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Abstract
Neural Machine Translation (NMT) models001
are typically trained on heterogeneous data002
that are concatenated and randomly shuffled.003
Curriculum training aims to present the data004
to the NMT systems in a meaningful order.005
In this work, we introduce a two-stage cur-006
riculum training framework for NMT where007
we fine-tune a base NMT model on subsets008
of data, selected by both deterministic scoring009
using pre-trained methods and online scoring010
that consider prediction scores of the emerg-011
ing NMT model. Through extensive experi-012
ments on six language pairs comprising low-013
and high-resource languages from WMT’21,014
we have shown that our curriculum strategies015
consistently demonstrate better quality (up to016
+2.2 BLEU improvement) and faster conver-017
gence (approximately 50% fewer updates).018

1 Introduction019

The notion of a curriculum came from the human020

learning experience; we learn better and faster021

when the learnable examples are presented in a022

meaningful sequence rather than a random order023

(Newport, 1990). In the case of machine learn-024

ing, curriculum training hypothesizes presenting025

the data samples in a meaningful order to machine026

learners during training such that it imposes struc-027

ture in the task of learning (Bengio et al., 2009).028

In recent years, Neural Machine Translation029

(NMT) has shown impressive performance in high-030

resource settings (Popel et al., 2020). Typically031

training data of the NMT systems are a heteroge-032

neous collection from different domains, sources,033

topics, styles, and modalities, and of different qual-034

ity and linguistic difficulty levels. However, not035

all of them may be useful, some examples may be036

redundant, and some data might even be noisy and037

detrimental to the final NMT system performance038

(Khayrallah and Koehn, 2018). So, NMT systems039

have the potential to benefit greatly from curricu-040

lum learning in terms of both speed and quality.041

In this work, we propose a two-stage curriculum 042

training framework for NMT — model warm-up 043

and model fine-tuning. We initially train a base 044

model in the warm-up stage on all available data. In 045

the fine-tuning, we adapt the base model on subsets 046

of the data based on data quality and/or usefulness 047

at the current state of the model. We explore two 048

sets of data selection curriculum strategies — deter- 049

ministic and online. The deterministic curriculum 050

uses external measures which require pretrained 051

models for selecting the data subset at the begin- 052

ning and continues training on the selected sub- 053

set. In contrast, the online curriculum dynamically 054

selects a subset of the data for each epoch with- 055

out requiring any external measure. Specifically, 056

it leverages the prediction scores of the emerging 057

NMT model. Our online curriculum resembles self- 058

paced learning (Kumar et al., 2010) which uses the 059

emerging model hypothesis to select samples. 060

For picking the subset of the data in the on- 061

line curriculum, we investigate two approaches 062

of data-selection window – static and dynamic. 063

Even though the size of the data-selection win- 064

dow is fixed throughout the training in the static 065

approach, the samples in the selected subset vary 066

from epoch to epoch due to the change in their pre- 067

diction scores. In the dynamic approach, we either 068

expand or shrink the data-selection window. 069

Experiments on 6 language pairs (12 translation 070

directions) comprising low- and high-resource lan- 071

guages from WMT’21 demonstrate better perfor- 072

mance compared to the baseline trained on all data 073

(up to +2.2 BLEU). We observe bigger gains for the 074

high-resource pairs compared to the low-resource 075

ones. Interestingly, we find that the online curricu- 076

lum approaches perform on par with the determin- 077

istic approaches while not using any external pre- 078

trained models. Our proposed curriculum training 079

approaches not only exhibit better performance but 080

also converge much faster requiring approximately 081

50% fewer updates compared to the baseline. 082
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2 Background083

