
Spark-TTS: An Efficient LLM-Based Text-to-Speech Model with
Single-Stream Decoupled Speech Tokens

Anonymous ACL submission

Abstract001

Recent advances in large language models002
(LLMs) have enabled remarkable progress in003
zero-shot text-to-speech (TTS) synthesis, yet004
existing foundation models face significant lim-005
itations. While these models excel at repro-006
ducing voices from reference audio, they lack007
fine-grained control over voice attributes and,008
in single-stream approaches, suffer from the en-009
tanglement of semantic and acoustic informa-010
tion within tokens. This entanglement makes011
independent manipulation of speech character-012
istics challenging and hinders the creation of en-013
tirely new voices. To address these limitations,014
we introduce Spark-TTS, a novel system built015
upon our proposed BiCodec, a single-stream016
speech codec that strategically decomposes017
speech into two complementary token types:018
low-bitrate semantic tokens for linguistic con-019
tent and fixed-length global tokens for speaker-020
specific attributes. This disentangled represen-021
tation, combined with the Qwen2.5 LLM and022
a chain-of-thought (CoT) generation approach,023
enables both coarse-grained attribute control024
(e.g., gender, speaking style) and fine-grained025
parameter adjustment (e.g., precise pitch val-026
ues, speaking rate). To advance research in con-027
trollable TTS, we introduce VoxBox, a meticu-028
lously curated 100,000-hour dataset with com-029
prehensive attribute annotations. Extensive ex-030
periments demonstrate that Spark-TTS not only031
achieves state-of-the-art performance in zero-032
shot voice cloning but also excels at generat-033
ing novel, highly customizable voices that tran-034
scend the limitations of reference-based syn-035
thesis1. Audio samples are available at https:036
//spark-tts.github.io/.037

1 Introduction038

Recent advances in speech tokenization have039

revolutionized text-to-speech (TTS) synthesis by040

bridging the fundamental gap between contin-041

uous speech signals and discrete token-based042

1Source code and checkpoint will be released.
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Figure 1: Spark-TTS can generate in a zero-shot manner
through reference audio, as well as create new speakers
by leveraging coarse- or fine-grained attribute control.

large language models (LLMs) (Anastassiou et al., 043

2024; Zhu et al., 2024; Wang et al., 2024c). 044

Through sophisticated quantization techniques, par- 045

ticularly Vector Quantization (VQ) (Van Den Oord 046

et al., 2017) and Finite Scalar Quantization 047

(FSQ) (Mentzer et al., 2023), codec-based LLMs 048

have emerged as the predominant paradigm for 049

zero-shot TTS. The integration of extensive train- 050

ing data with large-scale model architectures 051

has enabled these systems to achieve unprece- 052

dented levels of naturalness, often rendering 053

synthetic speech indistinguishable from human 054

speech (Anastassiou et al., 2024; Du et al., 2024b; 055

Chen et al., 2024b; Ye et al., 2024a). 056

Despite the remarkable progress in LLM-based 057

zero-shot TTS, several fundamental challenges per- 058

sist. Current codec-based TTS architectures exhibit 059

significant complexity, requiring either dual genera- 060

tive models (Wang et al., 2023a; Anastassiou et al., 061

2024) or intricate parallel multi-stream code predic- 062

tion mechanisms (Kreuk et al., 2023; Le Lan et al., 063

2024) that deviate substantially from conventional 064

text LLM frameworks. This divergence stems from 065

inherent limitations in existing audio codecs - while 066

semantic tokens provide compactness, they neces- 067

sitate additional models for acoustic feature pre- 068

diction (Du et al., 2024a; Huang et al., 2023) and 069

lack integrated timbre control capabilities. Acous- 070

tic tokens, meanwhile, rely on complex codebook 071

architectures like group-VQ (Défossez et al., 2022; 072

Van Den Oord et al., 2017). The field also struggles 073
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with the creation of novel voices, as current sys-074

tems are predominantly limited to reference-based075

generation (Zhang et al., 2023b; Chen et al., 2024a),076

lacking the capability to synthesize voices with pre-077

cisely specified characteristics. This limitation is078

further compounded by insufficient granularity in079

attribute control, especially for fine-grained char-080

acteristics such as pitch modulation, despite recent081

advances in instruction-based generation (Du et al.,082

2024b). Furthermore, the prevalent use of propri-083

etary datasets in current research creates significant084

challenges for standardized evaluation and mean-085

ingful comparison of methods (Anastassiou et al.,086

2024; Ye et al., 2024a). These limitations collec-087

tively underscore the need for a unified approach088

that can simplify architecture, enable flexible voice089

creation with comprehensive attribute control, and090

establish reproducible benchmarks through open091

data resources.092

To address these fundamental limitations, we in-093

troduce Spark-TTS, a unified system that achieves094

zero-shot TTS with comprehensive attribute con-095

trol through a single codec LLM, maintaining ar-096

chitectural alignment with conventional text LLMs.097

In addition, we present VoxBox, a meticulously098

curated and annotated open-source speech dataset099

that establishes a foundation for reproducible re-100

search in speech synthesis. Specifically, we in-101

troduce BiCodec, a novel tokenization framework102

that preserves the efficiency of semantic tokens103

while enabling fine-grained control over timbre-104

related attributes. BiCodec achieves this through105

combining low-bitrate semantic tokens with fixed-106

length global tokens, effectively capturing both lin-107

guistic content and time-invariant acoustic char-108

acteristics. Building upon BiCodec, we leverage109

Qwen2.5 (Yang et al., 2024) through targeted fine-110

tuning, seamlessly integrating TTS capabilities111

within the text LLM paradigm. To enable compre-112

hensive voice control, we implement a hierarchical113

attribute system combining coarse-grained labels114

(gender, pitch, speaking speed) with fine-grained115

numerical values, orchestrated through a chain-of-116

thought (CoT) prediction framework.117

Our primary contributions encompass:118

• New Tokenization: We present BiCodec, a119

unified speech tokenization that generates a120

hybrid token stream combining semantic and121

global tokens. This approach maintains lin-122

guistic fidelity while enabling sophisticated123

attribute control through LM-based mecha-124

nisms. 125

• Coarse- and Fine-Grained Voice Control: 126

Spark-TTS implements a comprehensive at- 127

tribute control system that seamlessly inte- 128

grates both categorical and continuous param- 129

eters within a text LLM-compatible architec- 130

ture. As demonstrated in Fig. 1, this inno- 131

vation transcends traditional reference-based 132

approaches to zero-shot TTS. 133

• Benchmark Dataset: We introduce VoxBox, 134

a rigorously curated 100,000-hour speech cor- 135

pus, developed through systematic data collec- 136

tion, cleaning, and attribute annotation. This 137

resource establishes a standardized bench- 138

mark for TTS research and evaluation. 139

2 Related Work 140

2.1 Single-Stream Speech Tokenizer 141

Early single-stream speech tokenizers primarily fo- 142

cused on extracting semantic tokens (Huang et al., 143

2023; Du et al., 2024a; Tao et al., 2024). While 144

pure semantic tokens enable low-bitrate encoding, 145

they necessitate an additional acoustic feature pre- 146

diction module in semantic token-based speech syn- 147

thesis (Du et al., 2024a,b). 148

Recently, single-stream-based acoustic tokeniza- 149

tion has gained considerable attention (Xin et al., 150

2024; Wu et al., 2024). WavTokenizer (Ji et al., 151

2024a) employs a convolution-based decoder to im- 152

prove reconstruction quality, while X-codec2 (Ye 153

et al., 2025) enlarges the code space with FSQ. 154

Instead of following a pure encoder-VQ-decoder 155

paradigm, decoupling speech content has proven 156

effective in reducing bitrate using a single code- 157

book (Li et al., 2024a; Zheng et al., 2024). 158

Among these methods, TiCodec (Ren et al., 159

2024) is the most similar to our approach in 160

handling global information. However, unlike 161

TiCodec, the proposed BiCodec employs semantic 162

tokens as its time-variant tokens. Instead of using 163

group GVQ (Ren et al., 2024), we propose a novel 164

global embedding quantization method based on 165

FSQ with learnable queries and a cross-attention 166

mechanism. This approach enables the generation 167

of a relatively longer token sequence, offering a 168

more expressive and flexible representation. 169

2.2 LLM-based Zero-Shot TTS 170

Prevalent codec LLMs zero-shot TTS predomi- 171

nantly fall into two categories. The first type in- 172
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Figure 2: Illustration of the BiCodec. The Global Tok-
enizer processes the Mel spectrogram to produce global
tokens with fixed length, while the Semantic Tokenizer
adopts features from wav2vec 2.0 to produce 50 TPS
semantic tokens. The decoder reconstructs the wave-
form from the generated tokens. The detailed structure
of BiCodec is provided in Appendix A.

