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Abstract

Neural Machine Translation (NMT) models
are typically trained on heterogeneous data
that are concatenated and randomly shuffled.
Curriculum training aims to present the data
to the NMT systems in a meaningful order.
In this work, we introduce a two-stage cur-
riculum training framework for NMT where
we fine-tune a base NMT model on subsets
of data, selected by both deterministic scoring
using pre-trained methods and online scoring
that consider prediction scores of the emerg-
ing NMT model. Through extensive experi-
ments on six language pairs comprising low-
and high-resource languages from WMT 21,
we have shown that our curriculum strategies
consistently demonstrate better quality (up to
+2.2 BLEU improvement) and faster conver-
gence (approximately 50% fewer updates).

1 Introduction

The notion of a curriculum came from the human
learning experience; we learn better and faster
when the learnable examples are presented in a
meaningful sequence rather than a random order
(Newport, 1990). In the case of machine learn-
ing, curriculum training hypothesizes presenting
the data samples in a meaningful order to machine
learners during training such that it imposes struc-
ture in the task of learning (Bengio et al., 2009).
In recent years, Neural Machine Translation
(NMT) has shown impressive performance in high-
resource settings (Popel et al., 2020). Typically
training data of the NMT systems are a heteroge-
neous collection from different domains, sources,
topics, styles, and modalities, and of different qual-
ity and linguistic difficulty levels. However, not
all of them may be useful, some examples may be
redundant, and some data might even be noisy and
detrimental to the final NMT system performance
(Khayrallah and Koehn, 2018). So, NMT systems
have the potential to benefit greatly from curricu-
lum learning in terms of both speed and quality.

In this work, we propose a two-stage curriculum
training framework for NMT — model warm-up
and model fine-tuning. We initially train a base
model in the warm-up stage on all available data. In
the fine-tuning, we adapt the base model on subsets
of the data based on data quality and/or usefulness
at the current state of the model. We explore two
sets of data selection curriculum strategies — deter-
ministic and online. The deterministic curriculum
uses external measures which require pretrained
models for selecting the data subset at the begin-
ning and continues training on the selected sub-
set. In contrast, the online curriculum dynamically
selects a subset of the data for each epoch with-
out requiring any external measure. Specifically,
it leverages the prediction scores of the emerging
NMT model. Our online curriculum resembles self-
paced learning (Kumar et al., 2010) which uses the
emerging model hypothesis to select samples.

For picking the subset of the data in the on-
line curriculum, we investigate two approaches
of data-selection window — static and dynamic.
Even though the size of the data-selection win-
dow is fixed throughout the training in the static
approach, the samples in the selected subset vary
from epoch to epoch due to the change in their pre-
diction scores. In the dynamic approach, we either
expand or shrink the data-selection window.

Experiments on 6 language pairs (12 translation
directions) comprising low- and high-resource lan-
guages from WMT’21 demonstrate better perfor-
mance compared to the baseline trained on all data
(up to +2.2 BLEU). We observe bigger gains for the
high-resource pairs compared to the low-resource
ones. Interestingly, we find that the online curricu-
lum approaches perform on par with the determin-
istic approaches while not using any external pre-
trained models. Our proposed curriculum training
approaches not only exhibit better performance but
also converge much faster requiring approximately
50% fewer updates compared to the baseline.



2 Background

Curriculum learning Inspired by human learn-
ers, Elman (1993) argues that optimization of neu-
ral network training can be accelerated by gradually
increasing the difficulty of the concepts. Bengio
et al. (2009) were the first to use the term “curricu-
lum learning” to refer to the easy-to-hard training
strategies in the context of machine learning. Us-
ing an easy-to-hard curriculum based on increasing
vocabulary size in language model training, they
achieved performance improvement. Recent work
(Jiang et al., 2015; Hacohen and Weinshall, 2019;
Zhou et al., 2020a) shows that manipulating the
sequence of training data can improve both train-
ing efficiency and model accuracy. Several stud-
ies show the effectiveness of the difficulty-based
curriculum learning in a wide range of NLP tasks
(Cirik et al., 2016; Liu et al., 2018).