Curriculum learning Inspired by human learn-084

ers, Elman (1993) argues that optimization of neu-085

ral network training can be accelerated by gradually086

increasing the difficulty of the concepts. Bengio087

et al. (2009) were the first to use the term “curricu-088

lum learning” to refer to the easy-to-hard training089

strategies in the context of machine learning. Us-090

ing an easy-to-hard curriculum based on increasing091

vocabulary size in language model training, they092

achieved performance improvement. Recent work093

(Jiang et al., 2015; Hacohen and Weinshall, 2019;094

Zhou et al., 2020a) shows that manipulating the095

sequence of training data can improve both train-096

ing efficiency and model accuracy. Several stud-097

ies show the effectiveness of the difficulty-based098

curriculum learning in a wide range of NLP tasks099

(Cirik et al., 2016; Liu et al., 2018).100

Curriculum learning in NMT The difficulty-101

based curriculum in NMT was first explored by102

Kocmi and Bojar (2017). Later, Zhang et al. (2018)103

adopt a probabilistic view of curriculum learning104

and investigate a variety of difficulty criteria based105

on human intuition, e.g., sentence length and word106

rarity. Platanios et al. (2019) connect the appear-107

ance of difficult samples with NMT model com-108

petence. Liu et al. (2020) propose a norm-based109

curriculum learning method based on the norm of110

word embedding. Zhou et al. (2020b) use a pre-111

trained language model to measure the word-level112

uncertainty. Xu et al. (2020) explore the effective-113

ness of curriculum learning for low-resource NMT.114

Data selection strategy for NMT Joty et al.115

(2015) use domain adaptation by penalizing se-116

quences similar to the out-domain data. Wang et al.117

(2018) propose a curriculum-based data selection118

strategy by using an additional trusted clean dataset119

to calculate noise level of a sample. Kumar et al.120

(2019) use reinforcement learning to learn a denois-121

ing curriculum jointly with the NMT system. Jiao122

et al. (2020) identify the inactive samples during123

training and re-label them for later use. Wang et al.124

(2021) find gradient alignments between a clean125

dataset and the training data to mask out noisy data.126

Domain specific fine-tuning In a successful line127

of research NMT models are first trained on a large128

general-domain bitext and then fine-tuned on small129

in-domain data (Luong and Manning, 2015; Zoph130

et al., 2016). van der Wees et al. (2017) gradually131

decrease the training data size to a cleaner subset 132

of the data estimated by some external scorers. 133

Summary Most curriculum learning methods in 134

NMT focus on addressing the batch selection is- 135

sue from the beginning of the training by using 136

hand-designed heuristics (Zhao et al., 2020). In 137

contrast, our proposed two-stage curriculum train- 138

ing framework for NMT fine-tunes the base model 139

from the warm-up stage on a selected subset of data. 140

Our curriculum training framework resembles the 141

formal education system as discussed in §6.4. 142

3 Proposed Framework 143

Let s and t denote the source and target language 144

respectively, and Dg = {(xi, yi)}Ni=1 denote the 145

general-domain parallel training data containing N 146

sentence pairs with xi and yi coming respectively 147

from s and t languages. Also, let Dd ⊆ Dg be the 148

in-domain parallel training data andM is an NMT 149

model that can translate sentences from s to t. The 150

overall training objective of the NMT model is to 151

minimize the total loss of the training data: 152

J (θ) =
N∑
i=1

L(xi, yi, θ) =
N∑
i=1

− logPθ(yi|xi) (1) 153

where Pθ(yi|xi) is the sentence-level translation 154

probability of the target sentence yi for the source 155

sentence xi with θ being the parameters ofM. 156

We propose a two-stage training curriculum 157

where in the model warm-up stage we trainM on 158

general domain bitextDg forK number of gradient 159

updates; K is generally smaller than the total num- 160

ber of updatesM requires for convergence. Then 161

in model fine-tuning stage, we fine-tuneM on the 162

in-domain bitext Dd till it converges. Based on the 163

intuition "not all of the training data are useful or 164

non-redundant, some samples might be irrelevant 165

or even detrimental to the model”, we hypothesize 166

that there exists a Ds ⊂ Dd, fine-tuning on which 167

M will exhibit an improved performance. 168

Our goal is to design a ranking of the training 169

samples which will eventually help us extract Ds 170

from Dd. For this, we investigate two sets of data 171

selection curriculum strategies – deterministic and 172

online. Both strategies require a measure of data 173

quality and/or usefulness at the current state of 174

the model to extract Ds. While the deterministic 175

curriculum uses external measures that require pre- 176

trained models, the online curriculum leverages the 177

prediction scores of the emerging NMT models. 178
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3.1 Deterministic Curriculum179

In this strategy, we select a Ds ⊂ Dd initially and180

do not change it during the model fine-tuning stage.181

We first score each sample in Dd using an external182

bitext scoring method. We experiment with three183

scoring methods as described below.184

• LASER This approach utilizes the Language-185

Agnostic SEntence Representations (LASER)186

toolkit (Artetxe and Schwenk, 2019), which gives187

multilingual sentence representations using an188

encoder-decoder architecture trained on a paral-189

lel corpus . We use the sentence representations to190

score the similarity of a bitext using Cross-Domain191

Similarity Local Scaling (CSLS), which performs192

better than other similarity metrics in reducing the193

hubness problem (Conneau et al., 2017).194

Scorelaser(xi, yi) = CSLS(LASER(xi),LASER(yi)) (2)195

Chaudhary et al. (2019) showed benefits of LASER-196

based ranking for low-resource corpus filtering.197

• Dual Conditional Cross-Entropy (DCCE)198

Junczys-Dowmunt (2018) proposed this method,199

which requires two inverse translation models – one200

forward model (f ) and one backward (b) model201

trained on the same parallel corpus. It then finds202

the score of a bitext (xi, yi) by taking the maxi-203

mal symmetric agreement of the two models which204

exploits the conditional cross-entropy (H).205

Scoredcce(xi, yi) = |Hf −Hb|+
1

2
(Hf +Hb)