volves predicting single-stream codes using LLMs,173

followed by the generation of codes enriched with174

detailed acoustic or continuous semantic features175

through another LLM (Zhang et al., 2023b; Chen176

et al., 2024a; Wang et al., 2024a) or generative dif-177

fusion models (Anastassiou et al., 2024; Casanova178

et al., 2024). The second type involves predicting179

multi-stream codes using carefully designed par-180

allel strategies (Le Lan et al., 2024; Copet et al.,181

2024) or masked generative patterns (Garcia et al.,182

2023; Ziv et al., 2024; Li et al., 2024b).183

By leveraging the single-stream tokens produced184

by the proposed BiCodec, Spark-TTS simplifies185

the modeling of speech tokens within an LLM186

framework that is fully unified with text LLMs.187

The most comparable work is the concurrent TTS188

model Llasa (Ye et al., 2025), which employs an189

FSQ-based tokenizer to encode speech into single-190

stream codes with a codebook size of 65,536, fol-191

lowed by LLaMA (Touvron et al., 2023) for speech192

token prediction. In contrast, Spark-TTS extends193

beyond zero-shot TTS by integrating speaker at-194

tribute labels, enabling controllable voice creation.195

Additionally, Spark-TTS achieves higher zero-shot196

TTS performance while using fewer model param-197

eters, enhancing both efficiency and flexibility.198

3 BiCodec199

To achieve both the compact nature and seman-200

tic relevance of semantic tokens, while also en-201

abling acoustic attribute control within an LM, we202

propose BiCodec, which discretizes input audio203

into: (i) Semantic tokens at 50 tokens per second204

(TPS), capturing linguistic content, and (ii) Fixed-205

length global tokens, encoding speaker attributes206

and other global speech characteristics. 207

3.1 Overview 208

As shown in Fig. 2, BiCodec includes a Global 209

Tokenizer and a Semantic Tokenizer. The for- 210

mer extracts global tokens from the Mel spectro- 211

gram of input audio. The latter uses features from 212

wav2vec 2.0 (Baevski et al., 2020) as input to ex- 213

tract semantic tokens. 214

The BiCodec architecture follows a standard VQ- 215

VAE encoder-decoder framework, augmented with 216

a global tokenizer. The decoder reconstructs dis- 217

crete tokens back into audio. For an input audio 218

signal x ∈ [−1, 1]T , with sample number of T , 219

BiCodec functions as follows: 220

z = Es(F (x)), g = Eg(Mel(x)),

gf = CrossAttention(g,h),

zq = Qs(z), gq = Qg(gf ),

x̂ = G(zq, Ag(gq)),

(1) 221

where Es(·) is the encoder of the semantic tok- 222

enizer, F (·) is the pre-trained wav2vec 2.02, Eg(·) 223

is the encoder of the global tokenizer, Mel(·) is to 224

extract Mel spectrogram from x, h is a sequence 225

of learnable queries matching the length of the fi- 226

nal global token sequence, Qs(·) is a quantization 227

layer with VQ, Qg(·) is a quantization layer with 228

FSQ, Ag(·) is an aggregation module with a pool- 229

ing layer, and G(·) is the decoder that reconstructs 230

the time-domain signal x̂. 231

3.2 Model Structure 232

Encoder and Decoder The encoder of the seman- 233

tic tokenizer Es and the decoder G are fully convo- 234

lutional neural networks built with ConvNeXt (Liu 235

et al., 2022) blocks. To effectively capture seman- 236

tic information, based on the relationship between 237

different layer features of wav2vec 2.0 (XLSR-53) 238

and semantics (Pasad et al., 2023), we select fea- 239

tures from the 11th, 14th, and 16th layers, aver- 240

aging them to obtain the semantic feature, which 241

serves as the input for the semantic tokenizer. The 242

features from the first two layers show a strong 243

correlation with words, while the features from the 244

16th layer exhibit the strongest correlation with 245

phonemes. 246

The global tokenizer’s encoder, Eg, uses the 247

ECAPA-TDNN architecture (Desplanques et al., 248

2020) following the implementation by Wes- 249

peaker (Wang et al., 2023b) up to the final pooling 250

2
https://huggingface.co/facebook/wav2vec2-large-xlsr-53

3

https://huggingface.co/facebook/wav2vec2-large-xlsr-53


I T A F G S E

G S E

Speech TokenizerAttribute TokenizerText Tokenizer

Speech Language Model

Text Attributes Speech

Text Token

Attribute Token

Fine-grained Attribute Token

Global Token

Semantic Token

Task Indicate Token

Turn of Token Type

End of Sequence

T A F G S

I

Ignore Token

E

Randomly Omitted During Training

Figure 3: Speech language model of Spark-TTS. During inference, if the input contains attribute tokens representing
gender, pitch level, and speed level, the model can predict the corresponding fine-grained attribute tokens, global
tokens, and semantic tokens without requiring reference audio in a CoT manner. Otherwise, global tokens can be
derived from the reference audio for zero-shot TTS.