Curriculum learning in NMT The difficulty-
based curriculum in NMT was first explored by
Kocmi and Bojar (2017). Later, Zhang et al. (2018)
adopt a probabilistic view of curriculum learning
and investigate a variety of difficulty criteria based
on human intuition, e.g., sentence length and word
rarity. Platanios et al. (2019) connect the appear-
ance of difficult samples with NMT model com-
petence. Liu et al. (2020) propose a norm-based
curriculum learning method based on the norm of
word embedding. Zhou et al. (2020b) use a pre-
trained language model to measure the word-level
uncertainty. Xu et al. (2020) explore the effective-
ness of curriculum learning for low-resource NMT.

Data selection strategy for NMT Joty et al.
(2015) use domain adaptation by penalizing se-
quences similar to the out-domain data. Wang et al.
(2018) propose a curriculum-based data selection
strategy by using an additional trusted clean dataset
to calculate noise level of a sample. Kumar et al.
(2019) use reinforcement learning to learn a denois-
ing curriculum jointly with the NMT system. Jiao
et al. (2020) identify the inactive samples during
training and re-label them for later use. Wang et al.
(2021) find gradient alignments between a clean
dataset and the training data to mask out noisy data.

Domain specific fine-tuning In a successful line
of research NMT models are first trained on a large
general-domain bitext and then fine-tuned on small
in-domain data (Luong and Manning, 2015; Zoph
et al., 2016). van der Wees et al. (2017) gradually

decrease the training data size to a cleaner subset
of the data estimated by some external scorers.

Summary Most curriculum learning methods in
NMT focus on addressing the batch selection is-
sue from the beginning of the training by using
hand-designed heuristics (Zhao et al., 2020). In
contrast, our proposed two-stage curriculum train-
ing framework for NMT fine-tunes the base model
from the warm-up stage on a selected subset of data.
Our curriculum training framework resembles the
formal education system as discussed in §6.4.

3 Proposed Framework

Let s and ¢ denote the source and target language
respectively, and D, = {(z;,y;)}}, denote the
general-domain parallel training data containing N
sentence pairs with z; and y; coming respectively
from s and ¢ languages. Also, let D; C D, be the
in-domain parallel training data and M is an NMT
model that can translate sentences from s to t. The
overall training objective of the NMT model is to
minimize the total loss of the training data:

N N
JTO0) = L(wi,yi0) =Y —log Po(yilz:) (1)
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where Py(y;|z;) is the sentence-level translation
probability of the target sentence y; for the source
sentence x; with 6 being the parameters of M.

We propose a two-stage training curriculum
where in the model warm-up stage we train M on
general domain bitext D, for K number of gradient
updates; K is generally smaller than the total num-
ber of updates M requires for convergence. Then
in model fine-tuning stage, we fine-tune M on the
in-domain bitext Dy till it converges. Based on the
intuition "not all of the training data are useful or
non-redundant, some samples might be irrelevant
or even detrimental to the model”, we hypothesize
that there exists a Dy C Dy, fine-tuning on which
M will exhibit an improved performance.

Our goal is to design a ranking of the training
samples which will eventually help us extract D,
from D,. For this, we investigate two sets of data
selection curriculum strategies — deterministic and
online. Both strategies require a measure of data
quality and/or usefulness at the current state of
the model to extract D;. While the deterministic
curriculum uses external measures that require pre-
trained models, the online curriculum leverages the
prediction scores of the emerging NMT models.



3.1 Deterministic Curriculum

In this strategy, we select a Dy C Dy initially and
do not change it during the model fine-tuning stage.
We first score each sample in D, using an external
bitext scoring method. We experiment with three
scoring methods as described below.

e LASER This approach utilizes the Language-
Agnostic SEntence Representations (LASER)
toolkit (Artetxe and Schwenk, 2019), which gives
multilingual sentence representations using an
encoder-decoder architecture trained on a paral-
lel corpus . We use the sentence representations to
score the similarity of a bitext using Cross-Domain
Similarity Local Scaling (CSLS), which performs
better than other similarity metrics in reducing the
hubness problem (Conneau et al., 2017).

Scorejager(i, yi) = CSLS(LASER(z;), LASER(y:)) (2)

Chaudhary et al. (2019) showed benefits of LASER-
based ranking for low-resource corpus filtering.

e Dual Conditional Cross-Entropy (DCCE)
Junczys-Dowmunt (2018) proposed this method,
which requires two inverse translation models — one
forward model (f) and one backward (b) model
trained on the same parallel corpus. It then finds
the score of a bitext (z;,y;) by taking the maxi-
mal symmetric agreement of the two models which
exploits the conditional cross-entropy (H).