where Hf = − logPθf (yi|xi); Hb = − logPθb(xi|yi)
(3)206

The absolute difference between the conditional207

cross-entropy in Eq.3 measures the agreement be-208

tween the two conditional probability distributions.209

If the sentences in a bitext are equally probable210

(good) or equally improbable (bad/noisy), this part211

of the equation will have a low score. To differ-212

entiate between these two scenarios, we need the213

average cross-entropy score which scores higher214

for improbable sentence pairs.215

• Modified Moore-Lewis (MML) MML ranks216

the bitext pairs based on domain relevance by cal-217

culating cross-entropy difference scores (Moore218

and Lewis, 2010; Axelrod et al., 2011). For this,219

we need to train four language models (LM): in-220

and general-domain LMs in both source and target221

languages. Then we find the MML score of a bitext222

pair (xi, yi) as follows:223

Scoremml(xi, yi) = (Hs,in(xi)−Hs,gen(xi))
+ (Ht,in(yi)−Ht,gen(yi))

where Hb,C(z) = − logP LM
b,C(z)

(4)224

Algorithm 1 Deterministic Curriculum Strategy
Input : General domain corpus Dg, in-domain

corpus Dd ⊆ Dg, external pretrained bi-
text scorer S

Output :A trained translation model
1. // model warm-up stage

Train a base modelM on general domain corpus
Dg for K number of updates

2. // model fine-tuning stage
(a) Use S to score each bitext in Dd
(b) Rank Dd based on these scores
(c) Find Ds ⊂ Dd by selecting top p% of Dd
(d) for n_epochs do

Fine-tuneM on Ds
end

Here, b ∈ {s, t} refers to the bitext side and C ∈ 225

{in, gen} refers to the corpus domain. In our ex- 226

periments, we use the newscrawl data as in-domain 227

and commoncrawl combined with newscrawl data 228

as general-domain for training the LMs. 229

LASER and DCCE assign scores based on de- 230

noising curriculum (i.e., higher rank for good trans- 231

lation and lower rank for noisy ones) while MML 232

performs domain similarity curriculum on the given 233

data. After scoring each pair (xi, yi) ∈ Dd by any 234

of the above methods, we rank Dd based on the 235

scores, and pick Ds ⊂ Dd by selecting top p% 236

pairs as the better subset to fine-tune the base model 237

M on Ds. Algorithm 1 presents a pseudo-code of 238

our deterministic curriculum strategy. 239

3.2 Online Curriculum 240

Unlike deterministic curriculum, in this strategy the 241

selected subset Ds changes dynamically in each 242

epoch of the fine-tuning stage through instanta- 243

neous feedback from the current model. Specifi- 244

cally, we rank the samples by leveraging the predic- 245

tion scores from the emerging NMT model which 246

assigns a probability to each token in the target 247

sentence yi. We then take the average of the token- 248

level probabilities to get the sentence-level prob- 249

ability score which is regarded as the prediction 250

score for the bitext pair (xi, yi). Formally, 251

Pθ(yi|xi) =
1

`

∑̀
t=1

pθ(yi,t|yi,<t, xi) (5) 252

This bitext prediction score indicates the confi- 253

dence of the model to generate the target sentence 254

yi from the source sentence xi. Intuitively, if the 255

model can predict the target sentence of a sample 256
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Algorithm 2 Online Curriculum Strategy
Input : General corpus Dg, in-domain corpus

Dd ⊆ Dg
Output :A trained translation model
1. // model warm-up stage

Train a base modelM on general domain corpus
Dg for K number of updates

2. // model fine-tuning stage
for n_epochs do

(a) Find prediction score for each bitext in Dd
(b) Rank Dd based on these scores
(c) Find Ds ⊂ Dd by picking a data-selection
window
(d) Fine-tuneM on Ds