layer. After encoding, the global tokenizer extracts251

a fixed-length sequence representation gf using a252

cross-attention mechanism with a set of learnable253

queries.254

Quantization The semantic tokenizer employs255

single-codebook vector quantization for quantiza-256

tion. Inspired by DAC (Kumar et al., 2024), we257

use factorized codes to project the encoder’s output258

into a low-dimensional latent variable space prior259

to quantization.260

Considering that the global tokenizer requires a261

set of discrete tokens to represent time-independent262

global information, FSQ is employed rather than263

VQ to mitigate the potential risk of training col-264

lapse associated with VQ. Details about the model265

structure can be seen in Appendix A.266

3.3 Training objective267

Loss Functions BiCodec is trained end-to-end em-268

ploying a Generative Adversarial Network (GAN)269

methodology (Goodfellow et al., 2020) to mini-270

mize reconstruction loss, together with L1 feature271

matching loss (via discriminators) (Kumar et al.,272

2019, 2024) while simultaneously optimizing the273

VQ codebook.274

Following (Kumar et al., 2024), we compute275

the frequency domain reconstruction loss using L1276

loss on multi-scale mel-spectrograms. Multi-period277

discriminator (Kong et al., 2020; Engel et al., 2020;278

Gritsenko et al., 2020) and multi-band multi-scale279

STFT discriminator (Kumar et al., 2024) are used280

for waveform discrimination and frequency domain281

discrimination, respectively.282

VQ codebook learning incorporates both a code-283

book loss and a commitment loss. Following the284

approach in (Xin et al., 2024), the codebook loss285

is calculated as the L1 loss between the encoder 286

output and the quantized results, employing stop- 287

gradients. Additionally, the straight-through esti- 288

mator (Bengio et al., 2013) is used to enable the 289

backpropagation of gradients. 290

To ensure training stability, in the initial stages, 291

the global embedding derived from the averaged 292

gq is not integrated into the decoder. Instead, this 293

embedding is obtained directly from the pooling 294

of gf . Meanwhile, the FSQ codebook is updated 295

using an L1 loss between embedding obtained from 296

gf and that from pool(gq). As training progresses 297

and stabilizes, this teacher-student form will be 298

omitted after a specific training step. 299

To further ensure semantic relevance, following 300

X-Codec (Ye et al., 2024b), a wav2vec 2.0 recon- 301

struction loss is applied after quantization, with 302

ConvNeXt-based blocks serving as the predictor. 303

4 Language Modeling of Spark-TTS 304

4.1 Overview 305

As illustrated in Fig. 3, the Spark-TTS speech lan- 306

guage model adopts a decoder-only transformer 307

architecture, unified with a typical textual lan- 308

guage model. We employ the pre-trained textual 309

LLM Qwen2.5-0.5B3 (Yang et al., 2024) as the 310

backbone of the speech language model. Unlike 311

CosyVoice2 (Du et al., 2024a), Spark-TTS does not 312

require flow matching to generate acoustic features. 313

Instead, BiCodec’s decoder directly processes the 314

LM’s output to produce the final audio, signifi- 315

cantly simplifying the textual LLM-based speech 316

generation pipeline. 317
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In addition to zero-shot TTS, Spark-TTS sup-318

ports voice creation using various attribute labels.319

During inference, if attribute labels for gender,320

pitch level, and speed level are provided, the lan-321

guage model can predict fine-grained pitch values,322

speed values, global tokens, and semantic tokens323

through chain-of-thought processing. If no attribute324

labels are provided, global tokens are extracted325

from the reference audio, enabling zero-shot TTS.326

4.2 Tokenizer327

Text Tokenizer Similar to textual LLMs, Spark-328

TTS employs a byte pair encoding (BPE)-based329

tokenizer to process raw text. Here, we adopt the330

Qwen2.5 tokenizer (Yang et al., 2024), which sup-331

ports multiple languages.332

Attribute Tokenizer To enable voice creation333

based on speech attributes, Spark-TTS encodes334

attribute information at two levels: (i) Coarse-335

Grained: Attribute labels representing high-level336

speech characteristics, including gender, pitch (cat-337

egorized into five discrete levels), and speed (cate-338

gorized into five discrete levels); (ii) Fine-Grained:339

Attribute values enabling precise control over pitch340

and speed, which are quantized by rounding to the341

nearest integer during tokenization.342

Speech Tokenizer The speech tokenizer consists343

of a global tokenizer and a semantic tokenizer. Us-344

ing both global and semantic tokens, the BiCodec345

decoder reconstructs the waveform signal.346

4.3 Training Objective347

The decoder-only language model is trained by348

minimizing the negative log-likelihood of token349

predictions. Let T represent the tokenized tex-350

tual prompt and G denote the global speech token351

prompt; the optimization for zero-shot TTS is de-352

fined as follows:353

Lzst = −
To∑
t=1

logP (ot|T ,G,o<t; θLM ), (2)354

where o ∈ NT
o represents the semantic tokens to be355

predicted in the zero-shot TTS scenario, and θLM356

denotes the parameters of the language model.357

For the case of voice creation, the optimization358

is defined as follows:359

Lcontrol = −
Tc∑
t=1

logP (ct|T ,A, c<t; θLM ), (3)360

where A represents the attribute label prompt, and361

the output c encompasses F , G, and S. Here, F362

denotes the fine-grained attribute value prompt, and 363

S is speech semantic tokens. 364

In practice, Lzst and Lcontrol are mixed during 365

training. Specifically, each audio example is struc- 366

tured into two training samples according to Lzst 367

and Lcontrol respectively. 368

5 VoxBox 369

5.1 Overview 370

To facilitate voice creation and establish a fair com- 371

parison benchmark for future research, we intro- 372

duce VoxBox, a well-annotated dataset for both En- 373

glish and Chinese. All data sources in VoxBox orig- 374

inate from open-source datasets, ensuring broad 375

accessibility. To enhance data diversity, we collect 376

not only common TTS datasets, but also datasets 377

used for speech emotion recognition. Each au- 378

dio file in VoxBox is annotated with gender, pitch, 379

and speed. Additionally, we also perform data 380

cleaning on datasets with lower text quality. Af- 381

ter data cleaning, VoxBox comprises 4.7 million 382

audio files, sourced from 29 open datasets, total- 383

ing 102.5k hours of speech data. Details about 384

VoxBox and the source datasets can be found in 385

Appendix E. 386

5.2 Clean and Annotation 387

Gender Annotation Given the strong performance 388

of pre-trained WavLM in speaker-related tasks (Li 389

et al., 2024c), we fine-tune the WavLM-large model 390

for gender classification using datasets that contain 391

explicit gender labels (detailed in Appendix E.2). 392

Our fine-tuned model achieves 99.4% accuracy on 393

the AISHELL-3 test set. We then use this gender 394

classification model to annotate datasets previously 395

lacking gender labels. 396

Pitch Annotation We extract the average pitch 397

value from each audio clip using PyWorld4, round- 398

ing it to the nearest integer to obtain fine-grained 399

pitch value tokens. For the definition of pitch lev- 400

els, we first convert the average pitch of each audio 401

clip to the Mel scale. We then conduct a statistical 402

analysis of all Mel scale pitch for all males and 403

females separately. Based on the 5th, 20th, 70th, 404

and 90th percentiles, we establish boundaries for 405

five pitch levels: very low, low, moderate, high, and 406

very high (detailed in Appendix E.1). 407

Speed Annotation Compared to character- 408

based (Vyas et al., 2023), word-based (Ji et al., 409

2024b), or phoneme-based (Lyth and King, 2024) 410

4
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speaking rate calculations, syllable-based measure-411

ments provide a more direct correlation with speak-412

ing rate. Here, we initially apply Voice Activity413

Detection (VAD) to eliminate silent segments at414

both ends. Subsequently, we calculate the syllables415

per second (SPS), which is then rounded to the416

nearest integer to serve as the fine-grained speed417

value token. Using the 5th, 20th, 80th, and 95th418

percentiles, we establish boundaries for five dis-419

tinct speed levels: very slow, slow, moderate, fast,420

and very fast (detailed in Appendix E.1).421

Data Cleaning For datasets exhibiting lower text422

quality, we conduct an additional cleaning process.423

Specifically, for Emilia (He et al., 2024), the orig-424

inal transcripts were obtained using the Whisper-425

based (ASR) system (Radford et al., 2023), em-426

ploying the whisper-medium model, which occa-427

sionally resulted in inaccuracies. To address this,428

we employ another ASR model, FunASR (Gao429

et al., 2023)5, to re-recognize the audio. We then430

use the original scripts as ground truth to calculate431

the Word Error Rate (WER) and excluded samples432

with a WER exceeding 0.05. For the MLS-English,433

LibriSpeech, LibriTTS-R, and datasets originally434

designed for emotion recognition, we employ the435

whisper-large-v36 model for speech recognition,436

comparing the recognition results with the original437

scripts. Samples exhibiting insertions or deletions438

are excluded from the dataset.439

6 Experiments440

6.1 Implementation Details441

BiCodec is trained on the full training set of the442

LibriSpeech dataset, comprising 960 hours of En-443

glish speech data. Additionally, we include 1,000444

hours of speech data from both Emilia-CN and445

Emilia-EN, bringing the total training data to ap-446

proximately 3,000 hours. All audio samples are447

resampled to 16 kHz. The global token length is448

set as 32. For optimization, we use the AdamW449

optimizer with moving average coefficients coef-450

ficients β1 = 0.8 and β2 = 0.9. The model con-451

verges within approximately 800k training steps452

using a batch size with 614.4 seconds of speech.453

The Spark-TTS language model is trained us-454

ing the entire VoxBox training set. If a dataset455

lacks predefined train/test splits, we use the entire456

processed dataset for training. The training em-457

5ZH: https://huggingface.co/funasr/paraformer-zh
EN: https://huggingface.co/FunAudioLLM/SenseVoiceSmall
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ploys the AdamW optimizer with β1 = 0.9 and 458