SCOTedcce(whyl) |Hf - Hb‘ +35
—log Py, (yilx:); Hy =

(Hf + Hy) 3)

where Hy = log Py, (zi]y:)

The absolute difference between the conditional
cross-entropy in Eq.3 measures the agreement be-
tween the two conditional probability distributions.
If the sentences in a bitext are equally probable
(good) or equally improbable (bad/noisy), this part
of the equation will have a low score. To differ-
entiate between these two scenarios, we need the
average cross-entropy score which scores higher
for improbable sentence pairs.
o Modified Moore-Lewis (MML) MML ranks
the bitext pairs based on domain relevance by cal-
culating cross-entropy difference scores (Moore
and Lewis, 2010; Axelrod et al., 2011). For this,
we need to train four language models (LM): in-
and general-domain LMs in both source and target
languages. Then we find the MML score of a bitext
pair (z;, y;) as follows:
Scoremm (%, Yi) = (Hs,in(xi) — Hs,gen(23))
+ (He,in(yi) — He,gen (1)) )
where Hy,c(z) = — log Pré(2)

Algorithm 1 Deterministic Curriculum Strategy
Input : General domain corpus D, in-domain
corpus Dy C Dy, external pretrained bi-
text scorer S
Output : A trained translation model
1. // model warm-up stage
Train a base model M on general domain corpus
D, for K number of updates

2. // model fine-tuning stage
(a) Use S to score each bitext in Dy
(b) Rank D, based on these scores
(c¢) Find D, C Dy by selecting top p% of Dy
(d) for n_epochs do
\ Fine-tune M on Dy
end

Here, b € {s,t} refers to the bitext side and C' €
{in, gen} refers to the corpus domain. In our ex-
periments, we use the newscrawl data as in-domain
and commoncrawl combined with newscrawl data
as general-domain for training the LMs.

LASER and DCCE assign scores based on de-
noising curriculum (i.e., higher rank for good trans-
lation and lower rank for noisy ones) while MML
performs domain similarity curriculum on the given
data. After scoring each pair (x;,y;) € Dy by any
of the above methods, we rank D, based on the
scores, and pick D; C D, by selecting top p%
pairs as the better subset to fine-tune the base model
M on D;. Algorithm 1 presents a pseudo-code of
our deterministic curriculum strategy.

3.2 Online Curriculum

Unlike deterministic curriculum, in this strategy the
selected subset D, changes dynamically in each
epoch of the fine-tuning stage through instanta-
neous feedback from the current model. Specifi-
cally, we rank the samples by leveraging the predic-
tion scores from the emerging NMT model which
assigns a probability to each token in the target
sentence y;. We then take the average of the token-
level probabilities to get the sentence-level prob-
ability score which is regarded as the prediction
score for the bitext pair (x;, y;). Formally,

4
1
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This bitext prediction score indicates the confi-
dence of the model to generate the target sentence
y; from the source sentence x;. Intuitively, if the
model can predict the target sentence of a sample



Algorithm 2 Online Curriculum Strategy
Input : General corpus Dy, in-domain corpus
Dy C Dy
Output : A trained translation model
1. // model warm-up stage
Train a base model M on general domain corpus
D, for K number of updates

2. // model fine-tuning stage

for n_epochs do
(a) Find prediction score for each bitext in Dy

(b) Rank D, based on these scores
(c) Find Dy C Dy by picking a data-selection
window
(d) Fine-tune M on D;
end

with higher confidence, it indicates that the sample
is too easy for the model and might not contain
useful information to improve the model further at
that state. On the other hand, if a target sentence is
predicted with lower confidence, it indicates that
the sample might be foo hard for the model at that
state or it might be a noisy sample. Subsequently,
including such hard or noisy samples in training
might degrade the model performance.

Algorithm 2 presents the pseudo-code of our
proposed online curriculum strategy. After warm-
up stage, we fine-tune M for n_epochs on Dy
which is selected in every epochs. In the beginning
of each fine-tuning epoch, we find the prediction
score for each bitext pair in Dy. We rank D, based
on these scores and select D; C Dy by picking
a data-selection window in the ranked in-domain
data. Finally, we fine-tune M on D; for that epoch.
We present the conceptual demonstration of our
online curriculum strategy in Figure 1. For picking
the data-selection window in the ranked D, , we
investigate two methods:

e Static Data-selection Window Here in each
epoch, we discard a constant amount of easy and
hard samples from Dy based on the prediction
scores and select the rests as D;. Even though in
this method the size of the data-selection window
is fixed through out the fine-tuning stage, unlike de-
terministic strategy the samples in D varies from
epoch to epoch due to the change in their prediction
scores by the emerging M.