end

with higher confidence, it indicates that the sample257

is too easy for the model and might not contain258

useful information to improve the model further at259

that state. On the other hand, if a target sentence is260

predicted with lower confidence, it indicates that261

the sample might be too hard for the model at that262

state or it might be a noisy sample. Subsequently,263

including such hard or noisy samples in training264

might degrade the model performance.265

Algorithm 2 presents the pseudo-code of our266

proposed online curriculum strategy. After warm-267

up stage, we fine-tune M for n_epochs on Ds268

which is selected in every epochs. In the beginning269

of each fine-tuning epoch, we find the prediction270

score for each bitext pair in Dd. We rank Dd based271

on these scores and select Ds ⊂ Dd by picking272

a data-selection window in the ranked in-domain273

data. Finally, we fine-tuneM on Ds for that epoch.274

We present the conceptual demonstration of our275

online curriculum strategy in Figure 1. For picking276

the data-selection window in the ranked Dd, we277

investigate two methods:278

• Static Data-selection Window Here in each279

epoch, we discard a constant amount of easy and280

hard samples from Dd based on the prediction281

scores and select the rests as Ds. Even though in282

this method the size of the data-selection window283

is fixed through out the fine-tuning stage, unlike de-284

terministic strategy the samples in Ds varies from285

epoch to epoch due to the change in their prediction286

scores by the emergingM.287

• Dynamic Data-selection Window Unlike the288

static approach, here we change the data-selection289

window size in subsequent epochs. This can be290

done in two ways:291

Prediction Score0

Fr
eq

ue
nc

y

Selected Window

Hard/Noisy Easier

Figure 1: Conceptual demonstration of online curriculum.
We rank the bitext pairs based on the prediction scores of
the emerging model and pick a data-selection window which
discards easy and hard/noisy ones.

(i) Expansion: Begin fine-tuning with smaller 292

window (|Ds| << |Dd|) and gradually in- 293

crease the window to a maximum size λmax. 294

(ii) Shrink: Begin fine-tuning with a larger win- 295

dow (|Ds| ∼ |Dd|) and gradually decrease 296

the window to a minimum size λmin. 297

To change the data-selection window size, we ex- 298

periment with linear scheduler which can be re- 299

garded as a function λ(t) to map the current train- 300

ing epoch t to a scalar. This scalar value will be the 301

data-selection window size at epoch t. Formally, 302

λexp(t) =

{
λinit + linc ∗ t, if λexp(t) < λmax
λmax, otherwise

λshr(t) =

{
λinit − ldec ∗ t, if λshr(t) > λmin
λmin, otherwise

(6) 303

Where λinit is the initial window size which is 304

smaller for expansion and larger for shrink, and 305

linc, ldec are the hyperparameters of the schedulers. 306

4 Experimental Setup 307

Datasets We conduct experiments on six lan- 308

guage pairs: three high-resource including English 309

(En) to/from German (De), Hungarian (Hu) and 310

Estonian (Et), and three low-resource including 311

English (En) to/from Hausa (Ha), Tamil (Ta) and 312

Malay (Ms). We use the dataset provided in WMT 313

20211 — De and Ha are from News shared task, 314

while the remaining four pairs are from Large- 315

Scale Multilingual MT shared task. For En↔De, 316

we use newstest2019 as validation set and report 317

test results on newstest2020. For En↔Ha, we ran- 318

domly split the provided dev set into valid and 319

test set. For the other language pairs, we use the 320

official evaluation data (dev and devtest) as vali- 321

dation and test sets. Table 1 presents the dataset 322

1http://www.statmt.org/wmt21/
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Pair Train Validation Test
All-data In-domain

En-De 89,893,260 2,152,577 1997 1418
De-En 89,893,260 2,152,577 2000 785
En-Hu 53,219,023 647,106 997 1012
En-Et 19,685,308 869,537 997 1012

En-Ms 1,694,311 – 997 1012
En-Ta 1,064,032 – 997 1012
En-Ha 685,780 – 1000 1000

Table 1: Number of sentence pairs for each dataset after
cleaning and deduplication.