β2 = 0.96. The model undergoes training over 3 459

epochs, using a batch size of 768 samples. 460

6.2 Reconstruction Performance of BiCodec 461

Comparsion with Other Methods The reconstruc- 462

tion performance of BiCodec compared to other 463

methods is presented in Table 1. As can be seen, 464

within the low-bitrate range (<1 kbps), BiCodec 465

surpasses all methods on most metrics, except for 466

UTMOS, where it ranks second to StableCodec, 467

and SIM, where it ranks second to X-Codec2, 468

thereby achieving a new state-of-the-art (SOTA) 469

performance. 470

Notably, BiCodec’s semantic tokens are ex- 471

tracted from wav2vec 2.0 rather than raw audio, 472

resulting in stronger semantic alignment compared 473

to codecs that directly process waveform-based 474

representations. Further experimental results and 475

analyses are provided in Appendix A.3. 476

Effectiveness of Global Tokenizer We first eval- 477

uate the optimal length for the global token se- 478

quence. As shown in Table 2, we compare the 479

impact of different sequence lengths on reconstruc- 480

tion quality. The results without FSQ quantization 481

serve as a benchmark reference. Notably, increas- 482

ing the global token sequence length consistently 483

improves reconstruction quality, with performance 484

approaching the benchmark at the length of 32. 485

Furthermore, Table 2 compares our proposed 486

quantization method—which incorporates learn- 487

able queries and FSQ—against the GVQ-based 488

method introduced by Ren et al. (Ren et al., 2024) 489

for time-invariant codes. Our approach demon- 490

strates a substantial performance improvement over 491

the GVQ-based method, highlighting the effective- 492

ness of FSQ with learnable queries in enhancing 493

global token representation. 494

6.3 Control Capabilities of Spark-TTS 495

Spark-TTS enables controllable generation by in- 496

putting attribute labels or fine-grained attribute val- 497

ues. In label-based control, the model automati- 498

cally generates the corresponding attribute values 499

(e.g., pitch and speed). However, when these val- 500

ues are manually specified, the system switches to 501

fine-grained control. 502

Gender To assess Spark-TTS’s capability in gen- 503

der control, we compare it with textual prompt- 504

based controllable TTS models, including VoxIn- 505

struct(Zhou et al., 2024b) and Parler-TTS(Lyth and 506

King, 2024). For evaluation, we reorganize the 507

6

https://huggingface.co/funasr/paraformer-zh
https://huggingface.co/FunAudioLLM/SenseVoiceSmall
https://huggingface.co/openai/whisper-large-v3


Table 1: Comparisons of various codec models for speech reconstruction on the LibriSpeech test-clean dataset.
Detailed information about these models can be found in Appendix A.2.

Model Codebook
Size Nq Token Rate

(TPS)
Bandwidth

(bps) STOI↑ PESQ
NB↑

PESQ
WB↑ UTMOS↑ SIM↑

Encodec 1024 8 600 6000 0.94 3.17 2.75 3.07 0.89
DAC 1024 12 600 6000 0.95 4.15 4.01 4.00 0.98
Encodec 1024 2 150 1500 0.84 1.94 1.56 1.58 0.6
Mimi 2048 8 100 1100 0.91 2.8 2.25 3.56 0.73
BigCodec 8192 1 80 1040 0.94 3.27 2.68 4.11 0.84
DAC 1024 2 100 1000 0.73 1.4 1.14 1.29 0.32
SpeechTokenizer 1024 2 100 1000 0.77 1.59 1.25 2.28 0.36
X-codec 1024 2 100 1000 0.86 2.88 2.33 4.21 0.72

WavTokenizer 4096 1 75 900 0.89 2.64 2.14 3.94 0.67
X-codec2 65536 1 50 800 0.92 3.04 2.43 4.13 0.82
StableCodec 15625 2 50 697 0.91 2.91 2.24 4.23 0.62
Single-Codec 8192 1 23.4 304 0.86 2.42 1.88 3.72 0.60

BiCodec 8192 1 50 650 0.92 3.13 2.51 4.18 0.80

Table 2: Performance of BiCodec with varying global
token lengths for reconstruction on the LibriSpeech test-
clean dataset, where "w/o" indicates the omission of
FSQ-based quantization, and gvq-32 means the global
tokenizer is implemented with group VQ. For perfor-
mance results on the LibriTTS test-clean dataset, refer
to Appendix A.3.

Global
Token STOI↑ PESQ

NB↑
PESQ
WB↑ UTMOS↑ SIM↑

w/o FSQ 0.915 3.14 2.52 4.15 0.83

gvq-32 0.912 2.91 2.30 4.06 0.74

8 0.916 3.04 2.41 4.16 0.74
16 0.919 3.08 2.45 4.15 0.77
32 0.922 3.13 2.51 4.18 0.80

Table 3: Gender control performance of various models.

Method VoxInstruct Parler-tts Spark-TTS

Acc (%)↑ 82.99 98.12 99.77

test prompts of real speech from PromptTTS (Guo508

et al., 2023) based on the prompt structures used in509

VoxInstruct and Parler-TTS. The gender accuracy510

(Acc) of the generated speech is measured using511

our gender predictor, which is specifically trained512

for gender annotation. The results, presented in513

Table 3, show that Spark-TTS significantly out-514

performs other controllable TTS systems in gen-515

der control, demonstrating its strong capability in516

attribute-based voice generation.517

Pitch and Speed Spark-TTS enables control-518

lable generation by inputting attribute labels or519

fine-grained attribute values. In label-based con-520

trol, the model automatically generates the corre-521

sponding attribute values (e.g., pitch and speed).522

However, when these values are manually speci-523

fied, the system switches to fine-grained control. 524

Fig. 4 illustrates the control confusion matrices for 525

pitch and speaking rate based on coarse-grained la- 526

bels, while Fig. 5 presents the fine-grained control 527

performance for pitch and speed. As shown, Spark- 528

TTS accurately generates speech that aligns with 529

the specified attribute labels, demonstrating precise 530

control over both coarse-grained and fine-grained 531

attributes. 532

6.4 Zero-shot TTS Performance 533

To evaluate Spark-TTS’s zero-shot TTS capabil- 534

ity, we assess its performance on Seed-TTS-eval 535

and compare it with existing zero-shot TTS mod- 536

els. The results are presented in Table 4, where 537

speech intelligibility is evaluated using the Char- 538

acter Error Rate (CER) for Chinese and the WER 539

for English, following the Seed-TTS-eval7. As 540

can been seen, Spark-TTS demonstrates significant 541

superiority in intelligibility for zero-shot TTS sce- 542

narios. On test-zh, Spark-TTS achieves a CER 543

second only to the closed-source model Seed-TTS, 544

while it ranks second only to F5-TTS (Chen et al., 545

2024b) for English WER. This high intelligibility 546

is partly attributed to the semantic feature-based Bi- 547

Codec and further validates the high quality of our 548

VoxBox dataset in terms of transcripts. In terms of 549

speaker similarity, while Spark-TTS is relatively 550

weaker than multi-stage or NAR-based methods, 551

it significantly outperforms the single-stage model 552

Llasa (Ye et al., 2025). Notably, Spark-TTS, with 553

just 0.5B model parameters and 100k hours of train- 554

ing data, surpasses Llasa, which has 8B parameters 555

and is trained on 250k hours of data. 556

7
https://github.com/BytedanceSpeech/seed-tts-eval
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Figure 4: Confusion matrix of coarse-grained pitch and
speed control results. In pitch-controllable generation,
each label’s generated samples consist of 50 Chinese
and 50 English samples. In speed-controllable genera-
tion, each label’s generated samples consist of 50 male
and 50 female samples.
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Figure 5: Fine-grained pitch and speed control results.
For pitch-controllable generation, each generated value
includes one Chinese sample and one English sample.
For speed-controllable generation, each generated value
includes 10 male samples and 10 female samples.