¢ Dynamic Data-selection Window Unlike the
static approach, here we change the data-selection
window size in subsequent epochs. This can be
done in two ways:

Frequency

Selected Window

Hard/Noisy

Prediction Score

Figure 1: Conceptual demonstration of online curriculum.
We rank the bitext pairs based on the prediction scores of
the emerging model and pick a data-selection window which
discards easy and hard/noisy ones.

(i) Expansion: Begin fine-tuning with smaller
window (|Ds| << |Dy4|) and gradually in-
crease the window to a maximum size \;,qz.

(ii) Shrink: Begin fine-tuning with a larger win-
dow (|Ds| ~ |Dy|) and gradually decrease
the window to a minimum size Ay,

To change the data-selection window size, we ex-
periment with linear scheduler which can be re-
garded as a function A(t) to map the current train-
ing epoch ¢ to a scalar. This scalar value will be the
data-selection window size at epoch ¢. Formally,

)\exp(t) — {Ainit + linc * t7 if )\exp(t) < )\maz

)\mawa otherwise
A ! £ Aue(£) > A ©
_ init — ldec * t, i shr t) > min
)\Shr(t) - {)\mm, otherwise

Where A+ is the initial window size which is
smaller for expansion and larger for shrink, and
lines ldec are the hyperparameters of the schedulers.

4 Experimental Setup

Datasets We conduct experiments on six lan-
guage pairs: three high-resource including English
(En) to/from German (De), Hungarian (Hu) and
Estonian (Et), and three low-resource including
English (En) to/from Hausa (Ha), Tamil (Ta) and
Malay (Ms). We use the dataset provided in WMT
2021' — De and Ha are from News shared task,
while the remaining four pairs are from Large-
Scale Multilingual MT shared task. For En<>De,
we use newstest2019 as validation set and report
test results on newstest2020. For En<+Ha, we ran-
domly split the provided dev set into valid and
test set. For the other language pairs, we use the
official evaluation data (dev and devtest) as vali-
dation and test sets. Table 1 presents the dataset

"http://www.statmt.org/wmt21/
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Pair Train Validation | Test
All-data In-domain

En-De | 89,893,260 2,152,577 1997 1418
De-En | 89,893,260 2,152,577 2000 785

En-Hu | 53,219,023 647,106 997 1012
En-Et | 19,685,308 869,537 997 1012
En-Ms | 1,694,311 - 997 1012
En-Ta 1,064,032 - 997 1012
En-Ha 685,780 - 1000 1000

Table 1: Number of sentence pairs for each dataset after
cleaning and deduplication.

statistics after cleaning and deduplication. For high-
resource pairs, we consider formal bitext corpora
sources as in-domain (Dy C D), while for low-
resource pairs, we do not differentiate between
general-domain and in-domain corpus (Dg = D).

Model Settings We use the Transformer
(Vaswani et al., 2017) implementation in Fairseq
(Ott et al., 2019); details of our model architecture
settings are given in Appendix B. We use senten-
cepiece library? to learn joint Byte-Pair-Encoding
(BPE) of size 32,000 and 16,000 for En<>De and
En<Ha, respectively. For other language pairs,
we use official sentencepiece model provided in
Large-Scale Multilingual MT shared task. We
filter out bitext with length longer than 250 tokens
during training. All experiments are evaluated
using SacreBLEU (Post, 2018).

For LM training in modified Moore-Lewis
method (§3.1), we use the implementation in
Fairseq. For in-domain LM training, we use SM
sentences from newscrawl, while we combine 10M
commoncraw] data with newscrawl totaling 15M
sentences to train the general-domain LM.

Baselines We compare our methods with the con-
verged model, which is a standard NMT model
trained on all the general-domain data (D) un-
til convergence. Additionally, we compare both
the deterministic and online curriculum approaches
with the traditional fine-tuning where we fine-
tune the base model from the warm-up stage with
all the in-domain train data (D,) until convergence.