statistics after cleaning and deduplication. For high-323

resource pairs, we consider formal bitext corpora324

sources as in-domain (Dd ⊂ Dg), while for low-325

resource pairs, we do not differentiate between326

general-domain and in-domain corpus (Dd := Dg).327

Model Settings We use the Transformer328

(Vaswani et al., 2017) implementation in Fairseq329

(Ott et al., 2019); details of our model architecture330

settings are given in Appendix B. We use senten-331

cepiece library2 to learn joint Byte-Pair-Encoding332

(BPE) of size 32,000 and 16,000 for En↔De and333

En↔Ha, respectively. For other language pairs,334

we use official sentencepiece model provided in335

Large-Scale Multilingual MT shared task. We336

filter out bitext with length longer than 250 tokens337

during training. All experiments are evaluated338

using SacreBLEU (Post, 2018).339

For LM training in modified Moore-Lewis340

method (§3.1), we use the implementation in341

Fairseq. For in-domain LM training, we use 5M342

sentences from newscrawl, while we combine 10M343

commoncrawl data with newscrawl totaling 15M344

sentences to train the general-domain LM.345

Baselines We compare our methods with the con-346

verged model, which is a standard NMT model347

trained on all the general-domain data (Dg) un-348

til convergence. Additionally, we compare both349

the deterministic and online curriculum approaches350

with the traditional fine-tuning where we fine-351

tune the base model from the warm-up stage with352

all the in-domain train data (Dd) until convergence.353

5 Results354

The main results for the low- and high-resource lan-355

guages are shown in Tables 2 and 3, respectively.356

For low-resource languages, we train the warm-up357

stage models for 20K updates, while the converged358

2https://github.com/google/sentencepiece

models are trained for 50K updates. For high- 359

resource languages, we train for 50K and 100K 360

updates for the warm-up and converged models, re- 361

spectively. In traditional fine-tuning (All Data row 362

in the Tables), we use all the available in-domain 363

data (Dd) in each fine-tuning epoch. On the other 364

hand, for both deterministic and online curricula, 365

we use at most 40% of the available in-domain data 366

(Ds ⊂ Dd) in each fine-tuning epoch. We discuss 367

a detailed performance comparison of traditional 368

fine-tuning with Converged Model in Appendix C. 369

5.1 Performance of Deterministic Curricula 370

First, we consider the performance of determin- 371

istic curriculum approaches on low-resource lan- 372

guages. From Table 2, we see that training on the 373

data subset (Ds) selected by LASER outperforms 374

the baseline (Converged Model) on five out of six 375

translation tasks with a +2.2 BLEU gain in Ha-En. 376

For the other two scoring methods, dual conditional 377

cross-entropy (DCCE) and modified Moore-Lewis 378

(MML), we also see a better or similar performance 379

on 5/6 translation tasks. Compared to the tradi- 380

tional fine-tuning (All Data row in Table 2), the 381

deterministic approaches perform better in most of 382

the tasks - on average +0.5, +0.4, +0.2 BLEU gains 383

for LASER, DCCE, and MML, respectively. 384

In Table 3, we see a similar trend of improved 385

performance for the deterministic curricula over 386

the converged model on high-resource languages. 387

Specifically, data selection by utilizing the scor- 388

ing of both LASER and DCCE performs better on 389

four out of six translation tasks, while the MML- 390

based method achieves a better performance on 391

three tasks. The margin of improved performances 392

for the high-resource languages are higher com- 393

pared to the low-resource languages: +1.4, +0.9, 394

+0.7 BLEU gains on average for DCCE, LASER, 395

and MML, respectively over the baseline. If we com- 396

pare with traditional fine-tuning (All In-domain 397

Data row in Table 3), the deterministic curriculum 398

approaches perform better in most of the tasks - on 399

average +1.2, +0.8, +0.4 BLEU scores better for 400

DCCE, LASER, and MML, respectively. 401

To observe the better performance of the deter- 402

ministic curriculum approaches more clearly, we 403

fine-tune the base model with different percentages 404

of ranked data selected by the bitext scoring meth- 405

ods. Figure 2 shows the results. We observe that 406

there exist multiple subsets of data (Ds ⊂ Dd), 407

fine-tuning the base model from warm-up stage 408

5
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Type Setting %data-used En-Ha En-Ms En-Ta
in each ep. → ← → ← → ←

Warm-up Stage Model 100% 13.5 14.7 30.8 27.3 8.6 15.6

Baseline Converged Model 100% 14.3 15.3 31.4 27.9 8.9 15.8

Warm-up Stage Model Fine-tuning

All Data 100% 14.4 +0.1 15.6 +0.3 31.5 +0.1 28.0 +0.1 8.8 −0.1 15.7 −0.1

Det. Curricula
LASER 40% 14.6 +0.3 17.5 +2.2 31.7 +0.3 28.2 +0.3 8.7 −0.2 15.9 +0.1

Dual Cond. CE (DCCE) 40% 14.3 +0.0 16.3 +1.1 31.4 +0.0 28.2 +0.3 8.5 −0.4 16.0 +0.2

Mod. Moore-Lewis (MML) 40% 14.9 +0.6 15.6 +0.3 31.6 +0.2 28.1 +0.2 9.0 +0.1 15.7 −0.1

Online Curricula Static Window 40% 14.7 +0.4 16.1 +0.8 31.6 +0.2 28.3 +0.4 9.1 +0.2 16.2 +0.4

Dynamic Window
Expansion <40% 14.8 +0.5 16.6 +1.3 31.8 +0.4 28.4 +0.5 9.0 +0.1 16.0 +0.2

Shrink <40% 14.7 +0.4 15.9 +0.6 31.4 +0.0 28.3 +0.4 8.8 −0.1 16.0 +0.2

Det. + Online Hybrid 15-20% 14.7 +0.4 16.4 +1.1 31.5 +0.1 28.2 +0.3 9.1 +0.2 15.9 +0.1

Table 2: Main results for low-resource languages. Here, the data-percentage represents general-domain data (Dg) and we
do not differentiate between general-domain and in-domain corpus (Dd := Dg). Subscript values denote the BLEU score
differences from the respective converged model.

