
as AVF-QPLEX, but remains much less sample-efficient and more computationally demanding due
to using a centralized critic for each agent. In contrast, Dec-MADDRQN has higher performance
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Figure 8: Comparison of our best performing algorithm, AVF-QPLEX against the fully centralized
value-based Cen-MADDRQN Xiao et al. (2020a) and the CTDE policy-gradient Mac-IAICC Xiao
et al. (2022) in the remaining most complex scenarios, BP-30 and WTD-T1

than AVF-QPLEX in BP-30, due to the limited size of the joint observation, but performs worse in
WTD-T1 due to the higher complexity and dimensionality of the task. Overall these results confirm
the merits of the proposed asynchronous value factorization framework.

F HYPER-PARAMETERS

Regarding the considered baselines, we employed the original authors’ implementations and param-
eters (Sunehag et al., 2018; Rashid et al., 2018; Wang et al., 2021; Xiao et al., 2020a; 2022). Table
4 lists all the hyper-parameters considered in our initial grid search for tuning the algorithms em-
ployed in Section 4. We separate algorithm-specific parameters (e.g., for the mixer of AVF-QMIX,
AVF-QPLEX) with a horizontal line at the end of the table. We tested different joint reward schemes
for macro-actions (e.g., only considering the max/min values and time horizon among the agents,
averaging them). Still, the original joint scheme in Section 2.2 resulted in the best performance.

Table 4: Hyper-parameters candidate for initial grid search tuning.
Learning rate 1e-3, 3e-4, 1e-4, 5e-5
γ 0.9, 0.95, 0.99
ASVB (full episodes) size 1000, 2500, 5000
Batch size 32, 64, 128
Sampling trajectory size 10, 25, 50
Polyak averaging ω 0.995, 0.9998
N° hidden layers 2, 3
Hidden layers size 64, 128

Mix embed. size 32, 64
Hypernet embed. size 32, 64
N° hypernet layers 2
N° Advantage hypernet layers 2
Advantage hypernet embed. size 32, 64

Table 5 lists the hyper-parameters considered in our experiments. When a parameter differs from
the BP and the WTD domains, we indicate both values with a separator. Shared parameters between
all the algorithms are indicated once.
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Table 5: Hyper-parameters used in our experiments.
AVF-VDN AVF-QMIX AVF-QPLEX

Learning rate 5e-5 — 1e-4 5e-5 — 1e-4 1e-4 — 1e-4
γ 0.9 0.99 — 0.9 0.99 — 0.9
ASCB size 2500
Batch size 64
Sampling traj. size 25
ω 0.995
N° hidden layers 2
Hidden layers size 64
Mix embed. size - 32 32
Hypernet embed. size - 32 -
N° hypernet. layers - 2 -
N° Adv. hypernet layers - - 2
Adv. hypernet embed. size - - 32
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