5 Results

The main results for the low- and high-resource lan-
guages are shown in Tables 2 and 3, respectively.
For low-resource languages, we train the warm-up
stage models for 20K updates, while the converged

Zhttps://github.com/google/sentencepiece

models are trained for SOK updates. For high-
resource languages, we train for 50K and 100K
updates for the warm-up and converged models, re-
spectively. In traditional fine-tuning (All Data row
in the Tables), we use all the available in-domain
data (Dy) in each fine-tuning epoch. On the other
hand, for both deterministic and online curricula,
we use at most 40% of the available in-domain data
(Ds C Dyp) in each fine-tuning epoch. We discuss
a detailed performance comparison of traditional
fine-tuning with Converged Model in Appendix C.

5.1 Performance of Deterministic Curricula

First, we consider the performance of determin-
istic curriculum approaches on low-resource lan-
guages. From Table 2, we see that training on the
data subset (D) selected by LASER outperforms
the baseline (Converged Model) on five out of six
translation tasks with a +2.2 BLEU gain in Ha-En.
For the other two scoring methods, dual conditional
cross-entropy (DCCE) and modified Moore-Lewis
(MML), we also see a better or similar performance
on 5/6 translation tasks. Compared to the tradi-
tional fine-tuning (All Data row in Table 2), the
deterministic approaches perform better in most of
the tasks - on average +0.5, +0.4, +0.2 BLEU gains
for LASER, DCCE, and MML, respectively.

In Table 3, we see a similar trend of improved
performance for the deterministic curricula over
the converged model on high-resource languages.
Specifically, data selection by utilizing the scor-
ing of both LASER and DCCE performs better on
four out of six translation tasks, while the MML-
based method achieves a better performance on
three tasks. The margin of improved performances
for the high-resource languages are higher com-
pared to the low-resource languages: +1.4, +0.9,
+0.7 BLEU gains on average for DCCE, LASER,
and MML, respectively over the baseline. If we com-
pare with traditional fine-tuning (All In-domain
Data row in Table 3), the deterministic curriculum
approaches perform better in most of the tasks - on
average +1.2, +0.8, +0.4 BLEU scores better for
DCCE, LASER, and MML, respectively.

To observe the better performance of the deter-
ministic curriculum approaches more clearly, we
fine-tune the base model with different percentages
of ranked data selected by the bitext scoring meth-
ods. Figure 2 shows the results. We observe that
there exist multiple subsets of data (Ds; C Dy),
fine-tuning the base model from warm-up stage
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Type Setting % data-used En-Ha En-Ms En-Ta
in each ep. — ~ | = ~ | = —
Warm-up Stage Model 100% ‘ 13.5 14.7 ‘ 30.8 27.3 ‘ 8.6 15.6
Baseline Converged Model 100% | 143 153 | 314 279 | 89 15.8
Warm-up Stage Model Fine-tuning
All Data 100% | 144 01 156403 | 315401 280+01 | 88 01 157 —01
LASER 40% 14.6 +0.3 175422 | 31.7 +03 282403 | 87 —0.2 15.9 +0.1
Det. Curricula Dual Cond. CE (DCCE) 40% 14.3 0.0 163 +1.1 | 314 400 282 +03 | 85 -04 16.0 +0.2
Mod. Moore-Lewis (MML) 40% 14.9 106 156 +03 | 31.6 +0.2  28.1 +0.2 | 9.0 +0.1 15.7 0.1
. . Static Window 40% ‘ 14.7 +0.4 16.1 +0.8 ‘ 31.6 v0.2 283 +0.4 ‘ 9.1 102 16.2 +0.4
Online Curricula . .
Dynamic Window
Expansion <40% 148 +05 166 +1.3 | 31.8 +04 284 +05 | 9.0 401 16.0 +0.2
Shrink <40% 14.7 +0.4 159 406 | 314 +00 283 404 | 88 —0.1 16.0 +0.2
Det. + Online Hybrid 1520% | 147 v0.4 164 +11 | 3154101 282403 | 9.1+02 159 01

Table 2: Main results for low-resource languages. Here, the data-percentage represents general-domain data (Dy) and we
do not differentiate between general-domain and in-domain corpus (Dgq := D). Subscript values denote the BLEU score

differences from the respective converged model.