Type Setting %data-used En-De En-Hu En-Et
in each ep. → ← → ← → ←

Warm-up Stage Model 100%+OOD 34.9 41.0 33.9 36.0 35.7 37.1

Baseline Converged Model 100%+OOD 36.1 41.2 35.9 36.7 36.7 38.2

Warm-up Stage Model Fine-tuning

All In-domain Data 100% 36.5 +0.4 40.7 −0.5 35.7 −0.2 35.5 −1.2 37.6 +0.9 37.4 −0.8

Det. Curricula
LASER 40% 37.6 +1.5 42.4 +1.2 36.0 +0.1 35.9 −0.8 37.6 +0.9 37.8 −0.4

Dual Cond. CE (DCCE) 40% 37.9 +1.8 43.0 +1.8 36.4 +0.5 35.4 −1.3 38.1 +1.4 37.3 −0.9

Mod. Moore-Lewis (MML) 40% 37.1 +1.0 41.7 +0.6 35.8 −0.1 35.2 −1.5 37.3 +0.6 37.4 −0.8

Online Curricula Static Window 40% 37.3 +1.2 41.4 +0.2 36.1 +0.2 35.4 −1.3 37.9 +1.2 37.7 −0.5

Dynamic Window
Expansion <40% 37.3 +1.2 41.3 +0.1 36.2 +0.3 35.4 −1.3 38.0 +1.3 37.8 −0.4

Shrink <40% 37.0 +0.9 41.2 +0.0 36.0 +0.1 35.7 −1.0 38.1+1.4 37.6 −0.6

Det. + Online Hybrid 15-20% 38.1 +2.0 43.3 +2.1 36.1 +0.2 35.6 −1.1 37.9+1.2 37.3 −0.9

Table 3: Main results for high-resource languages. Here, the data-percentage represents only In-domain data (Dd) from Table
1 and 100%+OOD denotes All-data (Dg). Subscript values denote the BLEU score differences from respective converged model.

on those subsets exhibit a better performance com-409

pared to the baseline (Converged Model) and tra-410

ditional fine-tuning. For De-En, traditional fine-411

tuning (on 100% data) reduces the BLEU score by412

0.3 from the base model, while most of the sub-413

sets selected by the deterministic curricula exhibit414

improved performances. For Hu-En, traditional415

fine-tuning reduces the performance of the base416

model by 0.5 BLEU. Unlike De-En, here we do not417

find a subset by the deterministic curricula which418

improves the performance of the base model.419

5.2 Performance of Online Curricula420

Our online curriculum approaches perform on par421

with the deterministic curricula for both low- and422

high-resource languages as shown in Tables 2 and 3,423

respectively. Unlike deterministic, here we exploit424

the emerging model’s prediction scores without us-425

ing any external pretrained scoring methods. In our426

static window approach, we discard the top 30%427

and bottom 30% sentence pairs from the rankedDd428

and fine-tune the base model on the remaining 40% 429

data (Ds). The selected data in Ds vary dynam- 430

ically from epoch to epoch due to the change in 431

the prediction scores of the emerging model. From 432

the results (Tables 2, 3), we notice that the data- 433

selection by static window method outperforms the 434

baseline (Converged Model) on ten out of twelve 435

translation tasks and the BLEU scores are compa- 436

rable to the deterministic curriculum approaches. 437

In our dynamic window approach, we either ex- 438

pand or shrink the window size, where the selected 439

window is restricted to the range of 30% to 70% of 440

the ranked Dd, i.e., Ds is at most 40% of Dd. In 441

window expansion, we start Ds with 10% of Dd 442

and linearly increase it to 40% in the subsequent 443

epochs, while in the window shrink method we 444

start Ds with 40% and linearly decrease to 10% of 445

Dd. With dynamic window expansion, we achieve 446

slightly better (in range of +0.5 to +0.1 BLEU) 447

or similar performance on 9 out of 12 translation 448

tasks compared to the static window method. On 449
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Type Setting %data-used En-De
in each ep. → ←

Warm-up Model 100% 33.3 39.1

Baseline Converged Model 100% 34.6 40.0

Warm-Up Model Fine-tuning

All in-domain data 100% 34.0 −0.6 41.6 +1.6

Det. Curricula
LASER 40% 34.4 −0.2 43.2 +3.2

Dual Cond. CE (DCCE) 40% 35.1 +0.5 44.4 +4.4

Mod. Moore-Lewis (MML) 40% 34.5 −0.1 41.6 +1.6

Online Curricula Static Window 40% 34.1 −0.5 41.9 +1.9

Dynamic Window
Expansion <40% 34.4 −0.2 42.2 +2.2

Shrink <40% 34.3 −0.3 42.0 +2.0

Table 4: Results for En↔De on noisy ParaCrawl cor-
pus of 10M bitext pairs. Here, the data-percentage cor-
responds to all 10M bitext (Dg) and Dd := Dg . Sub-
script values denote the BLEU score difference from
the respective converged model.