Following CosyVoice2 (Du et al., 2024b), we557

evaluate the quality of the generated speech on558

the LibriSpeech test-clean set. As shown in Ta-559

ble 5, our method produces audio of significantly560

higher quality than the original and outperforms561

CosyVoice2, the SOTA open-source TTS model562

with multi-stage modeling. This demonstrates563

the strong performance of Spark-TTS in terms of564

speech quality. 565

Table 4: Results of Spark-TTS and recent TTS models
on the Seed test sets (test-zh for Chinese and test-en for
English). † denotes closed-sourced models.

Model test-zh test-en
CER↓ SIM↑ WER↓ SIM↑

Multi-Stage or NAR Methods

Seed-TTS† 1.12 0.796 2.25 0.762
FireRedTTS 1.51 0.635 3.82 0.460
MaskGCT 2.27 0.774 2.62 0.714
E2 TTS (32 NFE)† 1.97 0.730 2.19 0.710
F5-TTS (32 NFE) 1.56 0.741 1.83 0.647
CosyVoice 3.63 0.723 4.29 0.609
CosyVoice2 1.45 0.748 2.57 0.652

One-Stage AR Methods

Llasa-1B-250k 1.89 0.669 3.22 0.572
Llasa-3B-250k 1.60 0.675 3.14 0.579
Llasa-8B-250k 1.59 0.684 2.97 0.574

Spark-TTS 1.20 0.672 1.98 0.584

Table 5: Quality comparison of zero-shot TTS audio
generation on the LibriSpeech test-clean set. GT repre-
sents ground truth.

Method GT CosyVoice CosyVoice2 Spark-TTS

UTMOS↑ 4.08 4.09 4.23 4.35

7 Conclusion 566

This paper introduces BiCodec, which retains the 567

advantages of semantic tokens, including high com- 568

pression efficiency and high intelligibility, while 569

addressing the limitation of traditional semantic to- 570

kens, which cannot control timbre-related attributes 571

within an LM, by incorporating global tokens. Bi- 572

Codec achieves a new SOTA reconstruction quality, 573

operating at 50 TPS with a bit rate of 0.65 kbps, sur- 574

passing other codecs within the sub-1 kbps range. 575

Building on BiCodec, we develop Spark-TTS, a 576

text-to-speech model that integrates the textual lan- 577

guage model Qwen2.5. Spark-TTS enables voice 578

generation based on specified attributes and sup- 579

ports zero-shot synthesis. To our knowledge, this 580

is the first TTS model to offer fine-grained control 581

over both pitch and speaking rate, while simulta- 582

neously supporting zero-shot TTS. Additionally, 583

to facilitate comparative research, we introduce 584

VoxBox, an open-source dataset designed for con- 585

trollable speech synthesis. VoxBox not only filters 586

out low-quality textual data but also provides com- 587

prehensive annotations, including gender, pitch, 588

and speaking rate, significantly enhancing training 589

for controlled generation tasks. 590
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Limitation591

Despite its advantages, Spark-TTS also has no-592

table limitations. Similar to Llasa (Ye et al., 2025),593

which relies on a single codebook and a textual lan-594

guage model, Spark-TTS exhibits relatively lower595

speaker similarity metrics in zero-shot TTS com-596

pared to multi-stage or NAR methods. This may597

be due to the greater speaker variability introduced598

by the AR language model during inference. Cur-599

rently, Spark-TTS does not impose additional dis-600

entanglement constraints between global tokens601

and semantic tokens. In future work, we aim to602

enhance global token control over timbre by intro-603

ducing perturbations to formants or pitch in the604

semantic token input. This approach will promote605

better disentanglement of timbre information, al-606

lowing BiCodec’s decoder to exert absolute control607

over timbre. By doing so, we aim to reduce ran-608

domness introduced by the AR model, improving609

the speaker similarity in zero-shot synthesis.610
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A BiCodec 1087

The model structure of BiCodec is illustrated in 1088

Fig. 6. BiCodec primarily consists of three compo- 1089

nents: 1090

• Semantic Tokenizer 1091

• Global Tokenizer 1092

• Decoder 1093

Additionally, to compute the feature loss with the 1094

input wav2vec 2.0 features, an extra ConvNeXt 1095

block is incorporated to predict wav2vec 2.0 fea- 1096

tures, to further ensure the semantic relevance. 1097

A.1 Model Configurations 1098

The semantic tokenizer consists of 12 ConvNeXt 1099

blocks and 2 downsampling blocks. The down- 1100

sampling blacks is only for semantic codes with 1101

lower than 50 TPS. The codebook size of VQ is 1102

8192. The ECAPA-TDNN in the global tokenizer 1103

features an embedding dimension of 512. Mean- 1104

while, the vector number of the learnable queries 1105

in the global tokenizer equal to the final goal token 1106

sequence length. For the FSQ module, the FSQ 1107

dimension is set to 6, with each dimension having 1108

4 levels, resulting in a codebook size of 4096. 1109

The upsampling rates in the Transposed Con- 1110

volution Blocks are set to [8, 5, 4, 2] for 16 kHz 1111

sampled audio and [8, 5, 4, 3] for 24 kHz sampled 1112

audio. The reconstruction performance of BiCodec 1113

with 24 kHz sampled audio is presented in Table 9. 1114

A.2 Compared Methods 1115

• Encodec (Défossez et al., 2022): An RVQ- 1116

based codec designed for universal audio com- 1117

pression. 1118

• DAC (Kumar et al., 2024): An RVQ-based 1119

codec for universal audio. 1120

• Mimi (Défossez et al., 2024): An RVQ-based 1121

codec with semantic constraint for speech. 1122
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Figure 6: Model Structure of BiCodec