Type Setting % data-used En-De En-Hu En-Et
in each ep. — «— | — — | — —
Warm-up Stage Model 100%+00D ‘ 349 41.0 ‘ 339 36.0 ‘ 35.7 37.1
Baseline Converged Model 100%+00D |  36.1 412 | 359 367 | 367 38.2
Warm-up Stage Model Fine-tuning
All In-domain Data 100% ‘ 36.5 +0.4  40.7 —05 ‘ 357 —02 355 -12 ‘ 37.6 +09 374 —o0s
LASER 40% 376 +1.5 424 412 | 360 +0.1 359 —08 | 37.6 +09 378 —0.4
Det. Curricula Dual Cond. CE (DCCE) 40% 379 +1.8  430+18 | 364 +05 354 13 | 381 +1.4 373 09
Mod. Moore-Lewis (MML) 40% 37.1 410 41.7 +o6 | 358 —0.1 352 15 | 373 406 374 —0s
Online Curricula  Static Window 40% | 373 +12 414402 | 361 v02 35413 | 37.9+12 377 05
Dynamic Window
Expansion <40% 373 +1.2 413 401 | 362403 354 -13 | 380413 378 04
Shrink <40% 37.0 +0.0  41.2 +0.0 | 36.0 +o.1 357 —1.0 | 381414  37.6 —06
Det. + Online Hybrid 15-20% ‘ 38.1 2.0 433 2.1 ‘ 36.1 +0.2 35.6 —1.1 ‘ 379412 373 -09

Table 3: Main results for high-resource languages. Here, the data-percentage represents only In-domain data (Dg) from Table
1 and 100%+0O0D denotes All-data (Dg4). Subscript values denote the BLEU score differences from respective converged model.

on those subsets exhibit a better performance com-
pared to the baseline (Converged Model) and tra-
ditional fine-tuning. For De-En, traditional fine-
tuning (on 100% data) reduces the BLEU score by
0.3 from the base model, while most of the sub-
sets selected by the deterministic curricula exhibit
improved performances. For Hu-En, traditional
fine-tuning reduces the performance of the base
model by 0.5 BLEU. Unlike De-En, here we do not
find a subset by the deterministic curricula which
improves the performance of the base model.

5.2 Performance of Online Curricula

Our online curriculum approaches perform on par
with the deterministic curricula for both low- and
high-resource languages as shown in Tables 2 and 3,
respectively. Unlike deterministic, here we exploit
the emerging model’s prediction scores without us-
ing any external pretrained scoring methods. In our
static window approach, we discard the top 30%
and bottom 30% sentence pairs from the ranked Dy

and fine-tune the base model on the remaining 40%
data (D,). The selected data in D, vary dynam-
ically from epoch to epoch due to the change in
the prediction scores of the emerging model. From
the results (Tables 2, 3), we notice that the data-
selection by static window method outperforms the
baseline (Converged Model) on ten out of twelve
translation tasks and the BLEU scores are compa-
rable to the deterministic curriculum approaches.

In our dynamic window approach, we either ex-
pand or shrink the window size, where the selected
window is restricted to the range of 30% to 70% of
the ranked Dy, i.e., D, is at most 40% of Dy. In
window expansion, we start Dy with 10% of Dy,
and linearly increase it to 40% in the subsequent
epochs, while in the window shrink method we
start D with 40% and linearly decrease to 10% of
D,4. With dynamic window expansion, we achieve
slightly better (in range of +0.5 to +0.1 BLEU)
or similar performance on 9 out of 12 translation
tasks compared to the static window method. On



Type Setting % data-used En-De Scoring Top En-Ha En-Ms En-Ta
in each ep. — — Method data% — — | = — | = —
Warm-up Model 100% | 333 39.1 LASER 10% ‘ 14055 173101 | 309150 27915, | 8.107 15816
Baseline Converged Model 100% | 346 40.0 40% | 14611 17505 | 31700 28252 | 8750 15907
- - Dual 10% | 13.015 16350 | 31.0i54  28.0155 | 8.000 15202
Warm-Up Model Fine-tuning Cond. CE 40% ‘ 143120 163155 | 3ldws 28250 | 8555 16010
All in-domain data 100% | 34006  416+16 Modified 10% | 14450  15.1i7 | 318106 27955 | 8500 15206
LASER 40% 344 02 432 432 Moore-Lewis 40% 149133 15.6136 | 31.6308 28.1os9 | 9.050  15.7105
Det. Curricula Dual Cond. CE (DCCE) 40% 351405 444 144
Mod. Moore-Lewis (MML) 40% 345 01 416 +16 . ..
Static Windom W0% | 31 0 41910 Table 5: Results for fine-tuning vs. training from