the other hand, the dynamic window shrink method450

performs slightly worse than window expansion in451

most of the translation tasks.452

6 Discussion and Analysis453

6.1 Hybrid Curriculum454

To benefit from both deterministic and online cur-455

ricula, we combine the two strategies. Specifically,456

we consider three subsets of data comprising of the457

top 50% of Dd ranked by each of the three bitext458

scoring methods in §3.1 and keep the common bi-459

text pairs (intersection of three subsets). We then460

apply the static window data-selection curriculum461

on these bitext pairs, where we discard the top 10%462

and bottom 10% pairs (ranked by the emerging463

model’s prediction scores) and fine-tune the base464

model on the remaining bitext. Depending on the465

language pairs, the data percentage for fine-tuning466

(Ds) becomes 15-20% of Dd. Despite a smaller467

subset of data for fine-tuning, performances of the468

hybrid curriculum strategy are better on 10 out of469

12 translation tasks compared to the baseline (Table470

2, 3). Notably, for En-De and De-En, the hybrid471

curriculum achieves +2.0 and +2.1 BLEU gains472

compared to the converged baseline model.473

6.2 Performance on Noisy Data474

We further evaluate our framework on noisy data.475

We randomly selected 10M bitext pairs from the476

En-De ParaCrawl corpus. We keep the experimen-477

tal settings similar to §5 and present the results in478

Table 4. Fine-tuning on the data subset (Ds) se-479

lected by DCCE method outperforms the baseline480

(Converged Model) on both directions with a +4.4481

BLEU gain in De-En. All the other deterministic482

and online curriculum methods perform better than483

the converged model on the De-En direction with484

Scoring Top En-Ha En-Ms En-Ta
Method data% → ← → ← → ←
LASER 10% 14.18.3 17.310.1 30.918.9 27.915.1 8.10.7 15.81.6

40% 14.613.1 17.516.5 31.730.2 28.225.2 8.75.9 15.910.7

Dual 10% 13.01.3 16.38.0 31.018.4 28.015.5 8.00.0 15.20.2
Cond. CE 40% 14.312.9 16.315.3 31.429.5 28.225.0 8.55.3 16.011.0

Modified 10% 14.45.9 15.14.7 31.819.6 27.915.3 8.50.0 15.20.6
Moore-Lewis 40% 14.913.3 15.613.6 31.630.8 28.124.9 9.05.9 15.710.5

Table 5: Results for fine-tuning vs. training from
scratch on top 10% and 40% of selected data ranked
by three bitext scoring methods (§3.1). Main values de-
note the results of fine-tuning, while subscript values
represent results when model is trained from a random
state on the same data subset.

a sizable margin. Compared to the traditional fine- 485

tuning, all the curriculum methods perform better 486

in both En to/from De. 487

6.3 Do We Need the Warm-up Stage? 488

For the online curricula, we exploit the modelM 489

for selecting Ds based on the prediction scores, 490

while in the deterministic curricula, we do not use 491

the emerging model for selecting the data subset. 492

One might ask – do we need a base model in the de- 493

terministic curricula? Can we get rid of the warm- 494

up stage? To answer these questions, we perform 495

another set of experiments where we trainM from 496

a randomly initialized state on the top p% of the 497

selected data (p ={10, 40}) ranked by the three 498

bitext scoring methods (§3.1) and compare the re- 499

sults with the base model M fine-tuned on the 500

same data subset. From the results in Table 5, we 501

see that for all the tasks our proposed two-stage cur- 502

riculum framework outperforms the training from 503

the scratch method by a sizable margin. 504

6.4 Are All Data Useful Always? 505

Our proposed curriculum training framework uses 506

all the data (Dg) in the warm-up stage and then 507

utilizes a subset of in-domain data (Ds) in the fine- 508

tuning stage. This resembles the formal education 509

system where students first learn the general sub- 510

jects with the same weights and later concentrate 511

more on a selected subset of specialized subjects. 512

The first stage teaches base knowledge which is 513

useful in the later stage. We observe the same in 514

our experiments. From Table 6, we see that the 515

performance of the NMT model using only the in- 516

domain data is worse than using all general-domain 517

data (-8.1 BLEU on average). Moreover, the gains 518

of our proposed framework in most of the transla- 519

tion tasks over the converged model which uses all 520

the data throughout the training, suggests that not 521
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Figure 2: Fine-tuned warm-up stage model using different sizes of ranked data (deterministic curricula).
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Figure 3: Number of update steps required for each setting of Tables 2, 3. We keep batch size same in each setting.