• Single-Codec (Li et al., 2024a): A single-1123

stream Mel codec that incorporates speaker1124

embeddings. The reconstruction results for1125

this method are provided by the authors.1126

• BigCodec (Xin et al., 2024): A VQ-based1127

single-stream codec for speech.1128

• SpeechTokenizer (Zhang et al., 2023a): An1129

RVQ-based codec with semantic distillation1130

for speech.1131

• X-codec (Ye et al., 2024b): An RVQ-based1132

codec with semantic distillation for speech.1133

• X-codec2 (Ye et al., 2025): A FSQ-based1134

single-stream codec with semantic distillation1135

for speech.1136

• StableCodec (Parker et al., 2024): A residual1137

FSQ-based tokenizer for speech.1138

• WavTokenizer (Ji et al., 2024a): A single VQ1139

codebook-based tokenizer for universal audio.1140

A.3 Additional Experiment1141

To evaluate the performance of BiCodec at lower1142

bitrates, we apply a downsampling operation in1143

the semantic encoder, reducing the semantic token1144

rate to 25 TPS. We compare BiCodec with Single-1145

Codec (Li et al., 2024a), which operates at a similar1146

bitrate, on the LibriSpeech test-clean and LibriTTS1147

test-clean datasets. The results are presented in 1148

Table 6 and Table 7. 1149

Global Token Length The reconstruction per- 1150

formance of BiCodec with varying global token 1151

lengths on the LibriTTS test-clean dataset is pre- 1152

sented in Table 8. 1153

Performance on Other Datasets To evaluate 1154

the generalization ability of BiCodec, we con- 1155

ducted experiments on a broader range of diverse 1156

datasets. The results are presented in Table 9. 1157

B Inference of Spark-TTS 1158

Zero-shot TTS There are two inference strategies 1159

for zero-shot TTS: 1160

• Using the text to be synthesized along with 1161

the global tokens from a reference audio as 1162

the prompt to generate speech, e.g., [<content 1163

text> <global token> → <semantic token>]. 1164

• Incorporating both the transcript and semantic 1165

tokens of the reference audio as a prefix in the 1166

prompt, e.g., [<content text> <reference text> 1167

<global token> <semantic token of reference> 1168

→ <semantic token>]. 1169

Among these, the second approach achieves higher 1170

speaker similarity. The results reported in Table 4 1171

are based on this second inference strategy. A com- 1172

parison between the two inference methods is pro- 1173

vided in Table 10. 1174
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Table 6: Performance of BiCodec with lower bitrate on the LibriSpeech test-clean dataset.

Model
Codebook

Size
Nq

Token
Rate

Bandwidth STOI↑ PESQ
NB↑

PESQ
WB↑ UTMOS↑ SIM↑

Single-Codec 8192 1 23.4 304 0.86 2.42 1.88 3.72 0.60

BiCodec-4096-25 4096 1 25 300 0.88 2.53 1.97 4.00 0.70
BiCodec-8192-25 8192 1 25 325 0.89 2.62 2.05 4.13 0.71
BiCodec-4096-50 4096 1 50 600 0.92 3.03 2.42 4.17 0.78

Table 7: Reconstruction performance of BiCodec with various bitrates on the LibriTTS test-clean dataset.

Codebook
Size

Nq
Token
Rate

Bandwidth STOI↑ PESQ
NB↑

PESQ
WB↑ UTMOS↑ SIM↑

4096 1 25 300 0.88 2.47 1.91 3.88 0.67
8192 1 25 325 0.88 2.56 1.98 4.02 0.68
4096 1 50 600 0.91 2.96 2.36 4.10 0.75
8192 1 50 650 0.92 3.08 2.46 4.11 0.78

Table 8: Performance of BiCodec with varying global
token lengths for reconstruction on the LibriTTS test-
clean dataset, where "w/o" indicates the omission of
FSQ-based quantization, and gvq-32 means the global
tokenizer is implemented with group VQ.

Global
Token

STOI↑ PESQ
NB↑

PESQ
WB↑ UTMOS↑ SIM↑

w/o 0.923 3.1 2.48 4.09 0.81
gvq-32 0.913 2.91 2.30 4.06 0.71
8 0.916 2.97 2.34 4.10 0.72
16 0.918 3.03 2.40 4.08 0.74
32 0.921 3.08 2.46 4.11 0.78

Voice Creation Controllable TTS includes two1175

levels of control for inference:1176

• Coarse-grained control: The prompt consists1177

of the text to be synthesized along with at-1178

tribute labels, e.g., [<content text> <attribute1179

label> → <attribute values> <global tokens>1180

<semantic token>]. In this process, the fine-1181

grained attribute values are predicted first, fol-1182

lowed by the generation of global tokens and1183

then semantic tokens, in a CoT manner.1184

• Fine-grained control: The prompt includes the1185

text to be synthesized, attribute levels, and pre-1186

cise attribute values, e.g., [<content text> <at-1187

tribute label> <attribute values> → <global1188

tokens> <semantic token>].1189

C Compared Zero-shot Methods 1190

• Seed-TTS (Anastassiou et al., 2024): A two- 1191

stage model that employs an AR LM for se- 1192

mantic token prediction and flow matching for 1193

acoustic feature generation. 1194

• FireRedTTS (Guo et al., 2024): A two-stage 1195

model similar to Seed-TTS, using an AR LM 1196

for semantic tokens and flow matching for 1197

acoustic features. 1198

• MaskGCT (Wang et al., 2024b): A NAR 1199

model that applies masking-based generative 1200

strategies for speech synthesis. 1201

• E2 TTS : A flow matching-based model that 1202

predicts Mel spectrograms as acoustic fea- 1203

tures. 1204

• F5-TTS (Chen et al., 2024b): A flow 1205

matching-based method that also uses Mel 1206

spectrograms as acoustic features. 1207

• CosyVoice (Du et al., 2024a): A two-stage 1208

model with an AR LM for semantic token pre- 1209

diction and flow matching for acoustic feature 1210

generation. 1211

• CosyVoice2 (Du et al., 2024b): An improved 1212

version of CosyVoice, maintaining the two- 1213

stage structure with an AR LM for semantic 1214

tokens and flow matching for acoustic fea- 1215

tures. 1216
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Table 9: Reconstruction performance on various datasets: Data-P comprises low-quality Chinese recordings made
by internal staff using mobile phones; Data-S consists of expressive Chinese data recorded in a professional studio;
and Data-M is a multilingual dataset collected from in-the-wild sources.

Data Method
Codebook

Size
Traing
Data

STOI↑ PESQ
NB↑

PESQ
WB↑ UTMOS↑ SIM↑

Data-P
X-codec2 65536 150k 0.89 2.69 2.10 3.16 0.73
BiCodec 8192 3k 0.90 2.80 2.22 3.22 0.78

BiCodec-24k 8192 20k 0.90 2.80 2.19 3.20 0.78

Data-S
X-codec2 65536 150k 0.92 2.81 2.30 3.16 0.69
BiCodec 8192 3k 0.93 3.04 2.50 3.28 0.82

BiCodec-24k 8192 20k 0.93 3.00 2.44 3.24 0.82

Data-M
X-codec2 65536 150k 0.84 2.43 1.87 2.17 0.75
BiCodec 8192 3k 0.85 2.56 1.91 2.17 0.76

BiCodec-24k 8192 20k 0.85 2.57 1.91 2.28 0.76

• Llasa (Ye et al., 2025): A single-stream codec-1217

based TTS model that uses a single AR lan-1218

guage model for direct single-stream code pre-1219

diction.1220

Table 10: Zero-shot performance of Spark-TTS with
and without reference audio as a prefix.