Online Curricula

Dynamic Window
Expansion
Shrink

<40%
<40%

344 02
343 03

422 422
42.0 +2.0

Table 4: Results for En<>De on noisy ParaCrawl cor-
pus of 10M bitext pairs. Here, the data-percentage cor-
responds to all 10M bitext (Dy) and Dy := D,. Sub-
script values denote the BLEU score difference from
the respective converged model.

the other hand, the dynamic window shrink method
performs slightly worse than window expansion in
most of the translation tasks.

6 Discussion and Analysis

6.1 Hybrid Curriculum

To benefit from both deterministic and online cur-
ricula, we combine the two strategies. Specifically,
we consider three subsets of data comprising of the
top 50% of D, ranked by each of the three bitext
scoring methods in §3.1 and keep the common bi-
text pairs (intersection of three subsets). We then
apply the static window data-selection curriculum
on these bitext pairs, where we discard the top 10%
and bottom 10% pairs (ranked by the emerging
model’s prediction scores) and fine-tune the base
model on the remaining bitext. Depending on the
language pairs, the data percentage for fine-tuning
(Ds) becomes 15-20% of D,. Despite a smaller
subset of data for fine-tuning, performances of the
hybrid curriculum strategy are better on 10 out of
12 translation tasks compared to the baseline (Table
2, 3). Notably, for En-De and De-En, the hybrid
curriculum achieves +2.0 and +2.1 BLEU gains
compared to the converged baseline model.

6.2 Performance on Noisy Data

We further evaluate our framework on noisy data.
We randomly selected 10M bitext pairs from the
En-De ParaCrawl corpus. We keep the experimen-
tal settings similar to §5 and present the results in
Table 4. Fine-tuning on the data subset (D) se-
lected by DCCE method outperforms the baseline
(Converged Model) on both directions with a +4.4
BLEU gain in De-En. All the other deterministic
and online curriculum methods perform better than
the converged model on the De-En direction with

scratch on top 10% and 40% of selected data ranked
by three bitext scoring methods (§3.1). Main values de-
note the results of fine-tuning, while subscript values
represent results when model is trained from a random
state on the same data subset.

a sizable margin. Compared to the traditional fine-
tuning, all the curriculum methods perform better
in both En to/from De.

6.3 Do We Need the Warm-up Stage?

For the online curricula, we exploit the model M
for selecting D, based on the prediction scores,
while in the deterministic curricula, we do not use
the emerging model for selecting the data subset.
One might ask — do we need a base model in the de-
terministic curricula? Can we get rid of the warm-
up stage? To answer these questions, we perform
another set of experiments where we train M from
a randomly initialized state on the top p% of the
selected data (p ={10, 40}) ranked by the three
bitext scoring methods (§3.1) and compare the re-
sults with the base model M fine-tuned on the
same data subset. From the results in Table 5, we
see that for all the tasks our proposed two-stage cur-
riculum framework outperforms the training from
the scratch method by a sizable margin.

6.4 Are All Data Useful Always?

Our proposed curriculum training framework uses
all the data (D) in the warm-up stage and then
utilizes a subset of in-domain data (D,) in the fine-
tuning stage. This resembles the formal education
system where students first learn the general sub-
jects with the same weights and later concentrate
more on a selected subset of specialized subjects.
The first stage teaches base knowledge which is
useful in the later stage. We observe the same in
our experiments. From Table 6, we see that the
performance of the NMT model using only the in-
domain data is worse than using all general-domain
data (-8.1 BLEU on average). Moreover, the gains
of our proposed framework in most of the transla-
tion tasks over the converged model which uses all
the data throughout the training, suggests that not
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Figure 2: Fine-tuned warm-up stage model using different sizes of ranked data (deterministic curricula).
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Figure 3: Number of update steps required for each setting of Tables 2, 3. We keep batch size same in each setting.