Corpus En-De En-Hu En-Et
→ ← → ← → ←

All-data 36.1 41.2 35.9 36.7 36.7 38.2

In-domain 32.6 33.5 25.5 23.6 30.6 30.3

Table 6: Results for high-resource languages on all-
data (Dg) vs. in-domain data (Dd) when trained from
scratch until convergence.

all data are useful all the time. Additionally, Figure522

2 shows that most selected data subsets outperform523

traditional fine-tuning which uses all the data. This524

observation validates our intuition that some data525

samples are not only redundant but also detrimental526

to the NMT model’s performance.527

6.5 Comparing Required Update Steps528

Our proposed curriculum training approaches not529

only exhibit better performance but also converge530

faster compared to the baseline and traditional fine-531

tuning method. In Figure 3, we plot the number of532

update steps required by each of the settings in Ta- 533

ble 2 and 3. On average, we need about 50% fewer 534

updates compared to the converged model. For 535

high-resource languages, we need much fewer up- 536

dates in the fine-tuning steps. For all the language 537

pairs, the hybrid curriculum strategy requires the 538

fewest updates as the size of selected subsets is 539

much lower compared to other approaches. 540

7 Conclusion 541

We have presented a two-stage curriculum train- 542

ing framework for NMT where we apply a data 543

selection curriculum in the fine-tuning stage. Our 544

novel online curriculum strategy utilizes the emerg- 545

ing models’ prediction scores for the selection of 546

a better data subset. Experiments on 6 low- and 547

high-resource language pairs show the efficacy of 548

our proposed framework. Our curriculum training 549

approaches exhibit better performance as well as 550

converge much faster by requiring fewer updates. 551
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Appendix755

A In-domain Corpora List756

For high-resource language pairs, we consider for-757

mal bitext corpora sources as in-domain (Dd ⊂758

Dg), while for low-resource pairs, we do not dif-759

ferentiate between general-domain and in-domain760

corpus (Dd := Dg). Table 7 presents the in-domain761

corpora list for high-resource language pairs.762

Pair In-domain Corpora

En-De Europarl, News Commentary
En-Hu EUconst, Europarl, GlobalVoices, Wikipedia,

WikiMatrix, WMT-News
En-Et EUconst, Europarl, WikiMatrix, WMT-News

Table 7: In-domain corpora for high-resource language
pairs.

B Model Architecture Settings763

For En↔Ha, we use a smaller Transformer archi-764

tecture with five layers, while for the other lan-765

guage pairs we use larger Transformer architecture766

with six encoder and decoder layers. We present767

the number of attention heads, embedding dimen-768

sion, and inner-layer dimension of both settings in769

Table 8.770

Settings En↔Ha Other Pairs

Transformer Layers 5 6
#Attention Heads 8 16
Embedding Dimension 512 1024
Inner-layer Dimension 2048 4096

Table 8: Model architecture settings.

C Traditional Fine-tuning Vs.771

Converged Model Performance772

Comparing the performance of traditional fine-773

tuning (All Data in Table 2) with the Converged774

Model for low-resource languages, we see that both775

of these perform on par. This is not surprising as776

both approaches use all the train data (Dg) dur-777

ing the whole training (for low-resource languages778

Dd := Dg). The only difference between the two779

approaches is —- while the converged model con-780

tinues to train the base model from warm-up stage,781

the traditional fine-tuning approach resets the base782

model’s meta-parameters (e.g., learning-rate, lr-783

scheduler, dataloader, optimizer) and continue the784

training.785

For high-resource languages in Table 3, while 786

we fine-tune the base model only on the in-domain 787

training data (Dd ⊂ Dg) in traditional fine-tuning 788

(All In-domain Data in the Table), the converged 789

model continues to train the base model on all the 790

general-domain data (Dg). Here, traditional fine- 791

tuning performs better than the converged model 792

on En-De (+0.4) and En-Et (+0.9), while exhibits 793

worse performance on the other four directions by 794

0.7 BLEU score on an average. 795

D Overlap of Selected Data Subset 796

We compare the data percentage overlap of the or- 797

dered data between any two methods of §3.1 in 798

Figure 4. From the plots, we see that the overlaps 799

between the data subsets are quite low. Let us con- 800

sider En-De for an example: if we take the top 801

40% data ranked by both LASER and dual DCCE 802

methods, the overlap between these two subsets is 803

47%. But both of the subsets perform pretty well 804

compared to the converged model and traditional 805

fine-tuned model (Table 3). We observe the sim- 806

ilar phenomena in almost all the cases (Figure 2, 807

4). These observations suggest that there can be 808

multiple subsets of data for each language pair, fine- 809

tuning the base model on which exhibits better per- 810

formance compared to the traditional fine-tuning 811

that uses all the data. 812

11



Figure 4: Overlap percentage of ranked data between any two methods {LASER, DCCE, CED}.
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