Model
test-zh test-en

CER↓ SIM↑ WER↓ SIM↑

Spark-TTS 1.20 0.678 1.98 0.584
Spark-TTS w/o prefix 0.98 0.628 1.32 0.474

D Objective Metircs1221

• STOI (Andersen et al., 2017): A widely1222

used metric for assessing speech intelligibility.1223

Scores range from 0 to 1, with higher values1224

indicating better intelligibility.1225

• PESQ (Rix et al., 2001): A speech quality1226

assessment metric that compares the recon-1227

structed speech to a reference speech signal.1228

We evaluate using both wide-band (WB) and1229

narrow-band (NB) settings.1230

• UTMOS (Saeki et al., 2022): An automatic1231

Mean Opinion Score (MOS) predictor, provid-1232

ing an estimate of overall speech quality.1233

• SIM: A speaker similarity metric, computed1234

as the cosine similarity between the speaker1235

embeddings of the reconstructed speech (gen-1236

erated speech in TTS) and the original input1237

speech (prompt speech in TTS). We extract1238

speaker embeddings using WavLM-large, fine-1239

tuned on the speaker verification task (Chen1240

et al., 2022).1241

E VoxBox 1242

E.1 Criteria for Pitch and Speed 1243

Categorization 1244

• Speed The adoption of the 5th, 20th, 80th, 1245

and 95th percentiles to segment speech rates 1246

into distinct categories is founded on the need 1247

to accurately reflect the natural distribution of 1248

speech tempo variations within the population. 1249

These percentiles help to capture the extremes 1250

and the more central values of speech rate, 1251

ensuring that each category is meaningful and 1252

representative of specific vocal characteristics. 1253

• Pitch Similar to the segmentation of speech 1254

rate, the division of pitch also starts from hu- 1255

man subjective perception and the actual dis- 1256

tribution characteristics. However, because 1257

humans are more sensitive to higher frequen- 1258

cies within the range of human fundamental 1259

frequencies, the 5th, 20th, 70th, and 90th per- 1260

centiles are used as the division boundaries. 1261

Pitch Group for Male

Very Low: < 145 Mel
Low: 145–164 Mel
Moderate: 164–211 Mel
High: 211–250 Mel
Very High: >= 250 Mel

1262
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Pitch Group for Female

Very Low: < 225 Mel
Low: 225–258 Mel
Moderate: 258–314 Mel
High: 314–353 Mel
Very High: >= 353 Mel

1263

Speaking Rate Group for Chinese

Very Slow: < 2.7 SPS
Slow: 2.7–3.6 SPS
Moderate: 3.6–5.2 SPS
Fast: 5.2–6.1 SPS
Very Fast: >= 6.1 SPS

1264

Speaking Rate Group for English

Very Slow: < 2.6 SPS
Slow: 2.6–3.4 SPS
Moderate: 3.4–4.8 SPS
Fast: 4.8–5.5 SPS
Very Fast: >= 5.5 SPS

1265

E.2 Data for Gender Predictor Training1266

We fine-tune the WavLM-large model for gen-1267

der classification using datasets that contain ex-1268

plicit gender labels, including VCTK (Yamagishi1269

et al., 2019), AISHELL-3 (Shi et al., 2020), MLS-1270

English (Pratap et al., 2020), MAGICDATA (Mag-1271

icData, 2019), and CommonVoice (Ardila et al.,1272

2019).1273

E.3 Annotation1274

In addition to the attributes involved in the exper-1275

iments of this paper, to make VoxBox applicable1276

to a wider range of scenarios, we have also anno-1277

tated more information for each sample of VoxBox,1278

including age and emotion. Similar to the gen-1279

der annotations, we fine-tune the WavLM-large1280

model based on AISHELL-3, VCTK, MAGIC-1281

DATA, CommonVoice, and HQ-Conversations to1282

predict five age ranges: Child, Teenager, Young1283

Adult, Middle-aged, and Elderly. The performance1284

metrics for both the gender and age predictors are1285

presented in Table 11, where both Wav2vec 2.0-1286

ft (Burkhardt et al., 2023) and SpeechCraft (Jin1287

et al., 2024) are based on the pre-trained Wav2vec1288

2.0 model.1289

For datasets without emotion labels in the orig-1290

inal metadata, we assign various emotion labels,1291

Table 11: Comparison of different models on attribute
predictions: All evaluations are conducted on the
AISHELL-3 test dataset.

Model Age Acc↑ Gender Acc↑

wav2vec 2.0-ft 80.2 98.8
SpeechCraft 87.7 97.7

Our 95.6 99.4

sourced from different models, to the relevant sam- 1292

ples. Specifically, we provide the following tags: 1293

• emotion2vec Emotion: Emotion label pre- 1294

dicted with Emtion2vec (Ma et al., 2023). 1295

• Confidence Score: Confidence score of the 1296

the predicted emotion2vec label given by emo- 1297

tion2vec. 1298

• SenseVoiceSmall Emotion: Emotion label 1299

predicted with SenseVoiceSmall8. 1300

• Text Emotion: Emotion label predicted with 1301

Qwen2.5-72B-Instruct 9 with text as input. 1302

The prompt case for English text can be found 1303

in Box 1304

Prompt for Text Emotion Tag (English)

Please assess the emotion of the following
text and select the most appropriate label
from these options:
[Fearful, Happy, Disgusted, Sad, Surprised,
Angry, Neutral].
Please note, only provide the label with-
out any additional description or reasoning.
Here is the text: "Clearly, the need for a
personal loan is written in the stars."

1305

E.4 Data Statistics 1306

The distributions of speaking rate, duration, and 1307

pitch are shown in Fig 7, while the distributions of 1308

gender and age are presented in Fig 8. 1309

E.5 Source Data 1310

• AISHELL-3: A multi-speaker Mandarin 1311

speech corpus for TTS. Source: https:// 1312

www.openslr.org/93/ 1313

8https://huggingface.co/FunAudioLLM/
SenseVoiceSmall

9https://huggingface.co/Qwen/Qwen2.
5-72B-Instruct
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Figure 7: Data distribution of VoxBox.

Figure 8: Gender and age distribution of VoxBox.

• CASIA: An emotional multi-speaker Man-1314

darin speech corpus containing six emotions1315

for TTS. Source: https://gitcode.com/1316

open-source-toolkit/bc5e61317

• CREMA-D: An emotional multi-speaker1318

multilingual speech corpus containing1319

six emotions and four intensity levels1320

for TTS. Source:https://github.com/1321

CheyneyComputerScience/CREMA-D1322

• Dailytalk: A multi-speaker En-1323

glish speech corpus with conversa-1324

tional style for TTS. Source:https:1325

//github.com/keonlee9420/DailyTalk1326

• Emilia: A multi-speaker multilingual speech1327

corpus containing six languages for TTS.1328

Source: https://emilia-dataset.github.1329

io/Emilia-Demo-Page/1330

• EMNS: An emotional single-speaker English1331

speech corpus for TTS. Source: https://1332

www.openslr.org/1361333

• EmoV-DB: An emotional multi-1334

speaker English speech corpus contain-1335

ing four emotions for TTS. Source: 1336

https://mega.nz/folder/KBp32apT# 1337

gLIgyWf9iQ-yqnWFUFuUHg/mYwUnI4K 1338

• ESD: An emotional multi-speaker bilin- 1339

gual speech corpus containing five emotions 1340

for TTS. Source: https://hltsingapore. 1341

github.io/ESD/ 1342

• Expresso: A multi-speaker English speech 1343

corpus with reading and improvising con- 1344

versational style for TTS. Source: https: 1345

//speechbot.github.io/expresso/ 1346

• Gigaspeech: A multi-speaker English speech 1347

corpus with reading style for TTS. Source: 1348

https://github.com/SpeechColab/ 1349

GigaSpeech 1350

• Hi-Fi TTS: A multi-speaker English speech 1351

corpus with reading style for TTS. Source: 1352

https://openslr.org/109/ 1353

• HQ-Conversations: A mutli-speaker Man- 1354

darin speech corpus with conversational 1355

style for TTS. Source: https://www. 1356

magicdatatech.com/iscslp-2024/ 1357
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• IEMOCAP: An emotional multi-speaker En-1358