Corpus En-De En-Hu En-Et
— — | = — | = —

All-data | 36.1 412 | 359 367 | 36.7 382

In-domain | 32.6 33.5 | 255 23.6 | 30.6 30.3

Table 6: Results for high-resource languages on all-
data (D) vs. in-domain data (D4) when trained from
scratch until convergence.

all data are useful all the time. Additionally, Figure
2 shows that most selected data subsets outperform
traditional fine-tuning which uses all the data. This
observation validates our intuition that some data
samples are not only redundant but also detrimental
to the NMT model’s performance.

6.5 Comparing Required Update Steps

Our proposed curriculum training approaches not
only exhibit better performance but also converge
faster compared to the baseline and traditional fine-
tuning method. In Figure 3, we plot the number of

update steps required by each of the settings in Ta-
ble 2 and 3. On average, we need about 50% fewer
updates compared to the converged model. For
high-resource languages, we need much fewer up-
dates in the fine-tuning steps. For all the language
pairs, the hybrid curriculum strategy requires the
fewest updates as the size of selected subsets is
much lower compared to other approaches.

7 Conclusion

We have presented a two-stage curriculum train-
ing framework for NMT where we apply a data
selection curriculum in the fine-tuning stage. Our
novel online curriculum strategy utilizes the emerg-
ing models’ prediction scores for the selection of
a better data subset. Experiments on 6 low- and
high-resource language pairs show the efficacy of
our proposed framework. Our curriculum training
approaches exhibit better performance as well as
converge much faster by requiring fewer updates.
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Appendix
A In-domain Corpora List

For high-resource language pairs, we consider for-
mal bitext corpora sources as in-domain (Dy C
D,), while for low-resource pairs, we do not dif-
ferentiate between general-domain and in-domain
corpus (Dy = D). Table 7 presents the in-domain
corpora list for high-resource language pairs.

Pair

En-De
En-Hu

| In-domain Corpora

Europarl, News Commentary
EUconst, Europarl, GlobalVoices, Wikipedia,
WikiMatrix, WMT-News

En-Et | EUconst, Europarl, WikiMatrix, WMT-News

Table 7: In-domain corpora for high-resource language
pairs.

B Model Architecture Settings

For En<>Ha, we use a smaller Transformer archi-
tecture with five layers, while for the other lan-
guage pairs we use larger Transformer architecture
with six encoder and decoder layers. We present
the number of attention heads, embedding dimen-
sion, and inner-layer dimension of both settings in
Table 8.

Settings | Enc>Ha  Other Pairs
Transformer Layers 5 6
#Attention Heads 8 16
Embedding Dimension 512 1024
Inner-layer Dimension 2048 4096

Table 8: Model architecture settings.

C Traditional Fine-tuning Vs.

Converged Model Performance

Comparing the performance of traditional fine-
tuning (All Data in Table 2) with the Converged
Model for low-resource languages, we see that both
of these perform on par. This is not surprising as
both approaches use all the train data (D) dur-
ing the whole training (for low-resource languages
Dy = Dy). The only difference between the two
approaches is —- while the converged model con-
tinues to train the base model from warm-up stage,
the traditional fine-tuning approach resets the base
model’s meta-parameters (e.g., learning-rate, Ir-
scheduler, dataloader, optimizer) and continue the
training.
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For high-resource languages in Table 3, while
we fine-tune the base model only on the in-domain
training data (Dy C D,) in traditional fine-tuning
(All In-domain Data in the Table), the converged
model continues to train the base model on all the
general-domain data (D). Here, traditional fine-
tuning performs better than the converged model
on En-De (+0.4) and En-Et (+0.9), while exhibits
worse performance on the other four directions by
0.7 BLEU score on an average.

D Opverlap of Selected Data Subset

We compare the data percentage overlap of the or-
dered data between any two methods of §3.1 in
Figure 4. From the plots, we see that the overlaps
between the data subsets are quite low. Let us con-
sider En-De for an example: if we take the top
40% data ranked by both LASER and dual DCCE
methods, the overlap between these two subsets is
47%. But both of the subsets perform pretty well
compared to the converged model and traditional
fine-tuned model (Table 3). We observe the sim-
ilar phenomena in almost all the cases (Figure 2,
4). These observations suggest that there can be
multiple subsets of data for each language pair, fine-
tuning the base model on which exhibits better per-
formance compared to the traditional fine-tuning
that uses all the data.
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Figure 4: Overlap percentage of ranked data between any two methods { LASER, DCCE, CED}.
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