glish speech corpus containing five emotions1359

for TTS. Source: https://sail.usc.edu/1360

iemocap/iemocap_release.htm1361

• JL-Corpus: An emotional multi-speaker En-1362

glish speech corpus containing five primary1363

emotions and five secondary emotions for1364

TTS. Source: https://www.kaggle.com/1365

datasets/tli725/jl-corpus1366

• Librispeech: A mutli-speaker English1367

speech corpus with reading style for TTS.1368

Source: https://tensorflow.google.cn/1369

datasets/catalog/librispeech1370

• LibriTTS-R: Sound quality improved ver-1371

sion of the LibriTTS (Zen et al., 2019) cor-1372

pus which is a large-scale corpus of En-1373

glish speech for TTS. Source: https://www.1374

openslr.org/141/1375

• M3ED: An emotional mutli-speaker Man-1376

darin speech corpus containing seven emo-1377

tions for TTS. Source: https://github.1378

com/aim3-ruc/rucm3ed1379

• MAGICDATA: A mutli-speaker Mandarin1380

speech corpus with conversational style for1381

TTS. Source: https://openslr.org/68/1382

• MEAD: An emotional mutli-speaker English1383

speech corpus containing eight emotions and1384

three intensity levels for TTS. Source: https:1385

//github.com/uniBruce/Mead1386

• MELD: An emotional mutli-speaker English1387

speech corpus containing seven emotions1388

for TTS. Source: https://affective-meld.1389

github.io/1390

• MER2023: An emotional mutli-speaker1391

Mandarin speech corpus containing six1392

emotions for TTS. Source: http://www.1393

merchallenge.cn/datasets1394

• MLS-English: A mutli-speaker English1395

speech corpus for TTS. Source: https://1396

www.openslr.org/94/1397

• MSP-Podcast: An emotional mutli-speaker1398

English speech corpus containing eight1399

emotions for TTS. Source: https://ecs.1400

utdallas.edu/research/researchlabs/1401

msp-lab/MSP-Podcast.html1402

• NCSSD-CL: A mutli-speaker bilingual 1403

speech corpus for TTS. Source: https:// 1404

github.com/uniBruce/Mead 1405

• NCSSD-RL: A mutli-speaker bilingual 1406

speech corpus for TTS. Source: https:// 1407

github.com/uniBruce/Mead 1408

• RAVDESS: An emotional mutli-speaker 1409

English speech corpus containing 1410

eight emotions and two intensity lev- 1411

els for TTS. Source: https://www. 1412

kaggle.com/datasets/uwrfkaggler/ 1413

ravdess-emotional-speech-audio 1414

• SAVEE: An emotional mutli-speaker 1415

English speech corpus containing seven 1416

emotions for TTS. Source: https: 1417

//www.kaggle.com/datasets/ejlok1/ 1418

surrey-audiovisual-expressed-emotion-savee 1419

• TESS: An emotional mutli-speaker English 1420

speech corpus containing seven emotions 1421

for TTS. Source: https://tspace.library. 1422

utoronto.ca/handle/1807/24487 1423

• VCTK: A mutli-speaker English speech cor- 1424

pus for TTS. Source: https://datashare. 1425

ed.ac.uk/handle/10283/2651 1426

• WenetSpeech4TTS: A large-scale mutli- 1427

speaker Mandarin speech corpus for TTS. 1428

Source: https://wenetspeech4tts. 1429

github.io/wenetspeech4tts/ 1430

F SparkVox: A Toolkit for Speech 1431

Related Tasks 1432

The training code for Spark-TTS will be in- 1433

tegrated into the open-source SparkVox frame- 1434

work.SparkVox is a training framework designed 1435

for speech-related tasks, supporting a variety of 1436

applications, including: vocoder, codec, TTS, and 1437

speech understanding. Additionally, SparkVox pro- 1438

vides various file processing tools for both text 1439

and speech data, facilitating efficient data handling. 1440

Its simplified framework structure is illustrated in 1441

Fig. 9. 1442
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Figure 9: Framework of SparkVox.
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Table 12: VoxBox Statistics

Data Language #Utterance
Duration (h)

Male Female Total

AISHELL-3 (Shi et al., 2020) Chinese 88,035 16.01 69.61 85.62
CASIA (Tao et al., 2008) Chinese 857 0.25 0.2 0.44
Emilia-CN (He et al., 2024) Chinese 15,629,241 22,017.56 12,741.89 34,759.45
ESD (Zhou et al., 2021) Chinese 16,101 6.69 7.68 14.37
HQ-Conversations (Zhou et al., 2024a) Chinese 50,982 35.77 64.23 100
M3ED (Zhao et al., 2022) Chinese 253 0.04 0.06 0.1
MAGICDATA (MagicData, 2019) Chinese 609,474 360.31 393.81 754.13
MER2023 (Lian et al., 2023) Chinese 1,667 0.86 1.07 1.93
NCSSD-CL-CN (Liu et al., 2024) Chinese 98,628 53.83 59.21 113.04
NCSSD-RC-CN (Liu et al., 2024) Chinese 21,688 7.05 22.53 29.58
WenetSpeech4TTS (Ma et al., 2024) Chinese 8,856,480 7,504.19 4,264.3 11,768.49
Total Chinese 25,373,406 30,002.56 17,624.59 47,627.15
CREMA-D (Cao et al., 2014) English 809 0.3 0.27 0.57
Dailytalk (Lee et al., 2023) English 23,754 10.79 10.86 21.65
EmiliaEN (He et al., 2024) English 8,303,103 13,724.76 6,573.22 20,297.98
EMNS (Noriy et al., 2023) English 918 0 1.49 1.49
EmoV-DB (Adigwe et al., 2018) English 3,647 2.22 2.79 5
Expresso (Nguyen et al., 2023) English 11,595 5.47 5.39 10.86
Gigaspeech (Chen et al., 2021) English 6,619,339 4,310.19 2,885.66 7,195.85
Hi-Fi TTS (Bakhturina et al., 2021) English 323,911 133.31 158.38 291.68
IEMOCAP (Busso et al., 2008) English 2,423 1.66 1.31 2.97
JL-Corpus (James et al., 2018) English 893 0.26 0.26 0.52
Librispeech (Panayotov et al., 2015) English 230,865 393.95 367.67 761.62
LibriTTS-R (Koizumi et al., 2023) English 363,270 277.87 283.03 560.9
MEAD (Wang et al., 2020) English 3,767 2.26 2.42 4.68
MELD (Poria et al., 2018) English 5,100 2.14 1.94 4.09
MLS-English (Pratap et al., 2020) English 6,319,002 14,366.25 11,212.92 25,579.18
MSP-Podcast (Martinez et al., 2020) English 796 0.76 0.56 1.32
NCSSD-CL-EN (Liu et al., 2024) English 62,107 36.84 32.93 69.77
NCSSD-RL-EN (Liu et al., 2024) English 10,032 4.18 14.92 19.09
RAVDESS (Livingstone and Russo, 2018) English 950 0.49 0.48 0.97
SAVEE (Jackson and Haq, 2014) English 286 0.15 0.15 0.31
TESS (Yu et al., 2021) English 1,956 0 1.15 1.15
VCTK (Yamagishi et al., 2019) English 44,283 16.95 24.51 41.46
Total English 22,332,806 33,290.8 21,582.31 54,873.11

Overall Total 47,706,212 63,293.36 39,206.9 102,500.26

21


	Introduction
	Related Work
	Single-Stream Speech Tokenizer
	LLM-based Zero-Shot TTS

	BiCodec
	Overview
	Model Structure
	Training objective

	Language Modeling of Spark-TTS
	Overview
	Tokenizer
	Training Objective

	VoxBox
	Overview
	Clean and Annotation

	Experiments
	Implementation Details
	Reconstruction Performance of BiCodec
	Control Capabilities of Spark-TTS
	Zero-shot TTS Performance

	Conclusion
	BiCodec
	Model Configurations
	Compared Methods
	Additional Experiment

	Inference of Spark-TTS
	Compared Zero-shot Methods
	Objective Metircs
	VoxBox
	Criteria for Pitch and Speed Categorization
	Data for Gender Predictor Training
	Annotation
	Data Statistics
	Source Data

	SparkVox: A Toolkit for Speech Related Tasks

